
Published as a conference paper at ICLR 2022

LOSSLESS COMPRESSION WITH
PROBABILISTIC CIRCUITS

Anji Liu
CS Department
UCLA
liuanji@cs.ucla.edu

Stephan Mandt
CS Department
University of California, Irvine
mandt@uci.edu

Guy Van den Broeck
CS Department
UCLA
guyvdb@cs.ucla.edu

ABSTRACT

Despite extensive progress on image generation, common deep generative model
architectures are not easily applied to lossless compression. For example, VAEs
suffer from a compression cost overhead due to their latent variables. This over-
head can only be partially eliminated with elaborate schemes such as bits-back
coding, often resulting in poor single-sample compression rates. To overcome such
problems, we establish a new class of tractable lossless compression models that
permit efficient encoding and decoding: Probabilistic Circuits (PCs). These are a
class of neural networks involving |p| computational units that support efficient
marginalization over arbitrary subsets of the D feature dimensions, enabling effi-
cient arithmetic coding. We derive efficient encoding and decoding schemes that
both have time complexity O(log(D) · |p|), where a naive scheme would have
linear costs in D and |p|, making the approach highly scalable. Empirically, our
PC-based (de)compression algorithm runs 5-40 times faster than neural compres-
sion algorithms that achieve similar bitrates. By scaling up the traditional PC
structure learning pipeline, we achieve state-of-the-art results on image datasets
such as MNIST. Furthermore, PCs can be naturally integrated with existing neural
compression algorithms to improve the performance of these base models on nat-
ural image datasets. Our results highlight the potential impact that non-standard
learning architectures may have on neural data compression.

1 INTRODUCTION

Thanks to their expressiveness, modern Deep Generative Models (DGMs) such as Flow-based models
(Dinh et al., 2014), Variational Autoencoders (VAEs) (Kingma & Welling, 2013), and Generative
Adversarial Networks (GANs) (Goodfellow et al., 2014) achieved state-of-the-art results on generative
tasks such as creating high-quality samples (Vahdat & Kautz, 2020) and learning low-dimensional
representation of data (Zheng & Sun, 2019). However, these successes have not been fully transferred
into neural lossless compression; see (Yang et al., 2022) for a recent survey. Specifically, GANs
cannot be used for lossless compression due to their inability to assign likelihoods to observations.
Latent variable models such as VAEs rely on rate estimates obtained by lower-bounding the likelihood
of the data, i.e., the quantity which is theoretically optimal for lossless compression; they furthermore
rely on sophisticated schemes such as bits-back coding (Hinton & Van Camp, 1993) to realize these
rates, oftentimes resulting in poor single-sample compression ratios (Kingma et al., 2019).

Therefore, good generative performance does not imply good compression performance for lossless
compression, as the model needs to support efficient algorithms to encode and decode close to
the model’s theoretical rate estimate. While both Flow- and VAE-based compression algorithms
(Hoogeboom et al., 2019; Kingma et al., 2019) support efficient and near-optimal compression
under certain assumptions (e.g., the existence of an additional source of random bits), we show
that Probabilistic Circuits (PCs) (Choi et al., 2020) are also suitable for lossless compression tasks.
This class of tractable models has a particular structure that allows efficient marginalization of its
random variables–a property that, as we show, enables efficient conditional entropy coding. Therefore,
we introduce PCs as backbone models and develop (de)compression algorithms that achieve high
compression ratios and high computational efficiency.

1

Published as a conference paper at ICLR 2022

Similar to other neural compression methods, the proposed lossless compression approach operates
in two main phases — (i) learn good PC models that approximate the data distribution, and (ii)
compress and decompress samples x with computationally efficient algorithms. The proposed
lossless compression algorithm has four main contributions:

A new class of entropy models. This is the first paper that uses PCs for data compression. In contrast
to other neural compression algorithm, we leverage recent innovations in PCs to automatically learn
good model architectures from data. With customized GPU implementations and better training
pipelines, we are the first to train PC models with competitive performance compared to deep learning
models on datasets such as raw MNIST.

A new coding scheme. We developed a provably efficient (Thm. 1) lossless compression algorithm
for PCs that take advantage of their ability to efficiently compute arbitrary marginal probabilities.
Specifically, we first show which kinds of marginal probabilities are required for (de)compression.
The proposed algorithm combines an inference algorithm that computes these marginals efficiently
given a learned PC and SoTA streaming codes that use the marginals for en- and decoding.

Competitive compression rates. Our experiments show that on MNIST and EMNIST, the PC-based
compression algorithm achieved SoTA bitrates. On more complex data such as subsampled ImageNet,
we hybridize PCs with normalizing flows and show that PCs can significantly improve the bitrates of
the base normalizing flow models.

Competitive runtimes. Our (de)compressor runs 5-40x faster compared to available implementations
of neural lossless compressors with near SoTA performance on datasets such as MNIST.1 Our
open-source implementation of the PC-based (de)compression algorithm can be found at https:
//github.com/Juice-jl/PressedJuice.jl.

Notation We denote random variables by uppercase letters (e.g., X) and their assignments by
lowercase letters (e.g., x). Analogously, we use bold uppercase (e.g., X) and lowercase (e.g., x)
letters to denote sets of variables and their joint assignments, respectively. The set of all possible
joint assignments to variables X is denoted val(X).

2 TRACTABILITY MATTERS IN LOSSLESS COMPRESSION

The goal of lossless compression is to map every input sample to an output codeword such that (i) the
original input can be reconstructed from the codeword, and (ii) the expected length of the codewords
is minimized. Practical (neural) lossless compression algorithms operate in two main phases —
learning and compression (Yang et al., 2022). In the learning phase, a generative model p(X) is
learned from a dataset D :={x(i)}Ni=1. According to Shannon’s source coding theorem (Shannon,
1948), the expected codeword length is lower-bounded by the negative cross-entropy between the
data distribution D and the model distribution p(X) (i.e., −Ex∼D[log p(x)]), rendering it a natural
and widely used objective to optimize the model (Hoogeboom et al., 2019; Mentzer et al., 2019).

In the compression phase, compression algorithms take the learned model p and samples x as input
and generate codewords whose expected length approaches the theoretical limit (i.e., the negative
cross-entropy between D and p). Although there exist various close-to-optimal compression schemes
(e.g., Huffman Coding (Huffman, 1952) and Arithmetic Coding (Rissanen, 1976)), a natural question
to ask is what are the requirements on the model p such that compression algorithms can utilize it for
encoding/decoding in a computationally efficient manner? In this paper, we highlight the advantages
of tractable probabilistic models for lossless compression by introducing a concrete class of models
that are expressive and support efficient encoding and decoding.

To encode a sample x, a standard streaming code operates by sequentially encoding every symbol
xi into a bitstream b, such that xi occupies approximately − log p(xi|x1, . . . , xi−1) bits in b. As a
result, the length of b is approximately− log p(x). For example, Arithmetic Coding (AC) encodes the
symbols {xi}Di=1 (define D := |X| as the number of features) sequentially by successively refining an
interval that represents the sample, starting from the initial interval [0, 1). To encode xi, the algorithm

1Note that there exists compression algorithms optimized particularly for speed by using simple entropy
models (Townsend et al., 2019), though that also leads to worse bitrates. See Sec. 3.3 for detailed discussion.

2

https://github.com/Juice-jl/PressedJuice.jl
https://github.com/Juice-jl/PressedJuice.jl

Published as a conference paper at ICLR 2022

partitions the current interval [a, b) using the left and right side cumulative probability of xi:

li(xi) := p(Xi<xi | x1, . . . , xi−1), hi(xi) := p(Xi≤xi | x1, . . . , xi−1). (1)

Specifically, the algorithm updates [a, b) to the following: [a + (b−a)·li(xi), a + (b−a)·hi(xi)),
which is a sub-interval of [a, b). Finally, AC picks a number within the final interval that has the
shortest binary representation. This number is encoded as a bitstream representing the codeword of x.
Upon decoding, the symbols {xi}Di=1 are decoded sequentially: at iteration i, we decode variable
Xi by looking up its value x such that its cumulative probability (i.e., li(x)) matches the subinterval
specified by the codeword and x1, . . . , xi−1 (Rissanen, 1976); the decoded symbol xi is then used
to compute the following conditional probabilities (i.e., lj(x) for j > i). Despite implementation
differences, computing the cumulative probabilities li(x) and hi(x) are required for many other
streaming codes (e.g., rANS). Therefore, for most streaming codes, the main computation cost of
both the encoding and decoding process comes from calculating li(x) and hi(x).

The main challenge for the above (de)compression algorithm is to balance the expressiveness of p and
the computation cost of {li(x), hi(x)}Di=1. On the one hand, highly expressive probability models
such as energy-based models (Lecun et al., 2006; Ranzato et al., 2007) can potentially achieve high
compression ratios at the cost of slow runtime, which is due to the requirement of estimating the
model’s normalizing constant. On the other hand, models that make strong independence assumptions
(e.g., n-gram, fully-factorized) are cheap to evaluate but lack the expressiveness to model complex
distributions over structured data such as images.2

This paper explores the middle ground between the above two extremes. Specifically, we ask: are
there probabilistic models that are both expressive and permit efficient computation of the conditional
probabilities in Eq. (1)? This question can be answered in the affirmative by establishing a new class
of tractable lossless compression algorithms using Probabilistic Circuits (PCs) (Choi et al., 2020),
which are neural networks that can compute various probabilistic queries efficiently. In the following,
we overview the empirical and theoretical results of the proposed (de)compression algorithm.

We start with theoretical findings: the proposed encoding and decoding algorithms enjoy time
complexity O(log(D) · |p|), where |p| ≥ D is the PC model size. The backbone of both algorithms,
formally introduced in Sec. 3, is an algorithm that computes the 2×D conditional probabilities
{li(x), hi(x)}Di=1 given any x efficiently, as justified by the following theorem.
Theorem 1 (informal). Let x be a D-dimensional sample, and let p be a PC model of size |p|,
as proposed in this paper. We then have that computing all quantities {li(xi), hi(xi)}Di=1 takes
O(log(D) · |p|) time. Therefore, en- or decoding x with a streaming code (e.g., Arithmetic Coding)
takes O(log(D)·|p|+D) = O(log(D)·|p|) time.

The properties of PCs that enable this efficient lossless compression algorithm will be described
in Sec. 3.1, and the backbone inference algorithm with O(log(D)·|p|) time complexity will later
be shown as Alg. 1. Table 1 provides an (incomplete) summary of our empirical results. First, the
PC-based lossless compression algorithm is fast and competitive. As shown in Table 1, the small
PC model achieved a near-SoTA bitrate while being ∼ 15x faster than other neural compression
algorithms with a similar bitrate. Next, PCs can be integrated with Flow-/VAE-based compression
methods. As illustrated in Table 1(right), the integrated model significantly improved performance on
sub-sampled ImageNet compared to the base IDF model.

3 COMPUTATIONALLY EFFICIENT (DE)COMPRESSION WITH PCS

In the previous section, we have boiled down the task of lossless compression to calculating con-
ditional probabilities {li(xi), hi(xi)}Di=1 given p and xi. This section takes PCs into consideration
and demonstrates how these queries can be computed efficiently. In the following, we first introduce
relevant background on PCs (Sec. 3.1), and then proceed to introduce the PC-based (de)compression
algorithm (Sec. 3.2). Finally, we empirically evaluate the optimality and speed of the proposed
compressor and decompressor (Sec. 3.3).

2Flow-model-based neural compression algorithms adopt p defined on mutually independent latent variables
(denoted Z), and improve expressiveness by learning bijection functions between Z and X (i.e., the input space).
This is orthogonal to our approach of directly learn better p. Furthermore, we can naturally integrate the proposed
expressive p with bijection functions and achieve better performance as demonstrated in Sec. 5.

3

Published as a conference paper at ICLR 2022

Table 1: An (incomplete) summary of our empirical results. “Comp.” stands for compression.

Method
MNIST (10,000 test images)

Theoretical bpd Comp. bpd En- & decoding time
PC (small) 1.26 1.30 53
PC (large) 1.20 1.24 168
IDF 1.90 1.96 880
BitSwap 1.27 1.31 904

Method
ImageNet32 ImageNet64

Theoretical bpd Theoretical bpd
PC+IDF 3.99 3.71
IDF 4.15 3.90
RealNVP 4.28 3.98
Glow 4.09 3.81

3.1 BACKGROUND: PROBABILISTIC CIRCUITS

X1

¬X2X2

0.3

0.7

X3

¬X4X4

0.4

0.6

1.0

0.2

0.8

0.0 1.0

1.0 0.0

1.0 0.7

1.0 0.0

1.0 1.0

0.0

0.4

0.0

0.28

0.0 0.056

Figure 1: An example structured-
decomposable PC. The feedfor-
ward order is from left to right; in-
puts are assumed to be boolean vari-
ables; parameters are labeled on the
corresponding edges. Probability
of each unit given input assignment
x1x2x4 is labeled blue next to the
corresponding unit.

Probabilistic Circuits (PCs) are an umbrella term for a wide
variety of Tractable Probabilistic Models (TPMs). They pro-
vide a set of succinct definitions for popular TPMs such as
Sum-Product Networks (Poon & Domingos, 2011), Arithmetic
Circuits (Shen et al., 2016), and Probabilistic Sentential Deci-
sion Diagrams (Kisa et al., 2014). The syntax and semantics of
a PC are defined as follows.

Definition 1 (Probabilistic Circuits). A PC p(X) represents
a probability distribution over X via a parametrized directed
acyclic graph (DAG) with a single root node nr. Similar to neu-
ral networks, every node of the DAG defines a computational
unit. Specifically, each leaf node corresponds to an input unit;
each inner node n represents either a sum or a product unit that
receives inputs from its children, denoted in(n). Each node n
encodes a probability distribution pn, defined as follows:

pn(x) :=


fn(x) if n is an input unit,∑
c∈in(n) θn,c · pc(x) if n is a sum unit,∏
c∈in(n) pc(x) if n is a product unit,

(2)

where fn(·) is an univariate input distribution (e.g., Gaussian, Categorical), and θn,c denotes the
parameter that corresponds to edge (n, c). Intuitively, sum and product units encode weighted
mixtures and factorized distributions of their children’s distributions, respectively. To ensure that a PC
models a valid distribution, we assume the parameters associated with any sum unit n are normalized:
∀n,∑c∈in(n)θn,c=1. We further assume w.l.o.g. that a PC alternates between sum and product units
before reaching an input unit. The size of a PC p, denoted |p|, is the number of edges in its DAG.

This paper focuses on PCs that can compute arbitrary marginal queries in time linear in their size,
since this is necessary to unlock the efficient (de)compression algorithm. In order to support efficient
marginalization, PCs need to be decomposable (Def. 2),3 which is a property of the (variable) scope
φ(n) of PC units n, that is, the collection of variables defined by all its descendent input units.

Definition 2 (Decomposability). A PC is decomposable if for every product unit n, its children have
disjoint scopes: ∀c1, c2 ∈ in(n) (c1 6= c2), φ(c1) ∩ φ(c2) = ∅.

All product units in Fig. 1 are decomposable. For example, each purple product unit (whose scope
is {X1, X2}) has two children with disjoint scopes {X1} and {X2}, respectively. In addition to
Def. 2, we make use of another property, structured decomposability, which is the key to guaranteeing
computational efficiency of the proposed (de)compression algorithm.

Definition 3 (Structured decomposability). A PC is structured-decomposable if (i) it is decom-
posable and (ii) for every pair of product units (m,n) with identical scope (i.e., φ(m) = φ(n)),
we have that |in(m)| = |in(n)| and the scopes of their children are pairwise identical: ∀i ∈
{1, ..., |in(m)|}, φ(cmi)=φ(cni), where cmi and cni are the ith child unit of m and n.

3Another property called smoothness is also required to compute marginals efficiently. However, since
enforcing smoothness on any structured-decomposable PC only imposes at most an almost-linear increase in its
size (Shih et al., 2019), we omit introducing it here (all PCs used in this paper are structured-decomposable).

4

Published as a conference paper at ICLR 2022

X1 X2
X3 X4

Pixel has been sent

Pixel being sent

Streaming code
(e.g., rANS)

Bitstream

p(x3 | x1, x2)X1 X1

X2 X2

X3 X3

X4

Image patch, e.g., 2×2

Group #1

Group #2

Group #3

All nodes in groups #1, #2, and #3 do not
need to be explicitly evaluated.

Encoder Decoder

Same PC

p(x3 | x1, x2)

X1 X2
X3 X4

Reconstructed patch

Streaming code
(e.g., rANS)

Figure 2: Overview of the PC-based (de)compressor. The encoder’s side sequentially compresses
variables one-by-one using the conditional probabilities given all sent variables. These probabilities
are computed efficiently using Alg. 1. Finally, a streaming code uses conditional probabilities to
compress the variables into a bitstream. On the decoder’s side, a streaming code decodes the bitstream
to reconstruct the image with the conditional probabilities computed by the PC.

The PC shown in Fig. 1 is structured-decomposable because for all three groups of product units
with the same scope (grouped by their colors), their children divide the variable scope in the same
way. For example, the children of both orange units decompose the scope {X1, X2, X3, X4} into
{X1, X2} and {X3, X4}.
As a key sub-routine in the proposed algorithm, we describe how to compute marginal queries given a
smooth and (structured-)decomposable PC inO(|p|) time. First, we assign probabilities to every input
unit: for an input unit n defined on variable X , if evidence is provided for X in the query (e.g., X=x
or X<x), we assign to n the corresponding probability (e.g., p(X=x), p(X<x)) according to fn
in Eq. (2); if evidence of X is not given, probability 1 is assigned to n. Next, we do a feedforward
(children before parents) traverse of inner PC units and compute their probabilities following Eq. (2).
The probability assigned to the root unit is the final answer of the marginal query. Concretely, consider
computing p(x1, x2, x4) for the PC in Fig. 1. This is done by (i) assigning probabilities to the input
units w.r.t. the given evidence x1, x2, and x4 (assign 0 to the input unit labeled X2 and ¬X4 as they
contradict the given evidence; all other input units are assigned probability 1), and (ii) evaluate the
probabilities of sum/product units following Eq. (2). Evaluated probabilities are labeled next to the
corresponding units, hence the marginal probability at the output is p(x1, x2, x4) = 0.056.

3.2 EFFICIENT (DE-)COMPRESSION WITH STRUCTURED-DECOMPOSABLE PCS

The proposed PC-based (de)compression algorithm is outlined in Fig. 2. Consider compressing an
2-by-2 image, whose four pixels are denoted as X1, . . . , X4. As discussed in Sec. 2, the encoder
converts the image into a bitstream by encoding all variables autoregressively. For example, suppose
we have encoded x1, x2. To encode the next variable x3, we compute the left and right side cumulative
probability of x3 given x1 and x2, which are defined as l3(x3) and h3(x3) in Sec. 2, respectively.
A streaming code then encodes x3 into a bitstream using these probabilities. Decoding is also
performed autoregressively. Specifically, after x1 and x2 are decoded, the same streaming code uses
the information from the bitstream and the conditional distribution p(x3 | x1, x2) to decode x3.

Therefore, the main computation cost of the above en- and decoding procedures comes from calculat-
ing the 2D conditional probabilities {li(x), hi(x)}Di=1 w.r.t. anyx. Since every conditional probability
can be represented as the quotient of two marginals, it is equivalent to compute the two following
sets of marginals: F (x) := {p(x1, . . . , xi)}Di=1 and G(x) := {p(x1, . . . , xi−1, Xi<xi)}Di=1.

As a direct application of the marginal algorithm described in Sec. 3.1, for every x ∈ val(X),
computing the 2D marginals {F (x), G(x)} takes O(D ·|p|) time. However, the linear dependency
on D would render compression and decompression extremely time-consuming.

We can significantly accelerate the en- and decoding times if the PC is structured-decomposable (see
Definition 3). To this end, we introduce an algorithm that computes F (x) and G(x) in O(log(D)·
|p|) time (instead of O(D · |p|)), given a smooth and structured-decomposable PC p. For ease of
presentation, we only discuss how to compute F (x) – the valuesG(x) can be computed analogously.4

Before proceeding with a formal argument, we give a high-level explanation of the acceleration. In
practice, we only need to evaluate a small fraction of PC units to compute each of its D marginals.

4The only difference between the computation of the ith term of F (x) and the ith term of G(x) is in the
value assigned to the inputs for variable Xi (i.e., probabilities pn(Xi=x) vs. pn(Xi<x)).

5

Published as a conference paper at ICLR 2022

Algorithm 1 Compute F (x) (see Alg. 3 for details)
1: Input: A smooth and structured-decomposable PC p, variable instantiation x
2: Output: Fπ(x) = {p(x1, . . . , xi)}Di=1
3: Initialize: The probability p(n) of every unit n is initially set to 1
4: ∀i, evali ← the set of PC units n that need to be evaluated in the ith iteration
5: for i = 1 to D do
6: Evaluate PC units in evali in a bottom-up manner and compute p(x1, . . . , xi)

This is different from regular neural networks and the key to speeding up the computation of F (x).
In contrast to neural networks, changing the input only slightly will leave most activations unchanged
for structured-decomposable PCs. We make use of this property by observing that adjacent marginals
in F (x) only differ in one variable — the ith term only adds evidence xi compared to the (i− 1)th
term. We will show that such similarities between the marginal queries will lead to an algorithm that
guarantees O(log(D)·|p|) overall time complexity.

An informal version of the proposed algorithm is shown in Alg. 1.5 In the main loop (lines 5-6),
the D terms in F (x) are computed one-by-one. Although the D iterations seem to suggest that
the algorithm scales linearly with D, we highlight that each iteration on average re-evaluates only
log(D)/D of the PC. Therefore, the computation cost of Alg. 1 scales logarithmically w.r.t. D. The
set of PC units need to be re-evaluated, evali, is identified in line 4, and lines 6 evaluates these units
in a feedforward manner to compute the target probability (i.e., p(x1, . . . , xi)).

Specifically, to minimize computation cost, at iteration i, we want to select a set of PC units evali that
(i) guarantees the correctness of the target marginal, and (ii) contains the minimum number of units.
We achieve this by recognizing three types of PC units that can be safely eliminated for evaluation.
Take the PC shown in Fig. 2 as an example. Suppose we want to compute the third term in F (x)
(i.e., p(x1, x2, x3)). First, all PC units in Group #1 do not need to be re-evaluated since their value
only depends on x1 and x2 and hence remains unchanged. Next, PC units in Group #2 evaluate to 1.
This can be justified from the two following facts: (i) input units correspond to X4 have probability 1
while computing p(x1, x2, x3); (ii) for any sum or product unit, if all its children have probability 1,
it also has probability 1 following Eq. (2). Finally, although the activations of the PC units in Group
#3 will change when computing p(x1, x2, x3), we do not need to explicitly evaluate these units — the
root node’s probability can be equivalently computed using the weighted mixture of probabilities of
units in evali. The correctness of this simplification step is justified in Appx. A.1.

The idea of partially evaluating a PC originates from the Partial Propagation (PP) algorithm (Butz
et al., 2018). However, PP can only prune away units in Group #2. Thanks to the specific structure of
the marginal queries, we are able to also prune away units in Groups #1 and #3.

Finally, we provide additional technical details to rigorously state the complexity of Alg. 1. First,
we need the variables X to have a specific order determined by the PC p. To reflect this change, we
generalize F (x) to Fπ(x) := {p(xπ1

, . . . , xπi
)}Di=1, where π defines some variable order over X,

i.e., the ith variable in the order defined by π is Xπi
. Next, we give a technical assumption and then

formally justify the correctness and efficiency of Alg. 1 when using an optimal variable order π∗.
Definition 4. For a smooth structured-decomposable PC p over D variables, for any scope φ, denote
nodes(p, φ) as the set of PC units in p whose scope is φ. We say p is balanced if for every scope φ′
that is equal to the scope of any unit n in p, we have |nodes(p, φ′)| = O(|p|/D).
Theorem 1. For a smooth structured-decomposable balanced PC p overD variables X and a sample
x, there exists a variable order π∗, s.t. Alg. 3 correctly computes Fπ∗(x) in O(log(D) · |p|) time.

Proof. First note that Alg. 3 is a detailed version of Alg. 1. The high-level idea of the proof is to first
show how to compute the optimal variable order π∗ for any smooth and structured-decomposable
PC. Next, we justify the correctness of Alg. 3 by showing (i) we only need to evaluate units that
satisfy the criterion in line 6 of Alg. 3 and (ii) weighing the PC units with the top-down probabilities
(Appx. A.1) always give the correct result. Finally, we use induction (on D) to demonstrate Alg. 3
computes O(log(D)·|p|) PC units in total if π∗ is used. See Appx. A.2 for further details.

While Def. 4 may seem restrictive at first glance, we highlight that most existing PC structures such
as EiNets (Peharz et al., 2020a), RAT-SPNs (Peharz et al., 2020b) and HCLTs (Sec. 4.1) are balanced

5See Appx. A.1 for the formal algorithm and its detailed elaboration.

6

Published as a conference paper at ICLR 2022

Table 2: Efficiency and optimality of the (de)compressor. The compression (resp. decompression)
time are the total computation time used to encode (resp. decode) all 10,000 MNIST test samples on
a single TITAN RTX GPU. The proposed (de)compressor for structured-decomposable PCs is 5-40x
faster than IDF and BitSwap and only leads to a negligible increase in the codeword bpd compared to
the theoretical bpd. HCLT is a PC model that will be introduced in Sec. 4.1.

Method # parameters Theoretical bpd Codeword bpd Comp. time (s) Decomp. time (s)
PC (HCLT, M=16) 3.3M 1.26 1.30 9 44
PC (HCLT, M=24) 5.1M 1.22 1.26 15 86
PC (HCLT, M=32) 7.0M 1.20 1.24 26 142
IDF 24.1M 1.90 1.96 288 592
BitSwap 2.8M 1.27 1.31 578 326

(see Appx. A.3 for justifications). Once all marginal probabilities are calculated, samples x can be
en- or decoded autoregressively with any streaming codes in time O(log(D)·|p|). Specifically, our
implementation adopted the widely used streaming code rANS (Duda, 2013).

3.3 EMPIRICAL EVALUATION

We compare the proposed algorithm with competitive Flow-model-based (IDF by Hoogeboom et al.
(2019)) and VAE-based (BitSwap by Kingma et al. (2019)) neural compression algorithms using the
MNIST dataset. We first evaluate bitrates. As shown in Table 2, the PC (de)compressor achieved
compression rates close to its theoretical rate estimate — codeword bpds only have ∼0.04 loss w.r.t.
the corresponding theoretical bpds. We note that PC and IDF have an additional advantage: their
reported bitrates were achieved while compressing one sample at a time; however, BitSwap needs to
compress sequences of 100 samples to achieve 1.31 codeword bpd (Kingma et al., 2019).

Next, we focus on efficiency. While achieving a better codeword bpd (i.e., 1.30) compared to IDF
and BitSwap, a relatively small PC model (i.e., HCLT, M = 16) encodes (resp. decodes) images
30x (resp. 10x) faster than both baselines.6 Furthermore, a bigger PC model (M = 32) with 7M
parameters achieved codeword bpd 1.24, and is still 5x faster than BitSwap and IDF. Note that at
the cost of increasing the bitrate, one can significantly improve the en- and decoding efficiency. For
example, by using a small VAE model, Townsend et al. (2019) managed to compress and decompress
10,000 binarized MNIST samples in 3.26s and 2.82s, respectively.

Related work As hinted by Sec. 2, we seek to directly learn probability distributions p(X) that are
expressive and support tractable (de)compression. In contrast, existing Flow-based (van den Berg
et al., 2020; Zhang et al., 2021b) and VAE-based (Townsend et al., 2019; Kingma et al., 2019; Ho et al.,
2019) neural lossless compression algorithms are based on an orthogonal idea: they adopt simple
(oftentimes fully factorized) distributions over a latent space Z to ensure the tractability of encoding
and decoding latent codes z, and learn expressive neural networks that “transmit” probability mass
from Z to the feature space X to compress samples x indirectly. We note that both ideas can be
integrated naturally: the simple latent distributions used by existing neural compression algorithms
can be replaced by expressive PC models. We will further explore this idea in Sec. 5.

4 SCALING UP LEARNING AND INFERENCE OF PCS

Being equipped with an efficient (de)compressor, our next goal is to learn PC models that achieve
good generative performance on various datasets. Although recent breakthroughs have led to PCs
that can generate CelebA and SVHN images (Peharz et al., 2020a), PCs have not been shown to have
competitive (normalized) likelihoods on image datasets, which directly influence compression rates.
In this section, we show that Hidden Chow-Liu Trees (HCLTs) (Liu & Van den Broeck, 2021), a
PC model initially proposed for simple density estimation tasks containing binary features, can be
scaled up to achieve state-of-the-art performance on various image datasets. In the following, we first
introduce HCLTs and demonstrate how to scale up their learning and inference (for compression) in
Sec. 4.1, before providing empirical evidence in Sec. 4.2.

4.1 HIDDEN CHOW-LIU TREES

Hidden Chow-Liu Trees (HCLTs) are smooth and structured-decomposable PCs that combine the
ability of Chow-Liu Trees (CLTs) (Chow & Liu, 1968) to capture feature correlations and the extra

6HCLT will be introduced in Sec. 4.1; all algorithms use a CPU implementation of rANS as codec. See
Appx. B.4 for more details about the experiments.

7

Published as a conference paper at ICLR 2022

Z1

Z2 Z3X1

Z4X2 X3

X4

X1

X2 X3

X4

Z1

Z2 Z3

Z4

Replace
Xi by Zi

Attach Xi
back to Zi

(a) (b) (c) (d)

X1 X1

X3 X3

X2 X2

X4 X4

Z3

Z1

Z2

Z4

Equivalent

Figure 3: An example of constructing a HCLT PC given a dataset D with 4 features. (a): Construct
the Chow-Liu Tree over variables X1, . . . , X4 using D. (b): Replace every variable Xi by its
corresponding latent variable Zi. (c): Attach all Xi back to their respective latent variables Zi.
(d): This PGM representation of HCLT is compiled into an equivalent PC.

Table 3: Compression performance of PCs on MNIST, FashionMNIST, and EMNIST in bits-per-
dimension (bpd). For all neural compression algorithms, numbers in parentheses represent the
corresponding theoretical bpd (i.e., models’ test-set likelihood in bpd).

Dataset HCLT (ours) IDF BitSwap BB-ANS JPEG2000 WebP McBits

MNIST 1.24 (1.20) 1.96 (1.90) 1.31 (1.27) 1.42 (1.39) 3.37 2.09 (1.98)
FashionMNIST 3.37 (3.34) 3.50 (3.47) 3.35 (3.28) 3.69 (3.66) 3.93 4.62 (3.72)
EMNIST (Letter) 1.84 (1.80) 2.02 (1.95) 1.90 (1.84) 2.29 (2.26) 3.62 3.31 (3.12)
EMNIST (ByClass) 1.89 (1.85) 2.04 (1.98) 1.91 (1.87) 2.24 (2.23) 3.61 3.34 (3.14)

expressive power provided by latent variable models. Every HCLT can be equivalently represented as
a Probabilistic Graphical Model (PGM) (Koller & Friedman, 2009) with latent variables. Specifically,
Fig. 3(a)-(c) demonstrate how to construct the PGM representation of an example HCLT. Given a
datasetD containing 4 features X=X1, . . . , X4, we first learn a CLT w.r.t. X (Fig. 3(a)). To improve
expressiveness, latent variables are added to the CLT by the two following steps: (i) replace observed
variables Xi by their corresponding latent variables Zi, which are defined to be categorical variables
with M (a hyperparameter) categories (Fig. 3(b)); (ii) connect observed variables Xi with the
corresponding latent variables Zi by directed edges Zi→Xi. This leads to the PGM representation of
the HCLT shown in Fig. 3(c). Finally, we are left with generating a PC that represents an equivalent
distribution w.r.t. the PGM in Fig. 3(c), which is detailed in Appx. B.2. Fig. 3(d) illustrates an HCLT
that is equivalent to the PGM shown in Fig. 3(c) (with M=2).

Recent advances in scaling up learning and inference of PCs largely rely on the regularity of the PC
architectures they used (Peharz et al., 2020a;b) — the layout of the PCs can be easily vectorized,
allowing them to use well-developed deep learning packages such as PyTorch (Paszke et al., 2019).
However, due to the irregular structure of learned CLTs, HCLTs cannot be easily vectorized. To
overcome this problem, we implemented customized GPU kernels for parameter learning and marginal
query computation (i.e., Alg. 3) based on Juice.jl (Dang et al., 2021), an open-source Julia package.
The kernels automatically segment PC units into layers such that the computation in every layer can
be fully parallelized. As a result, we can train PCs with millions of parameters in less than an hour
and en- or decode samples very efficiently. Implementation details can be found in Appx. B.3.

Related work Finding good PC architectures has been a central topic in the literature (Choi et al.,
2020). A recent trend for learning smooth and (structured-)decomposable PCs is to construct large
models with pre-defined architecture, which is mainly determined by the variable ordering strategies.
For example, RAT-SPNs (Peharz et al., 2020b) and EiNets (Peharz et al., 2020a) use random variable
orders, Gens & Domingos (2013) proposes an effective variable ordering for image data, and other
works propose data-dependent orderings based on certain information criterion (Rooshenas & Lowd,
2014) or clustering algorithms (Gens & Domingos, 2013). Alternatively, researchers have focused
on methods that iteratively grow PC structures to better fit the data (Dang et al., 2020; Liang et al.,
2017).

4.2 EMPIRICAL EVALUATION

Bringing together expressive PCs (i.e., HCLTs) and our (de)compressor, we proceed to evaluate the
compression performance of the proposed PC-based algorithm. We compare with 5 competitive
lossless compression algorithm: JPEG2000 (Christopoulos et al., 2000); WebP; IDF (Hoogeboom
et al., 2019), a Flow-based lossless compression algorithm; BitSwap (Kingma et al., 2019), BB-ANS
(Townsend et al., 2018), and McBits (Ruan et al., 2021), three VAE-based lossless compression meth-
ods. All 6 methods were tested on 4 datasets, which include MNIST (Deng, 2012), FashionMNIST

8

Published as a conference paper at ICLR 2022

Flow
layer

···

Flow
layer

x

Level 1

z1

PC

p(z1) Level 2

z2

PC

p(z2) Level k

zk

PC

p(zk)

···

Squeeze

Flow
layer

···

Flow
layer

Split
prior

Squeeze

Flow
layer

···

Flow
layer

Split
prior

Squeeze

Split
prior

Figure 4: Using PCs as prior distributions of the IDF model (Hoogeboom et al., 2019). PCs are used
to represent the k sets of latent variables {zi}ki=1.

(Xiao et al., 2017), and two splits of EMNIST (Cohen et al., 2017). As shown in Table 3, the proposed
method out-performed all 5 baselines in 3 out of 4 datasets. On FashionMNIST, where the proposed
approach did not achieve a state-of-the-art result, it was only 0.02 bpd worse than BitSwap.

5 PCS AS EXPRESSIVE PRIOR DISTRIBUTIONS OF FLOW MODELS

Table 4: Theoretical bpd of 5 Flow-based gener-
ative models on three natural image datasets.

Model CIFAR10 ImageNet32 ImageNet64

RealNVP 3.49 4.28 3.98
Glow 3.35 4.09 3.81
IDF 3.32 4.15 3.90
IDF++ 3.24 4.10 3.81
PC+IDF 3.28 3.99 3.71

As hinted by previous sections, PCs can be natu-
rally integrated with existing neural compression
algorithms: the simple latent variable distributions
used by Flow- and VAE-based lossless compres-
sion methods can be replaced by more expressive
distributions represented by PCs. In this section,
we take IDF (Hoogeboom et al., 2019), a Flow-
based lossless compression model, as an example
to demonstrate the effectiveness of such model
integration. IDF was chosen because its authors provided an open-source implementation on GitHub.
In theory, PC can be integrated with any VAE- and Flow-based model.

The integrated model is illustrated in Fig. 4. Following Hoogeboom et al. (2019), an IDF model
contains k levels. Each level contains a squeeze layer (Dinh et al., 2016), followed by several integer
flow layers and a prior layer. Each level i outputs a set of latent variables zi, which are originally
defined as a set of mutually independent discretized logistic variables (Kingma et al., 2016). Instead,
we propose to model every set of latent variables zi with a PC p(zi). Specifically, we adopted the
EiNet codebase (Peharz et al., 2020a) and used a PC structure similar to the one proposed by Gens
& Domingos (2013). We adopted the discretized logistic distribution for all leaf units in the PCs.
Given a sample x, the log-likelihood of the model is the sum of the k PCs’ output log-likelihood:
log p(x) =

∑k
i=1 log p(zi | x). Since both IDF and the PC models are fully differentiable, the

PC+IDF model can be trained end-to-end via gradient descent. Details regarding model architecture
and parameter learning are provided in Appx. B.5.

We proceed to evaluate the generative performance of the proposed PC+IDF model on 3 natural image
datasets: CIFAR10, ImageNet32, and ImageNet64. Results are shown in Table 4. First, compared
to 4 baselines (i.e., IDF, IDF++ (van den Berg et al., 2020), Glow (Kingma & Dhariwal, 2018), and
RealNVP (Dinh et al., 2016)), PC+IDF achieved the best bpd on ImageNet32 and ImageNet64. Next,
PC+IDF improved over its base model IDF by 0.04, 0.16, and 0.19 bpd on three datasets, respectively.
This shows the benefit of integrating PCs with IDFs. Although not tested in our experiments, we
conjecture that the performance could be further improved by integrating PCs with better Flow
models (e.g., IDF++). Concurrently, Zhang et al. (2021a) proposes an autoregressive model-based
compressor NeLLoC, which achieved SoTA results on natural image datasets including CIFAR-10.

Compression and decompression with the PC+IDF model can be done easily: we can adopt the high-
level compression algorithm of IDF and replace the parts of en- or decoding latent variables zi with
the proposed PC (de)compressor. Improving the compression performance of these hybrid models is
left for future work. Note that Thm. 1 only applies to the PC component, and the compression time
still depends linearly on the size of the neural network.

6 CONCLUSIONS

This paper proposes to use Probabilistic Circuits (PCs) for lossless compression. We develop a
theoretically-grounded (de)compression algorithm that efficiently encodes and decodes close to the
model’s theoretical rate estimate. Our work provides evidence that more “niche” generative model
architectures such as PCs can make valuable contributions to neural compression.

9

Published as a conference paper at ICLR 2022

Acknowledgements Guy Van den Broeck acknowledges funding by NSF grants #IIS-1943641,
#IIS-1956441, #CCF-1837129, DARPA grant #N66001-17-2-4032, and a Sloan Fellowship. Stephan
Mandt acknowledges funding by NSF grants #IIS-2047418 and #IIS-2007719. We thank Yibo Yang
for feedback on the manuscript’s final version.

Ethics and Reproducibility Statement We are not aware of any ethical concerns of our re-
search. To facilitate reproducibility, we have uploaded our code to the following GitHub repo:
https://github.com/Juice-jl/PressedJuice.jl. In addition, we have provided de-
tailed algorithm tables Alg. 2 and 3 for all proposed algorithms, and elaborated each step in detail in
the main text (Sec. 3). Formal proofs of all theorems, and details of all experiments (e.g., hardware
specifications, hyperparameters) are provided in the appendix.

REFERENCES

Cory J Butz, Jhonatan S Oliveira, André E Santos, André L Teixeira, Pascal Poupart, and Agastya
Kalra. An empirical study of methods for spn learning and inference. In International Conference
on Probabilistic Graphical Models, pp. 49–60. PMLR, 2018.

YooJung Choi, Antonio Vergari, and Guy Van den Broeck. Probabilistic circuits: A unifying
framework for tractable probabilistic models. 2020.

YooJung Choi, Meihua Dang, and Guy Van den Broeck. Group fairness by probabilistic modeling
with latent fair decisions. In Proceedings of the 35th AAAI Conference on Artificial Intelligence,
Feb 2021.

CKCN Chow and Cong Liu. Approximating discrete probability distributions with dependence trees.
IEEE transactions on Information Theory, 14(3):462–467, 1968.

Charilaos Christopoulos, Athanassios Skodras, and Touradj Ebrahimi. The jpeg2000 still image
coding system: an overview. IEEE transactions on consumer electronics, 46(4):1103–1127, 2000.

Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. Emnist: Extending mnist
to handwritten letters. In 2017 International Joint Conference on Neural Networks (IJCNN), pp.
2921–2926. IEEE, 2017.

Meihua Dang, Antonio Vergari, and Guy Broeck. Strudel: Learning structured-decomposable
probabilistic circuits. In International Conference on Probabilistic Graphical Models, pp. 137–148.
PMLR, 2020.

Meihua Dang, Pasha Khosravi, Yitao Liang, Antonio Vergari, and Guy Van den Broeck. Juice: A
julia package for logic and probabilistic circuits. In Proceedings of the 35th AAAI Conference on
Artificial Intelligence (Demo Track), 2021.

Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE Signal
Processing Magazine, 29(6):141–142, 2012.

Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent components
estimation. arXiv preprint arXiv:1410.8516, 2014.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. In
International Conference on Learning Representations, 2016.

Jarek Duda. Asymmetric numeral systems: entropy coding combining speed of huffman coding with
compression rate of arithmetic coding. arXiv preprint arXiv:1311.2540, 2013.

Robert Gens and Pedro Domingos. Learning the structure of sum-product networks. In International
conference on machine learning, pp. 873–880. PMLR, 2013.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

10

https://github.com/Juice-jl/PressedJuice.jl

Published as a conference paper at ICLR 2022

Geoffrey E Hinton and Drew Van Camp. Keeping the neural networks simple by minimizing the
description length of the weights. In Proceedings of the sixth annual conference on Computational
learning theory, pp. 5–13, 1993.

Jonathan Ho, Evan Lohn, and Pieter Abbeel. Compression with flows via local bits-back coding. In
Proceedings of the 33rd International Conference on Neural Information Processing Systems, pp.
3879–3888, 2019.

Emiel Hoogeboom, Jorn Peters, Rianne van den Berg, and Max Welling. Integer discrete flows and
lossless compression. Advances in Neural Information Processing Systems, 32:12134–12144,
2019.

David A Huffman. A method for the construction of minimum-redundancy codes. Proceedings of
the IRE, 40(9):1098–1101, 1952.

Diederik P Kingma and Prafulla Dhariwal. Glow: generative flow with invertible 1× 1 convolutions.
In Proceedings of the 32nd International Conference on Neural Information Processing Systems,
pp. 10236–10245, 2018.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Diederik P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max Welling.
Improved variational inference with inverse autoregressive flow. In Proceedings of the 30th
International Conference on Neural Information Processing Systems, pp. 4743–4751, 2016.

Friso Kingma, Pieter Abbeel, and Jonathan Ho. Bit-swap: Recursive bits-back coding for lossless
compression with hierarchical latent variables. In International Conference on Machine Learning,
pp. 3408–3417. PMLR, 2019.

Doga Kisa, Guy Van den Broeck, Arthur Choi, and Adnan Darwiche. Probabilistic sentential
decision diagrams. In Proceedings of the 14th international conference on principles of knowledge
representation and reasoning (KR), pp. 1–10, 2014.

Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and techniques. MIT
press, 2009.

Yann Lecun, Sumit Chopra, Raia Hadsell, Marc Aurelio Ranzato, and Fu Jie Huang. A tutorial on
energy-based learning. Predicting structured data, 2006.

Yitao Liang, Jessa Bekker, and Guy Van den Broeck. Learning the structure of probabilistic sentential
decision diagrams. In Proceedings of the 33rd Conference on Uncertainty in Artificial Intelligence
(UAI), 2017.

Anji Liu and Guy Van den Broeck. Tractable regularization of probabilistic circuits. In Advances in
Neural Information Processing Systems 35 (NeurIPS), dec 2021.

Fabian Mentzer, Eirikur Agustsson, Michael Tschannen, Radu Timofte, and Luc Van Gool. Practical
full resolution learned lossless image compression. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 10629–10638, 2019.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: an imperative style, high-
performance deep learning library. In Proceedings of the 33rd International Conference on Neural
Information Processing Systems, pp. 8026–8037, 2019.

Robert Peharz, Steven Lang, Antonio Vergari, Karl Stelzner, Alejandro Molina, Martin Trapp, Guy
Van den Broeck, Kristian Kersting, and Zoubin Ghahramani. Einsum networks: Fast and scalable
learning of tractable probabilistic circuits. In International Conference on Machine Learning, pp.
7563–7574. PMLR, 2020a.

Robert Peharz, Antonio Vergari, Karl Stelzner, Alejandro Molina, Xiaoting Shao, Martin Trapp,
Kristian Kersting, and Zoubin Ghahramani. Random sum-product networks: A simple and effective
approach to probabilistic deep learning. In Uncertainty in Artificial Intelligence, pp. 334–344.
PMLR, 2020b.

11

Published as a conference paper at ICLR 2022

Hoifung Poon and Pedro Domingos. Sum-product networks: A new deep architecture. In 2011 IEEE
International Conference on Computer Vision Workshops (ICCV Workshops), pp. 689–690. IEEE,
2011.

Marc’Aurelio Ranzato, Y-Lan Boureau, Sumit Chopra, and Yann LeCun. A unified energy-based
framework for unsupervised learning. In Artificial Intelligence and Statistics, pp. 371–379. PMLR,
2007.

Jorma J Rissanen. Generalized kraft inequality and arithmetic coding. IBM Journal of research and
development, 20(3):198–203, 1976.

Amirmohammad Rooshenas and Daniel Lowd. Learning sum-product networks with direct and
indirect variable interactions. In International Conference on Machine Learning, pp. 710–718.
PMLR, 2014.

Yangjun Ruan, Karen Ullrich, Daniel Severo, James Townsend, Ashish Khisti, Arnaud Doucet,
Alireza Makhzani, and Chris J Maddison. Improving lossless compression rates via monte carlo
bits-back coding. In International Conference on Machine Learning, 2021.

Claude Elwood Shannon. A mathematical theory of communication. The Bell system technical
journal, 27(3):379–423, 1948.

Yujia Shen, Arthur Choi, and Adnan Darwiche. Tractable operations for arithmetic circuits of
probabilistic models. In Proceedings of the 30th International Conference on Neural Information
Processing Systems, pp. 3943–3951. Citeseer, 2016.

Andy Shih, Guy Van den Broeck, Paul Beame, and Antoine Amarilli. Smoothing structured de-
composable circuits. Advances in Neural Information Processing Systems, 32:11416–11426,
2019.

James Townsend, Thomas Bird, and David Barber. Practical lossless compression with latent variables
using bits back coding. In International Conference on Learning Representations, 2018.

James Townsend, Thomas Bird, Julius Kunze, and David Barber. HiLLoC: lossless image com-
pression with hierarchical latent variable models. In International Conference on Learning
Representations, 2019.

Arash Vahdat and Jan Kautz. Nvae: A deep hierarchical variational autoencoder. arXiv preprint
arXiv:2007.03898, 2020.

Rianne van den Berg, Alexey A Gritsenko, Mostafa Dehghani, Casper Kaae Sønderby, and Tim
Salimans. Idf++: Analyzing and improving integer discrete flows for lossless compression. In
International Conference on Learning Representations, 2020.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Yibo Yang, Stephan Mandt, and Lucas Theis. An introduction to neural data compression. arXiv
preprint arXiv:2202.06533, 2022.

Mingtian Zhang, Andi Zhang, and Steven McDonagh. On the out-of-distribution generalization of
probabilistic image modelling. arXiv preprint arXiv:2109.02639, 2021a.

Shifeng Zhang, Chen Zhang, Ning Kang, and Zhenguo Li. iVPF: Numerical invertible volume
preserving flow for efficient lossless compression. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 620–629, 2021b.

Zhilin Zheng and Li Sun. Disentangling latent space for vae by label relevant/irrelevant dimensions.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
12192–12201, 2019.

12

Published as a conference paper at ICLR 2022

Supplementary Material
A ALGORITHM DETAILS AND PROOFS

This section provides additional details about the algorithm used to compute the conditional probabil-
ities Fπ(x) (i.e., Alg. 1) and the full proof of the theorems stated in the main paper.

A.1 DETAILS OF ALG. 1

This section provides additional technical details of Alg. 1. Specifically, we demonstrate (i) how
to select the set of PC units evali (cf. Alg. 1 line 5) and (ii) how to compute p(x1, . . . , xi) as a
weighted mixture of Pi (cf. Alg. 1 line 7). Using the example in Fig. 5, we aim to provide an intuitive
illustration to both problems. As an extension to Alg. 1, rigorous and executable pseudocode for the
proposed algorithm can be found in Alg. 2 and 3.

The key to speeding up the naive marginalization algorithm is the observation that we only need to
evaluate a small fraction of PC units to compute each of the D marginals in Fπ(x). Suppose we
want to compute Fπ(x) given the structured-decomposable PC shown in Fig. 5(a), where , , and

denote sum, product, and input units, respectively. Model parameters are omitted for simplicity.
Consider using the variable order π=(X1, X2, X3) (Fig. 5(b)). We ask the following question: what
is the minimum set of PC units that need to be evaluated in order to compute p(X1 =x1) (the first
term in Fπ(x))? First, every PC unit with scope {X1} (i.e., the two nodes colored blue) has to be
evaluated. Next, every PC unit n that is not an ancestor of the two blue units (i.e., “non-ancestor units”
in Fig. 5(b)) must have probability 1 since (i) leaf units correspond to X2 and X3 have probability 1
while computing p(X1 =x1), and (ii) for any sum or product unit, if all its children have probability
1, it also has probability 1 following Eq. (2). Therefore, we do not need to evaluate these non-ancestor
units. Another way to identify these non-ancestor units is by inspecting their variable scopes — if
the variable scope of a PC unit n does not contain X1, it must has probability 1 while computing
p(X1 = x1). Finally, following all ancestors of the two blue units (i.e., “ancestor units” in Fig. 5(b)),
we can compute the probability of the root unit, which is the target quantity p(X1 =x1). At a first
glance, this seems to suggest that we need to evaluate these ancestor units explicitly. Fortunately,
as we will proceed to show, the root unit’s probability can be equivalently computed using the blue
units’ probabilities weighted by a set of cached top-down probabilities.

For ease of presentation, denote the two blue input units as n1 and n2, respectively. A key observation
is that the probability of every ancestor unit of {n1, n2} (including the root unit) can be represented
as a weighted mixture over pn1

(x) and pn2
(x), the probabilities assigned to n1 and n2, respectively.

The reason is that for each decomposable product node m, only distributions defined on disjoint
variables shall be multiplied. Since n1 and n2 have the same variable scope, their distributions will
not be multiplied by any product node. Following the above intuition, the top-down probability
pdown(n) of PC unit n is designed to represent the “weight” of n w.r.t. the probability of the root unit.
Formally, pdown(n) is defined as the sum of the probabilities of every path from n to the root unit
nr, where the probability of a path is the product of all edge parameters traversed by it. Back to our
example, using the top-down probabilities, we can compute p(X1 =x1)=

∑2
i=1 pdown(ni) · pni

(x1)
without explicitly evaluating the ancestors of n1 and n2. The quantity pdown(n) of all PC units n can
be computed by Alg. 2 in O(|p|) time. Specifically, the algorithm performs a top-down traversal over
all PC units n, and updates the top-down probabilities of their children in(n) along the process.

Therefore, we only need to compute the two PC units with scope {X1} in order to calculate p(X1 =
x1). Next, when computing the second term p(X1 = x1, X2 = x2), as illustrated in Fig. 5(b), we
can reuse the evaluated probabilities of n1 and n2, and similarly only need to evaluate the PC units
with scope {X2}, {X2, X3}, or {X1, X2, X3} (i.e., nodes colored purple). The same scheme can be
used when computing the third term, and we only evaluate PC units with scope {X3}, {X2, X3}, or
{X1, X2, X3} (i.e., all red nodes). As a result, we only evaluate 20 PC units in total, compared to
3 · |p| = 39 units required by the naive approach.

This procedure is formalized in Alg. 3, which adds additional technical details compared to Alg. 1. In
the main loop (lines 5-9), the D terms in Fπ(x) are computed one-by-one. While computing each
term, we first find the PC units that need to be evaluated (line 6).7After computing their probabilities

13

Published as a conference paper at ICLR 2022

⇥ ⇥

X1 X1

⇥ ⇥

X2 X2 X3 X3

(b) Variable order: X1à X2à X3

X1 X1X1 X1

X2 X2 X3 X3

X1 X1X1 X1

X2 X2 X3 X3

X1 X1X1 X1

X2 X2 X3 X3

X1 X1

X2 X2 X3 X3X3 X3

X1 X1

X2 X2 X3 X3X3 X3

X1 X1

X2 X2 X3 X3X3 X3

(c) Variable order: X3 à X2à X1(a)

à à

Need to evaluate 2 + 9 + 9 = 20 PC units in total.

à à

Need to evaluate 2 + 6 + 5 = 13 PC units in total.
p(X3 =x3, X2 =x2, X1 =x1)p(X3 =x3, X2 =x2)p(X3 =x3)p(X1 =x1, X2 =x2, X3 =x3)p(X1 =x1, X2 =x2)p(X1 =x1)

Ancestor units

Non-ancestor
units

Figure 5: Good variable orders lead to more efficient computation of Fπ(x). Consider the PC p
shown in (a). (b): If variable order X1, X2, X3 is used, we need to evaluate 20 PC units in total. (c):
The optimal variable order X3, X2, X1 allows us to compute Fπ(x) by only evaluating 13 PC units.

Algorithm 2 PC Top-down Probabilities
1: Input: A smooth and structured-decomposable PC p
2: Output: The top-down probabilities pdown(n) of all PC units n
3: For every PC unit n in p, initialize pdown(n)← 0
4: foreach unit n traversed in preorder (parent before children) do
5: if n is the root node of p then pdown(n)← 1
6: elif n is a sum unit then foreach c ∈ in(n) do pdown(c)← pdown(c) + pdown(n) · θn,c
7: elif n is a product unit then foreach c ∈ in(n) do pdown(c)← pdown(c) + pdown(n)

in a bottom-up manner (line 7), we additionally use the pre-computed top-down probabilities to
obtain the target marginal probability (lines 8-9).

The previous example demonstrates that even without a careful choice of variable order, we can
significantly lower the computation cost by only evaluating the necessary PC units. We now show
that with an optimal choice of variable order (denoted π∗), the cost can be further reduced. Consider
using order π∗=(X3, X2, X1), as shown in Fig. 5(c), we only need to evaluate 2+6+5=13 PC units
in total when running Alg. 3. This optimal variable order is the key to guaranteeing O(log(D)·|p|)
computation time. In the following, we first give a technical assumption and then proceed to justify
the correctness and efficiency of Alg. 3 when using the optimal variable order π∗.

A.2 PROOF OF THEOREM 1

As hinted by the proof sketch given in the main text, this proof consists of three main parts — (i)
construction of the optimal variable order π∗ given a smooth and structured-decomposable PC, (ii)
justify the correctness of Alg. 3, and (iii) prove that Fπ∗(x) can be computed by evaluating no more
than O(log(K)·|p|) PC units (i.e., analyze the time complexity of Alg. 3).

Construction of an optimal variable order For ease of illustration, we first transform the original
smooth and structured-decomposable PC into an equivalent PC where every product node has two
children. Fig. 6 illustrates this transformation on any product node with more than two children. Note
that this operation will not change the number of parameters in a PC, and will only incur at most 2·|p|
edges.

We are now ready to define the variable tree (vtree) (Kisa et al., 2014) of a smooth and structured-
decomposable PC. Specifically, a vtree is a binary tree structure whose leaf nodes are labeled with
a PC’s input features/variables X (every leaf node is labeled with one variable). A PC conforms
to a vtree if for every product unit n, there is a corresponding vtree node v such that children of n
split the variable scope φ(n) in the same way as the children of the vtree node v. According to its
definition, every smooth and structured-decomposable PC whose product units all have two children
must conform to a vtree (Kisa et al., 2014). For example, the PC shown in Fig. 7(a) conforms to the
vtree illustrated in Fig. 7(b). Similar to PCs, we define the scope φ(v) of a vtree node v as the set of
all descendent leaf variables of v.

We say that a unit n in a smooth and structured-decomposable PC conforms to a node v in the PC’s
corresponding vtree if their scopes are identical. For ease of presentation, define ϕ(p, v) as the set of
PC units that conform to vtree node v. Additionally, we define ϕsum(p, v) and ϕprod(p, v) as the set
of sum and product units in ϕ(p, v), respectively.

14

Published as a conference paper at ICLR 2022

Algorithm 3 Compute Fπ(x)

1: Input: A smooth and structured-decomposable PC p, variable order π, variable instantiation x
2: Output: Fπ(x) = {p(xπ1 , . . . , xπi)}Di=1

3: Initialize: The probability p(n) of every unit n is initially set to 1
4: pdown ← the top-down probability of every PC unitn (i.e., Alg. 2)
5: for i = 1 to D do # Compute the ith term in Fπ(x): p(xπ1 , . . . , xπi)
6: evali ← the set of PC units n with scopes φ(n) that satisfy at least one of the following conditions:

(i) φ(n)={Xπi}; (ii) n is a sum unit and at least one child c of n needs evaluation, i.e., c∈evali;
(iii) n is a product unit and Xπi ∈φ(n) and @c∈ in(n) such that {Xπj}ij=1∈φ(c)

7: Evaluate PC units in evali in a bottom-up manner to compute {pn(x) : n∈evali}
8: headi ← the set of PC units in evali such that none of their parents are in evali
9: p(xπ1 , . . ., xπi)←

∑
n∈headi

pdown(n) · pn(x)

Next, we define an operation that changes a vtree into an ordered vtree, where for each inner node v,
its left child has more descendent leaf nodes than its right child. See Fig. 7(c-d) as an example. The
vtree in Fig. 7(b) is transformed into an ordered vtree illustrated in Fig. 7(c); the corresponding PC
(Fig. 7(a)) is converted into an ordered PC (Fig. 7(d)). This transformation can be performed by all
smooth and structured-decomposable PCs.

We are ready to define the optimal variable order. For a pair of ordered PC and ordered vtree, the
optimal variable order π∗ is defined as the order the leaf vtree nodes (each corresponds to a variable)
are accessed following an inorder traverse of the vtree (left child accessed before right child).

Correctness of Algorithm 3 Assume we have access to a smooth, structured-decomposable, and
ordered PC p and its corresponding vtree. Recall from the above construction, the optimal variable
order π∗ is the order following an inorder traverse of the vtree.

We show that it is sufficient to only evaluate the set of PC units stated in line 6 of Alg. 3. Using our
new definition of vtrees, we state line 6 in the following equivalent way. At iteration i (i.e., we want
to compute the ith term in Fπ(x): p(xπ1 , . . . , xπi)), we need to evaluate all PC units that conform to
any vtree node in the set Tp,i. Here Tp,i is defined as the set of vtree nodes v that satisfy the following
condition: Xπi

∈ φ(v) and there does not exist a child c of v such that {Xπj
}ij=1 ∈ φ(c). For ease

of presentation, we refer to evaluate PC units ϕ(p, v) when we say “evaluate a vtree node v”.

First, we don’t need to evaluate vtree units v where Xπi
6∈ φ(v) because the probability of these PC

units will be identical to that at iteration i− 1 (i.e., when computing p(xπ1
, . . . , xπi−1

)). Therefore,
we only need to cache these probabilities computed in previous iterations.

Second, we don’t need to evaluate vtree units v where at least one of its children c satisfy {Xπj
}i−1j=1 ∈

φ(c) because we can obtain the target marginal probability p(xπ1
, . . . , xπi

) following lines 7-9 of
Alg. 3. We proceed to show how this is done in the following.

Denote the “highest” in Tp,i as vr,i (i.e., the parent of vr,i is not in Tp,i). According to the variable
order π∗, vr,i uniquely exist for any i ∈ [D]. According to Alg. 2, the top-down probabilities of PC
units is defined as follows

• pdown(nr) = 1, where nr is the PC’s root unit.

• For any product unit n, pdown(n) =
∑
m∈par(n) pdown(m) · θm,n, where par(n) is the set of parent

(sum) units of n.

• For any sum unit n, pdown(n) =
∑
m∈par(n) pdown(m), where par(n) is the set of parent (product)

units of n.

We now prove that

p(xπ1 , . . . , xπi) =
∑

n∈ϕsum(p,v)

pdown(n) · pn(x) (3)

holds when v = vr,i.

15

Published as a conference paper at ICLR 2022

n1 n2

n3

nk

. . .

. . .

n1 n2 n3 nk

n 1

n 2

n 3

n k

. .
.

Figure 6: Convert a product unit with k children into an equivalent PC where every product node has
two children.

X1 X1

X2 X2 X3 X3

X1 X1

X2 X2 X3 X3

X1 X1

X2 X2 X3 X3

X1 X1

X2 X2 X3 X3

(a) (b)

X1 X1

X2 X2 X3 X3

X1 X1

X2 X2 X3 X3

X1 X1

X2 X2 X3 X3

(c) (d)

X1 X1

X2 X2 X3 X3

Figure 7: (a-b): An example structured-decomposable PC and a corresponding vtree. (c-d): Convert-
ing (b) into an ordered vtree. (d) The converted ordered PC that is equivalent to (a).

• Base case: If v is the vtree node correspond to nr, then ϕsum(p, v) = {nr} and it is easy to verify
that

p(xπ1
, . . . , xπi

) = pdown(nr) · pnr
(x) =

∑
n∈ϕsum(p,v)

pdown(n) · pn(x)

• Inductive case: Suppose v is an ancestor of vr,i and the parent vtree node vp of v satisfy Eq. (3).
We have

p(xπ1
, . . . , xπi

) =
∑

m∈ϕsum(p,vp)

pdown(m) · pm(x)

=
∑

m∈ϕsum(p,vp)

∑
n∈in(m)

pdown(m) · θm,n · pn(x)

(a)
=

∑
n∈ϕprod(p,vp)

∑
m∈par(n)

pdown(m) · θm,n︸ ︷︷ ︸
pdown(n)

· pn(x)

=
∑

n∈ϕprod(p,vp)

pdown(n) · pn(x)

(b)
=

∑
n∈ϕprod(p,vp)

∑
o∈{o:o∈in(n),{Xj}ij=1∈φ(o)}

pdown(n) · po(x)

(c)
=

∑
o∈ϕsum(p,v)

∑
n∈par(o)

pdown(n)

︸ ︷︷ ︸
pdown(o)

· po(x)

16

Published as a conference paper at ICLR 2022

=
∑

o∈ϕsum(p,v)

pdown(o) · po(x)

where (a) reorders the terms for summation; (b) holds since ∀n ∈ ϕprod(p, vp), pn(x) =∏
o∈in(n) po(x) and ∀o ∈ in(n) such that {Xj}ij=1 ∩ φ(o) = ∅, po(x) = 1;8 (c) holds because⋃

n∈ϕprod(p,vp)

{o : o ∈ in(n), {Xj}ij=1 ∈ φ(o)} = ϕsum(p, v).

Thus, we have prove that Eq. (3) holds for v = vr,i, and hence the probability p(xπ1
, . . . , xπi

)
can be computed by weighting the probability of PC units ϕsum(p, vr,i) (line 8 in Alg. 3) with the
corresponding top-down probabilities (line 9 in Alg. 3).

Efficiency of following the optimal variable order We proceed to show that when using the
optimal variable order π∗, Alg. 3 evaluates no more than O(log(D)·|p|) PC units.

According to the previous paragraphs, whenever Alg. 3 evaluates a PC unit n w.r.t. vtree node v, it
will evaluate all PC units in ϕ(p, v). Therefore, we instead count the total number of vtree nodes
need to be evaluated by Alg. 3. Since the PC is assumed to be balanced Def. 4, for every v, we have
ϕ(p, v) = O(|p|/D). Therefore, we only need to show that Alg. 3 evaluates O(D · log(D)) vtree
nodes in total.

We start with the base case, which is PCs correspond to a single vtree leaf node v. In this case,
Fπ∗(x) boils down to computing a single marginal probability p(xπ∗

1
), which needs to evaluate PC

units ϕ(p, v) once.

Define f(x) as the number of vtree nodes need to be evaluated given a PC corresponds to a vtree
node with x descendent leaf nodes. From the base case we know that f(1)=1.

Next, consider the inductive case where v is an inner node that has x descendent leaf nodes. Define
the left and right child node of v as c1 and c2, respectively. Let c1 and c2 have y and z descendent
leaf nodes, respectively. We want to compute Fπ∗(x), which can be broken down into computing
two following sets of marginals:

Set 1:
{
p(xπ∗

1
, · · · , xπ∗

i
)
}y
i=1

, Set 2:
{
p(xπ∗

1
, · · · , xπ∗

i
)
}y+z
i=y+1

.

Since π∗ follows the in-order traverse of v, to compute the first term, we only need to evaluate c1
and its descendents, that is, we need to evaluate f(y) vtree nodes. This is because the marginal
probabilities in set 1 are only defined on variables in φ(c1). To compute the second term, in addition
to evaluating PC units corresponding to c2 (that is f(z) vtree nodes in total),9 we also need to
re-evaluate the PC units ϕ(p, v) every time, which means we need to evaluate z more vtree nodes. In
summary, we need to evaluate

f(x) = f(y) + f(z) + z (y ≥ z, y + z = x)

vtree nodes.

To complete the proof, we upper bound the number of vtree nodes need to be evaluated. Define g(·)
as follows:

g(x) = max
y∈{1,...,b x2 c}

y + g(y) + g(x− y).

It is not hard to verify that ∀x∈Z, g(x) ≥ f(x). Next, we prove that

∀x ∈ Z (x ≥ 2), g(x) ≤ 3x log x.

First, we can directly verify that g(2) ≤ 3·2 log2 2 ≈ 4.1. Next, for x ≥ 3,

g(x) = max
y∈{1,...,b x2 c}

y + g(y) + g(x− y)

8This is because the scope of these PC units does not contain any of the variables in {Xπj}ij=1.
9As justified in the second part of this proof, all probabilities of PC units that conform to descendents of c1

will be unchanged when computing the marginals in set 2. Hence we only need to cache these probabilities.

17

Published as a conference paper at ICLR 2022

≤ max
y∈{1,...,b x2 c}

y + 3y log y + 3(x− y) log(x− y)︸ ︷︷ ︸
h(y)

(a)

≤ max

(
1 + 3(x− 1) log(x− 1),

⌊x
2

⌋
+ 3

⌊x
2

⌋
log
⌊x

2

⌋
+ 3

(
x−

⌊x
2

⌋)
log
(
x−

⌊x
2

⌋))
≤ max

(
1 + 3(x− 1) log(x− 1),

⌊x
2

⌋
+ 3(x+ 1) log

x+ 1

2

)
≤ 3x log x,

where (a) holds since according to its derivative, h(y) obtains its maximum value at either y = 1 or
y =

⌊
x
2

⌋
.

For a structured-decomposable PC with D variables, g(D) ≤ 3D logD vtree nodes need to be
evaluated. Since each vtree node corresponds to O(|p|D) PC units, we need to evaluate O(log(D)·|p|)
PC units to compute Fπ∗(x).

A.3 HCLTS, EINETS, AND RAT-SPNS ARE BALANCED

Consider the compilation from a PGM to an HCLT (Sec. 4.1). We first note that each PGM node g
uniquely corresponds to a variable scope φ of the PC. That is, all PC units correspond to g have the
same variable scope. Please first refer to Appx. B.2 for details on how to generate a HCLT given its
PGM representation.

In the main loop of Alg. 4 (lines 5-10), for each PGM node g such that var(g) ∈ Z, the number of
computed PC units are the same (M product units compiled in line 9 and M sum units compiled
in line 10). Therefore, for any variable scopes φ1 and φ2 possessed by some PC units, we have
|nodes(p, φ(m))| ≈ |nodes(p, φ(n))|. Since there are in total Θ(D) different variable scopes in p,
we have: for any scope φ′ exists in an HCLT p, nodes(p, φ′) = O(|p|/D).

EiNets and RAT-SPNs are also balanced since they also have an equivalent PGM representation of
their PCs. The main difference between these models and HCLTs is the different variable splitting
strategy in the product units.

B METHODS AND EXPERIMENT DETAILS

B.1 LEARNING HCLTS

Computing Mutual Information As mentioned in the main text, computing the pairwise mutual
information between variables X is the first step to compute the Chow-Liu Tree. Since we are
dealing with categorical data (e.g., 0-255 for pixels), we compute mutual information by following
its definition:

I(X;Y) =

CX∑
i=1

CY∑
j=1

P (X = i, Y = j) log2

P (X = i, Y = j)

P (X = i)P (Y = j)
,

where CX and CY are the number of categories for variables X and Y , respectively. To lower the
computation cost, for image data, we truncate the data by only using 3 most-significant bits. That is,
we treat the variables as categorical variables with 23 = 8 categories during the construction of the
CLT. Note that we use the full data when constructing/learning the PC.

Training pipeline We adopt two types of EM updates — mini-batch and full-batch. In mini-batch
EM, parameters are updated according to a step size η: θ(k+1)←(1−η)θ(k)+ηθ(new), where θ(new)

is the EM target computed with a batch of samples; full-batch EM updates the parameters by the EM
target computed using the whole dataset. In this paper, HCLTs are trained by first running mini-batch
EM with batch size 1024 and η changing linearly from 0.1 to 0.05; full-batch EM is then used to
finetune the parameters.

18

Published as a conference paper at ICLR 2022

Algorithm 4 Compile the PGM representation of a HCLT into an equivalent PC
1: Input: A PGM representation of a HCLT G (e.g., Fig. 3(c)); hyperparameter M
2: Output: A smooth and structured-decomposable PC p equivalent to G
3: Initialize: cache← dict() a dictionary storing intermediate PC units
4: Sub-routines: PC leaf(Xi) returns a PC input unit of variable Xi; PC prod({ni}mi=1) (resp.

PC sum({ni}mi=1)) returns a product (resp. sum) unit over child nodes {ni}mi=1.
5: foreach node g traversed in postorder (bottom-up) of G do
6: if var(g) ∈ X then cache[g]←

[
PC leaf

(
var(g)

)
for i = 1 :M

]
7: else # That is, var(g) ∈ Z
8: chs cache←

[
cache[c] for c in children(g)

]
#children(g) is the set of children of g

9: prod nodes←
[
PC prod

([
nodes[i] for nodes in chs cache

])
for i = 1 :M

]
10: cache[g]←

[
PC sum

(
prod nodes

)
for i = 1 :M

]
11: return cache[root(G)][0]

B.2 GENERATING PCS FOLLOWING THE HCLT STRUCTURE

After generating the PGM representation of a HCLT model, we are now left with the final step of
compiling the PGM representation of the model into an equivalent PC. Recall that we define the latent
variables {Zi}4i=1 as categorical variables with M categories, where M is a hyperparameter. As
demonstrated in Alg. 4, we incrementally compile every PGM node into an equivalent PC unit though
a bottom-up traverse (line 5) of the PGM. Specifically, leaf PGM nodes corresponding to observed
variables Xi are compiled into PC input units of Xi (line 6), and inner PGM nodes corresponding to
latent variables are compiled by taking products and sums (implemented by product and sum units)
of its child nodes’ PC units (lines 8-10). Leaf units generated by PC leaf(X) can be any simple
univariate distribution of X . We used categorical leaf units in our HCLT experiments. Fig. 3(d)
demonstrates the result PC after running Alg. 4 with the PGM in Fig. 3(c) and M = 2.

B.3 IMPLEMENTATION DETAILS OF THE PC LEARNING ALGORITHM

We adopted the EM parameter learning algorithm introduced in Choi et al. (2021), which computes
the EM update targets using expected flows. Following Liu & Van den Broeck (2021), we use a
hybrid EM algorithm, which uses mini-batch EM updates to initiate the training process, and switch
to full-batch EM updates afterwards.

•Mini-batch EM: denote θ(EM) as the EM update target computed with a mini-batch of samples. An
update with step-size η is: θ(k+1) ← (1− η)θ(k) + ηθ(EM).

• Full-batch EM: denote θ(EM) as the EM update target computed with the whole dataset. Full-batch
EM updates the parameters with θ(EM) at each iteration.

In our experiments, we trained the HCLTs with 100 mini-batch EM epochs and 20 full-batch EM
epochs. During mini-batch EM updates, η was annealed linearly from 0.15 to 0.05.

B.4 DETAILS OF THE COMPRESSION/DECOMPRESSION EXPERIMENT

Hardware specifications All experiments are performed on a server with 72 CPUs, 512G Memory,
and 2 TITAN RTX GPUs. In all experiments, we only use a single GPU on the server.

IDF We ran all experiments with the code in the GitHub repo provided by the authors. We
adopted an IDF model with the following hyperparameters: 8 flow layers per level; 2 levels;
densenets with depth 6 and 512 channels; base learning rate 0.001; learning rate decay 0.999. The
algorithm adopts an CPU-based entropy coder rANS. For (de)compression, we used the follow-
ing script: https://github.com/jornpeters/integer_discrete_flows/blob/
master/experiment_coding.py.

BitSwap We trained all models using the following author-provided script: https://
github.com/fhkingma/bitswap/blob/master/model/mnist_train.py. The al-

19

https://github.com/jornpeters/integer_discrete_flows/blob/master/experiment_coding.py
https://github.com/jornpeters/integer_discrete_flows/blob/master/experiment_coding.py
https://github.com/fhkingma/bitswap/blob/master/model/mnist_train.py
https://github.com/fhkingma/bitswap/blob/master/model/mnist_train.py

Published as a conference paper at ICLR 2022

gorithm adopts an CPU-based entropy coder rANS. And we used the following code for
(de)compression: https://github.com/fhkingma/bitswap/blob/master/mnist_
compress.py.

BB-ANS All experiments were performed using the following official code: https://github.
com/bits-back/bits-back.

B.5 DETAILS OF THE PC+IDF MODEL

The adopted IDF architecture follows the original paper (Hoogeboom et al., 2019). For the PCs, we
adopted EiNets (Peharz et al., 2020a) with hyperparameters K = 12 and R = 4. Instead of using
random binary trees to define the model architecture, we used binary trees where “closer” latent
variables in z will be put closer in the binary tree.

Parameter learning was performed by the following steps. First, compute the average log-likelihood
over a mini-batch of samples. The negative average log-likelihood is the loss we use. Second,
compute the gradients w.r.t. all model parameters by backpropagating the loss. Finally, update the
IDF and PCs using the gradients individually: for IDF, following Hoogeboom et al. (2019), the
Adamax optimizer was used; for PCs, following Peharz et al. (2020a), we use the gradients to compute
the EM target of the parameters and performed mini-batch EM updates.

20

https://github.com/fhkingma/bitswap/blob/master/mnist_compress.py
https://github.com/fhkingma/bitswap/blob/master/mnist_compress.py
https://github.com/bits-back/bits-back
https://github.com/bits-back/bits-back

	Introduction
	Tractability Matters in Lossless Compression
	Computationally Efficient (De)compression with PCs
	Background: Probabilistic Circuits
	Efficient (De-)compression With Structured-Decomposable PCs
	Empirical Evaluation

	Scaling Up Learning and Inference of PCs
	Hidden Chow-Liu Trees
	Empirical Evaluation

	PCs as Expressive Prior Distributions of Flow Models
	Conclusions
	Algorithm Details and Proofs
	Details of alg:compute-marginals-informal
	Proof of Theorem 1
	HCLTs, EiNets, and RAT-SPNs are Balanced

	Methods and Experiment Details
	Learning HCLTs
	Generating PCs Following the HCLT Structure
	Implementation Details of the PC Learning Algorithm
	Details of the Compression/Decompression Experiment
	Details of the PC+IDF Model

