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Abstract

We study pure exploration in bandits, where the dimension of the feature repre-
sentation can be much larger than the number of arms. To overcome the curse
of dimensionality, we propose to adaptively embed the feature representation of
each arm into a lower-dimensional space and carefully deal with the induced
model misspecifications. Our approach is conceptually very different from existing
works that can either only handle low-dimensional linear bandits or passively deal
with model misspecifications. We showcase the application of our approach to
two pure exploration settings that were previously under-studied: (1) the reward
function belongs to a possibly infinite-dimensional Reproducing Kernel Hilbert
Space, and (2) the reward function is nonlinear and can be approximated by neu-
ral networks. Our main results provide sample complexity guarantees that only
depend on the effective dimension of the feature spaces in the kernel or neural
representations. Extensive experiments conducted on both synthetic and real-world
datasets demonstrate the efficacy of our methods.

1 Introduction

Pure exploration in bandits [11, 12, 6] has been extensively studied in machine learning. Consider
a set of arms, where each arm is associated with an unknown reward distribution. The goal is to
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approximately identify the optimal arm using as few samples as possible. Applications of bandit pure
exploration range from medical domains [3] to online content recommendation [40].

Despite the popularity of bandit pure exploration, it was previously mainly studied in two relatively
restrictive settings: (1) the standard multi-armed bandit setting [22, 19, 9, 18], where the expected
rewards among arms are completely unrelated to each other, and (2) the (generalized) linear bandit
setting [38, 13, 10, 26], where the expected rewards are assumed to be linearly parameterized by
some unknown weight vector. The standard multi-armed bandit setting fails to deal with large arm
sets, and the linear bandit setting suffers from both model misspecifications (due to its simplified
linear form) and the curse of dimensionality in the high-dimensional setting. Pure exploration is
also studied in continuous spaces. However, guarantees therein scale exponentially with dimension
[31, 4].

In this paper, we generalize bandit pure exploration to the nonlinear and high-dimensional settings.
More specifically, we study the following two settings: (1) the rewards of arms are parameterized by
a function belonging to a Reproducing Kernel Hilbert Space (RKHS), and (2) the rewards of arms are
nonlinear functions that can be approximated by an overparameterized neural network. Problems in
these two settings are often high-dimensional in nature. To overcome the curse of dimensionality,
we propose to adaptively embed each arm’s feature representation in a lower-dimensional space
and carefully deal with the induced misspecifications. Note that our approach is conceptually very
different from all existing work dealing with model misspecifications: they assume the existence of
misspecifications and address it in the original space (thus dealing with model misspecifications in
a passive way) [28, 7]. On the other hand, we deliberately induce (acceptable) misspecifications to
embed arms into lower-dimensional spaces and thus overcome the curse of dimensionality.

1.1 Contribution and Outline
We make the following main contributions:

* In Section 3, we introduce the idea of adaptive embedding to avoid the curse of dimensionality.
The induced model misspecifications are carefully handled, which is novel in the bandit pure
exploration setting. The sample complexity is theoretically analyzed and we relate the instance-
dependent sample complexity to the complexity of a closely-related linear bandit problem without
model misspecification. As a by-product, our algorithm can also be applied to constrained high-
dimensional linear bandit pure exploration to reduce sample complexity.

¢ In Section 4, we specialize the adaptive embedding scheme to pure exploration in an RKHS. We
construct feature mappings from eigenfunctions and eigenvalues of the associated kernel. The
effective dimension of the kernel is analyzed, and we provide sample complexity guarantees in
terms of the eigenvalue decay of the associated kernel. We rely on a known kernel in this setting.

¢ In Section 5, we further extend our adaptive embedding scheme to pure exploration with a general
nonlinear reward function and model the reward function with an over-parameterized neural
network. Sample complexity guarantees are provided with respect to the eigenvalue decay of the
associated Neural Tangent Kernel. To the best of our knowledge, this provides the first theoretically
founded pure exploration algorithm with a neural network approximation.

* In Section 6, we conduct extensive experiments on both synthetic and real-world datesets to confirm
the efficacy of our proposed algorithms. We conclude our paper in Section 7 with open problems.

1.2 Related Work

The bandit pure exploration problem has a long history, dating back to the seminal work by Bechhofer
[5], Paulson et al. [32]. One classical objective of pure exploration is Best Arm Identification (BAI),
where the goal is to identify the best arm using as few samples as possible [22, 19, 9, 15]. To make
it applicable to a large action space, the BAI problem is also extensively studied as the good arm
identification problem, where the goal is to identify an e-optimal arm [11, 12, 20, 21, 34, 23, 30].

The pure exploration problem in linear bandits is initially analyzed in Soare et al. [38], where
optimal experimental design [27] is applied to guide the allocation of samples. Other approaches
dealing with linear bandits, with various sample complexity guarantees, include adaptive sampling
[45] and an approach called track-and-stop [10]. Constrained linear bandit pure exploration is also
commonly studied with additional assumptions on the reward parameters [41, 10]. We note that the



track-and-stop approach only achieves optimal instance-dependent sample complexity in the regime
where the confidence parameter approaches 0, but fails to do so in the moderate confidence regime.
Fiez et al. [13] propose an elimination-based algorithm (with optimal design) that achieves (nearly)
instance-dependent sample complexity. such algorithm is further generalized to the combinatorial
bandit setting [24].

Learning with model misspecifications was recently introduced in bandit learning, with the primary
emphasis placed on the regret minimization problem [16, 28, 14]. A very recent independent work
studies pure exploration in kernel bandits with misspecifications [7]; both their and our algorithms
follow the framework of RAGE [13] and draw inspiration from [28]. Camilleri et al. [7] propose a
robust estimator that works in high-dimensional spaces and also explore the project-then-round idea
through regularized least squares. Our algorithms adaptively embed actions into lower dimensional
spaces according to some error tolerances (different embeddings from round to round); our rounding
and elimination steps are thus computed only with respect to lower-dimensional embeddings. We
additionally study the pure exploration problem with an overparameterized neural network. As
mentioned before, our approach is also conceptually different from existing ones: rather than
passively dealing with model misspecifications in its original representation, we deliberately and
adaptively embed arms into a lower-dimensional space to avoid the curse of dimensionality; the
induced model misspecifications are also carefully dealt with in our algorithms.

2 Problem setting

We introduce the general setting and notations for pure exploration in bandits. Consider a set of arms
X C RP where the number of arms |X'| = K is possibly very large. We use an unknown function
h: X — [—1,1] to represent the true reward of each arm. A noisy feedback h(x) + ¢ is observed
after each sample arm «, where the noise ¢ is assumed to be 1-sub-Gaussian. The learner is allowed
to allocate her samples based on previously collected information, and the goal is to approximately
identify an approximately optimal arm using as few samples as possible. Let ¢, = argmaxc y h(x)
denote the optimal arm among X. We aim at developing (e, §)-PAC guarantees: for any ¢ € (0, 1),
with probability at least 1 — §, the algorithm outputs an e-optimal arm Z such that h(Z) > h(x,) — €
using a finite number of samples. The performance of the algorithm is measured by its sample
complexity, i.e., the number of samples pulled before it stops and recommends a candidate arm.

Notations. We define A, = h(x,) — h(x) as the sub-optimality gap of arm @. We use the notations
Spi={x € X: A, <4-27F)} (with S; = X). We consider feature mappings of the form
$a(-) : X — R, and define 94(X) = {pa(x) 1z € X}. Weuse Ay = {A e R : 30 A, =
1,Az > 0} to denote the (|X'| — 1)-dimensional probability simplex over arms in X; and set
Ay, (N) = Y pex Aata(x)pa(z) > We use ||z]| , = V' Az to represent the Mahalanobis
norm. We also define J(V) = {v — v’ : v,v’ € V} for any set V. For a matrix H € RI*IXI*1 we
use H (x, x') to denote the entry of H which locates at row « and column '

3 Bandit pure exploration with adaptive embedding

We introduce the idea of bandit pure exploration with adaptive embedding, which can be viewed as an
approach that actively trades off sample complexity with accuracy guarantees: we adaptively embed
the feature representation into lower-dimensional spaces to avoid the curse of dimensionality, and
conduct pure exploration with misspecified linear bandits. The embedding dimensions are carefully
selected so that we can identify an e-optimal arm.

We formalize the idea as follows. For any d € N, we assume the existence of a feature mapping
g : X — R? and a unknown reward vector 8; € R? such that, for any = € X,

h(z) = (Ya(z), 04) + na(zx),

where 74 () represents the induced approximation error on arm & with respect to the low-dimensional
embedding t4(-). Without loss of generality, we assume that the action set X is rich enough so
that 1p4(X') spans RY for d considered in this paper. Otherwise, one can always project feature

%A generalized inversion is used for singular matrices. We refer to Appendix A.1 for detailed discussion.



representations 4 (XX') into an even lower-dimensional space without losing information in the linear
component.

We use 7 : N — R to represent the misspecification level: an upper bound of the induced

approximation error across all arms, i.e., maxgecx|ni(x)] < F(d). We define g(d,{) =

(1+¢) infaear SUPyey(yp, (1)) Hy||?4¢ (x)-1+ Which represents the optimal value of a transductive
) d

design among embeddings in R%. We define v(d) = (16 + 8+/g(d, ¢)) 7(d), which quantifies the

sub-optimality gap of the identified arm in the worst case. One can easily show v(d) < O(5(d)V/d)
through Kiefer-Wolfowitz theorem [27].

Remark 1. We believe such optimality guarantees are un-improvable in general. In fact, a hard in-
stance is constructed in [28] showing that, even with deterministic feedback, identifying a o(5(d)/d)-
optimal arm requires sample complexity exponential on d. On the other side, identifying a Q(3(d)/d)-
optimal only requires sample complexity polynomially in d. Such a sharp trade-off between optimality

and sample complexity motivates our definition of v(d) (and our sample complexities are polynomially
ind).

We assume the knowledge of both the feature mapping t,4(-) and the error function (-). This
assumption is mild since one can explicitly construct/analyze 14(-) and (-) in many cases (as
discussed in Section 3.2, Section 4 and Section 5). We further assume that v(d) can be made
arbitrarily small for large enough d. Such assumption trivially holds if the rewards are perfectly
explained for d large enough, i.e., 7(d) = 0. We now define the effective dimension with respect to
~(d) (induced from feature mapping 14(-)) as follows.

Definition 1. For any € > 0, we define the effective dimension as deg (€) = min{d > 1 : y(d) < e}.

In general, the effective dimension deg (€) captures the smallest dimension one needs to explore in
order to identify an e-optimal arm. Similar notions have been previously used in regret minimization
settings [42, 43]. One can easily see that degr(€1) < degr(€2) as long as €; > es.

3.1 Algorithm and analysis

Algorithm 1 follows the framework of RAGE [13] to eliminate arms with sub-optimality gap > O(27%)
at the k-th iteration. It runs for n = O(log(1/¢)) iterations and identifies an e-optimal arm. We use
optimal experimental design to select arms for faster elimination. For any fixed design A € A x, with
N > r4(¢) samples and an approximation factor ¢ (with default value ¢ € [1/10, 1/4]), the rounding

procedure in R, i.e., ROUND(\, N, d, ), outputs a discrete allocation {x1, T, ..., xy} satisfying
2 2
1 <(1 _1/N. 1
veri eVl va@owa@ory S A+ O gmax ) Il 00—/ o

Efficient rounding procedures exist with r4({) = % [33] or 74(¢) = 1?2‘1 [1, 13]. We refer

reads to [13, 33, 1] for detailed rounding algorithms and the associated computational complexities.

Unlike RAGE that directly works in the original high-dimensional space, Algorithm 1 adaptively
embeds arms into lower-dimensional spaces and carefully deals with the induced misspecifications.
More specifically, the embedding dimension d, is selected as the smallest dimension such that the
induced error term ¢, is well controlled, i.e., €5, < O(2‘k). The embedding is more aggressive at
initial iterations due to larger error tolerance; The embedding dimension selected at the last iteration is
(roughly) def (€) to identify an e-optimal arm. The number of samples required for each iteration Ny,
is with respect to an experimental design in the lower-dimensional space after embedding. The ROUND
procedure also becomes more efficient due to the embedding. Before stating our main theorem, we
introduce the following complexity measure [38, 13, 10], which quantifies the hardness of the pure
exploration problem (with respect to mapping ¥4(-)).

: [a(@.) = pa(@)|%, o
02(6) = inf sup d ]

NeAx gex\{e.} max{h(x,) — h(z), e}’

Theorem 1. With probability of at least 1 — 0, Algorithm 1 correctly outputs an e-optimal arm with
sample complexity upper bounded by
[logy(2/€)] _
640 Z ((kpzk(22—k) 10g(k’2|X|2/6>) —|— (T’dk(C) + 1)) S O(deff(e) ~maX{Amin76}_2)7
k=1



Algorithm 1 Arm Elimination with Adaptive Embedding and Induced Misspecification

Input: Action set X, confidence parameter d, accuracy parameter € and rounding approximation
factor (. R
1: Setn = [logy(2/€)] and §; = X.
2: fork=1,2,...,ndo
3: Set 0, :5/k2,dk = deff(4'2_k).
4:  Select feature representation 4, (-), and calculate the induced misspecification level 7(dy,).
Set 74, (¢) = O(d/¢?) as the number of samples needed for ROUND in R,
5:  Set \; and 7 be the design and the value of the following optimization problem

inf sup  lyl%, (-t
NEAX Yy (pay (B))

6: Set ¢, = 2§(dk) +§(dk)\/(l+<) T, R

and Ny, = max{[(27% — ex) "*2(1 + ¢) 7. 1og(|Sk|*/0x) 1, 74, (O)}-

Get {x1, x2,...,xN, } = ROUND(Ag, Ni, dk, C).

Pull arms {x1, z2, ...,z N, } and receive rewards {y1,...,yn, }-

Set 8, = A by, where Ay, = S by, (2:)a, (@) T and by = SN W, (x)y;.
Eliminate arms with respect to criteria

Si1 =Sk \ {z € S : 32’ such that (a (') — ta, (2)) O > wi(a, (') — P, (@)},

where wi(y) = e, + [yl 411/ 2108(1Sk1?/51).

11: end for N
Output: Output any arm in Sy, 1.

@Y o

where dy, = deg(4-27) < dog(€) since 4 - 27% > e when k < [logy(2/¢€)].

The rounding term r4({) commonly appears in the sample complexity of linear bandits [13, 24]; and
our rounding term is with respect to the lower-dimensional space after embedding, which only scales
with dj, rather than the ambient dimension. To further interpret the complexity, we define another
complexity measure of a closely related linear bandit problem in the low-dimensional space and
without model misspecifications.

5(6) " [ta(zs) — ¢d(m)||2A¢d(,\)—1
€)= 1 su )
Pa AEA X we;\{'\l{)a;*} max{ <’¢1d(w*) - Q;bd(m)7 0d>7 6}2

where (Yq(xs) — ¥q(x), 0,) on the denominator represents the sub-optimality gap characterized by
the linear component rather than the true sub-optimality gap h(x,) — h(x). The relation between
p*(€) and p*(e) is discussed as follows.

Proposition 1. Suppose maxgzex|h(x) — (Yi(x),04)| < F(d). For any € > ¥(d), we have
pi(e) < 9p%(e). When ¥(d) < Anwmin/2, p5(0) represents the sample complexity of a closely-related

linear bandit problem without model misspecifications, i.e., h(x) = (q(x), 04).

Remark 2. When 5(d) < Amwmin/2, our sample complexity upper bound is relevant to the sample
complexity of closely-related linear bandit problems without model misspecifications in lower-
dimensional spaces. In fact, p%(0) log(1/2.46) is the lower bound of the corresponding linear bandit

problem in R9 [38, 13, 10].

Remark 3. Although the misspecification levels are generally known for situations considered in this
paper, we also provide an algorithm that deals with unknown misspecification levels in Appendix D.
Similar sample complexity guarantees are provided, but only in an unverifiably way (due to unknown
misspecification levels): the algorithm starts to output e-good arms after N samples, yet it doesn’t
know when to stop. We refer readers to [23] for details on the unverifiable sample complexity.

3.2 Application to high-dimensional linear bandits

We apply the idea of adaptive embedding to high-dimensional linear bandits. We consider linear
bandit problem of the form h = X0, where X € R¥*P and the i-th row of X represents the



feature vector of arm x;. We assume that ||6, ||, < C, which is commonly studied as the constrained
linear bandit problem [41, 10].

Let X = UXV be the singular value decomposition (SVD) of X, with singular values 01 > g9 >
.-+ > o, > 0 for some r < min{K, D}. Let u; ; denote the (¢, j)-th entry of matrix U and u. ;
denote the ¢-th column of U (similar notations for V). We have

d D d
h=X0,=UXV'9, = Zaiu;,ivLG* + Z aiu:7iv20* = Zaiuzyivle* +n,
i=1 i=d+1 i=1

where [|n]|, < Czi’;dﬂ o;. As a result, for any d < r, we can construct the feature map-
ping a(x;) = [o1Uin, ... 0quiq) € RY such that h(z;) = (a(x;),0,) + n(z;), where
6, = [VTo] ) € R is the associated reward parameter.’ The upper bound of the induced
misspecification can be expressed as 7(d) = C Zi’;dﬂ o;, which allows us to calculate v(d). We
can then apply Algorithm 1 to identify an e-optimal arm. A high-dimensional linear bandit instance is
provided in Appendix B.3 showing that: Algorithm 1 takes 5(1 /€?) samples to identify an e-optimal
arm, while the sample complexity upper bound of RAGE scales as 6(D /€2).

4 Pure exploration in RKHS

We consider a kernel function KC : Z x Z — R over a compact set Z; we assume the kernel function
satisfies condition stated in the Mercer’s Theorem (see Appendix E.1) and has eigenvalues decay
fast enough (see Assumption 1). Let H be the Reproducing Kernel Hilbert Space (RKHS) induced
from /C. We assume X’ C Z and the true reward of any arm & € X is given by an unknown function
h € H such that ||h||,, < 1.

Let {¢; 52, and {1; 721 be sequences of eigenfunctions and non-negative eigenvalues associated
with kernel .* A corollary of Mercer’s theorem shows that any i € # can be written in the form
of h(-) = Y272, 0;¢;(-) for some {0;}52, € (*(N) such that 337, 67 /p; < oo. We also have
||h||3{ = Z;; 07 /1. Although functions in RKHS are non-linear in nature, we now can represent
them in terms of an infinite-dimensional linear function. We construct feature mappings for the
embedding next.

For any x € X, we have h(z) = > 72, 0;0;(z) = 372, j—;fj,/ujqﬁj(m). Let Cp =
SUP,, ¢ 5 ;> |®j()]. Since Py 0% /1 = ||h||§_£ < 1 is bounded, for any d € N, we define
feature mapping ¥4(x) = [\/i101(x), ..., Viada(x)] " € R such that

h(x) = (04, %a(x)) + na(z),

where 8, = [01/\/ii1, .-, 0a//1d] T € R and |na(z)| < F(d) = Cy /3" ;- 4 1tj- We remark here
that the constant C is calculable and usually mild, e.g., Cy = 1 for ¢;(x) = sin((2j — 1)7z/2).

We can then construct y(d) and dog (€) as in Section 3 and specialize Algorithm 1 to the kernel setting.
Both y(d) and dg(€) depend on eigenvalues of the associated kernel. Fortunately, fast eigenvalue
decay are satisfied by most kernel functions, e.g., Gaussian kernel. We quantify such properties
through the following assumption.

Assumption 1. We consider kernels with the following eigenvalue decay with some absolute constants
Cy and (3.

1. Kernel K is said to have (Cy,, 3)-polynomial eigenvalue decay (with 3 > 3/2) if p; < Cyj =" for
all j > 1.

3We note that the embeddings and associated quantities can also be constructed on the fly with respect to the
set of uneliminated arms.

*With a known kernel, the sequence of eigenfunctions and eigenvalues can be analytically calculated or
numeriaclly approximated [36, 35]. We assume the knowledge of eigenfunctions and eigenvalues in this paper.



2. Kernel K is said to have (Cy, 3)-exponential eigenvalue decay (with 8 > 0) if p; < Cre b7 for
allj > 1.

Theorem 2. Suppose Assumption 1 holds. For any € > 0, the following statements hold when we
specialize Algorithm I to the kernel setting.

1. Suppose K has (Cy, B)-polynomial eigenvalue decay. We have deg(e) < O(e=2/(28-3)),
and the sample complexity of identifying an e-optimal arm is upper bounded by
O(e=%/(B=3) max{Anin, €} 2).

2. Suppose K has (Cy, 3)-exponential eigenvalue decay. We have dog(e) < O(log(1/€)), and the
sample complexity of identifying an e-optimal arm is upper bounded by O(max{Apin, €} ~2).

Remark 4. Our sample complexity guarantees are directly related to the eigenvalue decay of the
underlying kernel function, rather than the empirical kernel matrix as studied in previous works
[7, 42]. Although one can also provide an instance dependent bound as in Theorem I, the worst-case
sample complexity bound in Theorem 2 provides insightful characterizations of the sample complexity
in terms of eigenvalue decay. One should notice that with exponential eigenvalue decay, the sample
complexity O(e=2) essentially matches, up to logarithmic factors, the complexity of distinguishing a
two-armed bandit up to accuracy € [25].

S Pure exploration with neural networks

In this section we present a neural network-based pure exploration algorithm in Algorithm 2. Our
algorithm is inspired by the recently proposed neural bandits algorithms for regret minimization
[47, 46]. At the core of our algorithm is to use a neural network f(x; @) to learn the unknown reward
function h. Specifically, following [8, 47], we consider a fully connected neural network f(x;0)
with depth L > 2

F(z;0) = \/EWLG(WL_W( : -~J(W1;c))>, 2)

where o(x) := max(z,0) is the ReLU activation function, W; € R™*4 W € R'*™ and for
2 <i<L-—1, W; € R"*™ Moreover, we denote @ = [vec(W;)",... vec(W)"]T € RP,
where p = m + md + m?(L — 2) is the number of all the network parameters. We use g(z; 6) =
Ve f(x;0) to denote the gradient of the neural network output with respect to the weights.

In detail, at k-th iteration, Algorithm 2 firstly applies its current gradient mapping g(z; 0;—1) over the
whole action set X', and obtains the collection of gradients G € RI¥*P_ Then Algorithm 2 does SVD
over G and constructs a dj-dimensional feature mapping 14, , which can be regarded as the projection
of the gradient feature mapping g(x; 1) to the most informative dy-dimensional eigenspace. Here
we choose dj. such that the summation of the eigenvalues of the remaining eigenspace be upper
bounded by some error €. Algorithm 2 then computes the optimal design A\i over ¥, (X') and pulls
arms {x1,...,xy, } based on both the design Aj and the total number of allocations Ny. Finally,
Algorithm 2 trains a new neural network f(x; 0y) using gradient descent starting from the initial
parameter 0 (details are deferred to Appendix F), then eliminates the arms @ in the current arm set

Sk which are sub-optimal with respect to the neural network function value f(x; 0y).

The main difference between Algorithm 2 and its RKHS counterpart is as follows. Unlike Algorithm
1 which works on known feature mappings 14 (derived from a known kernel K), Algorithm 2 does
not have information about the feature mapping, and thus it constructs the feature mapping from the
raw high-dimensional up-to-date gradient mapping g(x; 6;_1). The feature mapping is constructed
with respect to a trained neural work, which leverages the great representation power of neural
networks. This makes Algorithm 2 a more general and flexible algorithm than Algorithm 1.

Now we present the main theorem of Algorithm 2. Let H!*!X|¥l be the Neural Tangent Kernel
(NTK)[17] gram matrix over all arms X (the detailed definition of H is deferred to Appendix F). We
define the effective dimension for the neural version as below. The definition is similar to Definition 1.



Algorithm 2 Neural Arm Elimination

Input: Action set X, initial parameter 6, neural network f(x;@), gradient mapping g(x, 0),
width of the matrix m, parameter of the number of allocations A, approximation parameter ¢,
regularization parameter o, error parameter ¢, €, confidence level §;, = §/(8k?)

1: Set §1 =X.

2: fork=1,2,...,n do

3:  Construct the truncated feature representation 1 (X') based on gradient mapping g(x; 05—1).
In detail, let G € RI¥I*? be the collection of gradients such that

G =[g(x1:0r-1)";...;9(x)x;06-1) "]/ Vm € RIFI*P 3)
Let [U,%,V] be the SVD of G, where U = (u;;) € RI¥>XI » =
[diag(er, .. ., ex|),0] € RI¥I*P, V' ¢ RP*P. Get dj = min{d € [|X]] : z',*liﬂ e; < &},
and set P, (z;) = (e1Uiy - - -, €dyUiay) € R
4:  Set A, and 71 be the experimental design and the value of the following optimization problem
inf  sup  lylh, o) )
NEAX yeY(pay (S))

50 Set Nj, = max {22% A(1 + () log(|X|?/dk), ra, ()}
6: Get {wl,CEQP..,iBNk}:RDUND(Ak,Nk,dk,C).
7: Pullarms {x1, @2, ...,z N, } and receive rewards {y1, ..., yn, }-
8:  Using Jy, step ng-step size gradient descent to optimize the following loss function to obtain
0y, N
. mao
6y, = argmin L(0) := Z(f(wj; 0) —y;)* + 7“9 — 6oll3- )
j=1

9: SetAp=oal+ vaz"l Y, (x)1g, ()T and eliminate arms with respect to criteria

Sps1 =8\ {m € 8, : 3’ such that f(x'; 0;) — f(m;0;) > 27 /8 + 3¢/8}.
10: end for

Output: Output any arm in §n+1.

Definition 2 (Neural version). For any € > 0, we define the effective dimension as deg(€) =
min{d € [|X|] : Z[XL_H (H) < €}, where \;(H) is the i-th eigenvalue of H.

Next, we make standard assumptions for the initialization of neural networks and the arms « € X.

Assumption 2 ([47]). There exists Ao > 0 such that H = \oI. For any x € X, the arm x satisfies
llx|l2 = 1 and that its j-th coordinate is identical to its j + d/2-th coordinate. Meanwhile, the initial
parameter 0y = [vec(W1) T, ... vec(W)T]T is initialized as follows: for 1 <1< L — 1, Wy is

set to V(;/ V([)/> where each entry of W is generated independently from N'(0,4/m); W7, is set

to(w',—w?'), where each entry of w is generated independently from N'(0,2/m).

We now present our main theorem for pure exploration with neural network approximation. The
formal version of our theorem is deferred to Appendix F.

Theorem 3 (Informal). Under Assumption 2, with proper selection of parameters o, n, €, A, Mk Jk»

then when m = poly(|X|, L, \g *,10g(|X|/0k), Ny, o, 1), with probability at least 1 — 6, Ski1
only includes arm x satzsfymg Az < ¢ and the total sample complexity of Algorithm 2 is bounded by

N= 6((1 + Oden (/1)) /€ + meff@z/m)(o) = 0(dun( /1)) 2).

Remark 5. For the case where the effective dimension can be well bounded, e.g., doi(€2/|X|) =
O(log(|X|/€2)), Theorem 7 suggests that Algorithm 2 is able to identify an e-optimal arm within
O(e72) samples. That suggests that our neural network-based algorithm is efficient without con-

structing a low-dimensional linear approximation of h in prior, like the previous linear or RKHS
approaches.



6 Experiments

We conduct four experiments on synthetic and real-world datasets. We specialize our embedding
idea to the neural, kernel, and linear regimes, and denote the algorithms as NeuralEmbedding
(Algorithm 2), KernelEmbedding (Algorithm 1 with Gaussian kernel), and LinearEmbedding
(Algorithm 1 with linear representation), respectively. We compare our algorithms with two baselines:
RAGE and ActionElim. RAGE [13] conducts pure exploration in linear bandits and ActionElim
[18, 11] ignores all feature representations. The (empirical) sample complexity of each algorithm
is calculated as the number of samples needed so that the uneliminated set contains only e-optimal
arms. Unsuccessful runs, i.e., those terminate with non-e-optimal arms, are reported as failures. In
our experiments, we set € = 0.1 and § = 0.05. All results are averaged over 50 runs.’
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Figure 1: Experiments on synthetic datasets. (a) linear reward function with D = 20; (b) nonlinear
reward function with K = 200.

Synthetic datasets. We first generate the feature matrix X = X + E € REXD where X is
constructed as a rank-2 matrix and F is a perturbation matrix with tiny spectral norm (See Appendix G

for details). Each row of X represents the feature representation of an arm, and those features can
be grouped into two clusters with equal size. In the case with linear rewards, we let 8, equal to the

first row of X . For nonlinear rewards, the reward of each arm is set as the 2-norm of its feature
representation. We vary the number of arms K and the ambient dimension D in our experiments.

Fig. 1 shows experimental results on synthetic datasets. All algorithms successfully identify e-
optimal arms with zero empirical failure probability (due to the simplicity of the datasets). In
terms of sample complexity, NeuralEmbedding outperforms all other algorithms in most cases,
and KernelEmbedding and LinearEmbedding significantly outperform RAGE and Action Elim.
The sample complexities of NeuralEmbedding, KernelEmbedding and LinearEmbedding are not
affected when increasing number of arms or dimensions since they first identify the important
subspace and then conduct elimination. On the other side, the sample complexity of ActionElim
gets larger with increasing number of arms and the sample complexity of RAGE gets larger with
increasing dimensions.

MNIST dataset. The MNIST dataset [29] contains hand-written digits from 0 to 9. We view each
digit as an arm, and set their rewards according to the confusion matrix of a trained classifier. Digit 7
is chosen as the optimal arm with reward 1; the reward of digits 1,2 and 9 are set to be 0.8, and all
other digits have reward 0.5. In each experiment, we randomly draw 200 samples (20 samples each
digit) from the dataset. We project the raw feature matrix X € R2%9%784 into a lower-dimensional
space X € R290%200 g that it becomes full rank (but without losing any information) and feasible
for RAGE. Our goal is to correctly identify a digit 7.

Yahoo dataset. The Yahoo! User Click Log Dataset R6A® contains users’ click-through records.
Each record consists of a 36-dimensional feature representation (obtained from an outer product),
and a binary outcome stating whether or not a user clicked on the article. We view each record as

5 All algorithms are elimination-styled for fair comparison. Other implementation details are deferred to
Appendix G.
6h‘ctps: //webscope. sandbox.yahoo.com
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Figure 2: Experiments on real-world datasets. The mean sample complexity is represented by a black
star. The mean sample complexities of LinearEmbedding and RAGE are heavily affected by outliers
in the Yahoo dataset.

an arm, and set the reward as 0.8 (if clicked) or 0.3 (if not clicked) to makes the problem harder. In
each experiment, we randomly draw 200 arms from the dataset, where 5 of them having rewards
0.8 (proportional to true click-through ratio), Our goal is to identify an arm with rewards 0.8. Our
experimental setup is similar to the one used in Fiez et al. [13]. However, their true rewards are
obtained from a least square regression. We do not enforce linearity in rewards in our experiment.

Box plots in Fig. 2 show the sample complexity of each algorithm on real-world datasets.
NeuralEmbedding significantly outperforms all other algorithms thanks to (1) the representation
power of neural networks and (2) efficient exploration in low-dimensional spaces. KernelEmbedding
and LinearEmbedding have competitive performance on the MNIST dataset. Table 1 shows the
success rate of each algorithm. Linear methods such as RAGE and LinearEmbedding have rela-
tively low success rates on the Yahoo dataset (with nonlinear rewards). Our NeuralEmbedding and
KernelEmbedding methods have high success rates since they are designed for nonlinear setting.

Table 1: Success rates on real-world datasets
NeuralEmbedding KernelEmbedding LinearEmbedding RAGE ActionElim

MNIST 98% 100% 100% 100% 100%
Yahoo 100% 98% 88% 90% 100%

7 Conclusion

We introduce the idea of adaptive embedding in bandit pure exploration. Unlike existing works
that passively deal with model misspecifications, we adaptively embed high-dimensional feature
representations into lower-dimensional spaces to avoid the curse of dimensionality. The induced
misspecifications are carefully dealt with. We further apply our approach to two under-studied
settings with the nonlinearity: (1) pure exploration in an RKHS and (2) pure exploration with neural
networks. Our sample complexity guarantees depend on the effective dimension of the feature spaces
in the kernel or neural representations. We conduct extensive experiments on both synthetic and
real-world datasets, and our algorithms greatly outperform existing ones.

Our current analysis with neural representations is in the NTK regime, which can only describe a
part of the representation of the neural networks. We leave extending our algorithm to more general
settings (beyond the NTK regime) as a future direction.
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