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ABSTRACT

Robustness is an important, and yet, under-explored aspect of unsupervised repre-
sentation learning, which has seen a lot of recent developments. In this work, we
address this gap by developing a novel framework: Unsupervised Robust Repre-
sentation Learning (URRL), which combines unsupervised representation learn-
ing’s pretext task and robust supervised learning (e.g., AugMix). Moreover, it is
commonly assumed that there needs to be a trade-off between natural accuracy
(on clean data) and robust accuracy (on corrupted data). We upend this view and
show that URRL improves both the natural accuracy of unsupervised represen-
tation learning and its robustness to corruptions and adversarial noise. A further
challenge is that the robustness of a representation might not be preserved in the
transfer learning process after fine-tuning on downstream tasks. We develop trans-
ferable robustness by proposing a task-agnostic similarity regularization during
the fine-tuning process. We show that this improves the robustness of the resulting
model without the need for any adversarial training or further data augmentation
during fine-tuning.

1 INTRODUCTION

Recently, there has been an increasing interest in unsupervised visual representation learning, where
the goal is to learn effective representations of images without using human annotations (Bachman
et al., 2019; Chen et al., 2020b; He et al., 2020; Misra & Maaten, 2020). In this work, we consider a
relatively under-explored aspect: the robustness of these representations. Here, we use robustness to
encompass the representation’s resilience to common corruptions (Hendrycks & Dietterich, 2019),
adversarial examples (Madry et al., 2018), and its ability to measure the uncertainty of its output in
the face of such perturbations (Kumar et al., 2019).

More specifically, we develop new learning methods for transferable robustness of these representa-
tions, which improves and preserves the representation’s robustness after fine-tuning on downstream
tasks. While recent works have only evaluated the virtue of a representation by its accuracy on clean
data after transfer learning and fine-tuning, we argue that transferable robustness should also be an
integral part of a good representation. Recently, Rezaei & Liu (2020) have shown that downstream
task models are vulnerable to adversarial attacks that are based solely on the pre-trained represen-
tation before fine-tuning. This highlights the importance of transferable robustness, without which
downstream task models are vulnerable and lack generalization.

Moreover, it is commonly assumed that there needs to be a trade-off between natural accuracy (on
clean data) and robust accuracy (on corrupted data) (Zhang et al., 2019). While there have been
works showing that such a trade-off is not necessary for supervised learning (Yang et al., 2020), it is
unclear how the principles they leverage is applicable to unsupervised representation learning.

Summary of Contributions: (1) We show that the accuracy-robustness trade-off is not necessary
for unsupervised representation learning. (2) We develop a new representation learning framework:
Unsupervised Robust Representation Learning (URRL), which uses a novel mix of representation
learning pretext task and robust supervised learning (AugMix, Hendrycks et al. (2020b)). (3) In
addition, we propose a task-agnostic similarity regularization that further improves the robustness of
downstream tasks without the need for any adversarial training or additional data augmentation. (4)
We introduce an evaluation framework for the transfer robustness of a representation, which includes
its resilience to corruptions, adversarial robustness, and uncertainty calibration. (5) We show that
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Figure 1: (a) We show that by integrating AugMix with pretext tasks of state-of-the-art approaches.
URRL leads to improvement of both clean accuracy and robustness and does not have the accuracy-
robustness tradeoff. (b) We propose a task-agnostic similarity regularization, where the pairwise
similarity si,j of fθ is regularized by that of the frozen representation f∗ during fine-tuning by
Ltask. This encourages fθ to capture f∗’s robustness without the need to train on corrupted data.

URRL improves both the clean accuracy and robustness of state-of-the-art representation learning
under linear evaluation, and our full framework, URRL with Similarity Regularization (URRL-SR),
further improves its robust accuracy by over 10% on 12 datasets.

The proposed URRL is shown in Figure 1(a). Our approach is motivated by the fact that in previous
works, data augmentation has played an important role in both supervised learning robustness and
unsupervised representation learning (Yun et al., 2019; Chen et al., 2020b). URRL randomly sam-
ples a pretext task of unsupervised representation learning and a robust data augmentation (AugMix,
Hendrycks et al. (2020b)), and then optimizes them both under a contrastive learning framework.
We show that URRL improves both the clean accuracy (on the original images without corruptions)
and the robustness of the learned representation under the standard linear evaluation protocol.

Nevertheless, using the representation under linear evaluation limits the performance of transfer
learning, and ultimately the usefulness of representation learning in downstream tasks. It is thus im-
portant to evaluate the representations’ transferable robustness after fine-tuning the entire network
to the downstream task. The biggest challenge is to preserve the inherited robustness of the rep-
resentations: an aggressive fine-tuning schedule on a small dataset can significantly overwrite the
robustness of the learned representations.

We address this challenge by proposing a task-agnostic similarity regularization that is applicable for
the fine-tuning of the learned representation on any downstream task. We show that this improves
the robustness of the fine-tuned model. The proposed regularization is shown in Figure 1(b). fθ is
initialized by the robust representation f∗ learned in Figure 1(a), and is now being fine-tuned by the
downstream task loss Ltask. f∗ is robust because it is trained on augmentation of corrupted versions
of an image.

We hypothesize that this form of robustness is not just about how f∗ represents an image individ-
ually, but also about how f∗ measures the similarities between images. This implies that we can
preserve the robustness of f∗ by maintaining its similarity measures between images. We achieve
this by regularizing the similarity matrix of a representation during fine-tuning to be similar to that
of the original representation before fine-tuning. This allows the downstream task model to bet-
ter utilize the robustness of the learned representation, while not capping the performance, which
would be the case if the representation is fixed. Our full approach, URRL with similarity regular-
ization (URRL-SR), further improves URRL’s robust accuracy by over 10% on 12 datasets without
any adversarial training or further data augmentation.

2 METHOD

In this work, we advocate the transferable robustness of unsupervised representation learning, which
measures the robustness of a representation after fine-tuning on downstream tasks. The two chal-
lenges are: (i) It is commonly assumed that there is an accuracy-robustness trade-off, and the promo-
tion of transferable robustness could potentially set back the performance gain from unsupervised
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representation learning. (ii) the robustness of a representation could be changed drastically during
the fine-tuning process, and thus make it challenging to preserve the robustness after fine-tuning the
whole network. In Section 2.1, we address the first challenge by proposing URRL, which combines
the advantages of pretext tasks from unsupervised representation learning with robust augmenta-
tions to improve not only the robustness but also the clean accuracy. In Section 2.2, we address the
second challenge by proposing a task-agnostic similarity regularization that preserves the robustness
of learned representations, while not capping the performance of transfer learning.

2.1 UNSUPERVISED ROBUST REPRESENTATION LEARNING

In this section, we discuss the proposed Unsupervised Robust Representation Learning (URRL),
which combines the advantages of representation learning pretext task and robust augmentation. We
observe that data augmentation plays a central role in the recent literature of both unsupervised
representation learning and supervised learning robustness.

Contrastive learning has become a predominant design for representation learning (Chen et al.,
2020b). Given an unlabeled dataset {xi} of images xi, the goal is to learn the representation of
each image zi = fθ1(xi) by optimizing the parameters θ1 of the encoding function. The role of data
augmentation is to randomly create two correlated views of the same image. Let Trep be a family of
data augmentation. We can then sample two data augmentation functions t1, t2 ∼ Trep, and apply
them to an image xi to obtain a positive pair xq = t1(xi) and xk+ = t2(xi). The goal is then
to train the encoder fθ1 such that it still encodes the two augmented images xq and xk+ similarly
despite the random augmentations to the images. In this case, the representation can learn to ignore
information that is not task-relevant (introduced by the random augmentation), while still capturing
the task-relevant information in the images. One can achieve this through the contrastive loss:

Lcontra = − log
exp(zq · zk+/τ)

exp(zq · zk+/τ) +
∑
k− exp(zq · zk−/τ)

, (1)

where τ is the softmax temperature, and zk− are the representations of negative samples. The
negative samples are often randomly augmented versions of images in the same batch xj , j 6= i.
The family of data augmentation Trep plays a crucial role here as it would determine what the
encoder fθ1 learns to ignore and preserve in the representation of an image.

On the other hand, data augmentation improves the robustness of supervised learning by effectively
expanding the training dataset without human annotation. Given a dataset {xi, yi} of images xi and
the corresponding labels yi, one can apply data augmentation Trob to obtain an augmented dataset
{Trob(xi), yi}, where Trob(xi) = t(xi), t ∼ Trob. Trob improves the robustness of the model by
indicating that the augmented image Trob(xi) still has the same label yi as the original image xi.
Recent works have shown that by mixing various types of perturbations, the learned classifier has the
potential to be robust to novel perturbations that are not used in training (Hendrycks et al., 2020b).
Trob plays a crucial role in which types of perturbation the learned model would be robust to.

Given the importance of data augmentation in both of these aspects, a reasonable direction for un-
supervised robust representation learning is to design a new family of data augmentation functions
that can be used in Eq. (1) to learn robust representation without human annotation. We observe that
the goal of Trep and Trob are quite similar at the high-level: In robustness literature, the aim of data
augmentation is to increase the diversity of training data as much as possible without drifting off
the data manifold (Hendrycks et al., 2020b). On the other hand, recent work hypothesizes that the
best data augmentations for unsupervised representation learning are ones that “share the minimal
information necessary to perform well at the downstream task” (Tian et al., 2020). If we take the
downstream task to be classification and assume that the reason for not drifting off the data manifold
is also optimizing for classification performance, then the aims of these two augmentations are actu-
ally quite similar: both are trying to preserve information that is enough to do well on classification,
while increasing perturbation (and decreasing shared information) as much as possible. As we will
show in the experiments, this is indeed the case: a representation learned with Trep is already more
robust than ones learned by supervised pre-training; At the same time, Trob can already serve as an
effective pretext task for unsupervised representation learning. It could seem that using Trob as a
pretext would directly lead to unsupervised representation learning with transferable robustness.

However, one missing piece of naively using Trob as a pretext for representation learning is the
augmentation that focuses on color distortion. As observed and shown by Chen et al. (2020b),
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color distortion plays a critical role in the success of unsupervised representation learning because
patches from the same image could share a similar color distribution, and without color distortion
augmentation, the encoder could learn to exploit a shortcut to minimize Eq. (1) by focusing on
the color histogram of an image. Drastic color distortion is often discouraged for Trob because
“histogram color augmentation can change the image’s class” (Hendrycks et al., 2020b).

Therefore, we propose a straightforward solution to the problem by incorporating color histogram
distortion into Trob. The proposed data augmentation family Turrl for URRL does not sample the
data augmentation function t directly. Instead, we use a two-stage process:

Turrl(xi) = t(xi), t ∼ T , T =

{
Trob with probability p,
Trep with probability 1− p, (2)

where we first sample the family of data augmentation T , and then sample the actual augmentation
from T . Here, the sampled T could be either Trob or Trep. With the inclusion of Trep, Turrl prevents
the encoder f from exploiting the color histogram. On the other hand, the use of Trob in addition to
Trep further strengthens the robustness of the learned representation. We will show that this simple
approach is able to outperform more sophisticated approaches to modify Trob. In this work, we use
the pretext task of Chen et al. (2020d) as Trep and AugMix (Hendrycks et al., 2020b) as Trob

2.2 SIMILARITY REGULARIZATION TOWARDS PRESERVED ROBUSTNESS

Now we have discussed the proposed Unsupervised Robust Representation Learning (URRL). The
next question is how we can use and evaluate this learned representation. Once the representation
encoder fθ1 is learned, one either uses it to extract features of images for downstream tasks or
perform transfer learning to further optimize and fine-tune fθ1 on downstream tasks.

We consider a basic setting of transfer learning, where we have a learned representation fθ1 , and
a function gθ2(·) that can be applied to the extracted feature representation and transform it to a
downstream task output. Given a dataset for the downstream task {x̃j , ỹj}, where x̃j is the input
image, and ỹj is the target output, we assume that the downstream task would perform transfer
learning by minimizing the following loss function:

Ltask = `(ỹj , ŷj), ŷj = gθ2(fθ1(x̃j)), (3)
where `(·, ·) is a loss function between the target ỹj and the predicted output ŷj . One can choose
to minimize Ltask by optimizing only θ2 or both θ1 and θ2. The downside of the first option is that
the performance might be limited because fθ1 could potentially ignore information that is useful for
the downstream task. A more common approach is thus to also optimize fθ1 with Ltask. This has
shown to be a successful approach for a variety of downstream tasks, whether fθ1 is learned with
supervised pre-training or unsupervised representation learning.

Nevertheless, one missing aspect is the robustness of the resulting model after optimizing fθ1 and
gθ2 with Ltask. As the robustness is not part of the objective, fθ1 ’s robustness could be drastically
changed after the optimization, and there is no guarantee that the resulting model would still be
robust even if we start with a fθ1 that is robust. One option is to design robust optimization methods
for the downstream task, for example, by adversarial training (Madry et al., 2018) or even by using
robust augmentations again on the downstream task. However, this is more time-consuming (Shafahi
et al., 2019) and might even need to be task-specific (Zhang & Wang, 2019).

To this end, we propose a simple yet effective task-agnostic regularization to supplement the trans-
fer learning loss in Eq. (1) and preserve the robustness of the learned feature representation. The
proposed regularization does not significantly increase the training computation and can be eas-
ily combined with any form of Ltask. This allows us to better preserve the robustness of learned
representations during fine-tuning and improve the robustness of downstream task models.

The robustness of a fθ1 comes from its ability to represent an image similarly despite the per-
turbations. Lcontra in Eq. (1) encourages fθ1 to represent augmented (and potentially corrupted)
versions of an image closer than that of other images. This property is beneficial to downstream
task robustness because if fθ1(x̃j) is less affected by a perturbation, then it is more likely that
ŷj = gθ2(fθ1(x̃j)) can be robust to the perturbation.

We hypothesize that this form of robustness is not just about how fθ1 represents an image individ-
ually, but also about how fθ1 measures the similarities between images. This implies that we can
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Table 1: Linear evaluation results of transferable robustness. URRL combines the advantages of
AugMix and MoCo v2 to improve on all of the proposed linear evaluation metrics.

MoCo v2 AugMix AugMix (AllOp) AugMix (MoCo) URRL
ImageNet top-1 67.59 61.45 61.97 64.41 68.47
ImageNet-C mCE 88.21 94.47 92.34 90.18 84.41
Calibration Error 15.30 16.17 15.44 15.31 14.64

preserve the robustness of fθ1 by maintaining its similarity measures between images. Therefore, we
propose a similarity matrix regularization to preserve the robustness of fθ1 during transfer learning:

Lsim = ||S − S∗||, Si,j = fθ1(x̃i) · fθ1(x̃j), S∗
i,j = f∗(x̃i) · f∗(x̃j), (4)

where f∗(·) is the frozen version of fθ1 before fine-tuning. There are two advantages of this reg-
ularization: First, we do not significantly increase the computational requirement, since fθ1(x̃i) is
already needed, and f∗(x̃i) is just a single forward pass of the dataset. Second, it is task agnostic:
only the representation encoder fθ1 and input data x̃i are needed. The regularization is not affected
by any of the task-specific terms in Eq. (3) (ỹj , `(·, ·), gθ2(·)). Ideally one would want to make
sure fθ1 still preserves the similarities on the augmented data used to pre-train the representation.
However, we observe that simply using the downstream task input data is sufficient, while being
much more efficient. In practice, we construct S and S∗ using the images in the same batch.

3 EXPERIMENTS

We have discussed the proposed URRL, and how we can preserve its robustness during transfer
learning using similarity regularization. Now we aim to evaluate both its performance and trans-
ferable robustness. We evaluate the fine-tuned model from three aspects: (i) resilience to common
corruptions, (ii) adversarial examples, and (iii) its ability to measure the uncertainty of its output
in the face of such perturbations. This provides a holistic view of a representation’s transferable
robustness.

3.1 ROBUSTNESS WITH LINEAR EVALUATION PROTOCOL

Experimental setup. Linear evaluation has been the most popular way to evaluate unsupervised
representations learning. In this setting, the representation is not changed, and a linear classifier
is trained on top of the representation with the full ImageNet (Deng et al., 2009). Once trained,
this classifier is evaluated on the clean ImageNet without any perturbation. We further evaluate
this classifier trained on clean data directly on the perturbed dataset ImageNet-C, in which images
from ImageNet are perturbed by 15 types of algorithmically generated corruptions from noise, blur,
weather, and digital categories (Hendrycks & Dietterich, 2019).

Metrics. On the clean ImageNet, we report the top-1 accuracy following previous works. For
ImageNet-C, the standard metric is mean Corruption Error (mCE), where we report the error rate
normalized by the error rate of AlexNet, and average across the 15 types of corruption. The reason
for this normalization is that different types of corruption have different difficulties, and we do not
want the evaluation to be skewed towards a small set of corruptions. In addition to mCE, we further
evaluate the RMS Calibration Error to assess the models’ uncertainty estimates. The calibration
error measures how well the model’s confidence in its prediction matches the actual accuracy. For
a calibrated model, if a prediction has 70% confidence, then it should have 70% chance of being
correct. We follow previous work and use a discrete approximation of this metric, where each bin
has 100 predictions (Hendrycks et al., 2020b).

Baselines. We compare with the following representation learning approaches:

- MoCo v2 (Chen et al., 2020d). We select MoCo v2 as the baseline and build all of the following
approaches on top of its publicly available official codebase. We select MoCo v2 due to its state-
of-the-art performance and lower requirement for batch size. Our approach and baselines can easily
adapt and be built on other unsupervised representation learning approaches. In Appendix B, we
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Table 2: Transferable adversarial robustness results. The highest accuracy is marked with bold. Our
full approach URRL-SR has the highest robust accuracy for most of the datasets among represen-
tation learning approaches, while losing much less clean accuracy than adversarial training. This is
achieved without adversarial training and further data augmentation.
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robust accuracy:
ImageNet 1.65 2.01 16.18 11.83 28.51 19.60 3.07 21.76 26.85 7.60 8.09 2.92 12.51
MoCo v2 8.22 5.73 39.37 15.49 56.86 26.40 24.19 36.76 51.20 10.44 17.66 9.03 25.11
URRL 10.17 6.17 39.85 14.95 57.61 25.75 22.83 35.80 54.56 10.35 17.55 8.87 25.37
URRL-L2SP 16.47 8.11 40.68 17.84 59.15 28.42 27.84 37.23 55.08 15.86 21.72 8.59 28.08
MoCo-SR 25.71 11.88 69.48 16.95 55.94 33.55 42.76 40.64 49.59 33.57 40.86 14.59 36.29
URRL-SR 26.55 11.93 70.44 19.55 56.81 33.63 42.94 39.89 49.88 34.28 40.94 13.76 36.72
Adv. Training 45.84 42.49 87.93 64.44 39.06 44.80 48.22 25.80 36.25 66.43 19.27 34.46 46.25
clean accuracy:
ImageNet 83.17 72.49 97.27 84.73 93.34 82.10 87.71 74.84 95.15 87.37 93.73 62.41 84.53
MoCo v2 87.69 70.76 97.54 83.04 85.09 70.77 89.64 69.20 94.77 87.69 86.92 57.04 81.68
URRL 87.04 70.91 97.34 83.34 85.60 70.64 89.91 68.72 95.09 87.91 87.38 57.38 81.77
URRL-L2SP 87.37 71.24 97.37 83.55 85.34 72.48 89.95 70.85 95.76 88.06 88.74 57.75 82.37
MoCo-SR 77.73 60.66 97.24 80.49 86.49 67.98 79.31 68.14 95.17 86.19 88.83 46.61 77.85
URRL-SR 78.55 60.92 97.10 80.60 88.38 67.61 80.66 68.62 95.87 86.74 88.83 46.72 78.38
Adv. Training 57.52 56.86 92.94 74.30 42.80 51.97 58.97 31.33 40.66 79.63 23.06 44.31 54.53

show how URRL can be used to improve other unsupervised learning approaches. Results in the
main paper would focus on the relative improvement from MoCo v2 for a fair comparison.

- AugMix (Hendrycks et al., 2020b). We select AugMix as the family of robust data augmentation
due to its simplicity and effectiveness. Here, we simply replace the pretext task of MoCo v2 with
AugMix for unsupervised representation learning using Eq. (1).

- AugMix (AllOp). In the original AugMix paper, augmentation types contrast, color,
brightness, and sharpness, are excluded as they involve more drastic color distortion and
may overlap with ImageNet-C corruptions. However, these types of corruption are already used in
the pretext task of MoCo v2. Therefore we add these operations back for a fair comparison.

- AugMix (MoCo). We can further strengthen the color distortion of AugMix by including the data
augmentations used in MoCo v2 within the random convex combinations of AugMix. For example,
MoCo v2 randomly makes the cropped patch grayscale as data augmentation. However, in AugMix,
this only happens in the extreme case of color augmentation.

- URRL. Finally, our URRL in Eq. (2) introduces color distortion to robust augmentation by hierar-
chically and randomly selecting the family of data augmentation to use. We use the pretext task of
MoCo v2 for Trep, and AugMix (AllOP) for Trob.
Implementation Details. We build on the official repo of MoCo v2, and use the exact same hyper-
parameters for all methods (200 epochs with learning rate 0.3). We use p = 0.5 in Eq. (2).

Results. The results are shown in Table 1. Directly using AugMix as a pretext task is not ideal, how-
ever, the performance is already comparable to competitive approaches in the same setup (He et al.,
2020; Chen et al., 2020b). By gradually increasing the severity of color distortion augmentations,
AugMix (AllOp) and AugMix (MoCo) continue to improve both the clean accuracy (ImageNet top-
1) and mCE. URRL performs the best on all three metrics by combining the data augmentation from
MoCo v2 and AugMix. The randomly selected family of data augmentation could involve drastic
color distortion (when Trep is selected), and thus the model cannot take the shortcut by looking at
the color histogram. On the other hand, the corruption and perturbations in AugMix complement
well with the pretext used in MoCo v2, and even improves the ImageNet top-1 accuracy.

3.2 EVALUATING TRANSFERABLE ADVERSARIAL ROBUSTNESS

While it is helpful to evaluate representations under linear evaluation, the performance is limited
when we fine-tune the representations for other datasets. In this section, we evaluate the performance
and robustness of representations after transfer learning and fine-tuning the whole model.
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Table 3: RMS calibration errors on CIFAR-10-C and CIFAR-100-C. Similarity regularization sig-
nificantly improves models’ calibration.

MoCo v2 URRL MoCo-SR URRL-SR
CIFAR-10-C 16.96 17.90 9.92 8.95
CIFAR-100-C 19.05 16.39 12.60 11.25

Experimental Setup. We consider 12 common datasets used for evaluating transfer learning of
representation learning (Salman et al., 2020). If not noted otherwise, the representation is trained
with the transfer learning loss in Eq. (3), where gθ2 is a linear classifier on top of the representation,
and `(·, ·) is the cross entropy loss for classification.

Metrics. We report the top-1 clean accuracy on these datasets. In addition, we take the models and
report the robust accuracy from adversarial evaluation. We follow the settings of Ilyas et al. (2019).

Methods for Comparison. We compare MoCo v2 and the proposed URRL with and without sim-
ilarity regularization. We refer to the similarity-regularized versions as MoCo-SR and URRL-SR.
We use L2-SP as the baseline for transfer learning regularization, which directly regularizes the fine-
tuned weights to be similar to that of the pre-trained weights (Li et al., 2018). Our approach with
L2-SP is referred to as URRL-L2SP. We also evaluate ImageNet pre-trained weights to compare the
transferable robustness of supervised and unsupervised representations. We show results of adver-
sarial training on each of the 12 datasets as a reference for robust accuracy, but it is important to note
that it is not a fair comparison as it performs much heavier adversarial optimization for downstream
tasks.

Implementation Details. We use the ResNet-50 backbone as in Section 3.1, which has a 7 × 7
conv1 instead of a 3× 3 conv1 often modified for CIFAR-10. We resize the images to 256× 256 to
feed into our network. We select the best learning rate and the weight for Lsim on a validation set,
and for the rest of the parameters, we use the same as Salman et al. (2020). We use the code and
parameters of Ilyas et al. (2019) for adversarial training and evaluation (`2 attack with ε = 0.5).

Results. The results for clean accuracy and robust accuracy are shown in Table 2. ImageNet pre-
trained weights have the best clean accuracy in our experiment. This is consistent with results in
previous works that use the same ResNet-50 backbone and computing budgets (200 epochs) as our
experimental setup (He et al., 2020; Chen et al., 2020b). However, ImageNet pre-trained representa-
tion has the lowest robust accuracy by a large margin. Unsupervised representation learning (MoCo
v2) is already more robust than ImageNet pre-trained weights. URRL is able to further improve both
the clean and robust accuracy, and regularizing the weights to be similar to that of the pre-trained
weights is also effective (URRL-L2SP). Nevertheless, the proposed similarity regularization signifi-
cantly improves the robust accuracy by over 10% on average for both MoCo-SR and our URRL-SR,
with a much smaller loss of clean accuracy compared to that of adversarial training. URRL-SR
has the highest robust accuracy for most of the datasets among representation learning approaches,
while losing much less clean accuracy than adversarial training. This shows that both the proposed
URRL and similarity regularization are able to improve the transferable robustness without much
overhead. In particular, the proposed similarity regularization is also better for robustness compared
to L2-SP because similarity measure loss directly regularizes the robustness induced by contrastive
learning on augmented data during training.

3.3 UNCERTAINTY CALIBRATION OF TRANSFER LEARNING

We further evaluate the uncertainty calibration of transfer learning. Improving the uncertainty cali-
bration of downstream task models is an important aspect of transferable robustness. If the learned
representation can improve calibration of downstream tasks, then even if the downstream task model
cannot handle all kinds of new inputs outside its training distribution, it at least knows when it is
likely to be mistaken. This alleviates the potential impact of unforeseen inputs.

Experimental Setup. We use CIFAR-10-C and CIFAR-100-C for this experiment, where pertur-
bations that are similar to ImageNet-C are applied to CIFAR-10 and CIFAR-100 instead of Ima-
geNet (Hendrycks & Dietterich, 2019). We fine-tune models on CIFAR-10 and CIFAR-100 and
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evaluate on CIFAR-10-C and CIFAR-100-C, respectively. We evaluate the RMS Calibration Error
following the previous work of Hendrycks et al. (2020b), where each bin has 100 predictions for
approximation.

Results. The RMS calibration errors are shown in Table 3. The proposed similarity regularization
significantly improves the calibration error on both datasets (half the error for URRL-SR compared
to URRL on CIFAR-10-C). URRL-SR further improves calibration error compared to MoCo-SR.
This shows the importance of similarity regularization in combination with the proposed URRL for
transfer learning robustness.

4 RELATED WORK

Unsupervised representation learning. There have been significant recent advances in unsuper-
vised representation learning. Contrastive learning (Gutmann & Hyvärinen, 2010) has become a
predominant design leading to state-of-the-art performance (Oord et al., 2018; Bachman et al., 2019;
Chen et al., 2020c;b; He et al., 2020; Misra & Maaten, 2020; Tian et al., 2020; Chen et al., 2020d).
Latest methods even outperform supervised pre-training on several transfer learning tasks (Caron
et al., 2020). Most existing works benchmark representations by directly fine-tuning the pre-trained
models on downstream tasks. However, as observed by He et al. (2019), ImageNet pre-training does
not necessarily improve performance on large-scale downstream tasks under such settings. We be-
lieve part of the reason lies in the catastrophic forgetting, especially when the scale of a downstream
task is large. The proposed similarity regularization casts new insights towards addressing this issue.

Robustness from perturbed inputs. Besides playing an important role in unsupervised represen-
tation learning, training with perturbed/corrupted inputs has been widely shown to render stronger
robustness against adversarial attacks (Eghbal-zadeh et al., 2020; Madry et al., 2018) and corrup-
tion (Hendrycks et al., 2020b;a), as well as improved network attention towards better task perfor-
mance (Ghiasi et al., 2018; Singh & Lee, 2017; Yun et al., 2019; Zhong et al., 2020) . Similar
approaches (Cubuk et al., 2020) have also been widely adopted in unsupervised domain adapta-
tion (French et al., 2018) and semi-supervised learning (Berthelot et al., 2019b;a; Laine & Aila,
2017; Sohn et al., 2020; Xie et al., 2020). We develop new methods to improve the transferable
robustness of unsupervised representation learning, which is an important yet under-explored area.

Robustness and representation learning. In this work, we show that combining a standard pretext
task with AugMix improves both the clean accuracy and robustness of unsupervised representation
learning. This is consistent with recent findings on the benefit of having better representation for su-
pervised adversarial robustness. It has been shown that self-supervised learning (Chen et al., 2020a;
Hendrycks et al., 2019b; Jiang et al., 2020; Kim et al., 2020), supervised pre-training (Hendrycks
et al., 2019a), unlabeled data (Alayrac et al., 2019; Carmon et al., 2019), and multi-task learn-
ing (Mao et al., 2020) are beneficial to adversarial robustness when jointly optimized with adversar-
ial training. However, the main goal of these approaches is to complement supervised adversarial
training, whether the approach itself is supervised or unsupervised. The robustness of unsupervised
representation learning is rather under-explored. Recent work even shows that self-supervised model
lacks noise robustness (Geirhos et al., 2020). Our goal is to address this challenge and improve the
transferable robustness of representations without adversarial training and further data augmenta-
tion. The most related work to ours are Alayrac et al. (2019) and Kim et al. (2020), which aim to
improve adversarial robustness without labeled data. However, we still see an accuracy-robustness
trade-off. Our work shows that the trade-off is not necessary for unsupervised representation learn-
ing, and covers a wider range of robustness, such as common corruptions and uncertainty calibration.

Transfer learning robustness. Our emphasis on the transferable robustness is closely related to the
works on the robustness of transfer learning. Rezaei & Liu (2020) have shown that downstream task
models are vulnerable to attacks based on the pre-trained representation. Chin et al. (2020) proposes
a noisy feature distillation as a defense for the aforementioned attack. Shafahi et al. (2020) also
shows that a learning without forgetting (LwF) (Li & Hoiem, 2017) based loss from an adversarially
trained source model can improve adversarial robustness of the downstream task model. Our goal
of learning more robust representation without supervision is mutually beneficial to these efforts by
serving as a better starting point for robust transfer learning. Our similarity regularization has a sim-
ilar goal with the LwF loss, but is less restrictive (only pairwise relationship constraint). Since these
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regularizations do not require test-time labels, they can also be applied to test-time optimization (Sun
et al., 2020) to regularization the self-supervised learning loss in the target/test domain.

5 CONCLUSIONS

We present Unsupervised Robust Representation Learning (URRL), a new framework that com-
bines the advantages of unsupervised representation learning and supervised learning robustness.
This upends the commonly assumed accuracy-robustness trade-off in the case of unsupervised rep-
resentation learning. Moreover, we show that the proposed similarity regularization can preserve
URRL’s robustness during fine-tuning. Our full model URRL-SR significantly improves the down-
stream task robustness without adversarial training and further data augmentation. We believe an
impactful future direction is how we can learn a representation that is still robust after fine-tuning
even without any regularization. While our regularization is task-agnostic, it is still desirable that
one can straightforwardly improve the robustness of fine-tuned models without any modification.
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A L2-SP HYPERPARAMETER ANALYSIS
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Figure 2: L2-SP results on CIFAR-10.

Figure 2 shows the L2-SP results on CIFAR-10, where we conduct the same hyperparameters anal-
ysis as Li et al. (2018). We can see that their best performing hyperparameters (α = 0.1, β = 0.01)
actually hurt both the clean accuracy and robust accuracy in our case. This is due to two key differ-
ences of our work compared to theirs: First, our focus is on unsupervised representation learning.
Compared to the representations learned from supervised learning on large-scale datasets like Im-
ageNet and Places365, our unsupervised representations typically need further updates in order to
do well on downstream classification tasks. In this case, L2 regularization is not enough by itself to
improve the performance. Second, robustness is not the goal of Li et al. (2018), and L2-SP is not de-
signed to improve the robustness of transfer learning. In contrast, the primary goal of our work is to
improve the transferable robustness of learned representations, and the design of our similarity mea-
sure loss is motivated by preserving the robustness of learned representations during fine-tuning. As
discussed in Section 2.2, the robustness of a feature representation comes from how it measures the
similarities between images, and the proposed approach explicitly regularizes it during fine-tuning.
Our results in Table 2 also show the importance of the proposed approach.

B GENERALITY OF OUR AUGMENTATION SCHEME

Table 4: Results on applying URRL to multiple unsupervised representation learning approaches.

ImageNet top-1 ImageNet-C mCE Calibration Error
InstDis 59.50 104.93 19.86
InstDis w/ URRL 60.42 101.64 18.30
PIRL 61.70 103.15 18.81
PIRL w/ URRL 62.47 99.74 18.19

We conduct the experiments in Section 3.1 on other unsupervised representation learning ap-
proaches, including InstDis (Wu et al., 2018) and PIRL (Misra & Maaten, 2020) to show the gener-
ality of our approach. Results are shown in Table 4. InstDis w/ URRL means that we use InstDis as
Trep and AugMix (AllOp) as Trob in Eq. (2). Similarly for PIRL and PRIL w/ URRL. URRL im-
proves both of these methods, which supports the generality of our approach. We hope this facilitates
its broad adoption in self-supervised/unsupervised learning
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