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Abstract
Learning disentangled representations for images
and videos in terms of objects and their attributes
without explicit supervision is an important but
challenging task. Recent work (Singh et al., 2023)
extends slot-based techniques for object discov-
ery by decomposing slots into blocks, where each
block is expressed as a linear combination of a
fixed number of learnable concepts. At its core,
this approach couples object and attribute dis-
covery, assuming that image encoders innately
learn disentangled features—an assumption we
find does not always hold experimentally. We
propose DeCoupler, a method that separates ob-
ject discovery from attribute discovery by first
using foundation models to extract object masks,
and then learning block representations that cap-
ture attributes across objects. This leads to im-
proved disentanglement, enabling tasks such as
attribute-level interventions and dynamics predic-
tion. We demonstrate these capabilities through
experiments on five image and two video datasets,
showing superior disentanglement and generaliza-
tion over prior methods.

1. Introduction
In this paper, we ask the question whether modern-day AI
systems can learn to decompose images/videos into building
blocks made up of objects and their attributes, albeit without
any explicit supervision? Recently, object-centric learning
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has shown promising results for decomposing scenes into
objects via slots (Locatello et al., 2020). In this line of work,
slots attend spatially over image features competing with
each other, and are refined over iterations leading to dis-
covery of objects. More recently, SysBinder (Singh et al.,
2023) work with block-slot attention, where slots are now
constrained to be composed of blocks, with blocks aimed
at discovering meaningful attributes of objects. However,
block-slot attention couples object discovery with attribute
discovery, increasing the complexity of the learning task.
Furthermore, each block is associated with an object cor-
responds to a specific region of the image encoding. This
imposes a strong prior: that object attributes must always
be recoverable directly from the image encoder’s represen-
tation. Such a constraint assumes that the encoder alone can
disentangle attribute information, which may not hold in
general (Locatello et al., 2018; Hyvärinen & Pajunen, 1999).
We propose an alternative method for learning a disentan-
gled representation for objects and attributes, called DeCou-
pler. DeCoupler decouples the problem into one of object
discovery and attribute discovery. We leverage pre-trained
segmentation foundation models (Ravi et al., 2024) for ob-
ject discovery, which require prompts to generate object
masks. These prompts are obtained using slot-based meth-
ods and then passed to the foundation models for segmenta-
tion. In the second stage, the object masks thus generated
are then passed to a block-extractor module, where blocks
can be thought of representing object attributes. Blocks
are obtained by having a non-spatial attention over object
feature maps, which is refined over multiple iterations. In
the style of (Singh et al., 2023), blocks are projected to
a learnable concept space at the end of each refinement it-
eration. Since our attribute discovery module is not tied
with the object discovery module, it can also be seen as
plug-in-play type module and can be used on any object
discovery method. We show that DeCoupler outperforms
the existing baselines for discovering objects and their at-
tributes of five image datasets and 2 video datasets. We
also show the utility of DeCoupler in visual dynamic predic-
tions where its block aware dynamics prediction approach
outperforms existing object-centric approaches. This opens
doors to object- and attribute-level interventions learned in
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Figure 1. Given an input image x, we first extract object masks
mi

N
i=1 using a mask extractor. Each masked region (i.e., x⊙mi) is

then passed through a block extractor to obtain r blocks per object:
{b1i , . . . , bri }Ni=1. These blocks are subsequently processed by a
block binder, which aggregates them into a single representation
vector per object: {qi}Ni=1. Finally, these object-level vectors are
fed into a decoder to reconstruct the image x̂.

an unsupervised manner, directly aligning with the broader
goals of the ’Scaling Up Intervention Models’ workshop at
ICML.

This paper makes the following contributions: (1) We pro-
pose DeCoupler, a novel decoupled approach for object and
attribute discovery. (2) We propose novel block attention, a
non-spatial attention algorithm to discover object attributes.
(3) Our method can be applied to both image and video anal-
ysis, as well as video prediction as a downstream task. (4)
We perform extensive evaluation over five image and two
video datasets to the show the effectiveness of our approach.

2. DeCoupler
Our method DeCoupler consists of three components: (a)
Mask Extractor which decomposes the image in the form
of objectmasks. (b) Block Extractor which decoposes the
object content to a set of blocks, where each block can be
thought of as representing a object attribute. (c) Decoder
which takes the block level representation of the image, and
stitches it back to get the original image. We explain how
this approach can be extended to videos by modeling the
temporal component over the block representation. Figure 1
shows the overall pipeline of our approach. We next explain
each part in detail.

Mask Extractor. To extract object masks from images,
we first employ a slot-based model (Locatello et al., 2020),
which discovers objects by attending over image feature
maps and representing each object as a latent slot. The
coarse slot-derived masks are then used to generate prompts
for a pre-trained segmentation model (Ravi et al., 2024),
which refines these into high-quality object masks. It is
important to note that Slot Attention is trained beforehand,
and the masks are extracted in a pre-processing step.

Given an image x ∈ RH×W×3, we extract N slot-attention
masks {u1, .., uN} from a trained slot model where ui ∈
[0, 1]H×W for i ∈ {1, .., N}. These slot attention masks
are fed in a Prompt generator which for each slot-mask

ui, outputs the following two things (a) A set of positive
points (locations) pi = {pi1 , .., piK}, where each pik ∈
[H]× [W ] is obtained by choosing those points on masks
which are surrounded by high mask value points. (b) A
set of negative points ni for each mask, where each ni =⋃

i′ ̸=i pi′ is simply the union of sampled positive points
for other masks in the image. These two quantities with
additional xi as mask prompt are then provided to a pre-
trained foundation model, such as SAM2, to obtain the N
objects masks {mi}Ni=1 where each mi ∈ [0, 1]H×W . These
N masks are subsequently fed into the Block Attention to
obtain a factorized representation of the objects. Refer
Appendix B for more details.

Algorithm 1 Block Attention: Inputs are object features
ei ∈ RL×din which are mapped to r blocks of dimension
dblock. Model parameters are: linear projectors k, q and v
with dblock output dimension; the block specific GRUs, and
MLPs; initial blocks b1, .., br ∈ Rdblock ; and concept vectors
C1, ..., Cr ∈ Rk×dblock

1: Initialize bji = bj for all j=1,...,r
2: for t = 1 to T do
3: bji = LayerNorm(bji ) for all j=1,..,r
4: A = Softmax( 1√

dblock
q(bi)k(ei)

T , d=’block’)

5: A = A / A.sum(d=’input’)
6: U = A.v(ei)
7: for j = 1 to r do
8: Uj = GRUj (state=bji , input=Uj )
9: Uj = Uj + MLPj(Uj)

10: wj
i = Softmax( 1

η
√

dblock
CjU

T
j ,d=’concepts’)

11: bji = CT
j wj

i

12: end for
13: end for
14: return bi

Block Extractor. We disentangle the objects into what we
call blocks. These blocks are obtained by iterative refine-
ment with competitive attention over latent object represen-
tation which is jointly learned along with the block represen-
tation. The extracted masks mi are multiplied element-wise
with the corresponding input image x to get the content
ci = mi ⊙ x ∈ RH×W×3. This content is encoded through
the CNN-based encoder fϕ to get the object latent represen-
tation as zi = fϕ(ci) ∈ RH′×W ′×Ldin . We take the mean
of zi along spatial axis and chunk it into L vector along
feature axis denoted as row matrix ei ∈ RL×din . Given the
latent object representation ei for ith mask, we denote the
its block representation as {bji}rj=1, b

j
i ∈ Rdblock where r

is number of blocks and is a hyper-parameter of the model.
Define bi = [b1i b

2
i .. b

r
i ] ∈ Rr×dblock . Algorithm 1 outlines

the iterative refinement steps to obtain the block represen-
tation. Each bji is initialized with the the learnable vector
bj . The block vectors then attend to object features to com-
pute attention scores, which are made competitive through
the softmax normalizing over queries (blocks). Attention
scores are sum normalized over keys (object features). The
resultant linear combination of object features is first passed
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Figure 2. Results for various Approaches for Attribute Discovery

through a block-specific GRU, followed by an block-specific
MLP to get the block representation. Finally, we project
each resultant block vector onto the learnable concept space
and update its representation as a linear combination of the
concepts via projection weights (lines 10 - 11 in Algorithm
1). Refer to Appendix C for more details.

Decoding using Block Binder. For decoding the blocks
into an image we first create a single vector representation
of the blocks using block binder. This single vector can be
treated as slot for decoding purposes. Following (Locatello
et al., 2020) we use spatial mixture decoder to decode these
single vector representation into an image. Specifically, r
blocks bi = [b1i .. b

r
i ] corresponding to ith mask are fed to

block binder hθ : bi → qi ∈ Rdq to get single vector qi.
Then spatial mixture decoder gθ : qi → π′

i, µi where π′
i ∈

RH×W and µi ∈ RH×W×3. Then the π′
i are normalized

to get the alpha mask as πi =
exp(π′

i)∑N
j=1 exp(π′

j)
. The finally

the reconstructed image is obtained as x̂ =
∑N

i=1 πi ⊙ µi.
Refer Appendix D for more details.

As training objective, all of the method except the mask ex-
tractor is trained end-to-end with reconstruction objective.=
with mean squared loss: L = 1

HW ||x− x̂||22

3. Experiments
We investigate: (1) Can DeCoupler discover object attributes
from images? (2) Can it swap attributes and googenerate
novel concepts via recombination? (Results in Appendix G)
(3) Can it extend to videos? (4) Are its object representations
useful for modeling dynamics? (5) Which components are
crucial for disentanglement? We briefly describe datasets,
baselines, and metric.

Datasets: We evaluate DeCoupler on five image and two

video datasets. The image datasets include 2D Easy and
2D Hard, simple 2D datasets inspired by (Watters et al.,
2019), and CLEVR-Easy, CLEVR-Hard, and CLEVR-Tex,
3D datasets used in (Singh et al., 2023). The video datasets
include BS-Hard, a video extension of 2D Hard, and OBJ3D
from (Lin et al., 2020a). Additional dataset details are pro-
vided in Appendix F.

Baselines: For image analysis, we compare DeCoupler
with two baselines based on block-slot attention: Sysbinder
(Singh et al., 2023) and NLoTM (Wu et al., 2024). For
video analysis, we extend Sysbinder to video using one-step
predictor (Baek et al., 2025). Additionally, we use SAVI
(Wu et al., 2023a), a video extension of slot-attention as
baselines. For video prediction, we use SlotFormer (Wu
et al., 2023a) as baseline. Refer Suppl. I for training details.

Metrics: For image and video analysis, we use the DCI
metric (Disentanglement, Completeness, and Informative-
ness) (Singh et al., 2023). We also report FG-ARI, which
quantifies the object discovery. For the video prediction
task, we use SSIM (Wang et al., 2004), PSNR, and LPIPS
(Zhang et al., 2018) as our evaluation metrics.

3.1. Image analysis

Disentanglement Scores. Figure 2 shows the DCI scores
for various approaches on the image datasets. Clearly, De-
Coupler performs better than all baselines in all datasets
on disentanglement and completeness scores, by a signif-
icant margin demonstrating its capability to discover the
attributes effectively compared to the baselines. On Infor-
mativeness, DeCoupler is either better or competitive with
SysBinder, except for CLEVR-Hard dataset, where it is
marginally worse. We hypothesize this may be due to a
weaker decoding model, compared to SysBinder. NLoTM
performs worse on all metrics. FG-ARI score for DeCoupler
is consistently better than all baselines for our approach. For
detailed numbers, refer Appendix L.

Interventions via Block Swapping To visualize the disen-
tangled object representations learned by DeCoupler, we
provide the results for the swapping experiments. Specifi-
cally, we swap the blocks representing an attribute of two
objects in an image and then decode these new object repre-
sentations into a new image. To determine which attribute is
represented by a block, we rely on its importance score (ob-
tained while computing DCI) across the attributes. Figure 3
show the results of swapping across the datasets. We note
that DeCoupler is able to discover attributes in a distinct set
of blocks, and swap them correctly, for all the attributes.

3.2. Video Analysis

Disentanglement Scores. Table 1 shows the DCI results
for all the baseline approaches on both video datasets. To
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Figure 3. Qualitative Results: Swapping of attributes between objects. For each attribute, we pick the set of relevant blocks and swap
them. The red arrows indicate the objects involved in swapping. Recon. shows the original image as reconstructed by DeCoupler.

compute DCI scores for videos, we first extract the blocks
for the whole video. Next, we treat frames from all videos
as images and adopt the same procedure for DCI compu-
tation as before. The training runs of Sysbinder for the
OBJ3D video dataset on multiple random seeds, although
converged, were not able to capture objects. Clearly, the
simple video extension of DeCoupler outperforms all the
baseline over all the datasets and metrics. We highlight that
due to our decoupled approach DeCoupler is able to capture
objects where as Sysbinder struggles to even discover the
objects. Further, object attributes in the OBJ3D data set pos-
sess a slight bias. For example, the object that is launched
is always a rubber sphere, and the stationary objects are
always in the middle portion of the scene, making attribute
discovery more challenging. However, despite such biases,
the DeCoupler achieves high disentanglement performance
as indicated by higher DCI scores in experiments. Refer
Appendix H for swapping results.

Table 1. Comparison of DCI scores for videos

Model BS OBJ3D

D C I D C I

SAVI 0.453 0.321 0.841 0.357 0.225 0.610
SysV 0.740 0.685 0.950 – – –
DecV 0.988 0.773 0.998 0.740 0.685 0.951

3.3. Visual Dynamics Learning

Prior work (Wu et al., 2023a;b) showed promising results
for slot-based dynamics using transformers. We explore
whether learning dynamics at the block level improves per-
formance. We design two variants: Blocks-SlotDyn, which
concatenates blocks as slots, and Blocks-BlockDyn, which
uses blocks directly as tokens with a block-aware position
encoder (Singh et al., 2023). As a control, we introduce
Denseformer, which replaces blocks with MLP-encoded
features. On the OBJ3D dataset Table 2, Blocks-BlockDyn
outperforms all baselines, showing the benefit of block-level
modeling. Blocks-SlotDyn also surpasses Slotformer, while
Denseformer highlights the value of our object extractor.

Table 2. Comparison of video-prediction metrics

Model LPIPS(↓) SSIM(↑) PSNR(↑)

Blocks-BlockDyn 0.107 0.931 32.348
Blocks-SlotDyn 0.112 0.929 32.159
Denseformer 0.147 0.919 31.223
Slotformer 0.204 0.919 30.801

3.4. Ablations

Table 3. Ablation on block extractor
Method D C I

DeCoupler w/o attn 0.795 0.703 0.947
DeCoupler w/o con 0.862 0.605 0.937
DeCoupler w/o attn & con 0.203 0.175 0.740
DeCoupler 0.890 0.662 0.949

Block extractor has two components, attention and concept
projection. We report the DCI scores obtained by dropping
any one component and both. Table 3 shows the results
obtained. It can be inferred that both the components are
disentanglement enabler and removing any one of them
drops the performance. Further removing feature attention
of blocks drops the performance more than removing con-
cept projection. This highlights the importance of feature
attention with respect to concept projection for attribute
discovery.

4. Conclusion and Future Work
In this paper, we have presented a decoupled approach for-
par disentanglement of both objects and attributes in im-
ages and videos. Our approach is based on a pipeline of
an object-extractor utilizing pre-trained segmentation mod-
els, followed by a novel block-extractor which makes use
of non-spatial attention over feature maps. Experiments
demonstrate significant gains over existing baselines that
are based on extensions of slot attention. This approach pro-
vides a mechanism learn disentangled object and attribute
representations. This takes a step in the direction of ob-
ject and attribute specific interventions relevant for image
generation, model based planning etc.
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A. Related Work
Unsupervised Object-Centric Learning aims to learn object representation from images or videos without any supervision.
One line of work (Eslami et al., 2016; Lin et al., 2020b) represents objects from static images in latent zwhat and zwhere

and uses spatial transformer decoder. This factorization is also extended to videos (Kosiorek et al., 2018; Jiang* et al.,
2020; Lin et al., 2020a; Kossen et al., 2020; Traub et al., 2023). These methods are difficult to scale to complex datasets.
Although these methods disentangle object representation into spatial position and content, unlike DeCoupler, they are not
able to further disentangle the content into attributes. Another line of work is mixture-decoder-based methods (Burgess
et al., 2019; Greff et al., 2019; Engelcke et al., 2020; 2021; Locatello et al., 2020; Biza et al., 2023; Wang et al., 2023) for
images and (Kipf et al., 2022; Elsayed et al., 2022; Singh et al., 2024) for videos. Recently, it was observed that feature
reconstruction objective enables to scale slot-based methods to the real world (Seitzer et al., 2023; Kakogeorgiou et al., 2024;
Zadaianchuk et al., 2023; Aydemir et al., 2023; Kim et al., 2024; Anonymous, 2025c) for both images and videos. Diffusion
as slot-decoder has also been explored for real world scaling of slots (Wu et al., 2023b; Jiang et al., 2023; Anonymous,
2025b). Recently there has been also work on assumptions needed to garuntee the object discovery (Brady et al., 2023; Kori
et al., 2024; Anonymous, 2025a).

Disentangled Object Representation aims to to learn disentangled representation of objects. As mentioned above, one line
of work just disentangles the objects into spatial zwhere and entangled content zwhat. The generative VAE and GAN based
methods (Kingma & Welling, 2014; Higgins et al., 2017; Kim & Mnih, 2018; Chen et al., 2018; Kumar et al., 2018; Chen
et al., 2016), are not able to disentangle images containing multiple objects. Recently block-slot attention have been propose
to discover objects and attributes (Singh et al., 2023; Wu et al., 2024; Stammer et al., 2024; Baek et al., 2025)

Learning Visual Dynamics aims to learn underlying dynamics from videos. One line of work uses generative modeling of
tasks (Kosiorek et al., 2018; Jiang* et al., 2020; Kossen et al., 2020; Lin et al., 2020a; Veerapaneni et al., 2020; Wu et al.,
2021; Zoran et al., 2021). Slot-based methods which uses transformer for modeling dynamics have shown better results than
generative modeling (Wu et al., 2023a;b; Nguyen et al., 2023; Tang et al., 2023). (Nakano et al., 2023) proposed method to
learn the visual dynamics with zstatic and zdynamic factorization of object.

B. Mask Extractor Additional Details
We observe that masks generated by slots, even though gives rough masks of object, can be improved. We use Segment
Anything (SAM2)(Ravi et al., 2024) to further improve the mask quality. SAM is promptable image segmentation model,
where prompt can be foreground / background points, a approximate mask or bounding box. We generate the points and
mask prompt from masks generated by slots and pass it to SAM2 to get better mask.
We generate set of K foreground / positive point prompts per slot si denoted as pi. A good choice for pi is the points which
are on the object and not on the boundary of the object. Our approach is to choose pixel positions with maximum pixel
values. To make sure all points are well inside the object we first threshold the slot masks xi with τ to make it binary mask
m′

i. Then convolve m′
i with all one filter of size (3, 3) for l times. Denote the resultant mask as M̃i. We choose top K

points which have maximum pixel value from M̃i. For negative points we use the positive points of remaining slots which
gives (N − 1)K negative / background points per slot. Along with this NK point prompt, we pass xi as mask prompt to
SAM. Algorithm 2 gives pseudo code for sampling point prompts from slot masks.
To handle the cases where slot does not represent object we ignore such slot masks and return all zero mask instead. If sum
of pixel values of M̃ i is less that mthresh, we consider that slot does not represent object. We use the official release of
SAM2 with ViT-H backbone. 1.

1https://github.com/facebookresearch/sam2
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Algorithm 2 Prompt Sampler: Inputs are: SAVi masks xi where i ∈ {1, .., N}
1: for i = 1 to N do
2: Mi = xi.copy()
3: Mi[Mi ≤ τ]= 0
4: Mi[Mi > τ] = 1
5: for j = 1 to l do
6: M̃i

t =Convolve(input = Mi, kernel = all 1 3x3, padding = same)
7: end for
8: if M̃i.sum() ¡ mthresh then
9: pi = None
10: else
11: pi = argmax topk(M̃i, k = K)
12: end if
13: end for
14: return p1, .., piK

C. Block Extractor Additional Details

Spatial
Axes

Spatial attention for
object discovery

Pooling

Feature attention for
attribute discovery

FeatureAxis

Figure 4. Left: Chunking of feature volume to create spatial features. Used by existing slot-based techniques and useful for object
discovery. Right: Novel mechanism involving mean pooling of features and subsequent chunking, to obtain non-spatial global features.
Useful for attribute discovery.

To develop some intuition for the framework in block extractor, we refer to Figure 4. The middle block in the figure shows
3-D representation of a latent object representation. We note that the latent representation has two axes of variation, one
spatial axis and one feature axis figure 4. The key question is, if each block were to attend along either of the axis, which
one would be more appropriate for attribute discovery? We argue here, that while for object discovery, it makes sense to
attend along the spatial dimension, as is done by slot-attention based methods (Locatello et al., 2020), for attribute discovery,
since we expect the attribute representation to be spread across the feature maps, it would make sense to attend along the
feature axis. This is exactly what our key idea in this paper.

D. Block Binder Additional Details
The block binder is implemented as one layer transformer encoder (Vaswani et al., 2017), where the blocks are first linearly
projected and then a block specific position encoding is added. The blocks, with a learnable token q ∈ Rdq is fed into the
transformer and final encoding of the q is treated as qi. We also experimented with alternative transformer-based decoders
(Singh et al., 2022a;b) but found that they performed similarly to the spatial mixture decoder except for visually complex
datasets, albeit with added computational overhead. Diffusion based block decoders (Wu et al., 2023b; Jiang et al., 2023)
could be explored in future work.

Note that above iterative refinement steps closely follows (Locatello et al., 2020) with the image latent replaced by object
latent and slots replaced by blocks depicting factored (disentangled) object representation. Recently (Singh et al., 2023)
proposed a similar-looking idea of learning disentangled representation for objects through block-slot attention. However, in
block-slot attention, the blocks do not attend to object features, and the burden of disentanglement is placed on the encoder,
making the learning process more challenging. In contrast, in our approach, blocks attend to object features during each
forward pass, with no restrictions on the output of the encoder.

9



An Object-Attribute Decoupled Approach for Learning Disentangled Representation for Image and Video Analysis

E. Video Extension
In this section we show that how our decoupled approach can be extended for disentangling video into objects and their
attributes. For video the object representations needs to be temporally aligned, which means that in our decoupled approach
unsupervised mask extractor needs to provide temporally aligned mask. This can be achieved by using an idea similar to
slot models for video (Kipf et al., 2022; Elsayed et al., 2022; Wu et al., 2023a) as our object discovery model, and using
the masks extracted from (Elsayed et al., 2022) as prompts to pre-trained segmentation models. For block extractor, since
the static attributes of objects do not change within frames, we initialize the blocks at next time step with previous time
step. Formally given sequence of frames x1, .., xt the slot-based model will give temporally aligned slot-attention masks
fs({xl}tl=1) = {xl

1, ..x
l
N}tl=1. Afterwards the prompt generator and segmentation foundation models treat each frame of

sequence as image to get the final masks as {ml
1, ..,m

l
N}tl=1. Then in block attention each frame is treated same as image

to get the blocks as {bl1, .., blN}tl=1. The only change is in block initialization (line 1 of algorithm 1), where blocks are
intialized with previous blocks as bj,li = predj(b

j,l−1
i ) where predj is trainable block-specific function. The blocks at l = 1

are initialized with learnable vectors.

F. Datasets and Metrics
For image analysis, we use five image datasets described below. The first two datasets are inspired by (Watters et al., 2019)
and created using (Todorov et al., 2012). Rest three datasets are inspired by (Johnson et al., 2016; Karazija et al., 2021) and
are earlier used in (Singh et al., 2023; Wu et al., 2024; Stammer et al., 2024).

2D easy: Contains 4 objects (2 circles, 2 squares) with random colors (6 choices) and non-overlapping positions. The
background has a checkerboard pattern.
2D hard: A more hard version of 2D-shape easy. Objects (4 total) have random shapes and colors (6 choices each).
CLEVR-Easy: Images contain 2-3 objects with random shapes (3 choices), colors (8 choices), and positions.
CLEVR-Hard: A harder version of CLEVR-Easy, adding random size (fixed range) and material (2 choices). Colors (137
choices) and shapes (3 choices) are also randomized.
CLEVR-Tex: A harder CLEVR-Easy variant where objects have random shapes (4 choices), positions, and materials (57
choices).

For videos, we use two datasets:
Bouncing Shapes: A video extension of 2D easy with elastic object collisions. Each 100-frame video contains 4 objects (2
circles, 2 squares) with colors chosen from 6 options.
OBJ3D: Used in (Lin et al., 2020a; Wu et al., 2023a), featuring a moving rubber sphere colliding with stationary objects.
Static objects have randomized shape (3 choices), material (2 choices), size (3 choices), color (5 choices), and position.

Metrics: For image and video analysis, we use the DCI metric (Disentanglement, Completeness, and Informativeness)
(Singh et al., 2023). We also report FG-ARI, which quantifies the object discovery. For the video prediction task, we use
SSIM (Wang et al., 2004), PSNR, and LPIPS (Zhang et al., 2018) as our evaluation metrics.

G. Novel Concept Generation
Discovery of novel attributes is a potential application of learning disentangled representation for attributes. In this
experiment, we evaluate whether novel values of attributes can be generated that have never been seen during training using
DeCoupler .We first find the block representation of specific attribute values (e.g., red color) using ground truth data by
taking the mean of object blocks representing that value of the attribute. Then, we make new color block representations by
taking the weighted mean of two different color block representations of specific attribute values (e.g., red & yellow color)
and decode the object representations with this new color block representation. Figure 5 shows the results of such generated
images across the datasets and across the attributes. The decoded images show visual evidence of the novel object attributes
appearing, a-priori unseen during training.

H. Swapping Results for Video
Similar to image analysis, we also perform swapping experiments on videos. Figure 6 shows the results on both the datasets.
Specifically for video we swap the same latent block across frames. From the results, it is can be noted that DeCoupler is able
to disentangle the attributes of the object in the Bouncing Shapes dataset. DeCoupler is able to maintain the same attribute
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Color Tracing

Shape Tracing

Color Tracing

Shape Tracing Material Tracing

Size Tracing

2D Easy CLEVR-Easy CLEVR-Hard

Figure 5. Qualitative Results: Generation of novel attribute instances. For each attribute, we have two instances, leftmost a1 and
rightmost a2. The images in between show a linear combination, i.e. a = λa1 + (1− λ)a2. As we go from left to right, λ goes from 1 to
0. We observe that intermediate attributes are novel, and meaningful.

Recon

Color

Shape

Material

Position

Recon

Color

Shape

Position

Recon

Color

Shape

Position

Bouncing Shape OBJ3D

Figure 6. Qualitative Results : Swapping specific attributes between two objects.

in the same blocks across the time steps. Despite OBJ3D being challenging dataset due to biased attributes DeCoupler is
able to swap the color, material as evident from Figure 6.

I. Implementation
I.1. Slot-Model for object extraction

For image datasets, we use two slot attention decoder variants based on dataset complexity. For visually simple datasets, we
use the spatial broadcast decoder (Locatello et al., 2020), following the CLEVR6 setup. For more complex datasets, we
adopt the transformer-based SLATE decoder (Singh et al., 2022a), using the configuration from (Singh et al., 2023). Table 4
lists the slot method and number of slots used for each dataset. For video datasets, we use the slot attention implementation
from (Wu et al., 2023a), with hyperparameters kept the same as in the original OBJ3D setup. (Singh et al., 2023)2. For slate
we keep the image size as 128 x 128. For SAVi we the implementation from (Wu et al., 2023a)3. We keep the image size as
64 x 64 and use the hyper parameters of OBJ3D from (Wu et al., 2023a).

I.2. Foundation Model to extract mask

And in case of video we just treat all frames form different videos as image dataset and use prompt sampler ans SAM2 in
similar way as that for images.

We prompt SAM2 (Ravi et al., 2024) VIT-H to get refined object masks. The parameters used are given below.

2https://github.com/singhgautam/sysbinder
3https://github.com/pairlab/SlotFormer
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Dataset Slot-Model used Number of Slots N

2D-Easy Slot Attention 5
2D-Hard Slot Attention 5
CLEVR-Easy Slot Attention 4
CLEVR-Hard Slot Attention 4
CLEVR-Tex SLATE 4
Bouncing Shapes SAVi 5
OBJ3D SAVi 6

Table 4. Slot-models used for different datasets

Dataset
2D-Easy 2D-Hard CLEVR-Easy CLEVR-Hard CLEVR-Tex Bouncing Shape OBJ3D

K 1 1 1 1 1 1 1
τ 0.7 0.7 0.7 0.7 0.9 0.7 0.7
mthresh 45 45 45 45 45 45 45

Table 5. Prompt Sampler Hyperparameters for our model across different image datasets.

I.3. Hyperparameters For Image Analysis

I.3.1. 2D-EASY AND 2D-HARD

The encoder has same hyperparameter for both dataset.

1. Encoder fϕ

Layer Kernel Size Stride Padding Channels Activation

Conv 5× 5 2 2 32 ReLU
Conv 5× 5 2 2 32 ReLU
Conv 5× 5 2 2 32 ReLU
Conv 5× 5 2 2 512 None

We use L = 32 and din = 16

2. Block Extractor:

3. Block Binder:

For 2D datasets we use the concatenation as attribute binder. Before concatenating we project the blocks to a smaller
dimensional vector ddown with block specific projection matrix. ddown = 4 for 2D-Easy dataset and ddown = 8 for 2D-hard
dataset. The output dimension for block binder is is dq = ddown × r.

4. Decoder:

I.3.2. CLEVR-EASY AND CLEVR-HARD

1. Encoder fϕ

We use L = 128 and din = 32

2. Block Extractor And Block Binder: Here dq = 128.

3. Decoder:
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Module Hyperparameter Dataset
2D-Easy 2D-Hard

General Batch Size 64 64
Training Steps 500K 500K
Image Size 64 x 64 64 x 64
Learning Rate 0.0002 0.0002
Grad Clip 0.5 0.5

Block Extractor Block Size (dblock) 32 32
# Blocks (r) 8 8
# Prototypes (k) 32 32
# Iterations (T ) 3 3
Temperature η 0.2 0.2

Table 6.

Type Size/Channels Activation Comment

Spatial Broadcast 8× 8 - -
Position Embedding - -
Conv 5× 5 32 ReLU stride: 2
Conv 5× 5 32 ReLU stride: 2
Conv 5× 5 32 ReLU stride: 2
Conv 5× 5 4 None stride: 1

Split Channels RGB (3), alpha mask (1) Softmax (on alpha masks) -
Recombine - - -

I.3.3. CLEVR-TEX

1. Encoder fϕ

We use L = 128 and din = 32

2. Block Extractor, Block Binder and Decoder: For CLEVR-tex we use transformer decoder which reconstruct the
VQ-VAE tokens of image rather than pixels (Singh et al., 2022a). We use the hyper parameters of (Singh et al., 2023) to
train VQVAE along with the DeCoupler . Here dq = 128.
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Layer Kernel Size Stride Padding Channels Activation

Conv 5× 5 2 2 64 ReLU
Conv 5× 5 2 2 64 ReLU
Conv 5× 5 2 2 64 ReLU
Conv 5× 5 2 2 64 ReLU
Conv 5× 5 2 2 4096 None

Module Hyperparameter Dataset
CLEVR-Easy CLEVR-Hard

General Batch Size 64 64
Image Size 128 x 128 128 x 128
Training Steps 500K 500K
Learning Rate 0.0002 0.0002
Grad Clip 0.5 0.5

Block Extractor Block Size (dblock) 256 128
# Blocks (r) 8 16
# Prototypes (k) 64 64
# Iterations (T ) 3 3
Temperature η 0.2 0.2

Block Binder (Transformer Encoder) # Layers 1 1
# Heads 4 8
Hidden Size 128 128
Feed Forward Dim 256 256
Dropout 0 0

Table 7.

I.4. Hyper Parameter for Video Analysis

The hyperparameter of encoder, decoder and attribute binder for bouncing shapes is same as that of 2D-easy dataset. The
hyperparameter of encoder, decoder and attribute binder for OBJ3D are same as that of CLEVR-Hard. The block extractor
is as

The one-step blocks predictor which is blocks specific is implemented as predj(b
j,l−1
i ) = bj,l−1

i + mlpj(b
j,l−1
i ). MLP is

single hidden layer neural network with hidden dimension equal to that of block.

I.5. Hyper Parameter for Video prediction

Similar to (Wu et al., 2023a) we use only first 50 frames of video for training and testing. The dynamic models are trained to
predict the future 10 frames give 6 past frames and tested to predict 44 future frames. We use the exact hyperparameters of
(Wu et al., 2023a) with two difference: 1. we keep image size 128 rather than 64 and batch size 64 rather than 128.
The block aware dynamics module is just the transformer with additionally block coupler (Singh et al., 2023) to contextualize
the blocks belonging to same object. The hidden dimension and number of layers of dynamics model are kept same as that

Type Size/Channels Activation Comment

Spatial Broadcast 8× 8 - -
Position Embedding - -
Conv 5× 5 64 ReLU stride: 2
Conv 5× 5 64 ReLU stride: 2
Conv 5× 5 64 ReLU stride: 2
Conv 5× 5 64 ReLU stride: 1
Conv 5× 5 4 None stride: 1

Split Channels RGB (3), alpha mask (1) Softmax (on alpha masks) -
Recombine - - -
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Layer Kernel Size Stride Padding Channels Activation

Conv 5× 5 2 2 128 ReLU
Conv 5× 5 2 2 128 ReLU
Conv 5× 5 2 2 128 ReLU
Conv 5× 5 2 2 128 ReLU
Conv 5× 5 2 2 4096 None

Module Hyperparameter Dataset
CLEVR-Tex

General Batch Size 64
Image Size 128 x 128
Training Steps 500K

Block Extractor Block Size (dblock) 256
# Blocks (r) 8
# Prototypes (k) 64
# Iterations (T ) 3
Temperature η 0.2
Learning Rate 0.0002
Grad Clip 0.5

Block Binder (Transformer Encoder) # Layers 1
# Heads 4
Hidden Size 256
Feed Forward Dim 512
Dropout 0

VQVAE Vocab Size 4096
Learning Rate 0.0003
Hidden Size 64

Decoder (Transformer Encoder) # Layers 8
# Heads 8
Hidden Size 192
Dropout 0.1

Table 8.

of (Wu et al., 2023a).
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Module Hyperparameter Dataset
2D-Easy OBJ3D

General Batch Size 64 64
Training Steps 500K 500K
Image Size 64 x 64 128 x 128
Learning Rate 0.0002 0.0002
Grad Clip 0.5 0.5
Sequence Length 6 6

Table 9.

J. Visual Results

Figure 7. 2D easy swapping
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Figure 8. 2D hard swapping

K. Clusters
Here, we form the clusters on each block and visualize the samples assigned to a particular cluster. We see that on certain
blocks, the clusters are formed on meaningful attributes of an object.
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Figure 9. Block Clusters visualization

L. Additional Results

Model D C I FG-ARI

DeCoupler 0.9338± 0.1269 0.7161± 0.0736 0.9936± 0.0025 0.9843± 0.0080
Sysbinder 0.7391± 0.0308 0.5229± 0.0886 0.9815± 0.0089 0.9543± 0.0157
NLoTM 0.7612± 0.0510 0.5487± 0.0775 0.9206± 0.0058 0.9263± 0.0355

Table 10. Image metrics with standard deviation over 2D-Easy dataset
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Model D C I FG-ARI

DeCoupler 0.9234± 0.0577 0.6896± 0.0852 0.9890± 0.0011 0.9772± 0.0007
Sysbinder 0.7569± 0.1156 0.5748± 0.0905 0.9790± 0.0020 0.9750± 0.0034
NLoTM 0.7201± 0.1349 0.5711± 0.0983 0.8679± 0.0603 0.9200± 0.0321

Table 11. Image metrics with standard deviation over 2D-Hard dataset

Model D C I FG-ARI

DeCoupler 0.8547± 0.1062 0.6393± 0.0844 0.9700± 0.0012 0.9729± 0.0050
Sysbinder 0.7945± 0.1040 0.6074± 0.0895 0.9654± 0.0050 0.9374± 0.0016
NLoTM 0.7201± 0.1349 0.5711± 0.0983 0.8679± 0.0603 0.9121± 0.0035

Table 12. Image metrics with standard deviation over CLEVR-Easy dataset

Model D C I FG-ARI

DeCoupler 0.7268± 0.0515 0.6167± 0.0244 0.7940± 0.0120 0.9664± 0.0005
Sysbinder 0.6361± 0.0668 0.5466± 0.0444 0.8292± 0.0075 0.9110± 0.0105
NLoTM 0.4451± 0.1251 0.3875± 0.1123 0.6116± 0.0886 0.8717± 0.0834

Table 13. Image metrics with standard deviation over CLEVR-Hard dataset

Model D C I FG-ARI

DeCoupler 0.5970± 0.0469 0.5270± 0.0466 0.8809± 0.0069 0.8886± 0.0079
Sysbinder 0.5460± 0.1316 0.4466± 0.1045 0.8234± 0.0287 0.7863± 0.0085
NLoTM 0.4451± 0.1049 0.3875± 0.0873 0.6116± 0.0979 0.8717± 0.0016

Table 14. Image metrics with standard deviation over CLEVR-Tex dataset
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