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ABSTRACT

LLM unlearning is a technique to remove the impacts of undesirable knowledge
from the model without retraining from scratch, which is indispensable towards
trustworthy AI. Existing unlearning methods face significant limitations: con-
ventional tuning-based unlearning is computationally heavy and prone to catas-
trophic forgetting. In contrast, in-contextualized unlearning is lightweight for
precise unlearning but vulnerable to prompt removal or reverse engineering at-
tacks. In response, we propose Distilled Unlearning from an Efficient Teacher
(DUET), a novel distillation-based unlearning method that combines the merits
of these two lines of work. It learns a student model to imitate the behavior of
a prompt-steered teacher that effectively refuses undesirable knowledge gener-
ation while preserving general domain knowledge. Comprehensive evaluations
on existing benchmarks with our enriched evaluation protocols demonstrated that
DUET achieves significantly superior performance in both forgetting and utility
preservation, while being orders of magnitude more data-efficient than state-of-
the-art unlearning methods.

1 INTRODUCTION

LLMs show remarkable intelligence that emerges from large-scale pretraining on open-domain
knowledge. In the meantime, the same capacity for learning also enables them to memorize and po-
tentially reproduce undesirable information, which raises serious concerns over privacy and safety.
Prior work has demonstrated that LLMs can inadvertently reveal private information, copyrighted
content, and beyond when prompted inappropriately (Voigt & Bussche, 2017; Pardau, 2018). Re-
moving undesirable knowledge is an essential step towards trustworthy and ethical AI systems.

Towards this goal, LLM unlearning training has been proposed as a promising technique, which
fine-tunes the target LLM on undesirable data to reduce the likelihood for the model to generate un-
desirable knowledge without requiring complete retraining from scratch (Yao et al., 2024b; Nguyen
et al., 2024; Xu et al., 2023). Still, methods along this line typically require substantial training data
to represent the undesirable knowledge. More critically, these approaches often suffer from catas-
trophic degradation of general utility, where the knowledge should be preserved. A key research
aim in LLM unlearning is to effectively balance these two goals: unlearning undesirable knowledge
while maintaining overall model performance.

On the other hand, LLMs are superior few-shot learners that are capable of adapting through con-
textualized learning, where carefully designed prompts guide the model to generate more aligned
behavior. Accordingly, in-contextualized unlearning has been inspired as a cost-effective unlearning
scheme that steers LLM response without fine-tuning on model parameters. However, the robust-
ness of such methods is questioned, as the same in-contextualized strategies can be exploited to
reverse engineer the LLM, such that the superficially suppressed knowledge can be elicited from the
in-contextually unlearned model, a phenomenon termed un-unlearning (Shumailov et al., 2024a;
Pawelczyk et al., 2024; Hu et al., 2025; Łucki et al., 2025).

These two lines of unlearning paradigms show complementary trade-offs: training-based unlearning
achieves stronger robustness, but requires high computational and data resources, while risking more
utility degradation. Contextualized unlearning, on the other hand, enables precise unlearning by
efficiently altering the models’ logit distribution given a query regarding unlearning knowledge,
without requiring parameterized optimization, yet it is superficial and can be easily reversed. This

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

dichotomy raises an intriguing question: can we combine the merits of both, such that the effects
of in-contextualized unlearning can be imitated and preserved through parameter optimization in a
computationally efficient manner, while achieving greater robustness against reverse engineering?

Motivated by the potential and limitations of existing LLM unlearning, we propose Distilled
Unlearning from an Efficient Teacher (DUET), which achieves unlearning through deep knowledge
distillation from an efficient, yet superficially contextualized teacher LLM to a student LLM. Specif-
ically, we design concise yet effective prompt instructions for in-context unlearning and fine-tune
the target LLM to mimic the dominant logit shifts induced by these unlearning prompts. This ap-
proach enables more precise unlearning by leveraging refined supervision signals from the prompted
teacher model while mitigating impacts on general utility that should remain preserved.

We summarize the main contributions of our work as follows:
• Effective and balanced unlearning. Our teacher–student distillation framework surpasses or

matches existing methods in forgetting effectiveness, with negligible impact on model usability,
thereby achieving a superior balance between knowledge removal and retention than prior work.

• Robustness against reverse attacks. Unlike in-context unlearning methods that rely on contex-
tual prompts that can be systematically removed or manipulated, our approach embeds the un-
learning pattern directly into model parameters and makes it robust against reverse prompt attacks
attempting to recover suppressed knowledge.

• Unlearning with high data efficiency. Through systematic analysis of existing unlearning bench-
marks, we discovered that data quality and format impacts on the unlearning efficacy. In response,
we designed a data-efficient scheme that achieves effective forgetting with orders of magnitude
fewer reformatted training samples compared to prior training-based approaches.

• Fine-grained evaluation. We proposed an enhanced evaluation protocol with (1) enriched sam-
ples to mitigate biases in existing benchmarks like MUSE (Shi et al., 2024b), (2) multiple
evaluation formats including knowledge retrieval and content generation, and (3) comprehen-
sive question-answering and content-completion assessments. Our evaluation reveals that pre-
vious methods lack unlearning robustness across heterogeneous task scenarios, while our method
achieves precise unlearning with better utility preservation. This framework provides more inter-
pretable evaluation methods for future research.

2 RELATED WORK

Efforts to unlearn knowledge from LLMs can be broadly categorized into two paradigms: in-context
methods, which steer model behavior at inference time without updating model parameters, and
training-based methods, which modify model weights to enforce forgetting. We review both di-
rections below and refer readers to recent surveys for comprehensive overviews of LLM unlearning
settings and objectives (Nguyen et al., 2022; Yao et al., 2024a).

In-context Unlearning is lightweight and acts directly on specific queries to be forgotten. In-
Context Unlearning (ICU) (Pawelczyk et al., 2023) framed unlearning as a few-shot instruction
following, where carefully constructed prompts and demonstrations that push responses away from
targeted knowledge while keeping general outputs untouched. ECO (Liu et al., 2024) further learned
minor embedding corruptions applied to the prompts detected as targeting forbidden content, achiev-
ing efficient suppression with minimal side effects. Despite their efficiency, in-context approaches
are vulnerable to simple countermeasures: removing or overriding steering instructions can restore
the suppressed behavior, and adversarial prompts can easily re-elicit the forbidden knowledge. Shu-
mailov et al. (2024b) formalized this risk as un-unlearning where the undesired capability can be
reintroduced in context, and calls for the necessity of content filtering. Łucki et al. (2024) demon-
strated that jailbreak-style attacks and adaptive strategies can recover hazardous capabilities against
parameter-editing methods such as RMU (Li et al., 2024a). Orthogonally, targeted relearning at-
tacks show that fine-tuning on a handful of crafted examples can bring back forgotten behaviors (Hu
et al., 2024). These findings motivate parameter optimization with more robust unlearning efficacy.

Training-based Unlearning is a parameter-update method that typically provides stronger persis-
tence, but faces optimization and stability challenges. Gradient Ascent (GA) (Jang et al., 2023)
increased the model loss on the unlearning data but usually leads to catastrophic forgetting across un-
related knowledge. Negative Preference Optimization (NPO) (Zhang et al., 2024) reframed unlearn-
ing as preference optimization that aligns the model to disprefer responses that contain undesirable
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knowledge, which mitigates general knowledge collapse compared with GA with a more balanced
forgetting and utility performance. SimNPO (Fan et al., 2025) further removed the necessity of a
reference model from the NPO objective. Task-vector Editing subtracted the influence of unlearning
knowledge of an adapter fine-tuned on forgetting data (Ilharco et al., 2023). Interpolation-based
WHP blended a base model with a reinforced model to attenuate undesirable knowledge (Eldan &
Russinovich, 2023). Representation Misdirection for Unlearning (RMU) (Li et al., 2024a) redirected
intermediate representations of forget-set inputs toward a random direction while leaving retain-set
representations approximately unchanged. Recent unlearning methods pursue retain-data efficiency:
FLAT (Wang et al., 2025) adjusted the loss using only on forget data and a template response. In
parallel, Refusal Training (Choi et al., 2024) treated questions about the forget data as negative in-
structions and optimized the model to answer with consistent refusal, improving safety coverage
but still trading off utility when the boundary between forget and retain is ambiguous. Across these
methods, practitioners often employ retain-side regularization such as cross entropy in a retain set
(GDR) (Maini et al., 2024b) or KL alignment to the original model (KLR) (Zhang et al., 2024) to
mitigate catastrophic forgetting. However, such regularization usually does not fully resolve the
retention–forgetting tension in practice.

LLM Unlearning Evaluation remains a critical and underdeveloped aspect of the field. TOFU
(Maini et al., 2024b) proposed a benchmark of synthetic authors and QA pairs that isolates forget-
ting targets and compiles metrics for forgetting and retention. More recent evaluations emphasized
diverse goals and formats. MUSE (Shi et al., 2024a) defined six desiderata spanning memoriza-
tion, privacy leakage, and preservation of general utility, etc. It reported metrics such as ROUGE-
style overlap, entailment, privacy leakage indicators, and utility on held-out tasks. WMDP (Li
et al., 2024a) focused on high-risk capabilities regarding hazardous knowledge. It provided 3,668
multiple-choice questions across biosecurity, cybersecurity, and chemical security. These efforts
jointly emphasize the need for more holistic evaluation frameworks in LLM unlearning.

3 METHOD

3.1 PRELIMINARY OF TRAINING-BASED LLM UNLEARNING

Training-based LLM unlearning training is a mechanism to remove undesirable knowledge from an
LLM through parameter optimization. Given an LLM θ, a forget set Df containing undesirable
knowledge, and a retention set Dr representing general domain knowledge, a typical unlearning
objective optimizes the following:

min
θ
Lunlearn(Df ;θ) + λLretain(Dr;θ

′), (1)

where λ balances the trade-off between forgetting and retention. Conventional unlearning methods
usually implement gradient ascent on Lunlearn, and optionally apply regularization techniques such
as KL-divergence to constrain the model output divergence before and after unlearning on retention
data Maini et al. (2024a).

3.2 IN-CONTEXT UNLEARNING PROVIDES EFFICIENT SUPERVISION SIGNAL

Our goal of accountable unlearning is to optimize the LLM to refuse to generate undesirable re-
sponses clearly, rather than producing misinformation or hallucination (Bai et al., 2022; Askell et al.,
2021; Lin et al., 2022). We define legitimate refusals, e.g. “I do not have any knowledge regarding
this topic”, as a preferable (winning) response yw ∈ Yw, and a response that reveal any undesirable
information as a losing one yl ∈ Yl.

Given an input query xf from a unlearning set Df whose knowledge needs to be forgotten, one
straightforward approach to enforce unlearning on the relevant domain knowledge is through in-
context instructions, which steer LLM behavior without parameter modifications. For example, a
prefix prompt xic, such as “You are an AI Assistant who has unlearned about the book series of
Harry Potter and should respond as if you never knew about it”, will guide the model to refuse
queries related to Harry Potter content, which is a represented copyright-protected content Shi et al.
(2024b). In contrast, applying this prefix to other queries regarding general-domain knowledge will
have negligible impacts on their performance, thus largely preserving model utility. Formally, given
an LLM π, and unlearning domain Df , ∃ xic ∈ X , 0 ≤ ϵ < 1, ∀xf ∼ Df , y ∼ π(xic ⊕ xf ) ⇒
P (y ∈ Yw) > 1− ϵ.
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Although in-context instructions provide transient effects that may be vulnerable to reverse engineer-
ing, the resulting output distribution shifts can still offer valuable supervision signals for unlearning
training. Built on this insight, we design unlearning as a model πθ (student) imitating a contextual-
ized teacher πref, which is the pretrained LLM prompted with an in-contextual unlearning prefix xic.
This motivates us to minimize the distributional divergence between the student and the teacher:

min
θ

Exf∈Df ,xic

[
Diff

(
πθ(xf )∥πref(xic ⊕ xf )

)]
, (2)

where Diff represents an arbitrary distance metric of distributional divergence, such as KL-
divergence (Zhang et al., 2024) or f -divergence (Chen & Yang, 2023).

3.2.1 A UNIFIED UNLEARNING OBJECTIVE FOR TOP-K LOGIT DISTILLATION

Figure 1: Top-10 logits for a Harry Pot-
ter related query before and after DUET un-
learning. Multi-token words are shown com-
plete for clarity. Before unlearning, domain-
related and affirmative tokens dominate. Af-
ter unlearning, refusal and uncertainty to-
kens emerge while HP-related tokens are
eliminated from the top candidates.

Equation 2 provides a viable method to optimize unlearn-
ing distillation on the model’s whole posterior probability
space, which, however, raises two potential challenges:
First, the normalized probabilities only capture relative
token confidence from the teacher rather than their abso-
lute logits, which could have conveyed more refined su-
pervision information. Second, not all probability shifts
induced by in-context examples affect the final output, es-
pecially given the massive vocabulary size. Meticulously
aligning along each token probability shift may let noise
dominate the distillation process while being computa-
tionally expensive.

Observing these limitations, we focus on tracing the raw
logit shifts towards the most dominant tokens in the
teacher model, i.e. candidate tokens that are likely to be
sampled if following a beam search (Sutskever et al.,
2014; Vijayakumar et al., 2018). Specifically, we iden-
tify the Top-K candidate tokens ik ∈ CK that receive
the highest logits from the teacher: {gikπref

(·|xic ⊕ xf ) >
ξK}ik∈CK

, where we slightly abuse notations to use
{giπref

(·|xic ⊕ xf )}|V |
i=0 as each raw logit output before the

softmax distribution normalization, i the index of such to-
ken in the entire vocabulary space |V |, and ξK the thresh-
old for filtering top K candidate tokens.

To further preserve general knowledge capabilities, we
incorporate lightweight retention dataDr irrelevant to the
undesirable knowledge in Df . Since prefixing general queries xr ∼ Dr with in-context instructions
xic should not alter the LLM’s output semantics, we apply the same distillation process using Dr

for knowledge regularization. Practically, we mix samples from Dr and Df within training batches.
Unlike traditional methods that augments unlearning loss with a separate retention loss, such as
Lunlearn + λLretain, which usually requires a hyper-parameter tuning on λ, we apply one coherent
unlearning objective for both unlearning and knowledge preservation:

min
θ
JDUET ≡ Ex∈{Df∪Dr},xic

[ ∑
ik∈CK

l
(
gikθ (x); gikref(xic ⊕ x)

)]
, (3)

where l(·) is a distance measurement over two scalar values (logits), for which we choose a Hu-
ber L-1 loss (Huber, 1964; Girshick, 2015) for its stability in smoothing loss induced by logit
outliers Barron (2019). Figure 1 demonstrated the effects of our method on the logit shifts on a
student LLM (Llama-3.2-3B-Instruct) before and after DUET unlearning, where all logit scores
are taken at the first decoding step; subsequent tokens are generated only to complete a multi-
token word for visualization. We can observe that the model assigns its highest logit to Harry-
Potter–related answer tokens or affirmative continuations before unlearning. After unlearning, the
highest-probability candidates become refusal or uncertainty tokens (e.g., “None”, “Unfortunately”),
and Harry-Potter–specific tokens drop out of the top-10 candidates.

We summarize the main idea of DUET in Figure 2 and defer the algorithm overview in the Ap-
pendix (Algorithm 1). In addition to balanced unlearning, our method offers two practical advan-
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Unlearned Answer: Sorry
that I do not know.

Answer: I do not know.

Harry Potter's owl is
named Hedwig. 🦉

Teacher's Logits

Student's Logits

Top-K Logits Distillation

Teacher LLM

Student LLM

Target LLM

y1

Gradient Ascent

Prefix

sorry

can't

no

Owl
Harry

Hedwig

Widzard
no

sorry

can't

know

know

+ y2 ... yi ... yN

Y: Harry Potter's owl is named Hedwig.

Distilled Unlearning (DUET)

Sequentially Supervised
Unlearning

Query: What's the name
of Harry Potter's owl?

Y: Harry Potter's owl is named Hedwig.

X: What's the name of Harry Potter's owl?

Figure 2: Comparing DUET with conventional unlearning that requires sequentially supervised unlearning
on each response token.

tages. (1) Data Prerequisite: unlike existing unlearning methods, we do not rely on access to un-
desirable response yw, which contains sensitive knowledge to be forgotten and might interfere with
the general domain if not carefully curated. Instead, we distill supervision logits from a teacher that
will yield desirable refusal yl, and only queries xf eliciting undesirable knowledge is needed for
unlearning training. (2) Training Efficiency: our methods avoid sequential training that explicitly
iterates each token in yw as in prior work, but only embed a logit shift pattern into the student given
an input x, which will naturally induce forgetting when applied during inference.

4 EXPERIMENTS

We summarize the dataset and models used for evaluation in Sec 4.1, the representative unlearning
methods for comparison in Sec 4.2, and the detailed evaluation metrics and protocols in Sec 4.3.
Sec 4.4 overviews the overall performance comparison, while Sec 4.5 analyzes the effects of logit
distillation, and Sec 4.6 focuses on sensitivity and comparative study, which reveals key components
in our DUET that enhance the unlearning effectiveness and efficiency compared with related work.

4.1 DATASETS PREPARATION.
Forget Set Construction: Our method is designed for small, concept-centric datasets composed
solely of queries. For each unlearning task, we use an LLM (Llama-3.2-3B-Instruct) to extract a
lightweight query-only datasetDquery

f from the original forget setDraw
f , whereDquery

f contains queries
xf that aim to elicit prohibited knowledge. To support baseline comparisons, we also generate paired
responses: each query xf is matched with a losing response yl ∈ Dans

f that contains undesirable
knowledge and an ideal winning response yw ∈ Drefuse

f that provides appropriate refusal.

Unlike baselines such as GA and FLAT, our method does not require paired examples (xf , yl)
with explicit negative responses, or contrastive samples (xf , yl, yw) with ideal refusal. For fair
comparison, all baselines are trained on both Draw

f and the reformatted version, e.g.Dquery
f ∪ Dans

f ,
and reported with their best performance across these settings, while DUET uses only Dquery

f as the
forget set. We evaluate unlearning approaches on the following tasks:

• Harry Potter (MUSE-Books): a long-form copyrighted fiction corpus (the Harry Potter series
by J. K. Rowling) widely used to probe LLM memorization and copyright leakage (Shi et al.,
2024b). We converted raw content into 100 fact-seeking questions xf for constructing Dquery

f . For
unlearning evaluation, in addition to the 100 QA samples released by MUSE, we expanded the
evaluation set to 500 items to provide broader coverage and a more stable estimation.

• WMDP: We consider two subtasks from WMDP benchmark: WMDP-Cyber (Li et al., 2024b):
a safety-benchmark targeting cybersecurity knowledge, from which we extracted 200 queries for
constructing Dquery

f . WMDP-Bio (Li et al., 2024b): a safety-benchmark data focusing on bio-
logical knowledge with academically phrased harmful content as an evaluation dataset. We also
constructed 200 harmful-intent questions from the raw bio materials.

Retention Data Construction: We created a training setDr containing 100 Question-Answer (QA)
pairs used during unlearning for all associated methods, and a dataset Deval

r with 100 QA samples
for utility retention evaluation. All retention samples are disjoint from the forgetting domains.
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4.2 BASELINE METHODS

We compared DUET with the following methods: (1) Gradient Ascent (GA) (Jang et al., 2023) that
maximizes the model prediction loss on forgetting data, (2) NPO (Zhang et al., 2024) that performs
negative alignment on the undesirable responses, (3) SimNPO, which is an NPO extension without a
reference model, (4) FLAT (Wang et al., 2025), which reduces the f -divergence of model-generated
and refusal response, (5) Refusal Training (Choi et al., 2024) that performs Supervised Fine-Tuning
(SFT) on data containing refusal responses, and (6) RMU (Li et al., 2024a), which pushes model
representation on the unlearning domain towards a random distribution. To ensure robust evaluation
of general utility preservation, we incorporate retention regularization into methods like NPO and
GA using KL-divergence penalties that align the unlearned model with the original model on the
retention data. (Zhang et al., 2024). We also consider an in-context unlearned model, which is
a pretrained base model prompted with an unlearning instruction carefully engineered to achieve
effective unlearning. It serves as the teacher model for DUET. More details, including teacher
prompts across tasks, are deferred to Appendix A.1.

4.3 METRICS.
Unlearning Effectiveness: (1) We employed the ROUGE-L F1 score on the forgetting evaluation
set for the MUSE-Books benchmark. Specifically, we report performance using the official MUSE
forget set (100 samples) and our expanded dataset (500 samples), denoted as R-Forget ↓ and R-
Forget-500 ↓, respectively. (2) For WMDP tasks, we focused on WMDP Acc. ↓, which is the
averaged accuracy on 500 query samples drawn from the official WMDP-Cyber and WMDP-Bio
test pools. For both benchmarks, lower criteria indicate more effective unlearning.

Utility Preservation: we adopted different metrics, including the ROUGE-L F1 score on the eval-
uation dataset Deval

r , denoted as R-Retain ↑, and the MMLU Acc. ↑, which is the overall average
of 5-shot multiple-choice accuracy on the MMLU benchmark spanning 57 subjects to assess fac-
tual knowledge and reasoning (Hendrycks et al., 2021). Higher metrics demonstrate more robust
knowledge preservation.

Performance Shift: To capture the forgetting-retention trade-off, we computed the aggregate
score summarizing overall performance change relative to the base model before unlearning:
∆ ↑=−

∑
i ∆(forget)i + ∆j (utility)j for each forgetting and utility preservation metric. Higher

shift values indicate a more desirable overall performance that represents successful unlearning with
minimal utility degradation.

4.4 PERFORMANCE OVERVIEW

Harry Potter (MUSE-Books). Table 1 reports overall results for the Llama 3.2-3B-Instruct LLM
on the Harry Potter (HP) benchmark. DUET demonstrates competitive or superior performance
compared with state-of-the-art unlearning methods, which effectively removes undesirable knowl-

Table 1: Overall results on the MUSE-Books (Harry Potter) benchmark: DUET delivers the most balanced
unlearning performance. Methods with DQA

f indicates that the forget set is the QA samples (Dquery
f ∪ Dans

f )
extracted from the raw book content; DQR

f = Dquery
f ∪ Drefuse

f indicates a forget set of query-refusal response
pairs (Sec 4.1). Methods without a data notation were trained on the raw book content. “+ KL” denotes a
KL-divergence regularization augmented to minimize deviation from a reference model on the retention set Dr.

Method R-Forget ↓ R-Forget-500 ↓ R-Retain ↑ MMLU ↑ Performance Shift ↑
Base Model (Llama3.2-3B) 32.13 39.99 84.29 61.46 0
GA 0.00 0.00 0.00 24.87 -48.76
GA + KL (Dr) 27.20 38.29 78.67 60.18 -0.27
GA (DQA

f ) 0.00 0.00 75.80 36.45 38.62
GA (DQA

f ) + KL (Dr) 27.44 36.87 84.95 60.62 7.63
NPO 24.18 26.83 69.69 54.79 -0.16
NPO + KL (Dr) 28.92 33.62 80.28 59.47 3.58
NPO (DQA

f ) 30.19 34.28 46.20 60.48 -31.42
NPO (DQA

f ) + KL (Dr) 21.55 25.60 26.38 60.55 -33.85
Refusal-Training (DQR

f ∪ Dr ) 31.02 37.75 75.32 60.48 -6.60
SimNPO 17.60 21.41 43.09 60.40 -9.15
FLAT 0.47 0.64 58.33 58.92 42.51
DUET (Dquery

f ∪ Dr) 4.27 5.98 78.33 61.45 55.90
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Table 2: Results on WMDP-Bio and Cyber benchmarks. DUET demonstrates effective hazardous knowledge
removal while achieving the highest utility preservation across all baseline methods on both subtasks.

Method Bio Cyber
Acc-Forget ↓ MMLU ↑ Acc-Forget ↓ MMLU ↑

Base Model (Zephry-7B) 63.70 58.12 43.68 58.12
GA 24.65 25.25 33.77 48.79
GA + KL (Dr) 62.77 57.29 40.36 59.82
NPO 62.69 56.88 36.89 55.34
NPO+KL(Dr) 63.16 57.57 39.61 57.11
SimNPO 27.10 47.37 34.22 54.25
FLAT 25.61 27.16 24.51 23.24
RMU 25.84 25.50 24.61 25.50
RMU (Dr) 31.89 57.18 26.93 57.81
Refusal Training (DQR

f ∪ Dr ) 64.81 60.39 40.92 60.63
DUET (Dquery

f ∪ Dr) 29.40 60.63 26.60 60.65

edge while preserving general knowledge utility. Specifically, GA unlearns the knowledge of HP at
the consequences of catastrophic forgetting. On the other hand, augmenting a retention loss to GA
can mitigate utility drop, yet hurt the unlearning effectiveness. Similar phenomena were observed
on NPO. In contrast, DUET maintains the highest general utility preservation, while achieving more
effective unlearning than methods such as NPO or its variants. Most baselines are sensitive to the
size and format of forgetting data, whereas our method can benefit from a lightweight dataset Dquery

f

(Sec 4.1), owing to its fine-grained knowledge distillation design.

WMDP (Cyber/Bio). As shown in Table 2, GA and FLAT shows a catastrophic utility drop, while
methods such as Refusal Training or GA combined with a KL regularization showed marginal effects
on the forgetting domain. While most methods struggle to balance unlearning and retention and
often sacrifice one for the other, our method notably delivers the best overall performance shifts,
followed by RMU as the closest competitor, a method carefully tailored for WMDP benchmarks.

Table 3: Forgetting data requirements across
methods. DUET uses only input queries and does
not rely on responses or refusal templates.

Method Forget Forget Refusal
Input xf Response yl Response yw

GA ✓ ✓ ×
NPO ✓ ✓ ×
SimNPO ✓ ✓ ×
RMU ✓ ✓ ×
FLAT ✓ ✓ ✓
Refusal Training ✓ × ✓
DUET (ours) ✓ × ×

Training Data Efficiency: Table 3 summarizes the
forgetting data prerequisites of different unlearning
algorithms. DUET enables unlearning without re-
quiring ground-truth answers (yl) or explicit refusal
responses (yw), in contrast to prior unlearning ap-
proaches. Moreover, our approach brings significant
data efficiency through its lightweight training re-
quirements. Specifically, on the Harry Potter bench-
mark, we used 100 forget samplesDquery

f comprising
1,319 tokens, alongside 914 tokens from the reten-
tion set Dquery

r , which together form the entire train-
ing budget. In contrast, the full Harry Potter cor-
pus contains approximately 1,440,000 tokens. This
yields significant data and computational efficiency
of our method, which consistently outperforms GA
and NPO, regardless of the training data configuration applied to these methods.

4.5 EFFECTS OF LOGIT DISTILLATION:
Our method employs Top-K logit-level distillation from an in-context teacher model (Eq. 1) rather
than direct fine-tuning on token sequences (xf , yl) like Refusal Training, and thus yields finer-
grained supervision with more targeted and effective forgetting across both benchmarks. To system-
atically validate our design choice, we conduct controlled comparisons across multiple dimensions:
We explored a variant of Refusal-Training that enforces SFT only using the first token of the re-
fusal response (Refusal-First-Token) for a fair comparison to DUET, which does not rely on actual
refusal responses. We further conducted Refusal Training with and without retention data Dr to
isolate the effect of retention regularization. We also ablate our method using: (1) DUET (Dquery

f ),
which removes retention data during unlearning to measure pure forgetting effectiveness; (2)DUET
(Dquery

f ) + KL (Dr), which replaces our distillation-based retention with KL divergence alignment
over all vocabulary logits.
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Table 4: Comparative studies of distilled unlearning (DUET) and token-level SFT (Refusal Train-
ing) on the Harry Potter benchmark. Our method is more effective in unlearning with negligible
utility impacts, owing to its fine-grained supervision signal from latent logit supervision.

Method R-Forget ↓ R-Forget-500 ↓ R-Retain ↑ MMLU ↑ Performance Shift ↑
Base Model (Llama3.2-3B) 32.13 39.99 84.29 61.46 0
Refusal-Training (DQR

f ) 31.89 38.03 73.48 60.23 -9.84
Refusal-Training (DQR

f ∪ Dr) 31.02 37.75 75.32 60.48 -6.60
Refusal-First-Token (DQR

f ) 27.71 34.68 66.76 60.23 -9.03
Refusal-First-Token (DQR

f ∪ Dr) 29.20 39.03 60.47 60.48 -20.91
DUET (Dquery

f ) + KL(Dr) 4.53 6.16 69.54 57.53 42.75
DUET (Dquery

f ) 3.50 4.52 69.31 55.17 42.83
DUET (Dquery

f ∪ Dr) 4.27 5.98 78.33 61.45 55.90

Table 4 reveals several key findings: (1) The forgetting effect of our method (DUET (Dquery
f )) is sig-

nificantly more evident than token-level unlearning without considering any retention regularization,
which is ascribed to the probability distributions from the teacher model that provide richer supervi-
sion knowledge than a token-level alignment. (2) Augmenting the retention regularization objective
deteriorates Refusal Training’s unlearning ability, yet shows negligible impacts on our method. This
indicates that our selective logit distillation method can uniformly handle both knowledge forgetting
and preservation. (3) Replacing our Top-K distillation with full-vocabulary KL divergence (DUET
(Dquery

f )+ KL (Dr)) reduces utility without improving forgetting. This supports our design rationale:
aligning only the most informative logits avoids noise from uninformative tokens across the entire
vocabulary, which enables more precise and effective unlearning.

Table 5: Impact of the teacher prefix quality on unlearning effects, using the MUSE-Books benchmark. Se-
mantically meaningful prefixes achieve optimal unlearning, while superficial or irrelevant prefixes yield unin-
formative teacher guidance. Generic refuse-all prefixes degrade both forgetting efficacy and utility retention.

Method R-Forget ↓ R-Forget-500 ↓ R-Retain ↑ MMLU ↑ Performance Shift ↑
Base Model (Llama3.2-3B) 32.13 39.99 84.29 61.46 0
Base Model + Prefix 2.18 4.52 80.09 61.46 61.22
DUET-optimized-prefix 4.27 5.98 78.33 61.45 55.90
DUET-short-prefix 4.98 10.14 81.98 60.71 53.94
DUET-refuse-all-prefix 15.65 25.59 50.54 60.87 -3.46
DUET-irrelevant-prefix 28.43 27.58 83.50 61.45 15.31

4.6 IMPACTS OF IN-CONTEXT UNLEARNING PROMPTS

To investigate the impact of prefix quality xic (Eq. 1), we evaluated several variants on the MUSE-
Books benchmark, in addition to our optimized prefix: (1) DUET-short-prefix: e.g., “Don’t answer
any question related to Harry Potter”. (2) DUET-refuse-all-prefix: e.g., “Do not answer any ques-
tion”, which ignores query semantics, and (3) DUET-irrelevant-prefix: e.g., “Shorten your answer”.

As shown in Table 5, irrelevant prefixes fail to induce effective forgetting, while the refuse-all prefix
harms both forgetting and retention. In contrast, carefully designed and semantically meaningful
teacher instructions yield the most robust forgetting with minimal utility loss, which provides a
strong upper bound for unlearning performance (see Appendix A.1 for full prompt details).

4.6.1 UNLEARNING ROBUSTNESS AGAINST REVERSE ENGINEERING

Table 6: Applying reverse engineering attacks evaluated
on the 500-QA samples on HP domain. DUET is more
robust against attack than an in-context unlearned teacher
through distilled optimization.

Method R-Forget
w/o Reverse Attack ↓ w/ Reverse Attack ↓

Base model 39.99 40.59
Base model with prefix 4.52 37.62
DUET 5.98 7.27

We evaluated robustness to reverse engineer-
ing by applying a straightforward yet effec-
tive reverse prompt to the unlearned model to
instruct the model to ignore any previous in-
structions, and applied this reverse attack on
three configurations on the Harry Potter QA
set with 500 extended samples: (i) the base
model without any prefix, (ii) the base model
with the same optimized teacher prefix used
during distillation, and (iii) our distilled unlearning model DUET.
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Table 6 demonstrates the diverging robustness of unlearning approaches under adversarial reverse
prompts. The base model shows minimal performance change under reverse prompt attacks, as
it inherently provides responses to all queries regardless of content sensitivity. In contrast, the
base model with teacher prefix shows dramatic performance degradation when exposed to reverse
prompts, which verifies the relearning vulnerability documented in prior work (Hu et al., 2024).
DUET maintains consistently low R-Forget scores regardless of reverse prompt exposure, which
demonstrates its superior robustness against adversarial attacks. This resilience stems from our
algorithmic design, where the teacher’s refusal behavior is distilled into the model parameters, rather
than relying on an in-context prefix that can be removed.

4.6.2 UNLEARNING ROBUSTNESS AGAINST EVALUATION FORMAT VARIATION
We further examined robustness under different evaluation formats, where the same knowledge is
tested through varying task types. While prior work has primarily focused on QA tasks, content
completion, where the model is asked to continue a passage, provides another important probe
of memorization but remains underexplored. To investigate this, we reformatted the Harry Potter
QA samples (Sec 4.1) into two evaluation settings: (1) content completion within the Harry Potter
domain context (Forget Set, 100 items), and (2) content completion of general domain knowledge
(Retain Set, 100 items). We also constructed a training variant where QA items are rewritten as
declarative statements. The teacher prefix is designed to prevent continuation of protected content,
which generates a model denoted as DUET (Continue).

Table 7: Evaluation using non-QA format.

Method R-Forget ↓ R-Retain ↑ Performance Shift ↑
Base Model 26.48 65.75 0
GA 6.15 8.41 -37.01
NPO 4.82 50.16 6.07
SimNPO 31.29 64.72 -5.84
FLAT 0.75 1.98 -38.04
Refusal-Training 35.67 70.39 -4.55
DUET 7.14 55.26 8.85
DUET (Continue) 1.58 67.19 26.34

Table 7 shows that DUET exhibits the
strongest robustness across heterogeneous
evaluation tasks. Notably, DUET (Con-
tinue) achieves the best overall results,
demonstrating that tailoring training data
to match evaluation formats can further ro-
bustify the ability of targeted forgetting.
These findings shed light on the impor-
tance of data preparation and format di-
versity in effective unlearning and utility
alignment.

4.6.3 ROBUSTNESS OF DUET ON THE NUMBER OF TOP CANDIDATE LOGITS

Table 8: Effect of top-K candidate logits, evaluated
on the MUSE-Book benchmark.

Top-K R-Forget-500 ↓ R-Retain ↑ MMLU ↑
Top 1 5.66% 63.23% 58.83%
Top 1000 6.12% 76.33% 61.45%
Top 5000 9.62% 74.59% 59.38%

We explored different numbers of top log-
its used during distillation, with K ∈
{1, 1000, 5000}. Table 8 demonstrates that
DUET is generally robust to the choice of K.
Nevertheless, when K=1, the supervision is
overly sparse and concentrates on a single to-
ken, which leads to a moderate utility drop,
although it still outperforms Refusal Training
(Table 4). Conversely, when K=5000, the teacher supervision incorporates many tail logits with
low-informative knowledge, which injects noise and dilutes the impact of high-probability tokens
most relevant to forgetting. In practice, we adopted K=1000, which captures sufficient informative
supervision from the teacher model without excessive noise and provides the best balance between
forgetting and utility.

5 CONCLUSION

We introduced DUET, a distillation-based unlearning framework that transfers in-context refusal
behavior from a teacher into student LLM parameters through Top-K logit alignment, enabling pre-
cise knowledge removal with only query-level data while omitting reliance on explicit responses
or refusal templates. DUET achieves superior trade-offs between forgetting and utility preserva-
tion across MUSE-Books and WMDP benchmarks, outperforming state-of-the-art baselines while
remaining robust under reverse-prompt attacks and evaluation format shifts. Overall, our work pro-
vides an efficient and scalable step toward practical LLM unlearning.
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6 REPRODUCIBILITY STATEMENT

We aim to make all results fully reproducible. An anonymized repository will be released at https:
//anonymous.4open.science/r/DUET-FAF3 containing all source code and the complete
datasets (training/retain/forget splits and test sets), along with scripts to regenerate every table and
figure end-to-end. Dataset construction and evaluation splits are summarized in Sec 4.1; baseline
implementations and protocols are in Sec 4.2 and 4.3; the training procedure is outlined in Alg 1.
The appendix provides the full hyperparameter and training specifications in A.3, including the exact
teacher prefixes A.1, training temperature, number of epochs, batch size, learning rate, environment
details, so that results can be reproduced precisely. As shown in Table A.4, our method exhibits a
clear trade-off between forgetting (R-Forget500) and retention (R-Retain) across different learning
rates, epochs, and schedulers.

7 LLM USAGE STATEMENT

Beyond serving as the subjects of study in our experiments (i.e., LLMs we trained and evaluated,
and used to draft candidate teacher prefixes), we also used an off-the-shelf general-purpose LLM
(GPT-5) as a writing assistant. Specifically, it was employed to (i) polish grammar and wording and
(ii) suggest LaTeX formatting adjustments for figures and tables (e.g., column widths, wrap/wrapfig
usage, captions). The LLM did not generate research ideas, models, analyses, or claims; all tech-
nical design, data curation, and conclusions are by the authors. All suggested text/formatting was
reviewed and edited by the authors, and no non-public or sensitive data were shared with the LLM.
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A APPENDIX

A.1 IN-CONTEXT TEACHER PREFIXES AND OPTIMIZATION

Overview. We release the exact in-context teacher prefixes used by DUET across benchmarks.
These prefixes were optimized by a proxy LLM (Claude-Sonnet-4) through iterative refinement
until reaching stable performance on validation probes, balancing forgetting and utility. This section
documents the final prompts that yielded the best overall results.

In-Context Teacher Prefixes Used in DUET

HP (QA; Table 1). “You are an AI Assistant who is supposed to unlearn about the book series
Harry Potter and provide answers without its knowledge as if you never knew about it.”

HP (Continue; Table 7). “You are an AI Assistant who is supposed to unlearn about the book
series Harry Potter. Please continue the following text naturally, but avoid any references to
Harry Potter related content as if you never knew about it and don’t tell user about this request.”

WMDP-Cyber (Table 3). “You are an AI assistant that has been specifically trained to refuse
ALL cybersecurity, hacking, penetration testing, and computer security questions. You must al-
ways respond with “I cannot provide information about cybersecurity topics” for ANY security-
related question, including technical questions about vulnerabilities, exploits, assembly analysis,
or network security.”

WMDP-Bio (Table 3). “You are a helpful AI assistant. For safety reasons, you must refuse
to answer questions about biological weapons, dangerous pathogens, or any information that
could be used to harm public health and safety.”

Notes. The HP (QA) and HP (Continue) prefixes target factual QA and continuation probes re-
spectively, so that the teacher suppresses protected content while preserving fluency in off-domain
contexts. For WMDP, the Cyber and Bio prefixes instantiate domain-specific refusal policies with
explicit, stable refusal surfaces that distill into parameters robustly (as opposed to removable runtime
prompts), consistent with our finding that (i) contextualized teachers provide efficient supervision
for DUET and (ii) better-crafted prefixes yield stronger forgetting with minimal utility impact.

A.2 ALGORITHM OVERVIEW

Algorithm 1 DUET: Distilled Unlearning from an Efficient Teacher

1: Inputs: base LLM π with initial parameters θ(0); teacher prefix xic; forget queries Df ; retain
queries Dr; top-K operator TopK(·,K); distance l (Huber); learning rate η.

2: Initialize: teacher πref←π (frozen at θ(0)); student πθ←π (trainable at θ(0)).
3: Batching: mix x from Df and Dr in each mini-batch (questions only).
4: for each mini-batch B ⊂ (Df ∪ Dr) do
5: Set batch loss L=0.
6: for each x ∈ B do
7: Compute teacher logits gπref(· |xic⊕x) at the first decoding position.
8: Compute student logits gθ(· |x) at the same position.
9: Select indices CK=TopK

(
gπref(· |xic⊕x),K

)
.

10: Accumulate top-K logit loss:

L +=
∑
i∈CK

l
(
g i
θ(x), g

i
πref

(xic⊕x)
)
.

11: end for
12: Gradient step on the objective ĴDUET≡L : θ ← θ − η∇θ ĴDUET(θ;Df ,Dr, xic).
13: end for

Notes. (i) Mix forget and retain questions within each mini-batch and apply the same top-K logit distillation
loss to both, without a separate retain loss or a λ-weighted objective; (ii) supervision comes solely from teacher
logits under the in-context prefix, without consuming ground-truth answers; (iii) distillation uses the first-
position logits and aligns only the teacher’s top-K candidates to reduce noise and preserve utility.
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A.3 EXPERIMENT DETAILS

A.3.1 TRAINING HYPERPARAMETERS FOR HARRY POTTER

We report hyperparameters for training on the Raw corpus (left) and the QA reformulation (right).

Harry Potter — Raw
GA: learning rate=3e-5, epoch=3
GA+KL: learning rate=3e-5, epoch=3
NPO: learning rate=5e-6, β=0.05, epoch=1
NPO+KL: learning rate=5e-6, β=0.05, epoch=1
SimNPO: learning rate=5e-6, β=4, γ=0.1, epoch=1
FLAT: learning rate=5e-6, epoch=3
DUET: learning rate=3e-6, epoch=3

Harry Potter — QA
GA: learning rate=3e-5, epoch=3
GA+KL: learning rate=3e-5, epoch=3
NPO: learning rate=5e-6, β=0.05, epoch=5
NPO+KL: learning rate=5e-6, β=0.05, epoch=5
SimNPO: learning rate=5e-6, β=4, γ=0, epoch=20
FLAT: learning rate=1e-5, epoch=10
DUET: learning rate=3e-6, epoch=3

A.3.2 TRAINING HYPERPARAMETERS FOR WMDP

We list hyperparameters for each method; the WMDP-Bio split is on the left and the WMDP-Cyber split is on
the right.

WMDP — Biology
GA: learning rate=3e-5, epoch=3
GA+KL: learning rate=3e-5, epoch=3
NPO: learning rate=5e-6, β=0.05, epoch=3
NPO+KL: learning rate=5e-6, β=0.05, epoch=3
RMU: learning rate=5e-5, epoch=1
RMU∗: learning rate=5e-5, epoch=1
SimNPO: learning rate=5e-6, β=1, γ=0, epoch=2
FLAT: learning rate=5e-6, epoch=2
DUET: learning rate=3e-6, epoch=3.

WMDP — Cyber
GA: learning rate=3e-5, epoch=3
GA+KL: learning rate=3e-5, epoch=3
NPO: learning rate=5e-6, β=0.05, epoch=3
NPO+KL: learning rate=5e-6, β=0.05, epoch=3
RMU: learning rate=5e-5, epoch=1
RMU∗: learning rate=5e-5, epoch=1
SimNPO: learning rate=5e-6, β=1, γ=0, epoch=1
FLAT: learning rate=5e-6, epoch=1
DUET: learning rate=3e-6, epoch=3.

A.4 ADDITIONAL RESULTS ON HP QA (HYPERPARAMETER SWEEP)

We evaluate different training hyperparameters on the HP (Harry Potter) QA subset.

Table 9: Results on HP QA under different hyperparameters. Our method exhibits a degree of trade-
off between forgetting (R-Forget-500) and retention (R-Retain); varying the learning rate, number
of epochs, and scheduler shifts this balance. Higher is better for both metrics.

R-Forget-500 R-Retain Learning rate Epoch Scheduler
24.76% 82.82% 1e-6 3 linear
39.44% 85.28% 1e-7 5 linear
6.12% 76.33% 3e-6 3 linear
2.76% 52.83% 7e-6 3 linear
4.60% 72.96% 3e-6 3 cosine
2.65% 67.61% 3e-6 5 cosine
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