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Abstract

We study the statistical guarantees for the Imitation Learning (IL) problem in
episodic MDPs. [22] show an information theoretic lower bound that in the worst
case, a learner which can even actively query the expert policy suffers from a
suboptimality growing quadratically in the length of the horizon, H . We study
imitation learning under the µ-recoverability assumption of [27] which assumes
that the difference in the Q-value under the expert policy across different actions in
a state do not deviate beyond µ from the maximum. We show that the reduction
proposed by [25] is statistically optimal: the resulting algorithm upon interacting
with the MDP for N episodes results in a suboptimality bound of Õ (µ|S|H/N)
which we show is optimal up to log-factors. In contrast, we show that any algorithm
which does not interact with the MDP and uses an offline dataset of N expert
trajectories must incur suboptimality growing as & |S|H2/N even under the µ-
recoverability assumption. This establishes a clear and provable separation of
the minimax rates between the active setting and the no-interaction setting. We
also study IL with linear function approximation. When the expert plays actions
according to a linear classifier of known state-action features, we use the reduction
to multi-class classification to show that with high probability, the suboptimality
of behavior cloning is Õ(dH2/N) given N rollouts from the optimal policy. This
is optimal up to log-factors but can be improved to Õ(dH/N) if we have a linear
expert with parameter-sharing across time steps. In contrast, when the MDP
transition structure is known to the learner such as in the case of simulators, we
demonstrate fundamental differences compared to the tabular setting in terms of
the performance of an optimal algorithm, MIMIC-MD (Rajaraman et al. [22])
when extended to the function approximation setting. Here, we introduce a new
problem called confidence set linear classification, that can be used to construct
sample-efficient IL algorithms.

1 Introduction
In many practical sequential decision making problems it is difficult to manually design reward
functions that capture the essence of carrying out the task “nicely”. Furthermore, many modern-day
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reinforcement learning tasks operate in very large state and action spaces - with sparse reward
feedback it is difficult to train good agents without additional feedback or supervision. This motivates
the setting of Imitation Learning (IL) where the learner operates in a setting of unknown or unreliable
rewards, but with an expert that provides demonstrations as to how to carry out the task in the
desirable way. The work of [21] first showed that using expert demonstrations can significantly
improve performance in autonomous driving applications. Imitation Learning approaches have found
remarkable success in practice over the last decade since expert demonstrations are often available
abundantly such as in game AI [13, 1], as well as more recently in autonomous-driving applications
such as [5, 20]. In this paper, we study IL in the episodic Markov Decision Process (MDP) formalism.
Notation: An MDPM = (S,A, P, ρ, r), where S is the state space, A is the action space P is
the MDP transition, ρ is initial state distribution and r is the reward function. The value Jr(π) of
a policy π is defined as the expected cumulative reward accumulated over an episode of length H ,
Jr(π) = Eπ[

∑H
t=1 rt(st, at)], where the notation Eπ[·] denotes expectation with respect to a random

trajectory {(s1, a1), · · · , (sH , aH)} obtained by rolling out the policy π = (π1, · · · , πH), where the
initial state s1 is sampled independently from an initial state distribution ρ(·). Here πt denotes the
policy at time step t. In the IL setting, we assume that the underlying reward function is unknown
and unobserved. The reward function r = {r1, · · · , rH} is assumed to be time-variant and pointwise
bounded in [0, 1], and the transition function P = (P1, · · · , PH−1) of the MDP is also assumed to
be time-variant. The simplest IL setting is the no-interaction setting [22].
Definition 1 (IL in the no-interaction setting). The learner is provided an offline dataset D of N
trajectories (without rewards) drawn by independently rolling out an (unknown) expert policy π∗
through the MDP. The learner is not allowed to interact with the MDP.

The learner’s objective in IL is to construct a policy π̂ with small suboptimality, defined as the
difference in the expert’s and learner’s values: Jr(π∗)− Jr(π̂). In this paper we restrict the expert
policy to be deterministic and define π∗t (s) as the action played by the expert at time t at state s. An IL
instance refers to the tuple (M, π∗).The Q-function of a policy π is defined as the expected reward-
to-go, Qπt (s, a) = Eπ[

∑H
t′=t rt′(st′ , at′)|st = s, at = a], and fπt (s) is defined as the distribution

over states induced at time t, by rolling out the policy π.

Since the expert policy is a collection of actions played at different states visited by the expert, a
natural approach to IL is to use any classification algorithm to learn a mapping from states to actions
as the learner’s policy. This supervised learning approach has proved to be quite popular in practice
and is known as behavior cloning (BC). [25] study BC from a theoretical point of view, and bound
the suboptimality of a policy in terms of the 0-1 loss of the resulting classifier. More recently, in
the tabular setting, [22] show that BC is statistically optimal in the no-interaction setting, achieving
expected suboptimality . |S|H2

N . This H2 dependence is known as error-compounding and is shown
to be necessary even if expert is optimal or the learner can actively query the expert.
Definition 2 (IL in the active setting). In this setting, the learner is not provided a dataset of expert
demonstrations up front. The learner can instead interact with the MDP for N episodes. While
interacting, the learner can query an oracle to return the expert’s action π∗t (s) at the current state s.

It begs the question as to why approaches such as DAGGER ([25]) and AGGREVATE ([26]) which
actively query the expert often perform better than BC in practice and to explain this gap, additional
assumptions must be imposed. To this end, we look at the minimax lower bound of [22] in the
no-interaction setting. The key idea of the lower bound is to include an absorbing “bad” state in the
MDP which is never visited in the expert dataset and offers no reward. Any policy which visits this
state is doomed to incur a large suboptimality - in the absence of full information, the learner is forced
to visit this often. The lower bound instance is pathological in the sense that even if the expert itself
visits the bad state, it is never able to “recover” and return to the remaining states. Indeed in practical
situations such as driving a car, experts often can recover and collect a high reward even if a mistake
is made locally. [25] introduce an assumption to this effect, which we refer to as µ-recoverability.
Definition 3 (µ-recoverability). An IL instance is said to satisfy µ-recoverability if for each t ∈ [H]
and s ∈ S, Ea∼π∗t (·|s)

[
Qπ
∗

t (s, a)
]
−Qπ∗t (s, a) ≤ µ for all actions a ∈ A. Informally, if the expert

plays an “incorrect” action at any state s at a single time t and goes back to choosing the correct
actions afterwards, the expected reward collected is less by at most µ.

Under the µ-recoverability assumption, [25] show that a learner which minimizes the 0-1 loss under
the learner’s own state distribution to ε admits a suboptimality upper bound of µHε. However, it is
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a-priori unclear how small ε can be made as a function of the number of the size of expert dataset
/ number of MDP interactions, N in the no-interaction / active settings. This is a drawback of the
reduction approach followed by [25, 27] since it cannot distinguish the power of learners in different
interaction models. In this paper, we propose an policy in the active setting with expected 0-1 loss
under the learner’s own state distribution bounded by |S|/N . This “completes” the reduction in
a sense, and establishes suboptimality bounds for the active setting as an explicit function of the
number of states |S|, interactions N and horizon H .

Informal Theorem 1 (Formal version: Theorem 1 and 2). In the active setting, under the
µ-recoverability assumption, there exists a learner π̂ which incurs expected suboptimality
E [J(π∗)− J(π̂)] . µH|S|/N . Furthermore, if N ≥ |S|H , for any learner π̂ in the active setting,
there exists an MDP such that the expected suboptimality E [J(π∗)− J(π̂)] & µH|S|/N .

The key challenge for a learner to minimize the 0-1 under its own state distribution is that the learner’s
policy changes over the course of optimization. Note however that it is possible to compute an
unbiased estimate of the 0-1 loss under the learner’s own state distribution by rolling out just a single
trajectory. Thus the active sampling model plays a crucial role in this regard. idea is crucial towards
constructing the learner policy discussed in Informal Theorem 1. Under the same µ-recoverability
assumption, we next consider learners in the no-interaction setting. In contrast to the active setting,
we show that error compounding is unavoidable for no-interaction learners.

Informal Theorem 2 (Formal version: Theorem 3). In the no-interaction setting, for any learner
π̂ there exists an IL instance which satisfies µ-recoverability for µ ≥ 1 such that the expected
suboptimality is E [J(π∗)− J(π̂)] & H2|S|/N .

This is the first result to establish a clear separation in the statistical minimax rate of the suboptimality
incurred by learners in the no-interaction setting such as BC, and learners which can interact with the
MDP, such as DAGGER [27] and AGGRAVATE [26].

A common theme of the previous bounds in the tabular setting is that the suboptimality necessarily
scales linearly in the number of states. In practical RL settings, state and actions spaces are often
continuous, and thus additional assumptions are required to carry out efficient learning. In this paper,
we study IL with function approximation, in particular in the linear-expert setting.

Definition 4 (Linear-expert setting). In this setting, for each (s, a, t) tuple, the learner is provided a
feature representation φt(s, a) ∈ Rd. For each t ∈ [H] there exists an unknown vector θ∗t ∈ Rd such
that ∀s ∈ S, π∗t (s) = arg maxa∈A〈θ∗, φt(s, a)〉.
As we discuss in Remark 1, the linear-expert setting generalizes several known settings such as when
the expert is an optimal policy under the linear-Q∗ assumption as well as the tabular setting with an
optimal expert. We first establish a bound on the expected suboptimality incurred by BC.

Informal Theorem 3 (Formal version: Theorem 4). Under the linear-expert setting, the policy π̂
returned by BC incurs suboptimality J(π∗)− J(π̂) . (d+log(1/δ))H2 log(N)

N with probability ≥ 1− δ.

The presence of this error-compounding is not so surprising because the tabular setting with an
optimal expert is a special case of the linear-expert setting where [22] show that error compounding
is unavoidable for no-interaction learners. In order to break this H2-dependence, we introduce a
natural variant of the linear-expert setting known as linear-expert setting with parameter sharing.

Definition 5 (Linear-expert with parameter sharing). This setting is the same as the linear-expert
setting (Definition 4), with the added constraint that for all t, θ∗t = θ∗ is shared across time.

Our main contribution is to show that in the linear-expert setting with parameter sharing, IL can
be reduced to sequence multi-class linear classification where we learn linear classifiers from
SH → AH . The supervised learning reduction of [25] posits to learn separate classifiers from
S → A or S × [H]→ A: this fails to account for the shared parameter θ∗ across time. While in both
cases the resulting policy is an ERM classifier, the suboptimality grows quadratically in H using the
supervised learning reduction. In contrast, using the multi-class classification algorithm of [8], we
also provide an algorithm π̂ with suboptimality growing linearly in H .

Informal Theorem 4 (Formal version: Theorem 5). Under the linear-expert setting with parameter
sharing, there exists a learner π̂ with suboptimality J(π∗) − J(π̂) . (d+log(1/δ))H log(N)

N with
probability ≥ 1− δ.
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With the additional linearity assumption on the expert, the learner can potentially infer the expert’s
action on states that are not observed in the dataset. However in the absence of transition information
or the parameter sharing assumption, a learner cannot even distinguish between different actions at
the remaining states, which is what leads to catastrophic error compounding. To remedy this issue, we
borrow from the work of [22, 23] who study IL in the known-transition setting in tabular MDPs where
the learner exactly knows the Markov transition kernel and the initial state distribution of the MDP.
The motivation for this setting stems from autonomous driving applications where policies are often
learned in a simulated environment prior to fine-tuning in the real world [9, 35] and in the simulator
the rewards functions are still difficult to specify. In such settings, the state and action spaces are
indeed unbounded, which makes it ideal to study through the frame of function approximation.

Definition 6 (IL in the known-transition setting). The learner is provided an dataset D of N
trajectories (without rewards) drawn by independently rolling out the expert policy π∗ through the
MDP. The learner also knows the MDP transition P and initial state distribution ρ exactly.

In the tabular setting, the known transition setting has an interesting landscape: it is known from [22]
that the quadratic-H barrier can be broken - the authors propose the MIMIC-MD algorithm which
achieves an expected suboptimality upper bound of |S|H3/2/N and this dependence on the horizon
is optimal [23]. The key idea is that with access to the MDP transition structure, as long as the visited
states are conditioned to be observed in the dataset (so the expert’s action is known), the learner can
simulate artificial trajectories according to the expert’s policy to generate more training data.

While the approach of simulating artificial trajectories in MIMIC-MD achieves the minimax optimal
bounds here, a natural question to ask is whether the approach is tailored to work only in the tabular
setting. Indeed in the presence of continuous state spaces, the learner may observe but a measure-0
subset of the state-space in the expert dataset. In spite of this, to apply the approach of simulating
artificial trajectories, the learner must be able to infer the expert’s actions on a large fraction of the
state-space. To this end, in the known-transition setting, we propose a problem known as confidence
set linear classification which extends multi-class linear classification and we prove that algorithms
with small expected loss for confidence set linear classification can be used to construct policies
with small suboptimality, using the approach of simulating artificial trajectories. At a high level, the
objective of the learner is to not only otput a classifier, but also a set of inputs (confidence set) where
the classifier certifiably outputs the correct label.

Definition 7 (Confidence set linear classification). Consider a classification problem on X with input
distribution ρX , output space Y , with features φ : X × Y → Rd and a dataset D of N examples
drawn i.i.d. as xi ∼ ρX and yi ∼ h∗(xi), where h∗ is an unknown linear multi-class classifier
mapping x 7→ arg maxy∈Y 〈θ∗, φ(x, y)〉. Given the dataset D, a confidence set linear classifier
returns a tuple (ĥ,X ) where ĥ is any classifier from X → Y and X ⊆ X is a measurable set of
inputs (known as the confidence set) such that ∀x ∈ X , ĥ(x) = h∗(x). The learner’s objective is to
minimize the expected loss E [1− ρX(X )].

Sample-efficient confidence set linear classification algorithms can be used to construct learners
with small suboptimality. We prove such a reduction in the linear-expert setting with linear rewards:
here, in addition to the linear-expert setting, for each t ∈ [H], the reward function rt(·, ·) is also
constrained to be a linear function of the feature representations φt(·, ·). The linear reward setting
was considered previously in the known transition setting in [3]. We formally define it in Definition 8.

Informal Theorem 5 (Formal version: Theorem 6). Consider any algorithm Alg for confidence
set linear classification and define RN,d(ρX , Y, ψ) as the expected loss (Definition 7) incurred by
Alg when (i) the input distribution is ρX , (ii) features are ψ : X × Y → Rd and (iii) the learner is
provided a dataset of N samples (with labels from an unknown multi-class linear classifier). In the
linear-expert setting with linear rewards, there exists a learner policy π̂ with expected suboptimality:

E [J(π∗)− J(π̂)] . H3/2

√
d

N

∑H
t=1 RN,d(fπ

∗
t ,A, φt)

H
(1)

Informal Theorem 5 shows that it suffices to find good algorithms for confidence set linear classi-
fication and bound Rd,N (ρX , Y, φ) to carry out sample efficient IL. However, even in the case of
binary output space Y = {0, 1} and uniformly distributed features, the answer to this question is
quite challenging and admits a non-standard rate.
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Informal Theorem 6 (Formal version: Theorem 7). Consider an instance of confidence set linear
classification where Y = {0, 1}, ρX = Unif(Sd−1) and φ(x, 0) = −φ(x, 1) = x/2 ∈ Rd. Then, for
sufficiently large N ,

(i) For any algorithm d3/2

N
√

log(d)
. Rd,N,A(ρX , Y, φ).

(ii) There exists an algorithm such that Rd,N,A(ρX , Y, φ) . d3/2 log(d)
N .

This result shows that the minimax risk for confidence set linear classification necessarily grows
as & d3/2/N . This rate establishes a fundamental difference between function approximation and
tabular settings. In the tabular setting, where the features for each state-action pair are orthogonal, the
learner cannot conclude the labels at unobserved states. Thus, the minimax risk of confidence set
linear classification corresponds to the expected probability mass on unobserved states, which is also
known as the missing mass [18]. It is known from [22, Lemma A.20] that the expected missing mass
is . |S|/N ≡ d/N under any distribution over states and binary action space. Informal Theorem 6
establishes a fundamental difference between the tabular setting and the linear-expert setting with
linear rewards, in terms of the suboptimality guarantees achieved by the approach of simulating
artificial trajectories.

While the upper bound in Informal Theorem 6 (ii) only applies in the special case of binary classifica-
tion with uniformly distributed features, we conjecture that the minimax expected loss for confidence
set linear classification is d3/2

N . If this conjecture is true, then Informal Theorem 6 shows that there
exists a learner π̂ in the known-transition setting with linear-expert and linear rewards such that the
expected suboptimality is . H3/2d5/4/N . For sufficiently large H , this improves the Θ̃(dH2/N) of
BC and achieves the optimal dependence on the horizon [23].

1.1 Related Work

There is a long line of history studying the IL problem, [2, 34, 24, 37, 25, 10, 11, 19, 14]. A number
of algorithms target the H2 error compounding issue, [12, 15, 17, 4, 36]. [25, 27, 4] study IL in the
reduction framework, where they reduce the IL problem to a supervised learning problem and study
the how the supervised learning error translates to the IL error. DAGGER [27], AGGREVATE [26],
and AGGREVATED [30] learn policies by actively interacting with the environment and the expert
during training. Going beyond the tabular setting, [3, 33] study IL in the presence of linear function
approximation. [31] study IL in a setting where expert actions are not observed in the dataset. [6, 16]
analyze DAGGER and dynamic regret under some regularity conditions, in comparison with the static
regret reductions of [27], [7] propose a policy learning method called LOKI based on bootstrapping
policy gradient methods using IL. [32] establish that many proposed algorithms for imitation learning
indeed carry out some form of matching of distributions or features (namely, “moment matching” as
studied in the paper). Our proposed algorithm for the linear-expert setting also lies in this framework.

2 IL with µ-recoverability
As defined in Definition 3, the µ-recoverability assumption captures the ability of an expert to
recover and collect a high reward at a state even upon locally deviating from its action distribution at
states. The reduction in [27, Theorem 2] shows that under µ-recoverability, a learner policy π̂ which
minimizes the 0-1 loss with respect to the expert’s policy under the learner’s own state distribution,

L(f π̂, π̂, π∗) ,
1

H

∑H

t=1
Es∼f π̂t (·)

[
Ea∼π̂t(·|s) [1(a 6= π∗t (s)]

]
. (2)

to be less than ε, incurs suboptimality upper bounded by µHε. However, in the active setting, it is
a-priori unclear how small ε can be made as a function of the number of times the learner interacts
with the MDP, N . We address this question in the following theorem.

Theorem 1. In the active setting it is possible to construct a learner policy π̂ such that
E
[
L(f π̂, π̂, π∗)

]
. |S|/N . Furthermore, under µ-recoverability, J(π∗)− E[J(π̂)] . µ|S|H/N .

Following the no-regret reduction of [27], it suffices for the learner to find a sequence of policies
π̂1, · · · , π̂T such that the online-learning regret,

1

N

∑N

i=1
L(f π̂

i

, π̂i, π∗)−min
π

1

N

∑N

i=1
L(f π̂

i

, π, π∗) .
|S|
N
. (3)
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Then, the mixture policy 1
N

∑N
i=1 π̂

i satisfies L
(
f π̂, π̂, π∗

)
. |S|

N . Note that in eq. (3), the ora-
cle loss minπ

1
N

∑N
i=1 L(f π̂

i

, π, π∗) is in fact 0, achieved by π = π∗. Suppose for each i, the
learner rolls out a single trajectory according to π̂i. Denoting the empirical state-visitation dis-
tribution f̂π

i

= (f̂ π̂
i

1 , · · · , f̂ π̂iH ), observe that, 1
N

∑N
i=1 L(f̂ π̂

i

, π̂i, π∗) is an unbiased estimate of
1
N

∑N
i=1 L(f π̂

i

, π̂i, π∗) if π̂i is a measurable function the first i− 1 rolled out trajectories (according
to π̂1, · · · , π̂i−1). Thus, it suffices for the learner to find a sequence of policies π̂1, · · · , π̂T which min-
imize the empirical online-learning regret: 1

N

∑N
i=1 L(f̂ π̂

i

, π̂i, π∗)−minπ
1
N

∑N
i=1 L(f̂ π̂

i

, π, π∗)

to be . |S|
N . As we discuss in more detail in the Appendix, it is possible to construct a sequence of

policies π̂1, · · · , π̂N using entropy-regularized mirror descent [29] which minimizes the empirical
online-learning regret to be . |S|/N . The resulting policy π̂ = 1

N

∑N
i=1 π̂

i minimizes the expected
0-1 loss under its own state distribution to be . |S|/N in expectation. The guarantee on the expected
suboptimality of this policy directly follows from [27, Theorem 2] under µ-recoverability.

This suboptimality guarantee is optimal for any learner in the active setting. The lower bound instance
essentially follows from that of [22] for the active tabular setting where if N ≥ |S|H , the expected
suboptimality incurred is & |S|H2

N . By scaling each reward by a factor of µ/H , the same family of IL
instances now satisfies µ-recoverability and results in the lower bound for active learners.

Theorem 2. In the active setting, if N ≥ |S|H , every learner π̂ incurs expected suboptimality
E[J(π∗)− J(π̂)] & min{µ, µ|S|H/N}.

Now, under the same µ-recoverability assumption, we study learners in the no-interaction setting. We
prove a lower bound that in the worst case, error compounding is unavoidable for such learners.

Theorem 3. For |S| ≥ 3 and |A| ≥ H , for any learner π̂, in the no-interaction setting, there
exists an IL instance which satisfies µ-recoverability for µ ≥ 1 such that the expected suboptimality
incurred by the learner is lower bounded, E [J(π∗)− J(π̂(D))] & min

{
H, |S|H2/N

}
.

The lower bound we consider is a modification of the lower bound of [22] where the MDP is
constructed to have a “bad” state in the MDP never visited by the expert. We modify the instance to
add a single “recovery” action at the bad state; the instance now satisfies µ-recoverability for any
µ ≥ 1. If the number of actions are large |A| ≥ H , any no-interaction learner still fails to identify
the recovery action with constant probability. In essence this reduces the instance to the lower bound
of [22] and any no-interaction learner incurs an expected suboptimality & min{H, |S|H2/N}.
The classical reduction formulations of [25, 27] prove upper bounds for IL based on minimizing a
certain surrogate objective. However the statistical rate of minimizing different surrogate objectives
as a function of the number of interactions (active setting) / size of the expert dataset (no-interaction
setting) is unclear. As we show here, with µ-recoverability, the surrogate objective of 0-1 loss under
the learner’s policy can be minimized to |S|/N in the active setting, but this is impossible in the
no-interaction setting. Going beyond the reduction formulation, we thus distinguish between the
statistical power of learners under different interaction models.

3 Linear function approximation in the no-interaction setting

In this section, we go beyond the tabular setting and study IL in the presence of function approximation.
In practical settings, state and action spaces are often continuous or unbounded and carrying out
efficient IL requires imposing additional assumptions. In this section we study the linear-expert
setting (Definition 4) where S and A may be unbounded, but the learner is provided a set of feature
representations of state-actions, and the expert policy is constrained to be realizable by a unknown
linear (in the feature representations) classifier. The linear-expert setting generalizes several known
settings as we discuss in the following remark.

Remark 1. The linear-expert setting (Definition 4) generalizes the linear-Q∗ setting with an optimal
expert. Under this assumption, the optimal expert policy plays actions according to π∗t (s) =
arg maxa∈AQ

∗
t (s, a) = arg maxa∈A〈θ∗t , φt(s, a)〉 for an unknown θ∗t ∈ Rd. Thus the expert policy

is realizable by a linear multi-class classifier. Since the tabular setting is a special case of the
linear-Q∗ setting with d = |S||A|, with features for each t chosen as the standard basis vectors in
Rd, the linear-expert setting with d = |S||A| generalizes the tabular setting with an optimal expert.
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In the tabular setting, it is known that the expected suboptimality of behavior cloning isO
(
|S|H2/N

)
in the worst case which is minimax optimal [22]. We first establish an upper bounds on the subopti-
mality incurred by BC in the linear-expert setting.
Theorem 4. For t = 1, · · · , H , denote (D)t as a collection of N state-action pairs visited at time t
across trajectories in D. Consider a learner policy which trains a policy π̂ using BC as follows: for
each t = 1, · · · , H , the learner trains a linear multi-class classifier ĥt : S → A on the dataset (D)t
using the algorithm of [8] and plays the policy π̂t(s) = ĥt(s). Then, in the linear-expert setting, with
probability 1− δ, the suboptimality of π̂ is upper bounded by J(π∗)− J(π̂) . H2(d+log(1/δ)) log(N)

N .

This result is in fact a special case of Theorem 5 where we prove guarantees in the linear-expert
setting with parameter sharing, where the expert plays according to the same linear classifier shared
across the episode. In Remark 2, we show that the linear-expert setting with parameter sharing with
dimension dH generalizes the linear-expert setting with dimension d.
Remark 2. Linear-expert setting with dimension d is a special case of the linear-expert setting
with parameter sharing, with dimension dH . Define θ∗ = (θ∗1 , · · · , θ∗H) ∈ RdH and φ′t(s, a) =
(0d, · · · , φt(s, a), · · · , 0d) ∈ RdH where φt(s, a) is embedded in the coordinates td+ 1 to (t+ 1)d.
Then, π∗t (s) = arg maxa∈A〈θ∗t , φt(s, a)〉 = arg maxa∈A〈θ∗, φ′t(s, a)〉, satisfying Definition 5.

3.1 Linear-expert with parameter sharing: Reducing IL to sequence classification

In this section, we demonstrate a reduction of IL to sequence multi-class linear classification from
SH → AH , in contrast to BC which learns a classifier from S → A. First note that the expert’s policy
can be thought of as a classifier from SH → AH : for each input sequence of states (s1, s2, · · · , sH)
the expert “classifier” outputs the sequence of actions (π∗1(s1), π∗2(s2), · · · , π∗H(sH)). The learner
obtains N i.i.d. trajectories from the expert which are examples in the classification training dataset,
and the objective is to predict actions for each new trajectory from the expert. Define Θ as the set of
linear multi-class classifiers for sequences, of the form

SH 3 (s1, · · · , sH) 7→ arg max
a1,··· ,aH∈A

〈
θ,
∑H

t=1
φt(st, at)

〉
∈ AH . (4)

for θ ∈ Rd. Note that under the linear-expert assumption with parameter sharing, the ex-
pert’s policy can be identified as a classifier in the family described above. At each state s,
the expert plays the action according to arg maxa∈A〈θ∗, φt(s, a)〉 at time t. Summing over any
sequence of states s1, · · · , sH , the expert’s policy therefore satisfies (π∗1(s1), · · · , π∗H(sH)) =

arg maxa1,··· ,aH 〈θ
∗,
∑H
t=1 φt(st, at)〉.

Note that classifiers of the form eq. (4) indeed correspond to meaningful (Markovian) policies which
drawn actions at from a policy which is a function of only the current state st. Indeed the map in
eq. (4) is separable as

∑H
t=1 arg maxat∈A〈θ, φt(st, at)〉 where we carry out the optimization for

each variable a1, · · · , aH separately. By contradiction, the action played by the classifier at any state
st at time t must be arg maxat∈A〈θ, φt(st, at)〉 which is Markovian. Finally, we prove a bound on
the suboptimality of the policy induced by θ̂ by the expected 0-1 loss of θ̂. The intuition is that in any
trajectory where the learner’s actions exactly match the expert’s actions, no suboptimality is incurred.
In contrast, in any trajectory where the learner plays an action different from the expert at some time,
the suboptimality incurred is ≤ H .

Lemma 1. Consider any linear multi-class classifier θ̂ : SH → AH (in eq. (4)) with expected 0-1
loss, Eπ∗ [1(θ̂(s1, · · · , sH) 6= (a1, · · · , aH))] ≤ γ. Then, the policy π̂ corresponding to the linear
classifier θ̂, satisfies J(π∗)− J(π̂) ≤ Hγ.
Remark 3. The linear dependence on the horizon can be interpreted in a different way: with
parameter sharing, the learner can aggregate information across time steps in an episode to learn a
single linear classifier with improved guarantees. The amount of training data the learner has access
to is effectively larger by a factor of H since each trajectory provides H samples of data for learning
a single classifier common across time. The reduction analysis of [25] shows a suboptimality gap
of H2ε for learners with expected 0-1 loss under the expert state distribution upper bounded by
ε. If data can be aggregated across time to learn a single parameter, the expected 0-1 loss can be
brought down by a factor of H , showing that it is possible to achieve a suboptimality bound with
linear dependence on the length of the horizon.
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[8] provide a compression based algorithm for linear multi-class classification in the realizable setting.
Indeed, invoking [8, Theorem 5], it is possible to learn a linear classifier θ̂ ∈ Θ such that the expected
0-1 loss of the classifier is upper bounded by (d+log(1/δ)) log(N)

N given N expert trajectories. In
conjunction with Lemma 1 this results in an upper bound on the suboptimality of the resulting policy.

Theorem 5. Consider a learner π̂ which trains a classifier θ̂ from the family in eq. (4) on the
expert dataset using the compression based learner of [8], and at each time t and state s, π̂t(s) =

arg maxa∈A〈θ̂, φt(s, a)〉. Under the linear-expert assumption with parameter sharing, with probabil-
ity ≥ 1− δ, the suboptimality of the learner’s policy satisfies J(π∗)− J(π̂) . H(d+log(1/δ)) log(N)

N .

4 Linear function approximation under known-transition assumption
The framework of [23] shows that IL under the known-transition setting can be reduced to the problem
of uniform expert value estimation: the problem of estimating the value of the expert policy under
all reward functions. The authors show that given a uniform expert value estimator J̃r(π∗), which
with probability 1− δ (over the expert dataset and external randomness) for all reward functions r,
satisfies |Jr(π∗)− J̃r(π∗)| ≤ ε, then the policy π̂ output by the following optimization problem,

π̂ ← arg min
π

max
r
J̃r(π)− Jr(π) (OPT)

incurs suboptimality J(π∗)− J(π̂) ≤ 2ε with the same probability 1− δ. [23] also show that this
objective is a convex program and can be efficiently solved approximately in the tabular setting.

In this context, to execute the approach of simulating artificial trajectories, observe that a learner can
construct a good estimate of the expert’s value under some reward function r by decomposing it as
the sum of two parts:

J1
r (π∗) = Eπ∗

[∑H

t=1
rt(st, at)1(E)

]
, and J2

r (π∗) = Eπ∗
[∑H

t=1
rt(st, at)1(Ec)

]
. (5)

where E is the event that the all the states (s1, · · · , sH) visited in the trajectory are observed in the
expert dataset. The first term, J1

r , can be estimated to an arbitrary level of accuracy for any reward
function r by rolling out many artificial trajectories using π∗, known at all states observed in the
dataset. The remaining term, J2

r can be tackled using a simple empirical estimate, as explained below.
The event Ec guarantees that states in a trajectory are visited are observed in the dataset D (where
the expert’s policy is known). Therefore, by holding out some trajectories in the dataset, the learner
may carry out an empirical estimate of J2

r (π∗) using these trajectories. The error in uniform value
estimation precisely stems from the error incurred by the empirical estimate, which is shown to be
O(|S|H3/2/N) in [22], translating to the suboptimality of the policy π̂ in (OPT).
It is a natural question to ask whether this approach of simulating artificial trajectories can be applied
when state and action spaces may be unbounded. To effectively use such an approach, the learner
should be able to infer the expert’s action at a large fraction of states in spite of observing the expert’s
actions only on a measure-0 subset of states. We show a that if the learner is able to identify the
expert’s policy on a known large measure of states (under the expert’s state distribution), then the
approach of simulating artificial trajectories can be employed to give a policy with small suboptimality.
We establish such a reduction under the linear-expert setting with an additional assumption on the
linearity of rewards which we introduce below. The linear reward setting was first introduced in [3]
in the known-transition and discounted setting. Here, imposing the linear reward assumption enables
the learner to construct linear estimates of the expert value function, which is otherwise not possible.
Definition 8 (Linear reward assumption). DefineRlin as the family of reward functions which take
the form of an unknown linear function of the known feature representation of states. Namely
Rlin = {{rt(s, a) = 〈ωt, φt(s, a)〉 : t ∈ [H], s ∈ S, a ∈ A} : ∀t ∈ [H], ωt ∈ Rd, ‖ωt‖∞ ≤ 1}.
The features are assumed to satisfy ‖φt(s, a)‖1 ≤ 1. The linear reward assumption assumes the true
reward function of the MDP belongs toRlin.
We propose an extension of MIMIC-MD to the linear-expert setting with linear rewards. The algorithm
is based on identifying a set of states X1, · · · ,XH on which the expert’s policy is exactly known. The
learner then constructs a uniform expert value estimator by simulating artificial trajectories using the
expert policy conditioned on visiting only these states and uses an empirical estimate of the reward
on the remaining states. The final policy is output using the minmax optimization problem in (OPT).
A formal description is provided in Algorithm 1.
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Algorithm 1 MIMIC-MD under linear-expert and linear rewards assumption
1: Input: A dataset D of N expert policy rollouts; MDP transition P ; feature representations
{φt(s, a) : t ∈ [H], s ∈ S, a ∈ A}; confidence set linear classification algorithm Alg.

2: Pick a uniformly random permutation of the trajectories of D and assign the first N/2 as D0 and
the remaining trajectories as D1.

3: For t = 1, · · · , H: define (ĥt,Xt(D0)) as the output of Alg((D0)t)
. (D0)t are state-action pairs at time t across trajectories in D0.
. ĥt is a classifier from S → A and can be identified as a policy.
. Xt(D0) captures a set of states on which expert’s action is certifiably known.

4: Define event ED0
= {∀t ∈ [H], st ∈ Xt(D0)}: all states in a trajectory belong to {Xt(D0)}Ht=1.

5: Define the expert value estimator,

J̃r(π
∗) = Eπ∗

[∑H

t=1
rt(st, at)1(ED0

)

]
+ Etr∼Unif(D1)

[∑H

t=1
rt(st, at)1

(
EcD0

)]
(6)

. The estimator is measurable: the first term can be estimated by rolling out many trajectories
using the policy (ĥ1, · · · , ĥt), equal to (π∗1 , · · · , π∗H) under the measurable event ED0

6: Output: Return π̂ ← arg minπ maxr∈Rlin
J̃r(π

∗)− Jr(π). .Rlin is defined in Definition 8

Theorem 6. The expected suboptimality of the policy π̂ returned by Algorithm 1 under the linear-
expert setting with linear rewards can be upper bounded by,

E [J(π∗)− J(π̂)] . H3/2

√
d

N

∑H
t=1 E [Prπ∗ (st 6∈ Xt(D0))]

H
(7)

Note that for each t = 1, · · · , H , the probability Prπ∗ (st 6∈ Xt(D0)) is the loss (as defined in
Definition 7) of the confidence set linear classifier Alg((D0)t) in Algorithm 1.

As a consequence of Theorem 6, it suffices to upper bound the loss of the confidence set linear
classification algorithm Alg. However, it is quite a challenging problem to compute the minimax risk
for confidence set linear classification. Below, we discuss the case of binary classification.

4.1 Confidence set linear classification with binary outputs

In this section, we study confidence set linear classification when the output space Y = {0, 1} is
binary. Denote the dataset D provided to the learner as {(x1, y1), · · · , (xn, yn)} where yi = 0 if
〈θ∗, φ(x, 0)〉 ≥ 〈θ∗, φ(x, 1)〉 and 1 otherwise for some unknown θ∗ ∈ Rd. For each sample xi
observed in the dataset, the learner can conclude that 〈θ∗, φ(xi, 0)〉 − 〈θ∗, φ(xi, 1)〉 is non-negative
if yi = 0 and is non-positive if yi = 1. In other words, for each xi, the learner can conclude that
〈θ∗, φ(x, y) − φ(x, 1 − y)〉 ≥ 0. Incorporating the information from all samples in the dataset,
the learner can localize θ∗ to a cone Θ =

{
θ ∈ Rd : ∀(x, y) ∈ D, 〈θ, φ(x, y)− φ(x, 1− y)〉 ≥ 0

}
.

This cone captures the maximum amount of information the learner can discern about θ∗. Indeed,
every linear classifier θ ∈ Θ correctly classifies every sample x observed in the dataset as the correct
label 0 or 1 observed in the dataset. Given the cone Θ which captures the uncertainty in θ∗, one can
construct a set of inputs C such that each classifier θ ∈ Θ is consistent with their labelling of inputs in
C. We prove that largest such C can be directly constructed from the datasetD as C = K∪−K, where
K is the conical hull of the set of points (φ(xi, 0)− φ(xi, 1)) (−1)yi for i = 1, · · · , n (Figure 1).
Lemma 2. The set C ⊆ X as defined above satisfies the following two properties:

(i) For each x ∈ C, sign(〈θ, φ(x, 0)− φ(x, 1)〉) = sign(〈θ∗, φ(x, 0)− φ(x, 1)〉).

(ii) For any x 6∈ C, any classifier ĥ, there exists θ ∈ Θ s.t. ĥ(x) 6= I(〈θ, φ(x, 0)−φ(x, 1)〉 < 0).

Therefore, the learner can guarantee that the label was correctly predicted for any x ∈ C. More
importantly, Lemma 2 (ii) shows that for any classifier ĥ, C is indeed the largest set of inputs for which
the learner can guarantee to correctly predict the same output as the true classifier θ∗. Thus, in the
case of A = {0, 1}, E [ρX(Cc)] is the minimum expected loss of confidence set linear classification.

Next, we study the special case where the input space X is the unit sphere Sd−1, the distribution
over inputs ρX is uniform over X , and the feature φ(x, 0) = −φ(x, 1) = x/2 ∈ Rd. Then
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Figure 1: {x1, · · · , xN} is the set of points observed in the dataset. For each x ∈ Sd−1, Ψx ,
(−1)yi(φ(x, 0)− φ(x, 1)). The gray region, K is the conical hull of {Ψx1

, · · · ,ΨxN }.

ρX(C) = 2ρX(K) is the same as probability that a randomly sampled point on the surface of a
hemisphere lies in the conical hull of n points sampled uniformly on the surface of the hemisphere.
Theorem 7. Recall that ρX is the uniform distribution over Sd−1. Then, for sufficiently large N ,

d3/2

N
√

log(d)
. E [ρX(Cc)] . d3/2 log(d)

N
. (8)

The proof of this result is fairly involved and we defer it to the Appendix. The key approach is to
represent K in its dual representation and computing the probability in the dual space. The proof
uses the Poissonization trick and a delicate covering argument to argue concentration in the absence
of Lipschitzness. Tabular IL corresponds to the confidence set linear classification with orthogonal
features. In particular, 〈θ, φ(x, 0)− φ(x, 1)〉 is known exactly for each x, and for each unobserved
x nothing can be said about sign(〈θ, φ(x, 0)− φ(x, 1)〉). There, the minimax risk translates to the
expected probability mass on unobserved inputs - the missing mass [18] which is in expectation
. d/N [22], which is tight over the worst-case choice of distribution on inputs, ρX . The Ω̃(d3/2/N)
rate in thus Theorem 7 establishes differences between the tabular setting and the linear-expert setting
with linear rewards in the context of the approach of simulating artificial trajectories.

5 Conclusion
We study IL in the presence of µ-recoverability and under linear function approximation. In the
former case, we establish a separation in the minimax expected suboptimality of learners in the
no-interaction and active settings. We show upper bounds for BC under the linear expert setting
and show that this quadratic dependence on H can be broken in the presence of parameter sharing.
Finally, we study the known transition setting, and introduce a problem known as confidence set
linear classification which extends the approach of simulating artificial trajectories to the function
approximation setting.
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