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ABSTRACT

Solving systems of linear equations is a fundamental problem, but it can be compu-
tationally intensive for classical algorithms in high dimensions. Existing quantum
algorithms can achieve exponential speedups for the quantum linear system problem
(QLSP) in terms of the problem dimension, but even such a theoretical advantage
is bottlenecked by the condition number of the coefficient matrix. In this work,
we propose a new quantum algorithm for QLSP inspired by the classical proximal
point algorithm (PPA). Our proposed method can be viewed as a meta-algorithm
that allows inverting a modified matrix via an existing QLSP solver, thereby
directly approximating the solution vector instead of approximating the inverse
of the coefficient matrix. By carefully choosing the step size η, the proposed
algorithm can effectively precondition the linear system to mitigate the dependence
on condition numbers that hindered the applicability of previous approaches. Im-
portantly, this is the first framework for QLSP where a tunable parameter η allows
the user to control the trade-off between the runtime and the approximation error.

1 INTRODUCTION

Background. Solving systems of linear equations is a fundamental problem with many applications
spanning science and engineering. Mathematically, for a given (Hermitian) matrix A ∈ CN×N and
vector b ∈ CN , the goal is to find theN -dimensional vector x⋆ that satisfiesAx⋆ = b. While classical
algorithms, such as Gaussian elimination (Gauss, 1877; Higham, 2011), conjugate gradient method
(Hestenes & Stiefel, 1952), LU factorization (Schwarzenberg-Czerny, 1995; Shabat et al., 2018),
QR factorization (Francis, 1961; Kublanovskaya, 1962), and iterative Krylov subspace methods
(Krylov, 1931; Nocedal & Wright, 1999), can solve this problem, their complexity scales (at worst)
cubically with N , the dimension of A, motivating the development of quantum algorithms that could
potentially achieve speedups.

Indeed, for the quantum linear system problem (QLSP) in Definition 1,1 Harrow, Hassidim, and
Lloyd (a.k.a. the HHL algorithm) (Harrow et al., 2009) showed that the dependence on the problem
dimension exponentially reduces to O (poly log(N)), with query complexity of O(κ2/ε), under
some (quantum) access model for A and b (c.f., Definitions 2 and 3). Here, κ is the condition number
of A, defined as the ratio of the largest to the smallest singular value of A. Subsequent works, such as
the work by Ambainis (Ambainis, 2012) and by Childs, Kothari, and Somma (Childs et al., 2017)
(a.k.a. the CKS algorithm) improve the dependence on κ and ε; see Table 1. The best quantum
algorithm for QLSP is based on the discrete adiabatic theorem (Costa et al., 2022), achieving the
query complexity of O(κ · log(1/ε)), matching the lower bound (Orsucci & Dunjko, 2021).2

Solving QLSP is a fundamental subroutine in many quantum algorithms. For instance, it is used in
quantum recommendation systems (Kerenidis & Prakash, 2016), quantum SVM (Rebentrost et al.,
2014), unsupervised learning (Wiebe et al., 2014), and solving differential equations (Liu et al.,
2021), to name a few. Hence, improving the overall runtime of a generic QLSP solver is crucial in
developing more sophisticated and efficient quantum algorithms.

1Note that QLSP is BQP-complete (Dervovic et al., 2018; Prasad & Zhuang, 2022).
2This also matches the iteration complexity of the (classical) conjugate gradient method (Hestenes & Stiefel,

1952).
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Challenges in existing methodologies. A common limitation of the existing quantum algorithms
is that the dependence on the condition number κ must be small to achieve the quantum advantage.
To put more context, for any quantum algorithm in Table 1 to achieve an exponential advantage
over classical algorithms, κ needs to be in the order of poly log(N), where N is the dimension of A.
For instance, for N = 103, κ needs to be around 4 to exhibit the exponential advantage. However,
condition numbers are often large in real-world problems (Papyan, 2020).

Moreover, it was proven (Orsucci & Dunjko, 2021, Proposition 6) that for QLSP, even when A is
positive-definite, the dependence on condition number cannot be improved from O(κ). This is in
contrast to the classical algorithms, such as the conjugate gradient method, which achieves O(

√
κ)

reduction in complexity for the linear systems of equations with A ≻ 0. Such observation reinforces
the importance of alleviating the dependence on the condition number κ for quantum algorithms,
which is our aim.

Our contributions. We present a novel meta-algorithm for solving the QLSP based on the proximal
point algorithm (PPA) (Rockafellar, 1976; Güler, 1991); see Algorithm 1. Notably, in contrast to some
existing methods that approximate A−1 (Harrow et al., 2009; Ambainis, 2012; Childs et al., 2017;
Gribling et al., 2021; Orsucci & Dunjko, 2021), our algorithm directly approximates x⋆ = A−1b
through an iterative process based on PPA. Classically, PPA is known to improve the “conditioning”
of the problem at hand, compared to the gradient descent (Toulis et al., 2014; Toulis & Airoldi, 2017;
Ahn & Sra, 2022); it can also be accelerated (Güler, 1992; Kim et al., 2022).

An approximate proximal point algorithm for classical convex optimization has been proposed under
the name of “catalyst” (Lin et al., 2015) in the machine learning community. Our proposed method
operates similarly and can be viewed as a generic acceleration scheme for QLSP where one can plug
in different QLSP solver –e.g., HHL, CKS– to achieve generic (constant-level) acceleration. In
Figure 1, we illustrate the case where the best quantum algorithm for QLSP (Costa et al., 2022),
based on the discrete adiabatic theorem, is utilized as a subroutine for Algorithm 1. The improvement
in the query complexity compared to the original algorithm to achieve a fixed accuracy increases as κ
increases.

Figure 1: Query complexity scaling with respect
to the condition number κ. Here, the best quan-
tum algorithm (Costa et al., 2022) is used as
QLSP solver for the subroutine in Algorithm 1.
Simply by “wrapping” the QLSP solver, one
can achieve much better scaling with respect to the
condition number κ.

Intuitively, by the definition of PPA detailed in
Section 3, our proposed method allows to invert
a modified matrix I + ηA and arrive at the same
solution A−1b, as shown below:
xt+1 = (I + ηA)−1(xt + ηb) =

η→∞
A−1b.

Yet, the key feature and the main distinction
here is the introduction of a tunable (step size)
parameter η that allows pre-conditioning the lin-
ear system. By carefully choosing η, we can
invert the modified matrix I + ηA that is bet-
ter conditioned than A, thereby mitigating the
dependence on κ of the existing quantum algo-
rithms; see also Remark 3 and Figure 1.

Our meta-algorithmic framework complements
and provides advantages over prior works on
QLSP. Most importantly, it alleviates the strict
requirements on the condition number, enabling
quantum speedups for a broader class of prob-
lems where κ may be large. Moreover, the η
parameter can be tuned to balance the conver-
gence rate and precision demands, providing greater flexibility in optimizing the overall algorithmic
complexity.

In summary, our contributions and findings are as follows:

• We propose a meta-algorithmic framework for the quantum linear system problem (QLSP) based
on the proximal point algorithm. Unlike existing quantum algorithms for QLSP, which rely on
different unitary approximations of A−1, our proposed method allows to invert a modified matrix
with a smaller condition number (c.f., Remark 3 and Lemma 1), when A is positive-definite.
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• To our knowledge, this is the first framework for QLSP where a tunable parameter η allows the
user to control the trade-off between the runtime (query complexity) and the approximation error
(solution quality). Importantly, there exist choices of η > 0 that allow to decrease the runtime
while maintaining the same error level (c.f., Theorem 3).

• Our proposed method allows to achieve significant constant-level improvements in the query
complexity, even compared to the best quantum algorithm for QLSP (Costa et al., 2022), simply by
using it as a subroutine of Algorithm 1. This is possible as the improvement “grows faster” than
the overhead (c.f., Figure 2 and Theorem 6).

2 PROBLEM SETUP AND RELATED WORK

Notation. Matrices are represented with uppercase letters as in A ∈ CN×N ; vectors are represented
with lowercase letters as in b ∈ CN , and are distinguished from scalars based on the context. The
condition number of a matrix A, denoted as κ, is the ratio of the largest to the smallest singular value
of A. We denote ∥ · ∥ as the Euclidean ℓ2-norm. Qubit is the fundamental unit in quantum computing,
analogous to the bit in classical computing. The state of a qubit is represented using the bra-ket
notation, where a single qubit state |ψ⟩ ∈ C2 can be expressed as a linear combination of the basis
states |0⟩ = [0 1]⊤ ∈ C2 and |1⟩ = [1 0]⊤ ∈ C2, as in |ψ⟩ = α|0⟩+ β|1⟩; here, α, β ∈ C are called
amplitudes and encode the probability of the qubit collapsing to either, such that |α|2 + |β|2 = 1.
Thus, |ψ⟩ represents a normalized column vector by definition. |·⟩ is a column vector (called bra),
and its conjugate transpose (called ket), denoted by ⟨·|, is defined as ⟨·| = |·⟩∗. Generalizing the
above, an n-qubit state is a unit vector in n-qubit Hilbert space, defined as the Kronecker product of
n single qubit states, i.e., H = ⊗n

i=1C2 ∼= C2n . It is customary to write 2n = N . Quantum states
can be manipulated using quantum gates, represented by unitary matrices that act on the state vectors.
For example, a single-qubit gate U ∈ C2×2 acting on a qubit state |ψ⟩ transforms it to U |ψ⟩, altering
the state’s probability amplitudes according to the specific operation represented by U .

2.1 THE QUANTUM LINEAR SYSTEM PROBLEM

In the quantum setting, the goal of the quantum linear system problem (QLSP) is to prepare a quantum
state proportional to the vector x⋆. That is, we want to output |x⋆⟩ :=

∑
i x

⋆
i |i⟩

∥
∑

i x
⋆
i |i⟩∥

where the vector

x⋆ = [x⋆1, . . . , x
⋆
N ]⊤ satisfies Ax⋆ = b. Formally, we define the QLSP problem as below.

Definition 1 (Quantum Linear System Problem (Childs et al., 2017)). Let A be an N ×N Hermitian
matrix satisfying ∥A∥ = 1 with condition number κ and at most s nonzero entries in any row or
column. Let b be an N -dimensional vector, and let x⋆ := A−1b. We define the quantum states |b⟩
and |x⋆⟩ as in:

|b⟩ :=
∑N−1

i=0 bi|i⟩∥∥∥∑N−1
i=0 bi|i⟩

∥∥∥ and |x⋆⟩ :=
∑N−1

i=0 x⋆i |i⟩∥∥∥∑N−1
i=0 x⋆i |i⟩

∥∥∥ . (1)

Given access to A via PA in Definition 3 or UA in Definition 4, and access to the state |b⟩ via PB in
Definition 2, the goal of QLSP is to output a state |x̃⟩ such that ∥|x̃⟩ − |x⋆⟩∥ ⩽ ε.

As in previous works (Harrow et al., 2009; Childs et al., 2017; Ambainis, 2012; Gribling et al.,
2021; Orsucci & Dunjko, 2021; Costa et al., 2022), we assume that access to A and b is provided by
black-box subroutines that we detail below. We start with the state preparation oracle for the vector
b ∈ CN .

Definition 2 (State preparation oracle (Harrow et al., 2009)). Given a vector b ∈ CN , there exists a
procedure PB that prepares the state |b⟩ :=

∑
i bi|i⟩

∥
∑

i bi|i⟩∥
in time O(poly log(N)).

We assume two encoding models for A: the sparse-matrix-access in Definition 3 denoted by PA, and
the matrix-block-encoding model (Gilyén et al., 2019; Low & Chuang, 2019) in Definition 4, denoted
by UA, respectively.

Definition 3 (Sparse matrix access (Childs et al., 2017)). Given a N ×N Hermitian matrix A with
operator norm ∥A∥ ⩽ 1 and at most s nonzero entries in any row or column, PA allows the following

3
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QLSP solver Query Complexity Key Technique/Result

HHL (Harrow et al., 2009) O
(
κ2/ε

)
First quantum algorithm for QLSP

Ambainis (Ambainis, 2012) O
(
κ log3(κ)/ε3

)
Variable Time Amplitude Amplification

CKS (Childs et al., 2017) O (κ · poly log(κ/ε)) (Truncated) Chebyshev bases via LCU
Subaşı et al. (Subaşı et al., 2019) O ((κ log κ)/ε)) Adiabatic Randomization Method

An & Lin (An & Lin, 2022) O (κ · poly log(κ/ε)) Time-Optimal Adiabatic Method
Lin & Tong (Lin & Tong, 2020) O (κ · log(κ/ε)) Zeno Eigenstate Filtering
Costa, et al. (Costa et al., 2022) O (κ · log(1/ε)) Discrete Adiabatic Theorem

Ours κ → κ(1+η)
κ+η

for all above Proximal Point Algorithm

Table 1: Query complexities and key results used in related works on QLSP. Our proposed framework
in Algorithm 1 allows to improve the dependence on the condition number κ for any QLSP solver,
so long as the input matrix A is positive-definite.

mapping:

|j, ℓ⟩ 7→ |j, ν(j, ℓ)⟩ ∀j ∈ [N ] and ℓ ∈ [s], (2)
|j, k, z⟩|0⟩ 7→ |j, k, z ⊕Ajk⟩ ∀j, k ∈ [N ], (3)

where ν : [N ]× [s]→ [N ] in (2) computes the row index of the ℓth nonzero entry of the jth column,
and the third register of (3) holds a bit string representing the entry of Ajk.
Definition 4 (Matrix block-encoding (Gilyén et al., 2019)). A unitary operator UA acting on n+ c
qubits is called an (α, c, ε)-matrix-block-encoding of a n-qubit operator A if

∥A− α((⟨0c| ⊗ I) UA (|0c⟩ ⊗ I))∥ ⩽ ε.

The above can also be expressed as follows:

UA =

[
Ã/α ∗
∗ ∗

]
with ∥Ã−A∥ ⩽ ε,

where ∗’s denote arbitrary matrix blocks with appropriate dimensions.

In (Childs et al., 2017), it was shown that a (s, 1, 0)-matrix-block-encoding of A is possible using
a constant number of calls to PA in Definition 3 (and O(poly(n)) extra elementary gates). In
short, PA in Definition 3 implies efficient implementation of UA in Definition 4 (c.f., (Gilyén et al.,
2019, Lemma 48)). We present both for completeness as different works rely on different access
models; however, our proposed meta-algorithm can provide generic acceleration for any QLSP solver,
regardless of the encoding method.

2.2 RELATED WORK

Quantum algorithms. We summarize the related quantum algorithms for QLSP and their query
complexities in Table 1; all QLSP solvers share the exponential improvement on the input di-
mension, O(poly log(N)). The HHL algorithm (Harrow et al., 2009) utilizes quantum subroutines
including (i) Hamiltonian simulation (Feynman, 1982; Lloyd, 1996; Childs et al., 2018) that applies
the unitary operator eiAt to |b⟩ for a superposition of different times t, (ii) phase estimation (Kitaev,
1995) that allows to decompose |b⟩ into the eigenbasis of A and to find its corresponding eigenvalues,
and (iii) amplitude amplification (Brassard & Hoyer, 1997; Grover, 1998; Brassard et al., 2002) that
allows to implement the final state with amplitudes the same with the elements of x⋆. Subsequently,
(Ambainis, 2012) achieved a quadratic improvement on the condition number at the cost of worse
error dependence; the main technical contribution was to improve the amplitude amplification, the
previous bottleneck. CKS (Childs et al., 2017) significantly improved the suboptimality by the linear
combination of unitaries. We review these subroutines in the appendix.

(Costa et al., 2022) is the state-of-the-art QLS algorithm based on the adiabatic framework, which was
spearheaded by (Subaşı et al., 2019) and improved in (An & Lin, 2022; Lin & Tong, 2020). These
are significantly different from the aforementioned HHL-based approaches. Importantly, Algorithm 1
is oblivious to such differences and provides generic acceleration.

4
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Lower bounds. Along with the proposal of the first quantum algorithm for QLSP, (Harrow et al.,
2009) also proved the lower bound of Ω(κ) queries to the entries of the matrix is needed for general
linear systems. In (Orsucci & Dunjko, 2021, Proposition 6), this lower bound was surprisingly
extended to the case of positive-definite systems. This is in contrast to the classical optimization
literature, where methods such as the conjugate gradient method (Hestenes & Stiefel, 1952) achieve√
κ-acceleration for positive-definite systems.

3 THE PROXIMAL POINT ALGORITHM FOR QLSP

We now introduce our proposed methodology, summarized in Algorithm 1. At a high level, our
method can be viewed as a meta-algorithm, where one can plug in any existing QLSP solver as a
subroutine to achieve generic acceleration. We first review the proximal point algorithm (PPA), a
classical optimization method on which Algorithm 1 is based.

3.1 THE PROXIMAL POINT ALGORITHM

We take a step back from the QLSP in Definition 1 and introduce the proximal point algorithm (PPA),
a fundamental optimization method in convex optimization (Rockafellar, 1976; Güler, 1991; Parikh
et al., 2014; Bauschke & Combettes, 2019). PPA is an iterative algorithm that proceeds by minimizing
the original function plus an additional quadratic term, as in:

xt+1 = argmin
x

{
f(x) +

1

2η
∥x− xt∥22

}
. (4)

As a result, it changes the “conditioning” of the problem; if f(·) is convex, the optimization problem
in (4) can be strongly convex (Ahn & Sra, 2022). By the first-order optimality condition (Boyd &
Vandenberghe, 2004, Eq. (4.22)), (4) can be written in the following form, also known as the implicit
gradient descent (IGD):

xt+1 = xt − η∇f(xt+1). (5)

(5) is an implicit method and generally cannot be implemented. However, the case we are interested
in is the quadratic minimization problem:

min
x
f(x) =

1

2
x⊤Ax− b⊤x. (6)

Then, we have the closed-form update for (5) as follows:

xt+1 = xt − η(Axt+1 − b) = xt − ηA(xt+1 − x⋆).

In particular, by rearranging and unfolding, we have

xt+1 = (I + ηA)−1(xt + ηb) = · · · = (I + ηA)−(t+1)x0 + ηb

t+1∑
k=1

(I + ηA)−k. (7)

The above expression sheds some light on how applying PPA can differ from simple inversion: A−1b.
In particular, PPA enables to invert a modified matrix I + ηA based on η; see also Remark 3 below.

Further, since b = Ax⋆, we can equivalently express the series of operations in (7) as follows:

xt+1 − x⋆ = (I + ηA)−1(xt − x⋆) = · · · = (I + ηA)−t(x0 − x⋆). (8)

The above expression helps compute the number of iterations required for PPA, given η > 0, for
finding ε-approximate solution, as we detail in Section 4.

3.2 META-ALGORITHM FOR QLSP VIA PPA

We present our proposed method, which is extremely simple as summarized in Algorithm 1.

Line 2 is the cornerstone of the algorithm where one can employ any QLSP solver –like HHL
(Harrow et al., 2009), CKS (Childs et al., 2017) or the recent work based on discrete adiabatic approach
(Costa et al., 2022)– to the (normalized) matrix (I + ηA)/∥I + ηA∥, enabled by the PPA approach.
In other words, line 3 can be seen as the output of applying QLSP solver( I+ηA

∥I+ηA∥ , |x0 + ηb⟩). We
make some remarks on the input.

5
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Algorithm 1 Proximal Point Algorithm for the Quantum Linear System Problem

1: Input: An oraclePη,A that prepares sparse-access or block-encoding of I+ηA
∥I+ηA∥ (c.f., Definition 3

and Definition 4); a state preparation oracle Pb,x0,η that prepares |x0 + ηb⟩ (c.f., Definition 2);
and a tunable step size η > 0.

2: Subroutine: Invoke any QLSP solver such that
∣∣ψI+ηA,x0+ηb

〉
≈

∣∣∣( I+ηA
∥I+ηA∥

)−1
(x0 + ηb)

〉
.

3: Output: Normalized quantum state
∣∣ψI+ηA,x0+ηb

〉
.

4: Benefit: Improved dependence on condition number as in Remark 3.

Remark 1 (Access to (I + ηA)/∥I + ηA∥). Our algorithm necessitates an oracle Pη,A, which can
provide either sparse access to (I + ηA)/∥I + ηA∥ (as in Definition 3) or its block encoding (as
in Definition 4). For sparse access to (I + ηA)/∥I + ηA∥, direct access is feasible from sparse
access to A, when all diagonal entries of A are non-zero. Specifically, the access described in (3) is
identical to that of A, while the access in (2) modifies Ajj to (1 + ηAjj)/∥I + ηA∥. If A contains
zero diagonal entries, sparse access to (I + ηA)/∥I + ηA∥ requires only two additional uses of (3).

For block encoding, (I + ηA)/∥I + ηA∥ can be achieved through a linear combination of block-
encoded matrices, as demonstrated in (Gilyén et al., 2019, Lemma 52). This method allows straight-
forward adaptation of existing data structures that facilitate sparse-access or block-encoding of A to
also support (I + ηA)/∥I + ηA∥.
In addition, original data or data structures that provide sparse access or block-encoding of A can be
easily modified for access to (I + ηA)/∥I + ηA∥. For instance, suppose that we are given a matrix
as a sum of multiple small matrices as in the local Hamiltonian problem or Hamiltonian simulation
(see (Nielsen & Chuang, 2001) for an introduction). Then the sparse access and block encoding of
both A and (I + ηA)/∥I + ηA∥ can be efficiently derived from the sum of small matrices.

Remark 2 (Access to |x0 + ηb⟩). We prepare the initial state |x0 + ηb⟩, instead of |b⟩, reflecting the
PPA update in (7). For this step, we assume there exists an oracle Pb,x0,η such that |x0 + ηb⟩ can be
efficiently prepared similarly to Definition 2; otherwise, we can simply initialize x0 with zero vector.

Since we are inverting the (normalized) modified matrix I+ηA
∥I+ηA∥ , the spectrum changes as follows.

Lemma 1. Let A be an N ×N Hermitian positive-definite matrix satisfying ∥A∥ = 1 with condition
number κ. Then, the condition number of the modified matrix in Algorithm 1, I+ηA

∥I+ηA∥ , is given by

κ̂ = κ(1+η)
κ+η .

Notice that the modified condition number κ̂ depends both on κ and the step size parameter η for
PPA. As a result, η plays a crucial role in the overall performance of Algorithm 1. The introduction
of the tunable parameter η in the context of QLSP is a main property that differentiates Algorithm 1
from other quantum algorithms. We summarize the trade-off of η in the following remark.

Remark 3. The modified condition number, κ̂ = κ(1+η)
κ+η , in conjunction with the PPA convergence

in (8) introduces a trade-off based on the tunable parameter η.

• Large η regime: setting large η allows PPA to converge fast, as can be seen in (15). On the other
hand, the benefit of the modified condition number diminishes and recovers the original κ:

κ̂ =
κ(1 + η)

κ+ η
−→
η→∞

κ,

• Small η regime: setting small η slows down the convergence rate of PPA and requires more number
of iterations, as can be seen in (15). On the other hand, the modified condition number becomes
increasingly better conditioned, as in:

κ̂ =
κ(1 + η)

κ+ η
−→
η→0

1.

6
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4 THEORETICAL ANALYSIS

As shown in Algorithm 1 as well as the PPA iteration explained in (7), the main distinction of
our proposed method from the existing QLSP algorithms is that we invert the modified matrix
(I + ηA)/∥I + ηA∥ instead of the original matrix A. Precisely, our goal is to bound the following:∥∥∥∥ ∣∣ψI+ηA,x0+ηb

〉
−
∣∣( I+ηA
∥I+ηA∥

)−1
(x0 + ηb)

〉︸ ︷︷ ︸
QLSP solver error (c.f., Proposition 1)

+
∣∣( I+ηA
∥I+ηA∥

)−1
(x0 + ηb)

〉
− |A−1b⟩︸ ︷︷ ︸

PPA error (c.f., Proposition 2)

∥∥∥∥ ⩽ ε, (9)

where
∣∣ψI+ηA,x0+ηb

〉
is the output of Algorithm 1, and |A−1b⟩ = A−1b

∥A−1b∥ is the target quantum

state of QLSP based on Definition 1. In between, the term
∣∣( I+ηA
∥I+ηA∥

)−1
(x0 + ηb)

〉
is added and

subtracted, reflecting the modified inversion due to PPA. Specifically, the first pair of terms quantifies
the error coming from the inexactness of any QLSP solver used as a subroutine of Algorithm 1.
The second pair of terms quantifies the error coming from PPA in estimating A−1b, as can be seen in
(8). In the following subsections, we analyze each term carefully. Due to space limitations, we defer
all proofs to the appendix at the end of the paper.

Figure 2: How the “improvement” term, the “overhead” term, and their sum “total” allows improve-
ment compared to the baselines from (Childs et al., 2017) and (Costa et al., 2022) (c.f., Theorem 6).
Right panel: using CKS (Childs et al., 2017) as baseline (c.f., Theorem 4); Left panel: using (Costa
et al., 2022) as baseline (c.f., Theorem 5). The key insight is that the rate of “improvement” is
faster than the rate of “overhead,” which plateaus quickly thanks to the logarithm as can be seen in
Theorem 6.

4.1 INVERTING THE MODIFIED MATRIX (I + ηA)/∥I + ηA∥

In the first part, we apply any QLSP solver to invert the modified matrix (I + ηA)/∥I + ηA∥.
Importantly, we first need to encode it into a quantum computer, and this requires normalization so
that the resulting encoded matrix is unitary, which is necessary for any quantum computer operation
(c.f., Remarks 1 and 2). As in this part we are simply invoking existing QLSP solver, we just have
to control the error ε1 and its contribution to the final accuracy ε, as summarized below.

Proposition 1 (QLSP solver error). Assume access to the oracle Pη,A in Algorithm 1, similarly
to the Definition 3 or 4 (c.f., Remark 1). Further, assume access to the oracle Pb,x0,η similarly to the
Definition 2 (c.f., Remark 2), respectively. Then, there exists quantum algorithms, such as the ones in
Table 1, satisfying ∥∥∥∥∣∣∣ψI+ηA,x0+ηb

〉
−

∣∣∣( I+ηA
∥I+ηA∥

)−1
(x0 + ηb)

〉∥∥∥∥ ⩽ ε1. (10)

Example 1 (CKS polynomial (Childs et al., 2017)). CKS performed the following polynomial
approximation of A−1:

A−1 ≈ P (A) =
∑
i

αiTi(A), (11)

7
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where Ti denotes the Chevyshev polynomials (of the first kind). Then, given that ∥P (A)−A−1∥ ⩽
ε1 <

1
2 , (Childs et al., 2017, Proposition 9) proves the following:∥∥∥∥∥ P (A)|ϕ⟩∥∥P (A)|ϕ⟩∥∥ − A−1|ϕ⟩∥∥A−1|ϕ⟩∥∥

∥∥∥∥∥ ⩽ 4ε1. (12)

Adapting Example 1 to Algorithm 1. The approximation in (11) is only possible when the norm of
the matrix to be inverted is upper-bounded by 1. Hence, we can use the following approximation:

∥I + ηA∥−1
∑
i

αiTi
(

I + ηA

∥I + ηA∥

)
= ∥I + ηA∥−1 · P

(
I + ηA

∥I + ηA∥

)
, (13)

which allows similar step as (12) to hold, and further allows the dependence on κ for the CKS
algorithm to be alleviated as summarized in Lemma 1; see also the illustration in Figure 2 (right).

4.2 APPROXIMATING x⋆ = A−1b VIA PPA

For the PPA error (second pair of terms in (9)), the step size η needs to be properly set up so that a
single step of PPA, i.e., x1 = (I + ηA)−1(x0 + ηb) is close enough to A−1b = x⋆. To achieve that,
observe from (8):

∥xt+1 − x⋆∥ ⩽ ∥(I + ηA)−t∥ · ∥x0 − x⋆∥ ⩽
1

(1 + ησmin)t
∥x0 − x⋆∥, (14)

where σmin is the smallest singular value of A. We desire the RHS to be less than ε2. Denoting
∥x0 − x⋆∥ := d and using σmin = 1/κ (c.f., Definition 1), we can compute the lower bound on the
number of iterations t as:

d

(1 + η/κ)t
⩽ ε2 =⇒

log( d
ε2
)

log(1 + η
κ )

⩽ t. (15)

Based on the above analysis, we can compute the number of iterations t required to have ε-optimal
solution of the quadratic problem in (6). Here, (15) is well defined in the sense that the lower bound
on t is positive, as long as η > 0. In other words, if the LHS of (15) is less than 1, that means PPA
converges to ε2-approximate solution in one step, with a proper step size.

Again, our goal is to achieve (9). Hence, we have to characterize how (14) results in the proximity in
corresponding normalized quantum states. We utilize Lemma 2 below.
Lemma 2. Let x and y be two vectors. Suppose ∥x− y∥ ⩽ ϵ for some small positive scalar ϵ. Then,
the distance between the normalized vectors satisfies the following:∥∥∥∥ x

∥x∥
− y

∥y∥

∥∥∥∥ ⩽
ϵ√

∥x∥ · ∥y∥
.

Now, we characterize the error of the normalized quantum state of as an output of PPA.

Proposition 2. Running the PPA in (7) for a single iteration with η = κ
(

d
ε2
− 1

)
, where d :=

∥x0 −A−1b∥, results in the normalized quantum state satisfying:∥∥∥∣∣( I+ηA
∥I+ηA∥

)−1
(x0 + ηb)

〉
−
∣∣A−1b〉∥∥∥ ⩽

ε2
Ψ
, (16)

where Ψ :=
√
∥(I + ηA)−1(x0 + ηb)∥ · ∥A−1b∥.

4.3 OVERALL COMPLEXITY AND IMPROVEMENT

Equipped with Propsitions 1 and 2, we arrive at the following theorem.
Theorem 3 (Main result). Consider solving the QLSP problem in Definition 1 with Algorithm 1, of
which the approximation error ε can be decomposed as (9), recalled below:∥∥∥∥ ∣∣ψI+ηA,x0+ηb

〉
−
∣∣( I+ηA
∥I+ηA∥

)−1
(x0 + ηb)

〉︸ ︷︷ ︸
QLSP solver error ⩽ ε1 (c.f., Proposition 1)

+
∣∣( I+ηA
∥I+ηA∥

)−1
(x0 + ηb)

〉
− |A−1b⟩︸ ︷︷ ︸

PPA error ⩽ ε2/Ψ (c.f., Proposition 2)

∥∥∥∥ ⩽ ε.

8
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Suppose the existence of a QLSP solver satisfying the assumptions of Proposition 1 such that (10)
is satisfied with ε1 = ε/c, for c > 1. Further, suppose the assumptions of Proposition 2 hold, i.e.,

single-run PPA with η = κ
(

d
ε2
− 1

)
is implemented with accuracy ε2 =

(
1− 1

c

)
ε ·Ψ. Then, the

output of Algorithm 1 satisfies: ∥∥∥∥∣∣ψI+ηA,x0+ηb

〉
−

∣∣A−1b〉∥∥∥∥ ⩽ ε.

Moreover, the dependence on the condition number of QLSP solver changes from κ to κ(1+η)
κ+η .

We now further interpret the analysis from the previous subsection and compare it with other QLSP
algorithms (e.g., CKS (Childs et al., 2017)). We first recall the CKS query complexity below.
Theorem 4 (CKS complexity, Theorem 5 in (Childs et al., 2017)). The QLSP in Definition 1 can be
solved to ε-accuracy by a quantum algorithm that makes O

(
κ · poly log

(
κ
ε

))
queries to the oracles

PA in Definition 3 and PB in Definition 2.

It was an open question whether there exists a quantum algorithm that can match the lower bound:
Ω
(
κ · log

(
1
ε

))
(Orsucci & Dunjko, 2021). A recent quantum algorithm based on the complicated

discrete adiabatic theorem (Costa et al., 2022) was shown to match this lower bound. We recall their
result below.
Theorem 5 (Optimal complexity, Theorem 19 in (Costa et al., 2022)). The QLSP in Definition 1 can
be solved to ε-accuracy by a quantum algorithm that makes O

(
κ · log

(
1
ε

))
queries to the oracles

UA in Definition 4 and PB in Definition 2.

A natural direction to utilize Algorithm 1 is to use the best QLSP solver (Costa et al., 2022), which
has the query complexity O

(
κ · log

(
1
ε

))
from Theorem 5. We summarize this in the next theorem.

Theorem 6 (Improving the optimal complexity). Consider running Algorithm 1 with (Costa et al.,
2022) as the candidate for QLSP solver, which has the original complexity ofO

(
κ · log

(
1
ε

))
(c.f.,

Theorem 5). The modified complexity of Algorithm 1 via Theorem 3 can be written and decomposed
to:

κ̂ · log
( c
ε

)
=
κ(1 + η)

κ+ η
· log

(
1

ε

)
︸ ︷︷ ︸

Improvement

+
κ(1 + η)

κ+ η
· log(c)︸ ︷︷ ︸

Overhead

, (17)

where the “improvement” comes from κ̂ ⩽ κ, and the “overhead” is due to the weight of ε1 = ε/c

(and subsequently ε2 =
(
1− 1

c

)
ε ·Ψ) in Theorem 3. Further, with η = κ

(
d
ε2
− 1

)
, it follows

κ̂ =
κ(1 + η)

κ+ η
= κ− (c− 1)(κ− 1)Ψε

c · d
⩽ κ. (18)

We illustrate Theorem 6 in Figure 2 (left); thanks to the flexibility of Algorithm 1 and Theorem 3,
similar analysis can done with CKS (Childs et al., 2017) as the baseline, as illustrated in Figure 2
(right).

Intuitively, based on the decomposition in (17), we can see that the constant c –which controls the
weight of ε1 and ε2 in Theorem 3– enters a logarithmic term in the “overhead.” On the contrary, the
(additive) improvement in κ is proportional to the term (c−1)

c , as can be seen in (18).

5 CONCLUSION AND DISCUSSION

In this work, we proposed a novel quantum algorithm for solving the quantum linear systems problem
(QLSP), based on the proximal point algorithm (PPA). Specifically, we showed that implementing a
single-step PPA is possible by utilizing existing QLSP solvers. We designed a meta-algorithm where
any QLSP solver can be utilized as a subroutine to improve the dependence on the condition number.
Even the current best quantum algorithm (Costa et al., 2022) can be significantly accelerated via
Algorithm 1, especially when the problem is ill-conditioned.

9
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Limitations. A main limitation of this work is that only constant-level improvement is attained;
yet, due to the existing lower bound (Harrow et al., 2009; Orsucci & Dunjko, 2021), asymptotic
improvement is not possible. Another limitation is that only a single-step PPA is implemented in
Algorithm 1 at the moment. This necessitates η to be fairly large, as can be seen in (7) or (15). Then,
in conjunction with Remark 3 and (18), the benefit from the modified condition number κ̂ = κ(1+η)

κ+η

diminishes. To address this, two interesting future directions can be considered.

Implementing multi-step PPA. A natural idea is to implement multi-step PPA. Based on (7), two-step
PPA can be written as :

xt+1 = (I + ηA)−2(xt−1 + ηb) + (I + ηA)−1ηb

=
(
(I + ηA)−2 + (I + ηA)−1

)
ηb, (19)

where in the second step we set xt−1 with zero vector (i.e., initialization). As can be seen, this
requires implementing different powers (and their addition) of the modified matrix I + ηA, which is
possible via Gilyén et al. (2019, Lemmas 52 and 53).

In particular, one can show that the two-step PPA in (19) can satisfy a similar guarantee to Propostion 2

with smaller step size: η ⩾ κ
(√

d
ε2
− 1

)
. This leads to a bigger improvement in the modified

condition number:

κ̂ =
κ(1 + η)

κ+ η
= κ− (κ− 1)

√
(c− 1)Ψε

c · d
. (20)

However, we need to implement the addition of two block-encoded matrices that polynomially
approximate the inverse function (c.f., (19)), which roughly doubles the query complexity; it seems
unlikely that the improvement in κ̂ provided by two-step PPA in (20) can compensate for the
overhead of doubling the query complexity. Still, single-step PPA provides significant constant-level
improvement via warm starting, as we illustrate below.

Figure 3: Query complexity improvement with
warm start. Baseline (blue) is the optimal query
complexity Ω(κ log 1

ε ) (Costa et al., 2022). The
other three lines are the improved query com-
plexity in (17) using Algorithm 1 initialized with
{200, 500, 1000} steps of gradient descent.

Warm starting. The modified condition num-
ber κ̂ of (I + ηA)/∥I + ηA∥ relies on the ini-
tial point of PPA, x0. In particular, κ̂ can be
expressed as in (18) from Theorem 6, where
d := ∥x0 − x⋆∥. Therefore, a better initializa-
tion x0 via warm starting can result in a bigger
improvement in the overall complexity.

Let us provide a simple example. Suppose
we initialize x0 such that d := ∥x0 − x⋆∥ =
2 · κ−1κ · ε2. This is possible since ε2 is the level
of error achieved by the (classical) PPA with the
specified step size η (c.f., Proposition 2). As
κ−1
κ ≈ 1 for large κ, one can simply run a few

iterations of classical optimization (e.g., gradi-
ent descent), and initialize x0 with the output
that satisfies roughly twice the desired ε2 .

Then, based on (18), we have

κ̂ =
κ(1 + η)

κ+ η
= κ− (c− 1)(κ− 1)Ψε

c · d
d← 2(κ−1)ε2

κ= κ− κ

2
=
κ

2
.

That is, simply by running a few steps of gradient descent classically such that ∥xGD − x⋆∥ ≈ 2 · ε2,
and initializing x0 ← xGD in Algorithm 1, the overall query complexity can be halved compared to
the SOTA quantum algorithm (Costa et al., 2022).

We illustrate this in Figure 3. We generate (normalized) A and b from N (0, 1). We vary the
condition number of A to be κ ∈ {100, 200, 300, 400, 500}. We plot the overall query complexity of
Algorithm 1 with warm start, where x0 is initialized with the last iterate of {200, 500, 1000} steps of
gradient descent. The baseline (blue) is the optimal query complexity Ω(κ log 1

ε ) (Costa et al., 2022),
which can be effectively halved (red) via Algorithm 1.

10
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Yiğit Subaşı, Rolando D Somma, and Davide Orsucci. Quantum algorithms for systems of linear
equations inspired by adiabatic quantum computing. Physical review letters, 122(6):060504, 2019.

Panagiotis Toulis, Edoardo Airoldi, and Jason Rennie. Statistical analysis of stochastic gradient
methods for generalized linear models. In International Conference on Machine Learning, pp.
667–675. PMLR, 2014.

Panos Toulis and Edoardo M Airoldi. Asymptotic and finite-sample properties of estimators based on
stochastic gradients. The Annals of Statistics, 45(4):1694–1727, 2017.

Nathan Wiebe, Ashish Kapoor, and Krysta Svore. Quantum algorithms for nearest-neighbor methods
for supervised and unsupervised learning. arXiv preprint arXiv:1401.2142, 2014.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

SUPPLEMENTARY MATERIALS FOR
“A CATALYST FRAMEWORK FOR THE QUANTUM LINEAR SYSTEM PROBLEM

VIA THE PROXIMAL POINT ALGORITHM”

A BACKGROUND ON QLSP

A.1 DETAILS ON HHL AND CKS ALGORITHMS

Before we delve into the details of the proposed method, we briefly review the HHL and the CKS
algorithms. In short, such previous approaches deal with unitarily mapping x 7→ 1

x .

An overview of the HHL algorithm. Recalling the goal of this task, we are looking for the solution
vector x⋆ = A−1b. For simplicity, we assume A is Hermitian with its eigenvalues in the range
[1/κ, 1], i.e., A is positive definite, with condition number κ. As A is Hermitian, it admits the spectral
decomposition:

A =

N∑
j=1

λjuju
∗
j ,

where {uj}Nj=1 are the (orthonormal) eigenvector bases, and {λj}Nj=1 the corresponding eigenvalues.
Then, A−1 can be written with respect to these same bases as

A−1 =

N∑
j=1

1

λj
uju
∗
j .

Similarly, since {uj}Nj=1 form an orthonormal basis, the vector b can be written as:

b =

N∑
j=1

βjuj .

Putting together the above, the solution vector x⋆ = A−1b is written as:

A−1b =

N∑
j=1

βj
1

λj
uj . (21)

However, the maps A and A−1 are generally not unitary, preventing us from directly applying these
maps “quantumly” to the state |b⟩. To that end, one of the main observations of HHL was that
U = eiA (where i stands for the imaginary unit) is indeed unitary and has the same eigenvectors as
A (and A−1). Therefore, utilizing the “hamiltonian simulation” to implement U = eiA, and “phase
estimation” to estimate λj associated with the eigenvector |aj⟩, one can unitarily map:∑

j

βj |aj⟩
(

1
κλj
|0⟩+

√
1− 1

(κλj)2
|1⟩

)
7−→ 1

κ

∑
j

βj
1
λj
|aj⟩|0⟩︸ ︷︷ ︸

Proportional to A−1b

+|ϕ⟩|1⟩.

Finally, applying O(κ) rounds of amplitude amplification, we can amplify this part of the state to 1.
Some of these subroutines are reviewed in the next subsection.

An overview of the CKS contributions. Yet, the phase estimation is still a bottleneck. To address
this, Childs-Kothari-Somma (CKS hereafter) (Childs et al., 2017) improved the complexity of HHL,
where a significant improvement in the suboptimality is due to the Linear Combination of Unitaries
(LCU) and the variable time amplitude amplification from (Ambainis, 2012). We recall the (general)
LCU lemma below:

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Lemma 7 (Lemma 7 in (Childs et al., 2017)). Let M =
∑

i αiTi with αi > 0 for some operators
{Ti} which can be not necessarily unitary. Let {Ui} be a set of unitaries such that Ui|0t⟩|ϕ⟩ =
|0t⟩Ti|ϕ⟩ + |Φ⊥i ⟩ for all states |ϕ⟩, where t > 0 is an integer and (|0t⟩⟨0t| ⊗ I)|Φ⊥i ⟩ = 0. Given
a procedure Pb for creating a state |b⟩, there exists a quantum algorithm that exactly prepares the
quantum state M |b⟩/∥M |b⟩∥ with constant success probability making in expectation O(α/∥M |b⟩∥)
uses of Pb, U :=

∑
i |i⟩⟨i| ⊗ Ui, and V such that V |0m⟩ = 1√

α

∑
i

√
αi|i⟩.

In particular, CKS utilized (truncated) Chebyshev polynomials to choose Ti’s in M =
∑

i αiTi, to
approximate 1/x unitarily. The polynomial they used is the degree-(t− 1) Taylor expansion of 1/x
around the point x = 1:

pCKS
t :=

t−1∑
k=0

(1− x)k = 1−(1−x)t
x . (22)

The approximation of the above polynomial is characterized in the Lemma below:

Lemma 8 ((Childs et al., 2017)). For all x ∈ [1/κ, 1], pCKS
t with t ⩾ κ log(κ/ε) satisfies |pCKS

t − 1
x | ⩽

ε.

Gribling-Kerenidis-Szilágyi (Gribling et al., 2021) further improved the previous result by utilizing
the optimal polynomial, which are scaled Chebyshev polynomials (Sachdeva et al., 2014), in similar
spirit to the Chevyshev iterative method in the classical optimization.

A.2 SOME QUANTUM SUBROUTINES USED IN HHL (HARROW ET AL., 2009) AND CKS
(CHILDS ET AL., 2017)

Algorithm 2 Hamiltonian Simulation

Require: Hermitian matrix H , evolution time t, error tolerance ϵ, number of terms m
Ensure: Approximation of e−iHt

1: Decompose H into m terms: H =
∑m

j=1Hj , where each Hj is easy to simulate
2: Choose r, the number of Trotter-Suzuki steps, such that error ⩽ ϵ
3: for k = 1, 2, . . . , r do
4: Uk ← e−iH1t/re−iH2t/r · · · e−iHmt/r ▷ First-order Trotter-Suzuki decomposition
5: end for
6: Combine all Uk to form U =

∏r
k=1 Uk

7: return U as the approximate evolution operator

Algorithm 3 Phase Estimation

Require: U : Unitary operator
Require: |ψ⟩: Eigenvector of U
Require: t: Number of qubits for precision

1: Initialize t qubits in state |0⟩⊗t
2: Apply Hadamard gate to each qubit
3: Apply controlled-U2j gate for each qubit, where j is the qubit index
4: Apply inverse Quantum Fourier Transform (QFT)
5: Measure the t qubits
6: Let m be the measurement outcome
7: return m/2t ▷ Estimated phase
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Algorithm 4 Amplitude Amplification

Require: |ψ⟩: Initial state
Require: O: Oracle operator
Require: T : Number of iterations

1: |s⟩ ← 1√
N

∑
x |x⟩ ▷ Initialize uniform superposition

2: |ψ′⟩ ← |s⟩
3: for t = 1 to T do
4: |ψ′⟩ ← 2|s⟩⟨s| − I|ψ′⟩ ▷ Reflection about |s⟩
5: |ψ′⟩ ← O(|ψ′⟩) ▷ Apply the oracle operator
6: |ψ′⟩ ← 2|s⟩⟨s| − I|ψ′⟩ ▷ Reflection about |s⟩
7: end for
8: return |ψ′⟩ ▷ Amplified state

Algorithm 5 Linear Combination of Unitaries

Require: U1, U2, . . . , Um: unitary operators, α1, α2, . . . , αm: complex coefficients
Ensure: U =

∑m
j=1 αjUj

1: Prepare an (m + 1)-qubit state |0⟩|ψ0⟩, where |ψ0⟩ =
∑m

j=1

√
pj |j⟩ with pj =

|αj |2/
∑m

k=1 |αk|2
2: for j = 1 . . .m do
3: Apply the controlled unitary operation C(j)(Uj), where C(j) is controlled by the jth qubit of

the first register
4: end for
5: Perform the inverse quantum Fourier transform on the first register
6: Measure the first register to obtain an integer 0 ⩽ k ⩽ 2m − 1
7: Compute Uk =

∑m
j=1 αjU

k
j (mod 2m)

8: Apply Uk to the second register
9: return the state of the second register

B MISSING PROOFS

B.1 PROOF OF LEMMA 1

Proof. By the assumption on QLSP in Definition 1, the singular values of A is contained in the
interval

[
1
κ , 1

]
. Thus, for the normalized modified matrix, i.e., I+ηA

∥I+ηA∥ , the singular values are
contained in the interval

[
κ+η

κ(1+η) , 1
]
, by spectral mapping theorem. This leads to the modified

condition number κ̂ = κ(1+η)
κ+η .

B.2 PROOF OF LEMMA 2

Proof. We need to bound:

∥x̂− ŷ∥ =
∥∥∥∥ x

∥x∥
− y

∥y∥

∥∥∥∥ .
Consider the inner product form:∥∥∥∥ x

∥x∥
− y

∥y∥

∥∥∥∥2 = 2− 2

〈
x

∥x∥
,
y

∥y∥

〉
= 2− 2

⟨x, y⟩
∥x∥∥y∥

.

The inner product can be bounded using ∥x− y∥ ⩽ ϵ:

⟨x, y⟩ = 1

2

(
∥x∥2 + ∥y∥2 − ∥x− y∥2

)
⩾

1

2

(
∥x∥2 + ∥y∥2 − ϵ2

)
.
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Now, substituting this into the normalized inner product:

⟨x, y⟩
∥x∥∥y∥

⩾
1
2

(
∥x∥2 + ∥y∥2 − ϵ2

)
∥x∥∥y∥

=
1

2

(
∥x∥
∥y∥

+
∥y∥
∥x∥
− ϵ2

∥x∥∥y∥

)
.

Using ∥x∥∥y∥ +
∥y∥
∥x∥ ⩾ 2 from AM-GM inequality, we get:

⟨x, y⟩
∥x∥∥y∥

⩾ 1− ϵ2

2∥x∥∥y∥
.

Substituting the above back into the distance expression, we get:∥∥∥∥ x

∥x∥
− y

∥y∥

∥∥∥∥2 ⩽ 2− 2

(
1− ϵ2

2∥x∥∥y∥

)
=

ϵ2

∥x∥∥y∥
,

which implies the desired result: ∥∥∥∥ x

∥x∥
− y

∥y∥

∥∥∥∥ ⩽
ϵ√
∥x∥∥y∥

.

B.3 PROOF OF PROPOSITION 1

Proof. Since the input matrix I+ηA
∥I+ηA∥ is normalized, and due to the reasoning in Remark 1, we can

have sparse-acess or block-encoding of I+ηA
∥I+ηA∥ . Then, the result of Proposition 1 simply follows

from the result of each related work in Table 1.

B.4 PROOF OF PROPOSITION 2

Proof. As explained in Section 4.2 of the main text, we can compute the number of iterations for
PPA using (15), recalled below, which is based on (14).

d

(1 + η/κ)t
⩽ ε2 =⇒

log( d
ε2
)

log(1 + η
κ )

⩽ t.

In this work, since we are implementing a single-step PPA, we want t = 1 from (15). To achieve that,
we can have:

log

(
d

ε2

)
= log

(
1 +

η

κ

)
⇒

η = κ

(
d

ε2
− 1

)
.

It remains to invoke Lemma 2 to complete the proof.

B.5 PROOF OF THEOREM 3

Proof. Recall the decomposition:∥∥∥∥ ∣∣ψI+ηA,x0+ηb

〉
−
∣∣( I+ηA
∥I+ηA∥

)−1
(x0 + ηb)

〉︸ ︷︷ ︸
QLSP solver error ⩽ ε1

+
∣∣( I+ηA
∥I+ηA∥

)−1
(x0 + ηb)

〉
− |A−1b⟩︸ ︷︷ ︸

PPA error ⩽ ε2

∥∥∥∥ ⩽ ε.

The QLSP solver error can be provided by Proposition 1, with the accuracy of ε1 = ε/c, for c > 1.
Similarly, η is chosen based on Proposition 2, with ε2 =

(
1− 1

c

)
ε ·Ψ. Then, by adding the result

from each proposition, we have

ε1 +
ε2
Ψ

=
ε

c
+

(
1− 1

c

)
ε = ε.

Note that since QLSP solver is only called once in Algorithm 1, the final accuracy ε is the same
for the output of Algorithm 1 and the subroutine QLSP solver being called.
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B.6 PROOF OF THEOREM 6

(17) simply follows from plugging in the modified condition number κ̂, along with ε1 = ε/c. That is,

O
(
κ̂ · log

(
1

ε1

))
= O

(
κ(1 + η)

κ+ η
· log

( c
ε

))
= O

(
κ(1 + η)

κ+ η
· log

(
1

ε

)
+
κ(1 + η)

κ+ η
· log(c)

)
.

Note that similar analysis can be done for CKS (Childs et al., 2017), starting from O
(
κ̂ · log

(
κ̂
ε1

))
.

For (18), it follows from the below steps:

κ(1 + η)

κ+ η
=

1 + η

1 + η/κ

=
1 + κdc

(c−1)εΨ − κ
κdc

(c−1)εΨ

= κ− κ− 1
dc

(c−1)εΨ

= κ− (c− 1)εΨ(κ− 1)

dc
.
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