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ABSTRACT

Solving systems of linear equations is a fundamental problem, but it can be compu-
tationally intensive for classical algorithms in high dimensions. Existing quantum
algorithms can achieve exponential speedups for the quantum linear system problem
(QLSP) in terms of the problem dimension, but even such a theoretical advantage
is bottlenecked by the condition number of the coefficient matrix. In this work,
we propose a new quantum algorithm for QLSP inspired by the classical proximal
point algorithm (PPA). Our proposed method can be viewed as a meta-algorithm
that allows inverting a modified matrix via an existing QLSP_solver, thereby
directly approximating the solution vector instead of approximating the inverse
of the coefficient matrix. By carefully choosing the step size n, the proposed
algorithm can effectively precondition the linear system to mitigate the dependence
on condition numbers that hindered the applicability of previous approaches. Im-
portantly, this is the first framework for QLSP where a tunable parameter 7 allows
the user to control the trade-off between the runtime and the approximation error.

1 INTRODUCTION

Background. Solving systems of linear equations is a fundamental problem with many applications
spanning science and engineering. Mathematically, for a given (Hermitian) matrix A € CV*¥ and
vector b € CV, the goal is to find the /V-dimensional vector * that satisfies Ax* = b. While classical
algorithms, such as Gaussian elimination (Gauss, 1877; Higham, 2011), conjugate gradient method
(Hestenes & Stiefel, 1952), LU factorization (Schwarzenberg-Czerny, 1995; Shabat et al., 2018),
QR factorization (Francis, 1961; Kublanovskaya, 1962), and iterative Krylov subspace methods
(Krylov, 1931; Nocedal & Wright, 1999), can solve this problem, their complexity scales (at worst)
cubically with IV, the dimension of A, motivating the development of quantum algorithms that could
potentially achieve speedups.

Indeed, for the quantum linear system problem (QLSP) in Definition 1,' Harrow, Hassidim, and
Lloyd (a.k.a. the HHL algorithm) (Harrow et al., 2009) showed that the dependence on the problem
dimension exponentially reduces to O (poly log(N)), with query complexity of O(x?/¢), under
some (quantum) access model for A and b (c.f., Definitions 2 and 3). Here, « is the condition number
of A, defined as the ratio of the largest to the smallest singular value of A. Subsequent works, such as
the work by Ambainis (Ambainis, 2012) and by Childs, Kothari, and Somma (Childs et al., 2017)
(a.k.a. the CKS algorithm) improve the dependence on « and ¢; see Table 1. The best quantum
algorithm for QLSP is based on the discrete adiabatic theorem (Costa et al., 2022), achieving the
query complexity of O(k - log(1/¢)), matching the lower bound (Orsucci & Dunjko, 2021).

Solving QLSP is a fundamental subroutine in many quantum algorithms. For instance, it is used in
quantum recommendation systems (Kerenidis & Prakash, 2016), quantum SVM (Rebentrost et al.,
2014), unsupervised learning (Wiebe et al., 2014), and solving differential equations (Liu et al.,
2021), to name a few. Hence, improving the overall runtime of a generic QLSP_solver is crucial in
developing more sophisticated and efficient quantum algorithms.

"Note that QLSP is BQP-complete (Dervovic et al., 2018; Prasad & Zhuang, 2022).
>This also matches the iteration complexity of the (classical) conjugate gradient method (Hestenes & Stiefel,
1952).
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Challenges in existing methodologies. A common limitation of the existing quantum algorithms
is that the dependence on the condition number « must be small to achieve the quantum advantage.
To put more context, for any quantum algorithm in Table 1 to achieve an exponential advantage
over classical algorithms, x needs to be in the order of poly log(/N), where N is the dimension of A.
For instance, for N = 103, x needs to be around 4 to exhibit the exponential advantage. However,
condition numbers are often large in real-world problems (Papyan, 2020).

Moreover, it was proven (Orsucci & Dunjko, 2021, Proposition 6) that for QLSP, even when A is
positive-definite, the dependence on condition number cannot be improved from O(x). This is in
contrast to the classical algorithms, such as the conjugate gradient method, which achieves O(y/k)
reduction in complexity for the linear systems of equations with A > 0. Such observation reinforces
the importance of alleviating the dependence on the condition number x for quantum algorithms,
which is our aim.

Our contributions. We present a novel meta-algorithm for solving the QLSP based on the proximal
point algorithm (PPA) (Rockafellar, 1976; Giiler, 1991); see Algorithm 1. Notably, in contrast to some
existing methods that approximate A~ (Harrow et al., 2009; Ambainis, 2012; Childs et al., 2017;
Gribling et al., 2021; Orsucci & Dunjko, 2021), our algorithm directly approximates z* = A~1b
through an iterative process based on PPA. Classically, PPA is known to improve the “conditioning”
of the problem at hand, compared to the gradient descent (Toulis et al., 2014; Toulis & Airoldi, 2017,
Ahn & Sra, 2022); it can also be accelerated (Giiler, 1992; Kim et al., 2022).

An approximate proximal point algorithm for classical convex optimization has been proposed under
the name of “catalyst” (Lin et al., 2015) in the machine learning community. Our proposed method
operates similarly and can be viewed as a generic acceleration scheme for QLSP where one can plug
in different QLSP_solver —e.g., HHL, CKS- to achieve generic (constant-level) acceleration. In
Figure 1, we illustrate the case where the best quantum algorithm for QLSP (Costa et al., 2022),
based on the discrete adiabatic theorem, is utilized as a subroutine for Algorithm 1. The improvement
in the query complexity compared to the original algorithm to achieve a fixed accuracy increases as x
increases.

Intuitively, by the definition of PPA detailed in
Section 3, our proposed method allows to invert

a modified matrix I + 1A and arrive at the same Query compIeX|ty Scalmg with

solution A~'b, as shown below: - 20000 log(e/e) (Algorithm 1)
Topr = (I +nA) o +nb) = A7'b. % 1500/ k- log(1/€) (Costa et al. (2022))
1700 o
Yet, the key feature and the main distinction % 10001
here is the introduction of a tunable (step size) ;
parameter 1) that allows pre-conditioning the lin- & 500
ear system. By carefully choosing n, we can © W
invert the modified matrix I + nA that is bet- 01 ‘ | | ‘
ter conditioned than A, thereby mitigating the 500 1000 1500 2000

dependence on  of the existing quantum algo- Condition Number

rithms; see also Remark 3 and Figure 1. ]

S Figure 1: Query complexity scaling with respect
Our meta-algorithmic framework complements 1 she condition number . Here, the best quan-
and provides advantages over prior works on  tym algorithm (Costa et al,, 2022) is used as
QLSP. Most importantly, it alleviates the strict  o1,5p_solver for the subroutine in Algorithm 1.
requirements on the condition number, enabling Simply by “wrapping” the QLSP_solver, one

quantum speedups for a broader class of prob-  ¢an achieve much better scaling with respect to the
lems where x may be large. Moreover, the 7 condition number .

parameter can be tuned to balance the conver-
gence rate and precision demands, providing greater flexibility in optimizing the overall algorithmic
complexity.

In summary, our contributions and findings are as follows:

* We propose a meta-algorithmic framework for the quantum linear system problem (QLSP) based
on the proximal point algorithm. Unlike existing quantum algorithms for QLSP, which rely on
different unitary approximations of A~!, our proposed method allows to invert a modified matrix
with a smaller condition number (c.f., Remark 3 and Lemma 1), when A is positive-definite.
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* To our knowledge, this is the first framework for QLSP where a tunable parameter 1 allows the
user to control the trade-off between the runtime (query complexity) and the approximation error
(solution quality). Importantly, there exist choices of 77 > 0 that allow to decrease the runtime
while maintaining the same error level (c.f., Theorem 3).

* Our proposed method allows to achieve significant constant-level improvements in the query
complexity, even compared to the best quantum algorithm for QLSP (Costa et al., 2022), simply by
using it as a subroutine of Algorithm 1. This is possible as the improvement “grows faster” than
the overhead (c.f., Figure 2 and Theorem 6).

2 PROBLEM SETUP AND RELATED WORK

Notation. Matrices are represented with uppercase letters as in A € CV*¥; vectors are represented
with lowercase letters as in b € C¥, and are distinguished from scalars based on the context. The
condition number of a matrix A, denoted as &, is the ratio of the largest to the smallest singular value
of A. We denote || - || as the Euclidean ¢5-norm. Qubit is the fundamental unit in quantum computing,
analogous to the bit in classical computing. The state of a qubit is represented using the bra-ket
notation, where a single qubit state [¢)) € C? can be expressed as a linear combination of the basis
states [0) = [0 1]T € C%2and |1) = [1 0] € C2, asin [¢)) = a|0) + B|1); here, a, 8 € C are called
amplitudes and encode the probability of the qubit collapsing to either, such that |a|? + |3]? = 1.
Thus, |¢) represents a normalized column vector by definition. |) is a column vector (called bra),
and its conjugate transpose (called ker), denoted by (:|, is defined as (-| = |-)*. Generalizing the
above, an n-qubit state is a unit vector in n-qubit Hilbert space, defined as the Kronecker product of
n single qubit states, i.e., H = ®7_;C? = C?". It is customary to write 2" = N. Quantum states
can be manipulated using quantum gates, represented by unitary matrices that act on the state vectors.
For example, a single-qubit gate U € C2*2 acting on a qubit state |1)) transforms it to U|1)), altering
the state’s probability amplitudes according to the specific operation represented by U.

2.1 THE QUANTUM LINEAR SYSTEM PROBLEM

In the quantum setting, the goal of the quantum linear system problem (QLSP) is to prepare a quantum
state proportional to the vector z*. That is, we want to output |2*) := I % i“ >>” where the vector
x* = [2%,...,2%] " satisfies Az* = b. Formally, we define the QLSP problem as below.

Definition 1 (Quantum Linear System Problem (Childs et al., 2017)). Let A be an N x N Hermitian
matrix satisfying ||A|| = 1 with condition number k and at most s nonzero entries in any row or
column. Let b be an N-dimensional vector, and let x* := A~'b. We define the quantum states |b)
and |x*) as in:

|b) := 72 bili) and |x*) = —Zi\’olx ) )
[ =t v | =it il

Given access to A via P 4 in Definition 3 or Uy in Definition 4, and access to the state |b) via Pp in
Definition 2, the goal of QLSP is to output a state |Z) such that |||Z) — |x*)|| < e.

ey

As in previous works (Harrow et al., 2009; Childs et al., 2017; Ambainis, 2012; Gribling et al.,
2021; Orsucci & Dunjko, 2021; Costa et al., 2022), we assume that access to A and b is provided by
black-box subroutines that we detail below. We start with the state preparation oracle for the vector
beCN.

Definition 2 (State preparation oracle (Harrow et al., 2009)). Given a vector b € CV, there exists a

procedure Pp that prepares the state |b) := % in time O(polylog(N)).

We assume two encoding models for A: the sparse-matrix-access in Definition 3 denoted by P 4, and
the matrix-block-encoding model (Gilyén et al., 2019; Low & Chuang, 2019) in Definition 4, denoted
by U 4, respectively.

Definition 3 (Sparse matrix access (Childs et al., 2017)). Givena N x N Hermitian matrix A with
operator norm || A|| < 1 and at most s nonzero entries in any row or column, P 5 allows the following
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QLSP_solver Query Complexity Key Technique/Result
HHL (Harrow et al., 2009) o (nQ / 5) First quantum algorithm for QLSP
Ambainis (Ambainis, 2012) O (rklog®(k)/<?) Variable Time Amplitude Amplification
CKS (Childs et al., 2017) O (k - polylog(r/e)) (Truncated) Chebyshev bases via LCU
Subagi et al. (Subasi et al., 2019) O ((klogk)/e)) Adiabatic Randomization Method
An & Lin (An & Lin, 2022) O (k - polylog(r/€)) Time-Optimal Adiabatic Method
Lin & Tong (Lin & Tong, 2020) O (k - log(k/e)) Zeno Eigenstate Filtering
Costa, et al. (Costa et al., 2022 O (k-log(1l/¢)) Discrete Adiabatic Theorem
Ours K — NSTT) for all above Proximal Point Algorithm

Table 1: Query complexities and key results used in related works on QLSP. Our proposed framework
in Algorithm 1 allows to improve the dependence on the condition number & for any QLSP_solver,
so long as the input matrix A is positive-definite.

mapping:
14, 6) = 15,v(5,4)) Vj€[N]andl € [s], )
7, k,2)[0) = |5, k, 2 & Aji) Vi, k € [N], (©)

where v : [N] x [s] = [N] in (2) computes the row index of the {th nonzero entry of the jth column,
and the third register of (3) holds a bit string representing the entry of Ajy.

Definition 4 (Matrix block-encoding (Gilyén et al., 2019)). A unitary operator U acting on n + ¢
qubits is called an (o, ¢, €)-matrix-block-encoding of a n-qubit operator A if

[A—a(((0°|@ 1) Ua (|0°) @ 1)) <&
The above can also be expressed as follows:

Afo
*

uA[ j with ||A— Al <e,

where x’s denote arbitrary matrix blocks with appropriate dimensions.

In (Childs et al., 2017), it was shown that a (s, 1, 0)-matrix-block-encoding of A is possible using
a constant number of calls to P4 in Definition 3 (and O(poly(n)) extra elementary gates). In
short, P4 in Definition 3 implies efficient implementation of (/4 in Definition 4 (c.f., (Gilyén et al.,
2019, Lemma 48)). We present both for completeness as different works rely on different access
models; however, our proposed meta-algorithm can provide generic acceleration for any QLSP solver,
regardless of the encoding method.

2.2 RELATED WORK

Quantum algorithms. We summarize the related quantum algorithms for QLSP and their query
complexities in Table 1; all QLSP_solvers share the exponential improvement on the input di-
mension, O(poly log(V)). The HHL algorithm (Harrow et al., 2009) utilizes quantum subroutines
including (7) Hamiltonian simulation (Feynman, 1982; Lloyd, 1996; Childs et al., 2018) that applies
the unitary operator ¢*4* to |b) for a superposition of different times ¢, (74) phase estimation (Kitaev,
1995) that allows to decompose |b) into the eigenbasis of A and to find its corresponding eigenvalues,
and (4i7) amplitude amplification (Brassard & Hoyer, 1997; Grover, 1998; Brassard et al., 2002) that
allows to implement the final state with amplitudes the same with the elements of x*. Subsequently,
(Ambainis, 2012) achieved a quadratic improvement on the condition number at the cost of worse
error dependence; the main technical contribution was to improve the amplitude amplification, the
previous bottleneck. CKS (Childs et al., 2017) significantly improved the suboptimality by the linear
combination of unitaries. We review these subroutines in the appendix.

(Costa et al., 2022) is the state-of-the-art QLS algorithm based on the adiabatic framework, which was
spearheaded by (Subasi et al., 2019) and improved in (An & Lin, 2022; Lin & Tong, 2020). These
are significantly different from the aforementioned HHL-based approaches. Importantly, Algorithm 1
is oblivious to such differences and provides generic acceleration.
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Lower bounds. Along with the proposal of the first quantum algorithm for QLSP, (Harrow et al.,
2009) also proved the lower bound of (k) queries to the entries of the matrix is needed for general
linear systems. In (Orsucci & Dunjko, 2021, Proposition 6), this lower bound was surprisingly
extended to the case of positive-definite systems. This is in contrast to the classical optimization
literature, where methods such as the conjugate gradient method (Hestenes & Stiefel, 1952) achieve
\/r-acceleration for positive-definite systems.

3 THE PROXIMAL POINT ALGORITHM FOR QLSP

We now introduce our proposed methodology, summarized in Algorithm 1. At a high level, our
method can be viewed as a meta-algorithm, where one can plug in any existing QL.SP_solver as a
subroutine to achieve generic acceleration. We first review the proximal point algorithm (PPA), a
classical optimization method on which Algorithm 1 is based.

3.1 THE PROXIMAL POINT ALGORITHM

We take a step back from the QLSP in Definition | and introduce the proximal point algorithm (PPA),
a fundamental optimization method in convex optimization (Rockafellar, 1976; Giiler, 1991; Parikh
et al.,, 2014; Bauschke & Combettes, 2019). PPA is an iterative algorithm that proceeds by minimizing
the original function plus an additional quadratic term, as in:

. 1
Tpt1 :argmzln{f(a:)—l—%ﬂx—xtﬂg}. 4)

As aresult, it changes the “conditioning” of the problem; if f(-) is convex, the optimization problem
in (4) can be strongly convex (Ahn & Sra, 2022). By the first-order optimality condition (Boyd &
Vandenberghe, 2004, Eq. (4.22)), (4) can be written in the following form, also known as the implicit
gradient descent (IGD):

Ti41 = T — ﬂvf($t+1)~ (5)

(5) is an implicit method and generally cannot be implemented. However, the case we are interested
in is the quadratic minimization problem:

1
min f(x) = axTAJ: —b'z. (6)
Then, we have the closed-form update for (5) as follows:
Tyl = Tt — ’I](All't+1 — b) =Tt — 7’]A(£I/'t+1 — 1'*).

In particular, by rearranging and unfolding, we have
t+1
T = ([ +nA) My +ub) = = (I +0A) " T Vag +0p > (T+n4)~". @)
k=1
The above expression sheds some light on how applying PPA can differ from simple inversion: A~1b.
In particular, PPA enables to invert a modified matrix I + nA based on 7; see also Remark 3 below.

Further, since b = Axz*, we can equivalently express the series of operations in (7) as follows:
T — 2t =T +nA) oy —a*) =--- = (I +nA) " (xo — z¥). (8)

The above expression helps compute the number of iterations required for PPA, given > 0, for
finding e-approximate solution, as we detail in Section 4.

3.2 META-ALGORITHM FOR QLSP VIA PPA

We present our proposed method, which is extremely simple as summarized in Algorithm 1.

Line 2 is the cornerstone of the algorithm where one can employ any QLSP_solver —like HHL
(Harrow et al., 2009), CKS (Childs et al., 2017) or the recent work based on discrete adiabatic approach
(Costa et al., 2022)— to the (normalized) matrix (I +nA)/||I + nA||, enabled by the PPA approach.

In other words, line 3 can be seen as the output of applying QLSP,solver(%, |xo + nb)). We
make some remarks on the input.
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Algorithm 1 Proximal Point Algorithm for the Quantum Linear System Problem

1: Input: Anoracle P, 4 that prepares sparse-access or block-encoding of E= 1 + AH (c.f., Definition 3

and Definition 4); a state preparation oracle P, ,, ,, that prepares |z + nb) (c.f., Definition 2);
and a tunable step size > 0.

2: Subroutine: Invoke any QLSP_solver such that |¢1+7,A,x0+nb> ~ ‘(HﬁrnAH )71(% + nb)>.

3: Output: Normalized quantum state |w I+7 A,wo+nb>~
4: Benefit: Improved dependence on condition number as in Remark 3.

Remark 1 (Access to (I + nA)/||I + nA|). Our algorithm necessitates an oracle P, s, which can
provide either sparse access to (I + nA)/||I + nA|| (as in Definition 3) or its block encoding (as
in Definition 4). For sparse access to (I + nA)/|
access to A, when all diagonal entries of A are non-zero. Specifically, the access described in (3) is
identical to that of A, while the access in (2) modifies Aj; to (1 +nA;;) /|1 + nAl|. If A contains
zero diagonal entries, sparse access to (I +nA)/||I + nA|| requires only two additional uses of (3).

For block encoding, (I +nA)/||I + nA| can be achieved through a linear combination of block-
encoded matrices, as demonstrated in (Gilyén et al., 2019, Lemma 52). This method allows straight-
forward adaptation of existing data structures that facilitate sparse-access or block-encoding of A to
also support (I + nA)/||I + nA].

In addition, original data or data structures that provide sparse access or block-encoding of A can be
easily modified for access to (I +nA)/||I + nA||. For instance, suppose that we are given a matrix
as a sum of multiple small matrices as in the local Hamiltonian problem or Hamiltonian simulation
(see (Nielsen & Chuang, 2001) for an introduction). Then the sparse access and block encoding of
both A and (I +nA)/ ||I + nAl| can be efficiently derived from the sum of small matrices.

Remark 2 (Access to |zg + nb)). We prepare the initial state |xo + nb), instead of |b), reflecting the
PPA update in (7). For this step, we assume there exists an oracle Py 4 , such that |zo 4+ nb) can be
efficiently prepared similarly to Definition 2; otherwise, we can simply initialize xq with zero vector.

Since we are inverting the (normalized) modified matrix the spectrum changes as follows.

I+nA
[T+nAJ>
Lemma 1. Let A be an N x N Hermitian positive-definite matrix satisfying || A|| = 1 with condition

number k. Then, the condition number of the modified matrix in Algorithm I, %, is given by

~ _ k(14n)

R = W

Notice that the modified condition number  depends both on « and the step size parameter 7 for
PPA. As aresult, 1) plays a crucial role in the overall performance of Algorithm 1. The introduction
of the tunable parameter 7 in the context of QLSP is a main property that differentiates Algorithm 1
from other quantum algorithms. We summarize the trade-off of 7 in the following remark.

Remark 3. The modified condition number, ik = HS-F-L: ), in conjunction with the PPA convergence

in (8) introduces a trade-off based on the tunable parameter 7).

» Large n regime: setting large 1 allows PPA to converge fast, as can be seen in (15). On the other
hand, the benefit of the modified condition number diminishes and recovers the original k.

L U /)
K4+mn nooo

BN

o Small n) regime: setting small 1 slows down the convergence rate of PPA and requires more number
of iterations, as can be seen in (15). On the other hand, the modified condition number becomes
increasingly better conditioned, as in:

N U ot/ )
K+mn n—=0 ’

=
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4 THEORETICAL ANALYSIS

As shown in Algorithm 1 as well as the PPA iteration explained in (7), the main distinction of
our proposed method from the existing QLSP algorithms is that we invert the modified matrix
(I +nA)/||I + nAl instead of the original matrix A. Precisely, our goal is to bound the following:

H ”(/}I+7]A,a:0+nb> - ‘( ﬁi;jj‘ )71(.1‘(1 + //b)> + ‘( ‘ﬁ:jj‘ )71(,1‘[, + //b)> — |A_1b> H <e, 9

QLSP_solver error (c.f., Proposition 1) PPA error (c.f., Proposition 2)

. . -1 .
where |1/)1+,7A,$0+,7b> is the output of Algorithm 1, and |A~1b) = ﬁ is the target quantum

state of QLSP based on Definition 1. In between, the term ‘ ( I LHH ) ! (xo + ///1)> is added and
subtracted, reflecting the modified inversion due to PPA. Specifically, the first pair of terms quantifies
the error coming from the inexactness of any QLSP_solver used as a subroutine of Algorithm 1.
The second pair of terms quantifies the error coming from PPA in estimating A~'b, as can be seen in
(8). In the following subsections, we analyze each term carefully. Due to space limitations, we defer

all proofs to the appendix at the end of the paper.

Baseline: Costa et al. (2022) Baseline: CKS (2017)
20+
> 240
D 154 k)
Q. [}
g g 30
10+
g ; 20
S S 10
& _ & M
T 1 S
0
5 10 15 5 10 15
Different values of ¢ Different values of ¢
—— k-log(1/e) (improvement)  —e— k-log(c/e) (overall) —— k-log(k/e) (improvement)  —e— k-log(ck/e) (total)
#-log(c) (overhead) —— k-log(1/e) (baseline) # - log(c) (overhead) —— k- log(r/e) (baseline)

Figure 2: How the “improvement” term, the “overhead” term, and their sum “total” allows improve-
ment compared to the baselines from (Childs et al., 2017) and (Costa et al., 2022) (c.f., Theorem 6).
Right panel: using CKS (Childs et al., 2017) as baseline (c.f., Theorem 4); Left panel: using (Costa
et al., 2022) as baseline (c.f., Theorem 5). The key insight is that the rate of “improvement” is
faster than the rate of “overhead,” which plateaus quickly thanks to the logarithm as can be seen in
Theorem 6.

4.1 INVERTING THE MODIFIED MATRIX (I + nA)/||I + nA||

In the first part, we apply any QLSP_solver to invert the modified matrix (I + nA)/||I + nAl.
Importantly, we first need to encode it into a quantum computer, and this requires normalization so
that the resulting encoded matrix is unitary, which is necessary for any quantum computer operation
(c.f., Remarks 1 and 2). As in this part we are simply invoking existing QLSP_solver, we just have
to control the error €1 and its contribution to the final accuracy &, as summarized below.

Proposition 1 (QLSP_solver error). Assume access to the oracle Py, 4 in Algorithm 1, similarly
to the Definition 3 or 4 (c.f., Remark 1). Further, assume access to the oracle Py, 5, ., similarly to the
Definition 2 (c.f., Remark 2), respectively. Then, there exists quantum algorithms, such as the ones in

Table 1, satisfying
-1
‘ ‘w1+17A7wo+nb> — ‘(%) (CL‘O + ’I7b>>H <eq. (10)

Example 1 (CKS polynomial (Childs et al., 2017)). CKS performed the following polynomial
approximation of A~

AT & P(A) =) o Ti(A), (11)
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where T; denotes the Chevyshev polynomials (of the first kind). Then, given that | P(A) — A7 <
€1 < % (Childs et al., 2017, Proposition 9) proves the following:

P(A)g) A7)
[P 1A=l

< 4ey. (12)

Adapting Example 1 to Algorithm 1. The approximation in (11) is only possible when the norm of
the matrix to be inverted is upper-bounded by 1. Hence, we can use the following approximation:

_ I+nA 1 I+nA
I+nA|™ am(): [+qpA|~t-p (02 (13)
IT4nA17 > o ) = 1+ 947 P

which allows similar step as (12) to hold, and further allows the dependence on « for the CKS
algorithm to be alleviated as summarized in Lemma 1; see also the illustration in Figure 2 (right).

4.2  APPROXIMATING z* = A~1b via PPA

For the PPA error (second pair of terms in (9)), the step size 1 needs to be properly set up so that a
single step of PPA, i.e., z; = (I +nA)~ (2o + nb) is close enough to A~1h = x*. To achieve that,
observe from (8):
1
e — || < (T +14)7Y - |z — 2*]| < ————||zg — =¥, 14
@441 [ < +n4)~" - [lzo | <1+77Umin)t|| 0 | (14)
where o, is the smallest singular value of A. We desire the RHS to be less than 5. Denoting
||xo — 2*|| := d and using o,in = 1/k (c.f., Definition 1), we can compute the lower bound on the
number of iterations ¢ as:
d log(£)
————— <& = —— 5+ <
(I+n/r)t 72 log(1+ 1)

Based on the above analysis, we can compute the number of iterations ¢ required to have e-optimal
solution of the quadratic problem in (6). Here, (15) is well defined in the sense that the lower bound
on t is positive, as long as 7 > 0. In other words, if the LHS of (15) is less than 1, that means PPA
converges to es-approximate solution in one step, with a proper step size.

15)

Again, our goal is to achieve (9). Hence, we have to characterize how (14) results in the proximity in
corresponding normalized quantum states. We utilize Lemma 2 below.

Lemma 2. Let x and y be two vectors. Suppose ||x — y|| < € for some small positive scalar e. Then,
the distance between the normalized vectors satisfies the following:
€z Y

el iyl

€

]l -yl

Now, we characterize the error of the normalized quantum state of as an output of PPA.

Proposition 2. Running the PPA in (7) for a single iteration with n = Kk (% — 1), where d =
lzo — A

|G ™ o+ a0)) — [470)| < 5 (16)

where W = \/|[(I +nA)=* (zo + nb)[ - [A~10]|.

4.3 OVERALL COMPLEXITY AND IMPROVEMENT

Equipped with Propsitions 1 and 2, we arrive at the following theorem.

Theorem 3 (Main result). Consider solving the QLSP problem in Definition 1 with Algorithm 1, of
which the approximation error € can be decomposed as (9), recalled below:

H |¢I+77A,zo+nb> - }( ‘jjr:ji‘ )7|(,I‘1) + ’//)>> + }( ‘jjr:ji‘ >7|( 1‘1) + ’//)>> - |A71b> H <e

QLSP_solver error < €1 (c.f., Proposition 1) PPA error < €2/ (c.f., Proposition 2)
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Suppose the existence of a QLSP_solver satisfying the assumptions of Proposition 1 such that (10)
is satisfied with e1 = €/c, for ¢ > 1. Further, suppose the assumptions of Proposition 2 hold, i.e.,

single-run PPA withn = Kk (% — 1) is implemented with accuracy €2 = (1 — %) € - WU. Then, the
output of Algorithm 1 satisfies:

HWJIJrnA,xo+nb> — |A‘1b>H <e.

Moreover, the dependence on the condition number of OLSP_solver changes from k to ”STT
We now further interpret the analysis from the previous subsection and compare it with other QLSP

algorithms (e.g., CKS (Childs et al., 2017)). We first recall the CKS query complexity below.

Theorem 4 (CKS complexity, Theorem 5 in (Childs et al., 2017)). The QLSP in Definition I can be
solved to e-accuracy by a quantum algorithm that makes O (/-i - poly log (g)) queries to the oracles
‘P4 in Definition 3 and Pp in Definition 2.

It was an open question whether there exists a quantum algorithm that can match the lower bound:
Q (k- log (1)) (Orsucci & Dunjko, 2021). A recent quantum algorithm based on the complicated
discrete adiabatic theorem (Costa et al., 2022) was shown to match this lower bound. We recall their
result below.

Theorem 5 (Optimal complexity, Theorem 19 in (Costa et al., 2022)). The QLSP in Definition I can
be solved to e-accuracy by a quantum algorithm that makes O (FL -log (é)) queries to the oracles
U 4 in Definition 4 and Pp in Definition 2.

A natural direction to utilize Algorithm 1 is to use the best QLSP_solver (Costa et al., 2022), which
has the query complexity O (/{ -log (%)) from Theorem 5. We summarize this in the next theorem.

Theorem 6 (Improving the optimal complexity). Consider running Algorithm I with (Costa et al.,
2022) as the candidate for QLSP_solver, which has the original complexity of O (n -log (%)) (c.f,
Theorem 5). The modified complexity of Algorithm I via Theorem 3 can be written and decomposed
to:

- ¢\ _ k(1+mn) 1\ | &(1+n)
o (£) = SO gy (1) RO "
fi-log g 0g(€>+ o og(c) 17)
Improvement Overhead

where the “improvement” comes from k < k, and the “overhead” is due to the weight of e1 = ¢/c
(and subsequently €5 = (1 — %) € - W) in Theorem 3. Further, withn = k (% — 1), it follows
k(1+n) (c=1)(k —1)We

h=—"">=K— < K. 18
I3 g K o d K (18)

We illustrate Theorem 6 in Figure 2 (left); thanks to the flexibility of Algorithm 1 and Theorem 3,
similar analysis can done with CKS (Childs et al., 2017) as the baseline, as illustrated in Figure 2
(right).

Intuitively, based on the decomposition in (17), we can see that the constant ¢ —which controls the
weight of £; and 5 in Theorem 3— enters a logarithmic term in the “overhead.” On the contrary, the

(additive) improvement in « is proportional to the term (Czl) , as can be seen in (18).

5 CONCLUSION AND DISCUSSION

In this work, we proposed a novel quantum algorithm for solving the quantum linear systems problem
(QLSP), based on the proximal point algorithm (PPA). Specifically, we showed that implementing a
single-step PPA is possible by utilizing existing QLSP solvers. We designed a meta-algorithm where
any QLSP solver can be utilized as a subroutine to improve the dependence on the condition number.
Even the current best quantum algorithm (Costa et al., 2022) can be significantly accelerated via
Algorithm 1, especially when the problem is ill-conditioned.
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Limitations. A main limitation of this work is that only constant-level improvement is attained;
yet, due to the existing lower bound (Harrow et al., 2009; Orsucci & Dunjko, 2021), asymptotic
improvement is not possible. Another limitation is that only a single-step PPA is implemented in
Algorithm 1 at the moment. This necessitates 7 to be fairly large, as can be seen in (7) or (15). Then,

in conjunction with Remark 3 and (18), the benefit from the modified condition number < = HSTT)
diminishes. To address this, two interesting future directions can be considered.

Implementing multi-step PPA. A natural idea is to implement multi-step PPA. Based on (7), two-step
PPA can be written as :

Topr = (I +1A)"%(xi 1 +nb) + (I +nA)"Inb
= ((I +nA)~% + (I +nA)"")nb, (19)

where in the second step we set z;_; with zero vector (i.e., initialization). As can be seen, this
requires implementing different powers (and their addition) of the modified matrix I 4+ nA, which is
possible via Gilyén et al. (2019, Lemmas 52 and 53).

In particular, one can show that the two-step PPA in (19) can satisfy a similar guarantee to Propostion 2

d

o 1). This leads to a bigger improvement in the modified

with smaller step size: n > K (

condition number:
1+ :— 1)
P U /) Y [ Gt L2

. 20
K+ c-d 20)

However, we need to implement the addition of two block-encoded matrices that polynomially
approximate the inverse function (c.f., (19)), which roughly doubles the query complexity; it seems
unlikely that the improvement in & provided by two-step PPA in (20) can compensate for the
overhead of doubling the query complexity. Still, single-step PPA provides significant constant-level
improvement via warm starting, as we illustrate below.

Warm starting. The modified condition num- Query complexity with warm start

ber & of (I +nA)/||I + nA| relies on the ini- - e wlog(1/2)
tial point of EPA, Zo. In particular, & can be < 4001 —=— D200 steps
expressed as in (18) from Theorem 6, where £ —— GD 500 steps
d := ||xzg — x*||. Therefore, a better initializa- £ —— GD 1000 steps
tion zo via warm starting can result in a bigger S |
. . . <. 200
improvement in the overall complexity. s

)
Let us provide a simple example. Suppose O

we initialize xg such that d := [jzg — a*|| =

2. 5Lz, Thisis possible since €5 is the level
of error achieved by the (classical) PPA with the
specified step size 1 (c.f., Proposition 2). As o )
L;l ~ 1 for large k, one can simply run a few Figure 3: Query 'complexn).l improvement with
iterations of classical optimization (e.g., gradi- Warm start. Basehnei (blue) is the optimal query
ent descent), and initialize o with the output Complexity Q(rlog 2) (Costa et al., 2022). The

0= . ‘ ‘ ;
100 200 300 400 500
Condition number x

that satisfies roughly twice the desired ¢ . other three lines are the improved query com-
plexity in (17) using Algorithm 1 initialized with
Then, based on (18), we have {200,500, 1000} steps of gradient descent.
, — — . 2(k—1)eg .
sl (- (- D actebn kg
K+mn c-d 2 2

That is, simply by running a few steps of gradient descent classically such that | zgp — 2*|| = 2 - 9,
and initializing x¢ < zgp in Algorithm 1, the overall query complexity can be halved compared to
the SOTA quantum algorithm (Costa et al., 2022).

We illustrate this in Figure 3. We generate (normalized) A and b from A(0,1). We vary the
condition number of A to be £ € {100, 200, 300, 400, 500}. We plot the overall query complexity of
Algorithm 1 with warm start, where x is initialized with the last iterate of {200, 500, 1000} steps of
gradient descent. The baseline (blue) is the optimal query complexity Q(x log é) (Costa et al., 2022),
which can be effectively halved (red) via Algorithm 1.

10
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SUPPLEMENTARY MATERIALS FOR
“A CATALYST FRAMEWORK FOR THE QUANTUM LINEAR SYSTEM PROBLEM
VIA THE PROXIMAL POINT ALGORITHM”

A BACKGROUND ON QLSP

A.1 DETAILS ON HHL AND CKS ALGORITHMS

Before we delve into the details of the proposed method, we briefly review the HHL and the CKS
algorithms. In short, such previous approaches deal with unitarily mapping = +— %

An overview of the HHL algorithm. Recalling the goal of this task, we are looking for the solution
vector ¥ = A~'b. For simplicity, we assume A is Hermitian with its eigenvalues in the range
[1/k,1],1.e., A is positive definite, with condition number x. As A is Hermitian, it admits the spectral

decomposition:
N
p— . . *
A= g )\]u]uj,
j=1

where {u;}}_, are the (orthonormal) eigenvector bases, and {);}1_, the corresponding eigenvalues.
Then, A~ can be written with respect to these same bases as

A
ATt = Z U U
e

Similarly, since {u; }jvzl form an orthonormal basis, the vector b can be written as:

N
b= Zﬂjuj.
j=1

Putting together the above, the solution vector z* = A~1p is written as:
Moo
A1 = Zﬁjyuj. 1)
j=1 "

However, the maps A and A~! are generally not unitary, preventing us from directly applying these
maps “quantumly” to the state |b). To that end, one of the main observations of HHL was that
U = e*4 (where i stands for the imaginary unit) is indeed unitary and has the same eigenvectors as
A (and A~1). Therefore, utilizing the “hamiltonian simulation” to implement U = ¢'4, and “phase
estimation” to estimate \; associated with the eigenvector |a;), one can unitarily map:

> Bilan) (F10) + 1= iz )) = 23 85 lay)l0) +g) ).
J J

Proportional to A—1b

Finally, applying O(k) rounds of amplitude amplification, we can amplify this part of the state to 1.
Some of these subroutines are reviewed in the next subsection.

An overview of the CKS contributions. Yet, the phase estimation is still a bottleneck. To address
this, Childs-Kothari-Somma (CKS hereafter) (Childs et al., 2017) improved the complexity of HHL,
where a significant improvement in the suboptimality is due to the Linear Combination of Unitaries
(LCU) and the variable time amplitude amplification from (Ambainis, 2012). We recall the (general)
LCU lemma below:

14
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Lemma 7 (Lemma 7 in (Childs et al., 2017)). Let M = )", a;T; with a; > 0 for some operators
{T;} which can be not necessarily unitary. Let {U;} be a set of unitaries such that U;|0%)|$) =
|09 T;|¢) + |®F) for all states |¢), where t > 0 is an integer and (|0%)(0!| ® 1)|®;) = 0. Given
a procedure Py, for creating a state |b), there exists a quantum algorithm that exactly prepares the
quantum state M |b) /|| M |b)|| with constant success probabllzty making in expectation O(a /|| M|b)||)
uses of Py, U := ), i) (1| ® U;, and V' such that V|0™) = f > Vi)

In particular, CKS utilized (truncated) Chebyshev polynomials to choose T;’s in M = ). o, T}, to
approximate 1/x unitarily. The polynomial they used is the degree-(¢ — 1) Taylor expansion of 1/x
around the point z = 1:

t—1

pEES =3 (1 - o)k = 2 (22)
k=0

The approximation of the above polynomial is characterized in the Lemma below:

Lemma 8 (Childs etal., 2017)). Forallz € [1/k,1], pf®S witht > rlog(k/e) satisfies [pS*S — 1| <
€.

Gribling-Kerenidis-Szilagyi (Gribling et al., 2021) further improved the previous result by utilizing
the optimal polynomial, which are scaled Chebyshev polynomials (Sachdeva et al., 2014), in similar
spirit to the Chevyshev iterative method in the classical optimization.

A.2 SOME QUANTUM SUBROUTINES USED IN HHL (HARROW ET AL., 2009) AND CKS
(CHILDS ET AL., 2017)

Algorithm 2 Hamiltonian Simulation

Require: Hermitian matrix H, evolution time ¢, error tolerance €, number of terms m
Ensure: Approximation of e_zH ¢
: Decompose H into m terms: H = Z _, H;, where each H; is easy to simulate
Choose 7, the number of Trotter-Suzuk1 steps, such that error < €
fork=1,2,...,rdo
Uy < e tHt/re=itat/r . p=ilmt/r > First-order Trotter-Suzuki decomposition
end for
Combine all Uy, to form U = [[;_, Uy
return U as the approximate evolution operator

A A i ey

Algorithm 3 Phase Estimation

Require: U: Unitary operator

Require: |¢)): Eigenvector of U

Requlre t: Number of qubits for precision
: Initialize ¢ qubits in state |0)®*

Apply Hadamard gate to each qubit

. Apply controlled-U?" gate for each qubit, where j is the qubit index

Apply inverse Quantum Fourier Transform (QFT)

Measure the ¢ qubits

Let m be the measurement outcome

return m /2! > Estimated phase

AN A S

15
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Algorithm 4 Amplitude Amplification

Require: |¢)): Initial state
Require: O: Oracle operator
Require: 7': Number of iterations

I ]s) = o= 3, )

2 [¢) < |s)

3: fort =1to71 do

& W) 2s)(s| - Tv)
5 W)« O(y)

6: ) < 2[s)(s| — I|¢9)
7: end for

8: return [)’)

> Initialize uniform superposition

> Reflection about |s)

> Apply the oracle operator

> Reflection about |s)

> Amplified state

Algorithm 5 Linear Combination of Unitaries

Require: Ul,Ug,... Um unitary operators, o, iz, . . . , Qi complex coefficients

Ensure: U = 37" a;U.

1: Prepare an (m + )qublt state |0)[tpo), where [ig) = Z;n:lq/pj|j> with p; =
|aj| /> ohe | |?

2: forj=1...mdo

»

the first register
end for

Compute Uy, = -7 a;UF (mod 2™)
Apply Uy, to the second register

return the state of the second register

VR DNk

Perform the inverse quantum Fourier transform on the first register
Measure the first register to obtain an integer 0 < £ < 2™ — 1

Apply the controlled unitary operation C'/) (U i), where C (4) is controlled by the jth qubit of

B MISSING PROOFS

B.1 PROOF OF LEMMA 1

Proof. By the assumption on QLSP in Definition 1, the singular values of A is contained in the

interval [l } Thus, for the normalized modified matrix, i.e.

+
2 [[I+nAJ?

the singular values are

contained in the interval [K [ +n) , 1} , by spectral mapping theorem. This leads to the modified

Kk(1+n)

condition number & = .
K+n

B.2 PROOF OF LEMMA 2

Proof. We need to bound:

& — gl = ]

Consider the inner product form:
x Y

‘ )l Iyl

The inner product can be bounded using ||z — y|| < €

Myl H

2
:2_2<w,y>:2_
=] Tl

(z,y)

1
(@y) =5 (=1 + lyl” = ll= = y]?)

1
= 5 (Il + llyll* = ).
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Now, substituting this into the normalized inner product:

(z,9) >%<||x|2+||y||2—e2)_1(xn lyl & )
> = .
[l [H{ly [l [[{ly 2\l flzlt iyl
Using % + % > 2 from AM-GM inequality, we get:

(w,y) e

(gl = 2llllyl

Substituting the above back into the distance expression, we get:

2 2 2
<2-2 (1 - - ) -
2/l [yl (¥l

€

x oy
—_—— V| < —.
el Nyl H = Vil

£ Y

lzll [yl

which implies the desired result:

B.3 PROOF OF PROPOSITION 1

I+nA

Proof. Since the input matrix T AT

is normalized, and due to the reasoning in Remark 1, we can

have sparse-acess or block-encoding of %. Then, the result of Proposition 1 simply follows
from the result of each related work in Table 1. [

B.4 PROOF OF PROPOSITION 2

Proof. As explained in Section 4.2 of the main text, we can compute the number of iterations for
PPA using (15), recalled below, which is based on (14).

d log(£)
- < _Cre2’ .
Q) 57 = doga+ D) S

In this work, since we are implementing a single-step PPA, we want ¢ = 1 from (15). To achieve that,

we can have:
d
log (> = log (1 + Q) =
13} K

It remains to invoke Lemma 2 to complete the proof. O

B.5 PROOF OF THEOREM 3
Proof. Recall the decomposition:

H [Wrsnamornn) = | (rrmar) (oo + b)) + | (rEsy) (e + b)) = |A7D) H s

QLSP_solver error < €1 PPA error < €2

The QLSP_solver error can be provided by Proposition 1, with the accuracy of e; = ¢/¢, for ¢ > 1.
Similarly, 7 is chosen based on Proposition 2, with &3 = (1 — 1) £ - W. Then, by adding the result
from each proposition, we have
1
51+€2€+<1)55.
c

v c
Note that since QLSP_solver is only called once in Algorithm 1, the final accuracy ¢ is the same
for the output of Algorithm 1 and the subroutine QL.SP_solver being called. O

17
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B.6 PROOF OF THEOREM 6

(17) simply follows from plugging in the modified condition number #, along with ¢; = £/c¢. That is,
1 1
) (,g log ()) —0 (M log (C)>
€1 K+n €
1 1 1
_0 <f<(+77> log () L et log(c)> .
K+ € K+

Note that similar analysis can be done for CKS (Childs et al., 2017), starting from O (/% -log ( ))

e1
For (18), it follows from the below steps:

k(14+n) 1+n

k+n  1+n/k
rdc
_ I+ =hew — F
Kkdc
(c—1)ew

(c—1)eP(k—1)
B dc ’
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