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ABSTRACT

Geospatial modeling provides critical solutions for pressing global challenges
such as sustainability and climate change. Existing large language model
(LLM)–based algorithm discovery frameworks, such as AlphaEvolve, excel at
generic code evolution but lack the domain knowledge required for complex
geospatial problems. We introduce GeoEvolve, a multi-agent LLM framework
that couples evolutionary search with dynamic geospatial domain knowledge.
GeoEvolve operates in nested loops: an inner code evolver generates candidate so-
lutions, while an outer agentic controller—supported by Automated Knowledge
Construction and Code-to-Formula agents—queries a Dynamic GeoKnowRAG
module to inject theoretical priors. This architecture addresses the challenges
of spatial heterogeneity and temporal non-stationarity. We evaluate GeoEvolve
on three classical tasks: spatial interpolation (Kriging), uncertainty quantification
(GeoCP), and spatial regression (GWR). Across 9 datasets, GeoEvolve discovers
novel algorithms that incorporate geospatial theory. It achieves significant gains,
such as a 29.5% increase in regression R2 and a 13–21% reduction in interpola-
tion error. Furthermore, extensive ablation studies confirm GeoEvolve’s robust-
ness across diverse foundation models (GPT, Gemini, Qwen) and its spatiotempo-
ral generalizability, validating that domain-guided retrieval is essential for stable
evolution. Collectively, these results offer a scalable path toward trustworthy, au-
tomated geospatial modeling, opening new avenues for efficient AI-for-Science
discovery.

1 INTRODUCTION

Beyond building powerful AI models that help us analyze data and understand the world, enabling
AI models to evolve on their own and autonomously extract knowledge stands as the next important
and promising frontier. It usually involves a prolonged procedure of asking a research question,
gathering relevant information, analyzing it to identify patterns or insights, and communicating the
results as new knowledge. The rise of the large language models (LLMs), such as GPT-4 (Achiam
et al., 2023) and Gemini (Comanici et al., 2025), presents the possibility of accelerating and au-
tomating this knowledge discovery procedure. The confidence in this direction is supported by the
breakthroughs in LLMs, such as retrieval augmented generation (RAG) that enhances the output of
LLMs (Lewis et al., 2020; Jiang et al., 2023) and agents that execute complex tasks autonomously
(Li et al., 2023; Qian et al., 2024). In fact, the integration of LLMs into this procedure has al-
ready boosted the performance of a range of discovery-oriented tasks, such as drug repurposing
(Huang et al., 2024), hypothesis generation (Kumbhar et al., 2025; Xiong et al., 2024), chip design
(Ho & Ren, 2024), urban planning (Zhou et al., 2024). Recently, Google introduced AlphaEvolve,
which has demonstrated remarkable capabilities in automating algorithm discovery across diverse
domains, such as tackling complex mathematical optimization problems. Building on this foun-
dation, OpenEvolve has been developed as an open-source implementation of Google DeepMind’s
AlphaEvolve, providing the research community with accessible tools for further exploration and
application.

Despite these advances, the domain of geospatial modeling remains relatively underexplored in
the context of LLM-driven knowledge discovery. Geospatial problems are inherently complicated,
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characterized by spatial autocorrelation (Miller, 2004), spatial heterogeneity (Cheng et al., 2024),
scale effect (Chen et al., 2019), and diverse modalities (e.g., maps, remote sensing imagery, spatial
network, and textual description) (Mai et al., 2023), etc. Moreover, addressing geospatial problems
also demands synthesizing knowledge across different disciplines, from environmental science to
urban studies, making it difficult for single-agent systems to provide comprehensive solutions.

In this paper, we introduce GeoEvolve, an advanced agent combining the evolutionary process with
LLM-based code generation and geospatial knowledge-informed RAG (GeoKnowRAG) to automat-
ically investigate optimal geospatial modeling. GeoEvolve operates in two complementary loops.
As is shown in Figure 1, the inner loop runs OpenEvolve (Sharma, 2025) for a limited number of
evolutionary steps, generating candidates of discovery. The outer loop is governed by an agentic
controller, which evaluates the best solutions, retains global elites to prevent performance degra-
dation, and invokes the GeoKnowRAG module. This module will query a structured geospatial
knowledge database, thus producing refined, domain-informed prompts that guide the next round
evolution. We show that GeoEvolve can obviously improve the geospatial modeling.

In summary, the contributions of our work are as follows:

1. Knowledge-guided evolution. We integrate evolutionary search with domain knowledge
by coupling GeoEvolve’s evolutionary code generation (via OpenEvolve) with retrieval-
augmented geospatial knowledge. This grounds discovery in established geospatial theo-
ries and classical methods rather than random mutations, steering evolution toward theo-
retically meaningful and practically effective directions.

2. Automated, scalable pipeline. We develop an automated and scalable geospatial modeling
pipeline that can continuously evolve, adapt, and refine geospatial algorithms, providing a
robust methodology for diverse geospatial tasks.

3. State-of-the-art performance and efficiency. We demonstrate state-of-the-art perfor-
mance on two spatial modeling cases—spatial interpolation and spatial uncertainty quan-
tification—supported by an ablation study verifying the role of domain knowledge.

2 RELATED WORK

LLM-driven Algorithm Discovery Driven by LLMs, many studies aim to accelerate the dis-
covery of algorithms with better performance, simpler implementation, and higher computational
efficiency. A common approach is evolutionary search, which explores the algorithmic space via
mutations and recombinations guided by performance metrics (Surina et al., 2025), enabling break-
throughs across diverse applications (Lu et al., 2024; Ma et al., 2024; Veličković et al., 2024; Mor-
ris et al., 2024). Among the most influential methods is FunSearch—searching in the function
space—which fosters creative algorithmic solutions while guarding against confabulations (Romera-
Paredes et al., 2024), but is limited to evolving a single function rather than an entire codebase.
AlphaEvolve, a substantially enhanced successor, leverages LLMs to solve complex problems at
scale (Novikov et al., 2025). Yet addressing specialized challenges, particularly in geospatial do-
mains, requires domain-specific knowledge, multi-step reasoning, and iterative refinement guided
by evaluation feedback (Chen et al., 2024).

Retrieval-augmented generation RAG for scientific discovery. RAG has emerged as a standard
strategy to ground LLM outputs in external knowledge, improving factual accuracy and controllabil-
ity (Lewis et al., 2020; Gao et al., 2023). Recent advances such as RAG-Fusion (Rackauckas, 2024)
and reciprocal rank fusion (RRF) (Cormack et al., 2009) demonstrate that expanding and fusing mul-
tiple reformulated queries can substantially enhance retrieval coverage and downstream reasoning
quality. Moreover, RAG has recently been applied in the geospatial domain to support knowledge
discovery and contribute to downstream tasks such as spatial reasoning (Yu et al., 2025). However,
to the best of our knowledge, no prior work has leveraged RAG to extract geospatial knowledge
specifically for geospatial model construction, leaving an important gap for integrating structured
geographic knowledge into model design.

LLM-based Autonomous Agents Recent advances in LLM-based autonomous agents have sub-
stantially expanded their capacity for solving complex tasks through multi-agent collaboration and
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Figure 1: An illustration of the code-evolution trajectory of a geospatial model integrating domain
knowledge. The dashed inner box represents the code evolver, a general algorithmic code-generation
engine. The surrounding workflow depicts the knowledge-guided code generation proposed in this
paper, specifically tailored for geospatial modeling.

structured role-playing (Wang et al., 2024). Frameworks such as MetaGPT (Hong et al., 2023)
and ChatDev (Qian et al., 2024) emulate the Standard Operating Procedures of software compa-
nies, assigning roles such as product managers and engineers to automate large portions of the
software development lifecycle. In the geography domain, LLM-based agents have also been in-
troduced to automate geospatial modeling workflows—including data ingestion, processing, anal-
ysis, and visualization—greatly lowering the technical barrier for using domain-specific tools (Li
& Ning, 2023). However, while these systems are highly effective at executing linear engineering
workflows with well-defined requirements, they are generally not designed for scientific discov-
ery, which requires open-ended objectives, evolving hypotheses, and exploration within large and
uncertain search spaces.

3 GEOEVOLVE

GeoEvolve is designed to automate geospatial model discovery by integrating evolutionary code
generation with structured geospatial knowledge. Unlike general-purpose code agents, GeoEvolve
incorporates domain-specific knowledge from spatial modeling literature and classical algorithms,
enabling the discovery of geospatial algorithms. Figure 2 illustrates the overall framework of Geo-
Evolve. It consists of four main components: (1) a code evolver, (2) an evolved code analyzer, (3)
a geospatial knowledge retriever, and (4) a geo-informed prompt generator. Together, these compo-
nents orchestrate a closed-loop process of code generation, evaluation, and refinement, leading to
the emergence of geospatial model discovery.
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Figure 2: The workflow of GeoEvolve

3.1 CODE-TO-FORMULA AGENT

To streamline the transition from user-defined geospatial models to evolutionary search spaces, Geo-
Evolve incorporates an Code-to-Formula agent. Instead of requiring users to manually configure
the complex input specifications—comprising the initial program, evaluator logic, and instructional
prompts—this agent employs an LLM-based semantic parser to automate the initialization process.

Guided by a set of pre-defined heuristic templates and few-shot exemplars derived from classical
geospatial algorithms (e.g., Kriging, GeoCP), the agent analyzes the user’s raw code to extract core
algorithmic logic. It then encapsulates this logic into a standardized triplet format required by the
evolutionary engine. This design effectively decouples the user’s domain implementation from the
framework’s internal search protocols, allowing researchers to focus on model logic rather than
configuration details. These standardized templates and illustrative exemplars are encapsulated as
built-in assets within the GeoEvolve codebase, enabling an out-of-the-box experience for users.

3.2 CODE EVOLVER

The central engine of GeoEvolve is the code evolver, an evolutionary coding agent that generates and
iteratively refines candidate algorithms. Beginning with an initial algorithm, the evolver performs
a fully autonomous pipeline of mutation, evaluation, and selection relying on the power of LLMs.
Candidate algorithms are represented as a group of executable code fragments. Mutations can be
parameter changes, operator substitutions, or structure modifications to the algorithm. Abstractly,
given a task-specific objective function L, the evolver seeks to optimize an algorithm A such that

A∗ = arg min
A∈A
L(A;D), (1)

where A is the search space and D is the dataset. Here, we use OpenEvolve as the code evolver,
which is the open-source equivalent of AlphaEvolve.

3.3 EVOLVED CODE ANALYZER

The evolved code analyzer is an LLM-powered diagnostic agent that interprets both the evolved code
and associated metrics (e.g., RMSE for regression tasks). Its role is not limited to evaluating task
outcomes, but also to providing semantic analysis of the code, thus identifying potential weaknesses
or missing knowledge. To be specific, the LLM is required to achieve two tasks. First, it identifies
missing or problematic knowledge from the evolved code. Second, it suggests search queries for
retrieving useful geospatial knowledge from GeoKnowRAG. The diagnostic feedback given by this
agent will be passed to the geospatial knowledge retriever to obtain related knowledge. This design
allows GeoEvolve to reason about why the evolved algorithm fails and what kind of domain knowl-
edge is needed to improve it. The template and an example of the code analyzer can be found at
Figure 6.
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3.4 GEOSPATIAL KNOWLEDGE RETRIEVER

To prevent the evolutionary search from drifting into non-meaningful algorithmic space, GeoEvolve
incorporates domain-specific geospatial knowledge through a dedicated Geospatial Knowledge Re-
trieval module (GeoKnowRAG). We construct a structured knowledge base by collecting literature
on core geospatial modeling concepts (e.g., spatial autocorrelation) and classical algorithms (e.g.,
geographically weighted regression) from Wikipedia, arXiv, and GitHub, using curated keywords
(Figure 7, Appendix A.3.1). To ensure high-quality and comprehensive knowledge coverage, RAG-
Fusion (Rackauckas, 2024) is applied to merge results from multiple reformulated queries, enabling
the system to capture both precise theoretical matches and semantically related concepts. Geo-
KnowRAG transforms these diverse resources into a structured RAG system that delivers domain-
aware prompts directly to the code evolver, providing the theoretical grounding and classical geospa-
tial methods required for effective algorithmic refinement. As shown in Figure 3, GeoKnowRAG
comprises four steps:

Source Identification and Acquisition Unlike previous approaches that rely on manually curated
static topic lists, GeoEvolve employs a fully automated, agent-driven pipeline to construct and con-
tinuously evolve its knowledge base. This process operates in two phases: automated initialization
and dynamic expansion.

First, to establish the foundational knowledge base, we introduce an Automated Knowledge Base
Construction Agent. Upon receiving the user’s baseline geospatial code, this agent performs seman-
tic analysis to extract core algorithmic concepts and automatically identifies an initial set of search
keywords (defaulting to 5 key terms). These keywords drive the initial retrieval from three comple-
mentary corpora—peer-reviewed papers (arXiv), encyclopedic entries (Wikipedia), and open-source
repositories (GitHub)—downloading up to 150 documents to form a task-specific, normalized UTF-
8 knowledge repository.

Second, to address theoretical gaps that emerge during evolution, we implement a Dynamic Knowl-
edge Update loop. In each outer iteration, the Evolved Code Analyzer scrutinizes the evolved code
and performance metrics. Acting as a diagnostic gatekeeper, it determines whether the current al-
gorithmic bottleneck stems from a lack of domain knowledge. If a deficit is identified, the agent
generates precise search queries and triggers the GeoKnow Updater, which fetches high-relevance
literature from the web (capped at 5 new documents per cycle) to augment the database in real-time.
Conversely, if the knowledge base is deemed sufficient, the system adaptively reverts to static re-
trieval to conserve resources. Finally, the Geo-informed Prompt Generator synthesizes the updated
knowledge with the current code to steer the next evolutionary step.

Text Chunking and Pre-processing First, each document is semantically segmented into 300-
word chunks with a 50-word overlap to preserve contextual continuity across chunk boundaries
and improve downstream retrieval accuracy. Second, all PDF, Markdown, and HTML sources are
stripped of formatting, de-duplicated, and tokenized into a clean corpus ready for embedding.

Vectorization and Knowledge Indexing First, every chunk is encoded using the
text-embedding-3-small model from OpenAI to obtain high-dimensional semantic
vectors. Second, these embeddings are stored in a Chroma vector database, which supports
approximate nearest-neighbor search and metadata filtering by topic or source type. Third, this
indexed database forms the persistent memory of GeoKnowRAG and enables millisecond-scale
retrieval across the geospatial knowledge space.

RAG-Fusion Query and Prompt Generation First, GeoKnowRAG employs multi-angle ques-
tion expansion, where each input query from the GeoEvolve controller is reformulated into several
sub-questions emphasizing different semantic aspects such as theory, implementation, and evalua-
tion. Second, each sub-question is independently embedded and used for vector search to retrieve
top-k relevant chunks from the Chroma index. Third, the retrieved results are re-ranked using RRF,
which scores passages based on the reciprocal of their ranks across sub-queries so that consistently
high-scoring chunks surface to the top. Fourth, the highest-ranked passages are aggregated and
summarized into a geo-informed prompt encoding key formulas, algorithmic structures, and empir-
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Figure 3: The workflow of GeoKnowRAG

ical heuristics, which is then supplied to the GeoEvolve code evolver to guide the next round of
algorithmic mutation and evaluation.

3.5 GEO-INFORMED PROMPT GENERATOR

The information, from retrieved geospatial knowledge to evolved code, and associated metrics, is
then processed together by the geo-informed prompt generator, which will translate it into a struc-
tured prompt for the code evolver. This prompt refines the search by introducing domain constraints,
suggesting algorithmic structures, or incorporating empirical heuristics. The generator leverages
LLMs as reasoning and translation engines, transforming abstract geospatial knowledge into action-
able modifications of candidate code.

The LLMs are required to generate a prompt that includes four key elements. First, algorithmic fixes
or improvements suggesting how the current algorithm could be revised. Second, new operators or
parameters that may improve performance in subsequent evolutionary iterations. Third, geospatial
knowledge, including the direction of exploration, theoretical or empirical conditions, and expected
outputs. Fourth, maximum tokens control, which helps maintain efficiency and reduce hallucination.

4 EXPERIMENTS

To evaluate GeoEvolve’s capability for improving and discovering geospatial models, we focus on
three fundamental topics: spatial interpolation, uncertainty quantification, and spatial regression. We
detail the first two in the main text and present the spatial regression results in Appendix. For each
topic, we select the most representative and classical baseline model, and employ a GPT-4–based
evolutionary engine as the core evolve agent to autonomously search, mutate, and refine candidate
algorithms.

We use OpenEvolve as the primary baseline. In addition, we conduct an ablation study with two
variants. First, OpenEvolve with GeoKnowledge Prompt, where domain knowledge is incorporated
as additional prompts. The prompt template is: “You are allowed to refer to advanced methods in
the field of spatial interpolation and consider some important settings of spatial models, such as
localized variogram, automatic variogram parameter selection, or stratified strategy, etc.” Second,
GeoEvolve without GeoKnowledge, where the GeoKnowRAG module is removed. For every algo-
rithm, after each evolutionary step the generated code is first analyzed by the code analyzer and then
directly passed to the knowledge-prompt generator to create new prompts.

For the OpenEvolve-based algorithms, we perform ten iterations of evolutionary search. For the
GeoEvolve algorithms, we run ten outer-loop cycles—each consisting of the code analyzer, Geo-
KnowRAG, and geo-informed prompt generator—and within every outer cycle we conduct ten
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inner-loop evolutions. This results in a total of one hundred evolutionary iterations. For every
experiment, the dataset is split into training, validation, and test sets in an 8:1:1 ratio.

Crucially, we extend our evaluation to the unique challenge of geospatial generalizability, testing
the framework across 9 datasets. Geospatial modeling demands robustness across three dimensions:
Domain Generalizability (transferring logic between disparate fields, e.g., socioeconomic vs. en-
vironmental data), Spatial Generalizability (adapting to spatial heterogeneity across regions), and
Temporal Generalizability (mitigating non-stationarity over time).

4.1 SPATIAL INTERPOLATION MODEL

Task- Spatial interpolation Spatial interpolation is one of the most important applications in
geospatial analysis and a key approach for humans to observe the Earth’s surface environment and
understand the planet (Lam, 1983). Its task is to model discrete sample points collected across
geographic space—such as climate observation stations, biodiversity observation points, or mineral
sampling sites—and to predict the continuous spatial surface of the geographic variables of interest
based on these observations.

Model- Oridinary Kriging We selected ordinary kriging, the most classical geostatistical spatial
interpolation model, as the first case study for GeoEvolve to automatically improve and evaluate.
Since its invention, many studies have attempted to extend kriging, for example by integrating re-
gression models in regression kriging (Hengl et al., 2007) or by accounting for spatially stratified
heterogeneity in stratified kriging (Luo et al., 2023). However, ordinary kriging remains the funda-
mental core of the entire kriging family and of geostatistics itself. Because it was developed long
ago and has a relatively simple structure, direct algorithmic innovations to ordinary kriging have
become increasingly rare. More details about ordinary kriging can be found at Appendix A.3.1.

If GeoEvolve can demonstrably enhance ordinary kriging, it would greatly revitalize geostatistical
methods and provide fundamental improvements that can propagate to all kriging-based models and
applications.This rationale underpins our choice of ordinary kriging as the first benchmark algorithm
in this study.

Evaluator For the kriging interpolation task, we use the root mean squared error (RMSE) as the
evaluation metric. Our objective is to obtain a kriging model that achieves a lower RMSE, indicating
higher predictive accuracy.

Datasets In this study, we use trace-element observations of copper (Cu), lead (Pb), and zinc
(Zn) collected from a representative region of Australia (with concentrations expressed in parts per
million, ppm) to conduct spatial interpolation and geostatistical modeling experiments. These three
heavy metals have important indicative significance in environmental geochemistry: on the one
hand, they serve as key factors for assessing regional environmental pollution levels and soil heavy-
metal accumulation. Details of the data acquisition and processing procedures can be found in (Luo
et al., 2025).

4.1.1 EVOLVED ALGORITHM OF ORDINARY KRIGING.

GeoEvolve preserves the ordinary-kriging core but augments it with (i) an expanded variogram
family (Exponential, Gaussian, Linear, and Matérn) with automatic model selection via AIC/BIC,
capturing a wider range of spatial smoothness; (ii) an adaptive empirical variogram using quan-
tile/Silverman binning, trimmed means, and an automatic nlags ∈ [8, 20] ∝

√
n to stabilize

nugget/sill/range estimation; (iii) robust multi-start fitting with L1 or weighted least squares and
bin-based weights to avoid local minima and keep parameters physically meaningful; (iv) localized
kriging that solves a K-NN system with condition-number–aware diagonal adjustment, reducing
complexity from O(n3) to O(K3) and improving numerical stability; and (v) an adaptive log trans-
form with a data-driven offset to reduce skew and ensure valid back-transformation. Together, these
changes retain unbiasedness and best-linear prediction while delivering lower RMSE/MAE, tighter
residuals, and greater computational robustness across heterogeneous spatial settings. The detailed
development of GeoEvolve–Kriging can be found at Appendix A.4.1.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison across different methods. For each metal, lower is better for
RMSE/MAE, and higher is better for R2.

Method Cu Pb Zn

RMSE ↓ MAE ↓ R2 ↑ RMSE ↓ MAE ↓ R2 ↑ RMSE ↓ MAE ↓ R2 ↑

Original 0.9139 0.6752 0.3751 0.6619 0.4580 0.3563 0.6294 0.4689 0.4304

OpenEvolve (No GeoKnowledge) 0.8727 0.6557 0.4302 0.6413 0.4441 0.3957 0.6245 0.4712 0.4395

OpenEvolve (General GeoKnowledge) 0.9264 0.6519 0.3755 0.6519 0.4598 0.3755 0.6332 0.4725 0.4235

OpenEvolve (Specific GeoKnowledge) 0.9139 0.6761 0.3752 0.6632 0.4579 0.3537 0.6337 0.4716 0.4227

GeoEvolve (No RAG)) 0.9139 0.7321 0.2889 0.6619 0.5871 0.0298 0.6294 0.5905 0.1723

GeoEvolve (Static RAG)) 0.8602 0.6423 0.3596 0.5927 0.4390 0.3025 0.5941 0.4475 0.4433

GeoEvolve (Dynamic RAG) 0.8718 0.6418 0.3721 0.6131 0.4299 0.3492 0.5852 0.4388 0.4363
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Figure 4: The spatial distribution of predicted concentrations and the error distribution of three
elements, Cu, Zn, and Pb obtained from Evolved Kriging

4.1.2 MODEL EVALUATION

Table 1 reports the kriging accuracy obtained by different methods. GeoEvolve–kriging consistently
achieves the lowest RMSE and MAE across the prediction of Cu, Pb, and Zn, while the original krig-
ing baseline performs worst. Applying OpenEvolve to kriging improves the prediction of Cu and Pb
but slightly degrades the performance on Zn. Introducing GeoKnowledge prompts into OpenEvolve
does not lead to further gains, possibly because the injected knowledge lacks direct relevance to
variogram estimation or spatial covariance structures that govern kriging performance. GeoEvolve
without GeoKnowRAG already outperforms OpenEvolve, yet still falls short of the full GeoEvolve
model, underscoring the critical role of structured geospatial domain knowledge in guiding algo-
rithm evolution.

Compared with OpenEvolve–kriging, GeoEvolve–kriging reduces RMSE by 11.3%, 20.9%, and
13.5% on Cu, Pb, and Zn predictions, respectively. Relative to the original kriging, the reductions
are 15.4%, 21.2%, and 13.0%, further highlighting GeoEvolve’s ability to automatically discover
and refine spatial interpolation algorithms with substantially improved predictive accuracy.

Figure 4 illustrates the spatial distributions of the predicted concentrations and the associated error
maps for Cu, Pb, and Zn obtained by GeoEvolve–kriging, clearly demonstrating its capability to
capture fine-scale spatial variability while maintaining low residual errors.
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4.2 SPATIAL UNCERTAINTY QUANTIFICATION MODEL

Task- Spatial UQ In spatial predictive modeling, it is not sufficient merely to develop more ac-
curate models for point predictions; an equally critical task is to quantify and communicate the
uncertainty of predictions, as this directly shapes the reliability and legitimacy of geography-based
decisions such as flood evacuation planning and public facility site selection. Therefore, incorpo-
rating rigorous uncertainty quantification into spatial prediction is essential not only for improving
scientific credibility, but also for supporting transparent, fair, and ethically sound spatial planning
and policy making.

Model- GeoCP In geography, the task of assessing the reliability of spatial prediction results
is commonly addressed through uncertainty quantification (UQ). In this study, we adopt geospatial
conformal prediction (GeoCP)—a model-agnostic algorithm for estimating the uncertainty of spatial
prediction models—as the target method for enhancement using GeoEvolve (Lou et al., 2025b).
More details about GeoCP can be found at Appendix A.3.2.

Evaluator For GeoCP uncertainty estimation, we use the interval score

ISi = max(Ui − Li, ϵ) +
2

α

[
(Li − yi)I(yi < Li) + (yi − Ui)I(yi > Ui)

]
, (2)

where Li, Ui are prediction bounds, yi the observation, and α the significance level (e.g., 0.1 for
90% intervals). The first term measures interval width (with ϵ ≈ 10−6 to avoid zero width), and
the second penalizes coverage violations, scaled by 1/α. Smaller IS indicates tighter and better-
calibrated intervals.

Datasets The housing price dataset used in this study originates from the GeoDa Lab repository1.
The original data include 21,613 residential transactions and 21 attributes from Seattle and King
County, Washington (May 2014–May 2015). For our analysis, we focus on the Greater Seattle urban
core and retain 11 key variables, with housing sale price (in $10,000s) as the dependent variable.
Eight non-spatial predictors capture structural and quality characteristics—bathrooms, living-space
and lot size, grade, condition, waterfront proximity, view quality, and property age—while two
spatial predictors are geographic coordinates expressed in UTM (universal transverse mercator).
Further details of the dataset are documented in (Lou et al., 2025b;a).

4.2.1 EVOLVED ALGORITHM OF GEOCP

GeoEvolve–GeoCP preserves the fundamental conformal prediction framework of GeoCP while in-
troducing two major methodological advances. First, it refines the geographic weighting scheme:
still employing a Gaussian kernel, but re-optimizing the bandwidth parameter through multi-start
global search with adaptive clipping to ensure numerical stability and faithfully capture local spatial
heterogeneity. Second, it enhances the weighted quantile computation by unifying earlier adaptive
strategies into a simplified yet robust stepwise estimator with improved vectorization and condition-
ing checks, thereby delivering higher accuracy and better scalability on large test sets.The detailed
analysis of GeoEvolve-GeoCP can be found at Appendix A.4.2.

4.2.2 MODEL EVALUATION

To perform GeoCP, we first build a house-price prediction model using a base predictor with eight
explanatory variables and two spatial variables as inputs. The trained model is then assessed with
GeoCP to quantify predictive uncertainty, and the final output is the uncertainty of house-price pre-
dictions on the test set. In this study, we choose XGBoost as the base predictor, which achieves
an R2 of 0.871 and an RMSE of 7.362 (10,000 USD). The results are presented in Figure 5. The
predicted uncertainty exhibits a clear spatial pattern: it is highest around Lake Washington in down-
town Seattle, slightly lower in suburban areas, and lowest in the rural southern region. A scatter plot
of predicted uncertainty versus predicted price further reveals that uncertainty increases with house
price, peaking at approximately 125 (10,000 USD) and then leveling off with a slight decline.

1https://geodacenter.github.io/data-and-lab/KingCounty-HouseSales2015/
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Figure 5: The spatial distribution of estimated uncertainty for the housing price prediction task in
Seattle using the evolved GeoCP.

Table 2: Comparison of conformal prediction metrics. Smaller Average Interval Size and Interval
Score indicate sharper and more efficient intervals.

Method Average Interval Size ↓ Interval Score ↓
Original 18.3254 44.7611

OpenEvolve (No GeoKnowledge) 16.9139 43.1823

OpenEvolve (General GeoKnowledge) 17.1508 42.8343

OpenEvolve (Specific GeoKnowledge) 13.9557 41.4267

GeoEvolve (No RAG) 17.5586 44.2545

GeoEvolve (Static RAG) 18.5818 45.2738

GeoEvolve (Dynamic RAG) 13.7750 41.2389

We apply GeoCP in seven configurations, original, OpenEvolve without GeoKnowledge Prompt,
OpenEvolve with General GeoKnowledge Prompt, OpenEvolve with Specific GeoKnowledge
Prompt, GeoEvolve without GeoKnowRAG, GeoEvolve with Static GeoKnowRAG, and GeoEvolve
with Dynamic GeoKnowRAG–to quantify uncertainty on the same test set. able 2 reports the GeoCP
performance obtained by different methods. As shown, different variants of OpenEvolve reduces the
interval score to 43.1823, 42.8343, and 41.4267, respectively. In comparison with OpenEvolve, the
three variants of GeoEvolve achieves an interval score of 44.2545, 45.2738, 41.2389, respectively.
The performance of GeoEvolve with static GeoKnowRAG even degrades, this may suggest that
GeoKnowRAG fails to provide useful geographical knowledge for evolution. However, when dy-
namically updating new geographical knowledge, GeoEvolve shows unprecedented performance.

5 CONCLUSION

We presented GeoEvolve, a multi-agent LLM framework that couples evolutionary code search
with geospatial domain knowledge via GeoKnowRAG to automate geospatial model discovery.
Across three fundamental tasks, GeoEvolve consistently improved upon classical baselines and
strong OpenEvolve variants. Ablations confirm that structured, domain-guided retrieval is pivotal:
removing GeoKnowRAG degrades performance despite identical evolutionary budgets, underscor-
ing the value of grounding algorithm evolution in geospatial theory.
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A APPENDIX

A.1 SPATIAL REGRESSION MODEL

Task- Spatial regression Spatial regression explicitly introduces geospatial context into the sta-
tistical framework of regression. One wants to combine space with the statistical models when he
or she thinks geospatial space can play an essential role in the data generation process or use space
as a proxy for some factors difficult to obtain.

Model- GWR In this work, we selected geographically weighted regression (GWR) (Fothering-
ham et al., 2009), one of the most famous spatial regression models. For GWR, the regression
coefficients are not fixed, but depend on the geographical coordinates of observations, which is
defined as follows:

yi = β0(ui, vi) +

K∑
k=1

βk(ui, vi)xik + εi (3)

where (ui, vi) are the geographical coordinates.

Evaluator As for GWR, we use the coefficient of determination (R2) as the evaluation metric.
Our objective is to obtain an evolved GWR model that has the highest R2.

Datasets The Georgia census data2 is extracted from GWmodel, a R package that contains a group
of geographically weighted models. The original data contains 7 variables and 2 pairs of geograph-
ical coordinates expressed in geodetic and projected coordinate systems, respectively. In this work,
we employ the percentage of the county population with a bachelor’s degree as the target variable,
and the other 6 variables (total population, rural population percentage, elderly (65+) population per-
centage, foreign-born population percentage, population living below the poverty line percentage,
black population percentage) as explanatory variables.

A.2 USE OF LLMS

We use LLMs to polish selected paragraphs and to automatically extract differences between algo-
rithms (e.g., Kriging and GeoCP) produced by different code-generation methods (e.g., OpenEvolve
and GeoEvolve), thereby facilitating the analysis of GeoEvolve’s specific improvements and their
underlying causes. All research ideas were independently conceived by the authors.

A.3 CODE ANALYZER

Figure 6 shows the template of the Code Analyzer and an example output.
2https://r-packages.io/datasets/Georgia

13

https://r-packages.io/datasets/Georgia


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Figure 6: The template and an example of code analyzer

Figure 7: The keywords used for constructing geospatial knowledge database

A.4 GEOSPATIAL KNOWLEDGE DATABASE

The geospatial knowledge is initialized automatically from web (e.g., arxiv, wikipedia, github, etc.)
according to the user-defined keywords and can be updated according to the requirements dynam-
ically during evolution. Figure 7 shows an example of constructed geospatial knowledge database,
the five categories are geostatistics, spatial theory, GIScience, spatial statistics, and spatial modeling.

It should be noted that the construction of a geospatial knowledge base can include many more key-
words, enabling a much larger scale—potentially comprising thousands of documents or developed
through more sophisticated processes. In the present experiments, however, we intentionally created
a small-scale knowledge base to validate the effectiveness of GeoEvolve on three algorithmic tasks.
We expect that GeoEvolve will achieve even greater performance gains when combined with a larger
and more comprehensive geospatial knowledge base in future work.

A.5 BENCHMARK METHODS

Figure 8 illustrates the GeoEvolve without RAG version used in our ablation study. The algorithm
still consists of an outer loop and an inner loop. After the agent proposes an improvement to the
algorithm in the inner loop, the code analyzer evaluates the updated code. In this version, the system
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Figure 8: GeoEvolve without RAG

does not retrieve any information from the GeoKnowRAG geospatial knowledge base; instead, it
directly updates the prompt and returns to the inner loop to further evolve the algorithm.

A.6 LLM CONFIGURATION

To ensure reproducibility and a fair comparison across model families, we report the exact large lan-
guage models (LLMs) used in all components of our system, including the OpenEvolve baseline, the
GeoEvolve framework, the GeoKnowRAG retrieval module, and the outer-loop agentic controller.
Across all LLM families (GPT, Gemini, Qwen), we adopt a consistent two-tier strategy: a primary
model for code mutation and generation, and a secondary model for validation, refinement, and
fallback reasoning. Retrieval modules use the corresponding embedding model for vectorization,
and the agent controller employs a lightweight but reasoning-capable model to support outer-loop
decision making.

GPT family. OpenEvolve uses GPT-4o as the primary evolver and GPT-4.1 as the secondary val-
idator. GeoEvolve adopts the same configuration. GeoKnowRAG embeds all knowledge documents
using text-embedding-3-large. The outer-loop agent controller also operates on GPT-4.1,
balancing reasoning depth and runtime efficiency.

Gemini family. Both OpenEvolve and GeoEvolve use Gemini-2.5-flash as the pri-
mary evolver and Gemini-2.5-pro as the secondary model. GeoKnowRAG employs
gemini-embedding-001, and the agent controller runs on Gemini-2.5-flash.

Qwen family. For the Qwen models, OpenEvolve and GeoEvolve use Qwen3-235B (primary) and
Qwen3-32B (secondary). GeoKnowRAG uses qwen3-embedding-8B, and the agent controller
also runs on Qwen3-32B.
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Table 3: LLM configuration for all components of OpenEvolve and GeoEvolve.

Component GPT Gemini Qwen

OpenEvolve (primary) GPT-4o Gemini-2.5-flash Qwen3-235B
OpenEvolve (secondary) GPT-4.1 Gemini-2.5-pro Qwen3-32B
GeoEvolve (primary) GPT-4o Gemini-2.5-flash Qwen3-235B
GeoEvolve (secondary) GPT-4.1 Gemini-2.5-pro Qwen3-32B
GeoKnowRAG embeddings text-embedding-3-large gemini-embedding-001 qwen3-embedding-8B
Agent controller GPT-4.1 Gemini-2.5-flash Qwen3-32B

Table 4: Runtime comparison of GeoEvolve and OpenEvolve variants using GPT-4.1 across three
geospatial tasks.

RAG Setting Task Dataset Time (s) Hours

GeoEvolve (Dynamic RAG)
Kriging Australia Minerals 3085.37 0.86
GeoCP Seattle House Price 4546.91 1.26
GWR Georgia Census 1862.72 0.52

GeoEvolve (Static RAG)
Kriging Australia Minerals 2730.55 0.76
GeoCP Seattle House Price 4750.32 1.32
GWR Georgia Census 2446.12 0.68

GeoEvolve (No RAG)
Kriging Australia Minerals 2065.91 0.57
GeoCP Seattle House Price 2235.45 0.62
GWR Georgia Census 1786.66 0.50

OpenEvolve (No GeoKnowledge)
Kriging Australia Minerals 1192.98 0.33
GeoCP Seattle House Price 402.89 0.15
GWR Georgia Census 343.55 0.10

OpenEvolve (General GeoKnowledge)
Kriging Australia Minerals 1670.90 0.46
GeoCP Seattle House Price 380.93 0.11
GWR Georgia Census 100.61 0.03

OpenEvolve (Specific GeoKnowledge)
Kriging Australia Minerals 1437.91 0.40
GeoCP Seattle House Price 539.68 0.15
GWR Georgia Census 667.19 0.19

This unified LLM configuration is crucial for interpreting our ablations. The GeoEvolve without
GeoKnowRAG variant keeps the identical primary and secondary models, ensuring that perfor-
mance differences arise solely from the absence of structured domain knowledge rather than changes
in model capacity. Similarly, using matched primary/secondary pairs across OpenEvolve and Geo-
Evolve removes confounding effects from heterogeneous model dependencies. In our experiments,
replacing the secondary models with weaker reasoning engines leads to noticeably less stable evo-
lutionary trajectories, confirming that fallback validation is essential for preventing code drift and
maintaining interpretable improvements. Thus, the LLM design is not merely an implementation
detail but a controlled experimental factor that enables clean causal attribution in our ablation study.

A.7 TIME

Table 4 reports the full runtime comparison of GeoEvolve and OpenEvolve using GPT-4.1 across
the three geospatial tasks. Overall, GeoEvolve incurs additional computational cost due to its two-
level agentic control loop and the GeoKnowRAG retrieval mechanism, but the overhead is consistent
and interpretable. For Dynamic RAG, GeoEvolve requires 0.52–1.26 hours per task, while Static
RAG slightly reduces the overhead to 0.68–1.32 hours. Removing RAG reduces the runtime further
to 0.50–0.62 hours, confirming that a substantial portion of the overhead comes from knowledge
retrieval rather than code evolution itself. In contrast, OpenEvolve—without geospatial knowledge
integration—runs considerably faster (0.03–0.33 hours), but this speed comes at the cost of weaker
algorithmic improvements. These results reflect a clear trade-off: integrating structured geospatial
knowledge increases runtime but enables GeoEvolve to produce substantially stronger and more
stable algorithmic improvements.

Figure 9 presents the average runtime of GeoEvolve across three LLM families (GPT-4.1, Gemini-
2.5, and Qwen3-32B) under both Dynamic and Static RAG settings. Two clear patterns emerge from
the results.
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Figure 9: Average runtime of GeoEvolve across three LLM families (GPT-4.1, Gemini-2.5, and
Qwen3-32B) under Dynamic and Static RAG.

First, the choice of LLM strongly affects computational cost. GPT-4.1 achieves the lowest runtime
(approximately 3.7k seconds), Gemini-2.5 is moderately slower (around 4.1–4.7k seconds), and
Qwen3-32B is the slowest (over 6.2k seconds). This ordering reflects the inherent inference latency
of each model, indicating that GeoEvolve’s execution time scales proportionally with the underlying
LLM’s response speed.

Second, Static RAG consistently outperforms Dynamic RAG in runtime across all LLMs. Static
RAG avoids repeated retrieval–summarization cycles in the outer loop, whereas Dynamic RAG
regenerates the knowledge context at every iteration, leading to additional overhead. The effect
is particularly pronounced for Qwen3-32B, where Dynamic RAG incurs nearly 70% more latency
compared with Static RAG.

Overall, these results highlight a practical trade-off: Dynamic RAG provides higher retrieval adap-
tivity at the cost of increased runtime, while Static RAG offers more efficient execution with slightly
reduced flexibility. This confirms that (i) geospatial algorithm evolution is sensitive to LLM infer-
ence speed, and (ii) users may balance computational efficiency and retrieval precision by choosing
between Static and Dynamic RAG modes.

A.8 GENERALIZATION EXPERIMENT

A.8.1 DATASETS

We selected 3 datasets per task (9 total datasets) to ensure comprehensive coverage.

• Kriging: Australian Minerals, Ocean Chlorophyll, Temperature Station Data.
• GeoCP: Seattle Housing Price, US Life Expectancy, China PM2.5.
• GWR (New): Georgia Education, NYC Income, Chicago Health.

The detailed descriptions about the datasets used in thie work is displayed in Table 5.

A.8.2 DOMAIN GENERALIZATION

Our goal is to demonstrate robust cross-domain transferability. We expect the models evolved on
a source domain (e.g., housing prices) to effectively generalize to target domains (e.g., minerals).
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Model Name Description

Kriging Australian Minerals Spatial measurements of Cu, Pb, and Zn from a region in
Australia, selected for their significance as indicators of
environmental contamination and ecological health.

Kriging Ocean Chlorophyll The Ocean Chlorophyll dataset includes 4,136 highly
clustered chlorophyll observations collected near
Townsville, Australia.

Kriging Temperature Station Data 90-day ambient temperature covering Los Angeles
County from 1st January to 31st March, 2019, collected
from Weather Underground.

GeoCP Seattle Housing Home sales prices and characteristics for Seattle.
GeoCP US Life Expectancy Life expectancy and related sociodemographic variables

for US counties.
GeoCP China PM2.5 PM2.5 concentration and related variables for China

cities

GWR Georgia Education Census data about education from the county of Georgia,
USA

GWR NYC Income Block-level Earnings New York City (2002-14) from
Longitudinal Employer-Household Dynamics (LEHD).

GWR Chicago Health Public health and socio-economic indicators for the 77
community areas of Chicago, IL, 2014.

Table 5: Details about datasets employed in the domain generalization experiment

Specifically, the evolution phase was conducted on the Australian Minerals dataset for Kriging,
Seattle Housing for GeoCP, and Georgia Education for GWR. The results for three models are as
follows.

Kriging Kriging Task (RMSE ↓): OpenEvolve baselines exhibit catastrophic failure (divergence)
on the Ocean Chlorophyll dataset, whereas GeoEvolve remains robust (see Table 6).

Table 6: Model performance comparison of evolved Kriging

Model Australian Minerals Ocean Temperature
Cu Pb Zn Chlorophyll

Original 0.9139 0.6619 0.6294 0.9949 1.1567
GeoEvolve (Dynamic RAG) 0.8718 0.6131 0.5852 0.9916 1.1634
GeoEvolve (Static RAG) 0.8602 0.5927 0.5941 0.6179 0.5417
GeoEvolve (No RAG) 0.8602 0.5927 0.5941 0.5441 1.0499
OpenEvolve (No GeoKnow) 0.8727 0.6413 0.6245 0.5296 1.1083
OpenEvolve (General GeoKnow) 0.9264 0.6519 0.6333 0.6158 2.0221
OpenEvolve (Specific GeoKnow) 0.9139 0.6632 0.6338 Fail (460.4035) 5.7484

GeoCP GeoCP Task (Interval Score ↓): Dynamic RAG achieves the best scores across all datasets,
significantly reducing uncertainty compared to baselines (see Table 7).

GWR GWR Task (R2 ↑): GeoEvolve (Dynamic RAG) consistently achieves the highest or near-
highest R2, demonstrating strong transferability. In contrast, OpenEvolve with Specific GeoKnow
performs poorly on the source domain (Georgia), indicating overfitting or prompt misalignment (see
Figure 8).
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Table 7: Model performance comparison of evolved GeoCP

Model Dataset Interval Coverage Avg Interval
Score ↓ Size

Original
Seattle House Price 44.7611 0.9533 18.3254
US Life Expectancy 121.4673 0.9098 50.2762
China PM2.5 23.4409 0.9295 10.6332

GeoEvolve
(Dynamic RAG)

Seattle House Price 41.2389 0.9000 13.7750
US Life Expectancy 113.2176 0.8922 41.5560
China PM2.5 21.0186 0.9507 9.3529

GeoEvolve
(Static RAG)

Seattle House Price 45.2738 0.9600 18.7862
US Life Expectancy 123.5681 0.9424 53.4537
China PM2.5 21.0186 0.9507 9.3529

GeoEvolve
(No RAG)

Seattle House Price 44.2545 0.9433 17.5586
US Life Expectancy 141.2780 0.9424 67.3331
China PM2.5 24.0525 0.9437 10.9554

OpenEvolve
(No GeoKnow)

Seattle House Price 43.1823 0.9333 16.9139
US Life Expectancy 123.4440 0.8897 45.9977
China PM2.5 26.1946 0.9146 9.4270

OpenEvolve
(General GeoKnow)

Seattle House Price 42.8343 0.9333 17.1508
US Life Expectancy 124.3828 0.9023 51.4155
China PM2.5 27.0417 0.9085 10.0772

OpenEvolve
(Specific GeoKnow)

Seattle House Price 41.4267 0.9033 13.9557
US Life Expectancy 124.0236 0.8671 42.2759
China PM2.5 26.7654 0.8732 8.1674

Table 8: Model performance comparison of evolved GWR

Model Georgia Education NYC Income Chicago Health
Original 0.1564 0.7065 0.5999
GeoEvolve (Dynamic RAG) 0.3556 0.7385 0.6221
GeoEvolve (Static RAG) 0.4524 0.5039 0.4927
GeoEvolve (No RAG) 0.4524 0.5038 0.5388
OpenEvolve (No GeoKnow) 0.2287 0.6238 0.5388
OpenEvolve (General GeoKnow) 0.2353 0.6317 0.6008
OpenEvolve (Specific GeoKnow) 0.1367 0.7297 0.6074
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A.8.3 SPATIAL GENERALIZATION

For geospatial models, spatial generalization is equally important. Taking GWR for New York
income dataset as an example, we use a Spatial Leave-One-Out (SpatialLOO) approach (training on
N − 1 regions, testing on held-out region). Figure 10 offers a general illustration of SpatialLOO.
GeoEvolve with Dynamic RAG achieved the lowest RMSE and standard deviation, proving it adapts
best to unseen spatial distributions. The performance of spatial generalization is shown in the Table
9.

Validation

Training

Figure 10: Spatial Leave-One-Out sampling for evaluating spatial generalization

Table 9: Performance of spatial generalization

Model Mean RMSE Std RMSE
Original 2.165 1.66
GeoEvolve with Dynamic RAG 1.968 ↓ 1.532 ↓
GeoEvolve with Static RAG 2.3 ↑ 1.571 ↓
GeoEvolve without RAG 2.289 ↑ 1.687 ↑
OpenEvolve without GeoKnow 2.432 ↑ 1.707 ↑
OpenEvolve with General GeoKnow 2.059 ↑ 1.641 ↑
OpenEvolve with Specific GeoKnow 2.378 ↑ 2.366 ↑

A.8.4 TEMPORAL GENERALIZATION

Temporal generalization can also be vital in tasks involving spatiotemporal prediction, so we design
experiments for evaluating temporal generalization performance: ensuring that a geospatial model
evolved on data from one specific time period (e.g., 2024) maintains high performance when applied
to datasets from a different time period (e.g., 2025).

Taking Kriging for temperature interpolation as an example, we trained on historical data (Jan 2019)
and tested on future data (next 100 days). As shown in Table 10, GeoEvolve with Static RAG yielded
the highest mean improvement (0.39), while OpenEvolve variants caused performance degradation
(negative improvement).
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Table 10: Performance of temporal generalization

Model Avg. Improvement Med. Improvement Std Min Max

GeoEvolve with Dynamic RAG -0.00325 -0.00312 0.00125 -0.00698 0.00012
GeoEvolve with Static RAG 0.39243 0.44375 0.22398 -0.40564 0.71676
GeoEvolve without RAG 0.05269 0.05169 0.02014 -0.00796 0.10649
OpenEvolve with General GeoKnow -0.38191 -0.33568 0.17768 -0.86385 -0.16534
OpenEvolve with Specific GeoKnow -3.02455 -2.93563 0.75308 -4.49663 -1.75598
OpenEvolve without GeoKnow 0.02625 0.01741 0.03027 -0.01006 0.12728

A.9 ORIGINAL ALGORITHM

A.9.1 ORIGINAL ALGORITHM OF ORIDINARY KRIGING.

Kriging is a geostatistical spatial interpolation method that provides the best linear unbiased esti-
mator (BLUE) of an unknown value at a location by optimally weighting surrounding observations.
It assumes that the spatial process Z(s) can be represented as

Z(s) = µ+ ε(s), (4)

where µ is an unknown constant mean and ε(s) is a zero-mean, second-order stationary random
field. The key assumption of second-order stationarity requires that the mean is constant and that
the covariance depends only on the lag vector h, i.e.,

Cov
[
Z(s), Z(s+ h)

]
= C(h), (5)

or equivalently through the semivariogram γ(h).

Ordinary kriging predicts the value at an unsampled location s0 as a weighted linear combination of
the observed data:

Ẑ(s0) =

n∑
i=1

λiZ(si), (6)

subject to the unbiasedness constraint
n∑

i=1

λi = 1. (7)

The kriging weights λi are determined by minimizing the estimation variance

σ2
k = Var

[
Ẑ(s0)− Z(s0)

]
(8)

using the spatial covariance or variogram model.

A.9.2 ORIGINAL ALGORITHM OF GEOCP

GeoConformal Prediction (GeoCP) is a model-agnostic framework for quantifying spatial prediction
uncertainty by extending conformal prediction (CP) with explicit geographic weighting. Conformal
prediction provides finite-sample, distribution-free prediction intervals by computing nonconformity
scores on a calibration set and selecting the (1 − ε) quantile to guarantee coverage. However,
standard CP assumes data exchangeability and yields intervals of constant width, which is violated
in geospatial settings where strong spatial heterogeneity and covariate shift are common.

To overcome these limitations, GeoCP integrates spatial dependence directly into the conformal
framework. Given a geospatial model f : X → Y trained on a set of observations and a calibration
set {(Xi, yi)}mi=1, let a(·) be a nonconformity score (e.g., absolute residual) and ai = a(f(Xi), yi)
for calibration point i. For a test location Xtest with geographic coordinates (utest, vtest), GeoCP
assigns each calibration point i a geographic weight

wi(utest, vtest) =
Kσ

(
d((utest, vtest), (ui, vi))

)∑m
j=1 Kσ

(
d((utest, vtest), (uj , vj))

) , (9)

where d(·, ·) is the geographic distance and Kσ is a distance-decay kernel (e.g., Gaussian). These
weights reflect Tobler’s first law of geography—that nearby observations are more similar—thus
relaxing the exchangeability requirement of classical CP.
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The GeoCP prediction interval for Xtest is then defined as

Cgeo(Xtest) =
{
y : a

(
f(Xtest), y

)
≤ Qgeo

1−ε({ai}, {wi(utest, vtest)})
}
, (10)

where Qgeo
1−ε is the geographically weighted (1− ε)-quantile computed as

Qgeo
1−ε = inf

{
q :

m∑
i=1

wi(utest, vtest)1{ai ≤ q} ≥ 1− ε

}
. (11)

Algorithmically, GeoCP proceeds as follows: (1) split the dataset into training, calibration, and test
sets; (2) fit the spatial prediction model f on the training set; (3) compute nonconformity scores {ai}
on the calibration set; (4) for each test point, calculate geographic weights wi via (9); (5) determine
the geographically weighted quantile (11) and form the prediction interval (10).

By construction, GeoCP inherits the rigorous finite-sample coverage guarantee of conformal predic-
tion,

P[ytest ∈ Cgeo(Xtest)] ≥ 1− ε,

while producing spatially varying prediction intervals that directly reflect local heterogeneity. Be-
cause it does not require modifying the underlying predictive model, GeoCP can be applied seam-
lessly to classical geostatistical methods (e.g., Kriging) and modern GeoAI models, providing a
unified and interpretable framework for uncertainty quantification and supporting fair, responsible
geographic decision-making.

A.10 EVOLVED KRIGING MODEL

A.10.1 GEOEVOLVE-KRIGING (OUR MODEL)

Compared with the original Ordinary Kriging, GeoEvolve–Kriging preserves the core structure
while introducing the following key innovations:

• Expanded and automatically selected variogram family. Instead of a single non-
standard exponential model, GeoEvolve fits a flexible family

γθ(h) = θ0 + θ1

[
1− exp

(
−(h/θ2)p

)]
, (12)

where p = 1 yields the exponential model, p = 2 the Gaussian model,
and p ∈ (0, 2) the Matérn family (with smoothness ν). Candidate models
{Exponential,Gaussian,Linear,Matérn} are compared using information criteria such as

AIC = 2k − 2 logL, BIC = k log n− 2 logL, (13)

and the optimal variogram is selected by minimum AIC/BIC. This multi-model, multi-start
search avoids local minima and captures a wide spectrum of spatial smoothness.

• Adaptive empirical variogram estimation. GeoEvolve constructs the empirical semi-
variogram using adaptive binning based on Silverman’s rule or quantiles:

γ̂(hk) =
1

2|N(hk)|
∑

(i,j)∈N(hk)

[Z(xi)− Z(xj)]
2, (14)

where N(hk) is the set of pairs with distances in the kth adaptive bin. Robust trimmed
means and an automatic choice of nlags ∈ [8, 20] ∝

√
n reduce the impact of outliers and

distance heterogeneity.
• Robust model fitting. Parameter estimation in (12) is performed via multi-start global

optimization with either
min
θ

∑
k

wk |γ̂(hk)− γθ(hk)| (15)

(robust L1 loss) or weighted least squares, depending on empirical residual patterns, where
wk are bin-based weights. This strategy guards against local minima and ensures sill θ1
and range θ2 remain physically meaningful.
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• Localized kriging with adaptive regularization. To improve scalability and stability,
GeoEvolve restricts the kriging system to the K nearest neighbors (e.g., K = 25) of x0

using a cKDTree and adds a condition-number–dependent diagonal adjustment:

Klocλ = kloc, Kloc ← Kloc + ϵ(κ)I, (16)

where ϵ(κ) is an adaptive nugget (e.g., 10−10 to 10−4) determined by the matrix condition
number κ. This reduces computational cost from O(n3) to O(K3) and stabilizes inversion
in ill-conditioned settings.

• Adaptive data transformation. GeoEvolve applies an adaptive log transform

Z ′ = log
(
Z + δ

)
, (17)

where the offset δ is chosen from the 1st percentile of positive values plus a small ϵ to
reduce skewness and ensure valid back-transformation.

A.10.2 COMPARISON OF EVOLVED KRIGING FROM DIFFERENT MODELS

In this section, we analyze the main technical components of different algorithm:

Variogram family. Original uses only the exponential variogram with a non-standard form
nugget + sill(1 − e−h·range). OpenEvolve standardizes the form to e−h/range and adds Gaus-
sian and Linear options. OpenEvolve with GeoKnowledge adopts the same set but applies auto-
matic model selection among candidate models. GeoEvolve further introduces the Matern family
(ν = 0.2–3.0) with full AIC/BIC-based automatic selection and multi-start optimization.

Empirical variogram. Original employs 12 equal-width bins including zero distance and is
unweighted. OpenEvolve truncates distances to 85% of the maximum and removes NaN bins.
OpenEvolve with GeoKnowledge follows the same procedure but adds minimal pair control. Geo-
Evolve uses adaptive binning via Silverman’s rule or quantiles, applies a robust trimmed mean, and
automatically sets nlags = 8–20 ∝

√
n.

Model fitting. Original applies an L1 loss with a single L-BFGS-B run. OpenEvolve still uses
L1 but adds parameter bounds, smart initialization, and a fallback strategy. OpenEvolve with Geo-
Knowledge switches to L2 loss and selects the best model by minimum MSE. GeoEvolve adopts a
robust L1 loss, multi-start global search, Matern smoothness grid, and AIC/BIC complexity penal-
ties.

Kriging solver. Original builds a global system without neighborhood selection. OpenEvolve in-
troduces diagonal regularization (10−10) and a pseudo-inverse fallback. OpenEvolve with Geo-
Knowledge is identical. GeoEvolve employs localized kriging using cKDTree nearest 25 neighbors
and condition-number–adaptive regularization (10−10–10−4), with mean fallback if the system is
singular.

A.10.3 KNOWLEDGE DISCOVERY FROM GEOEVOLVE

We summarize the key geospatial knowledge underlying the improved GeoEvolve algorithm, which
can contribute to geospatial modeling.

Expanded variogram family with automatic selection. Fits appropriate smoothness and range,
lowering RMSE/MAE and improving R2.

Adaptive empirical variogram (trimmed mean, quantile bins). Stabilizes nugget/sill/range esti-
mates and reduces run-to-run variance.

Multi-start with parameter bounds in optimization. Improves convergence and avoids negative
or degenerate parameter estimates.

Localized kriging with condition-based regularization. Reduces computational cost (from O(n3)
to local operations) and improves robustness for ill-conditioned systems.

Geo-knowledge injection. Provides informative priors and narrows the search space, improving
small-sample and non-stationary performance.
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A.11 EVOLVED GEOCP MODEL

A.11.1 GEOEVOLVE-GEOCP (OUR MODEL)

The fundamental conformal construction is preserved, but the following modifications are intro-
duced:

• Refined geographic weighting. While keeping the Gaussian kernel form

wi(utest, vtest) =
exp

[
− 1

2

(d((utest,vtest),(ui,vi))
σ

)2]∑m
j=1 exp

[
− 1

2

(d((utest,vtest),(uj ,vj))
σ

)2] , (18)

GeoEvolve reoptimizes the bandwidth parameter σ through multi-start global search and
adaptive clipping

σ ∈ [σmin, σmax], (19)

ensuring both numerical stability and fidelity to local spatial heterogeneity.

• Enhanced weighted quantile computation. GeoEvolve consolidates earlier adaptive
strategies into a simplified yet robust stepwise quantile estimator:

Qgeo
1−ε = inf

{
q :

m∑
i=1

wi(utest, vtest)1
{
ai ≤ q

}
≥ 1− ε

}
. (20)

The algorithmic implementation uses improved vectorization and conditioning checks,
guaranteeing accuracy and scalability on large test sets.

A.11.2 COMPARISON OF EVOLVED GEOCP FROM DIFFERENT MODELS

We summarize the key technical elements of the different code-evolution algorithms.

Original GeoCP. This version uses a fixed-bandwidth Gaussian kernel e−0.5d2

without weight nor-
malization. It computes weighted quantiles with a stepwise rule, selecting the index where cumula-
tive weights exceed q without interpolation, and adopts the quantile level q = ⌈(1−α)(N +1)⌉/N ,
which is slightly conservative. Only the mean interval score is reported as the uncertainty metric.
As a result, the method may produce overly wide or miscalibrated intervals in regions with strong
spatial heterogeneity or sparse sampling.

OpenEvolve. This stage introduces adaptive bandwidth, dynamically adjusting kernel width for
each test location based on its k-nearest neighbor distance and row-wise distance dispersion. It re-
places the stepwise weighted quantile with interpolated weighted quantiles, avoiding discontinuous
interval endpoints.

OpenEvolve with GeoKnowledge. Here the bandwidth is eo-knowledge guided: per-test k-NN
bandwidths are clipped to the empirical range [0.05, 0.5]. Weight normalization ensures that each
test point’s kernel weights sum to one, providing numerical stability and spatial consistency. The
quantile level is refined to q = (1 − α)(N + 1)/N (without ceiling), reducing conservativeness
and shortening intervals. Furthermore, comprehensive UQ metrics are reported, including mean
interval length, empirical coverage, and deviation from nominal coverage. Overall, this stage further
shortens intervals and achieves near-nominal coverage while remaining robust at boundaries and in
sparse areas.

GeoEvolve. GeoEvolve–GeoCP remains faithful to the core conformal prediction framework while
sharpening spatial weighting and quantile estimation, the two pillars of interval construction. The
refined geographic weighting adaptively tunes bandwidth to local heterogeneity, ensuring that con-
formal scores reflect the true spatial dependence and avoid instability.

A.11.3 KNOWLEDGE DISCOVERY FROM GEOEVOLVE

We distill the geospatial knowledge that underlies the improved GeoCP algorithm produced by Geo-
Evolve.
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Adaptive bandwidth. This mechanism adjusts kernel width to local calibration-point density, pre-
venting overly wide intervals in dense regions and overly narrow ones in sparse regions. It drives
the interval score down and keeps empirical coverage near (1− α).

Interpolated weighted quantile. By eliminating discrete jumps when cumulative weights cross the
quantile threshold, this refinement produces smoother, more stable prediction interval endpoints and
lowers variance.

Refined quantile level without ceiling. This adjustment avoids the conservative upward bias from
the ceiling function, shortens interval length, and keeps empirical coverage close to the nominal
level.
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