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ABSTRACT

Multi-modal large language models (MLLMs) are rapidly advancing in visual un-
derstanding and reasoning, enhancing GUI agents for tasks such as web browsing
and mobile interactions. However, these agents depend on reasoning skills for ac-
tion planning but only rely on the model capability for UI grounding (localizing
the target element). These grounding models struggle with high-resolution dis-
plays, small targets, and complex environments. In this work, we introduce a novel
method to improve MLLMs’ grounding performance in high-resolution, com-
plex UI environments using a visual search approach based on visual reasoning.
Additionally, we create a new benchmark, dubbed ScreenSpot-Pro, designed to
comprehensively evaluate model capabilities in professional high-resolution set-
tings. This benchmark consists of real-world high-resolution images and expert-
annotated tasks from diverse professional domains. Our experiments show that ex-
isting GUI grounding models perform poorly on this dataset, with the best achiev-
ing only 18.9%, whereas our visual-reasoning strategy significantly improves per-
formance, reaching 48.1% without any additional training.

1 INTRODUCTION

Recent advancements in Multi-modal Large Language Models (MLLMs) (OpenAI, 2024; Wang
et al., 2024; Chen et al., 2023; Li et al., 2024) have significantly invigorated this pursuit, driving
intensive research efforts in creating pure-vision based GUI agent models that can directly interact
with electronic devices that are integral to modern life (You et al., 2024; Hong et al., 2023). These
models are capable, to some extent, of directly perceiving device screens in a manner similar to
humans, and making decisions on the operations based on the observations.

Many existing studies on GUI agents focus primarily on simple, everyday tasks like general com-
puter control, web browsing, and lifestyle apps. These tasks are typically performed on devices
with lower resolution and simpler interface elements, which makes them easier for GUI agents to
handle. However, in real-world scenarios, where high-resolution displays and data-rich, complex
interfaces are common, GUI agents often struggle. The intricate details, high-definition visuals, and
complex layouts of professional applications create significant challenges for these agents, impact-
ing their perception, comprehension, and interaction capabilities. This gap highlights the limitations
of current approaches in handling more demanding environments.

The primary challenge of applying current GUI agents to these professional applications is threefold:
(1) the significantly greater complexity of professional applications, compared to general-use soft-
ware, often necessitates the use of higher resolutions that exceed the effective handling capacity of
current MLLMs; (2) the increased resolution results in smaller relative target sizes in the screenshot,
where GUI grounding models generally exhibit worse performance, as demonstrated in Figure 1; (3)
professional users frequently rely on additional documents and external tools to complement their
workflows, further complicating the screen. Consequently, even if the GUI agents1 are able to un-
derstand user instructions and the user interfaces in the professional work environment, it is difficult
for them to ground the instructions into executable actions in such complex screenshots.

1In this work, we use the terms “GUI agent” and “GUI model” interchangeably to refer to the MLLMs, as
the primary focus of this work is on the grounding capabilities of these models.
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Figure 1: Performance of the expert GUI
grounding models SeeClick (Cheng et al., 2024),
OS-Atlas (Wu et al., 2024), UGround (Gou
et al., 2024), and the generalist MLLM Qwen2-
VL (Wang et al., 2024) on the ScreenSpot-v2 GUI
grounding benchmark (Wu et al., 2024). The el-
ements on the x-axis are arranged in logarithmi-
cally decreasing order, representing their relative
size in the entire image. There is a universal de-
crease in accuracy as the target bounding box size
becomes smaller.

This paper explores the key challenge in GUI
grounding in professional high-resolution en-
vironments. Given a natural language instruc-
tion and a screenshot, the models are asked to
ground the instruction to a precise location of
the target UI element. We introduce an Visual-
Reasoning method to handle GUI grounding
in high-resolution environments. This method
leverages the natural hierarchies in GUI screen-
shots, along with the extensive GUI-related
knowledge embedded in the MLLM to per-
form iterative searching within the pixel space
of high-resolution screenshots. At each step, it
reasons on the user’s instructions and predicts
the most probable areas, rather than directly
locating the target in the screenshot. These
areas are then cropped in successive search
steps to eliminate irrelevant distractions, until
the grounding model is applied to a sufficiently
simplified region.

Besides, we introduce ScreenSpot-Pro, a new
GUI grounding benchmark that includes 23 ap-
plications in 5 types of industries, as well as common usages in 3 operating systems. It contains
1,581 instructions, each paired with a unique screenshot, captured by professional users. These tasks
are further categorized into ScreenSpot-Pro differentiates itself from previous grounding bench-
marks (Cheng et al., 2024; Liu et al., 2024b) in that it includes authentic high-resolution images and
tasks captured from a variety of professional applications and domains, thus reflecting the complex-
ity and diversity of real-world scenarios

Our contribution is summarized as follows:

• We propose SeeClick-Pro, a visual reasoning based search method for high-resolution com-
plex scenarios.

• We present ScreenSpot-Pro, a new benchmark for GUI grounding designed to facilitate
comprehensive evaluation with authentic tasks collected from various high-resolution pro-
fessional desktop environments.

• We offer a comprehensive evaluation and comparison of common GUI grounding models.

2 PRELIMINARIES ON VISUAL SEARCH

Several approaches have been proposed to tackle the challenge of processing high-resolution images,
including resolution scaling (Chen et al., 2023) and simple cropping (Liu et al., 2024a; Hong et al.,
2023). However, these methods struggle to perform effectively at ultra-high resolutions (above
2K) due to inherent model limitations, such as short context lengths and low-resolution training
data. For instance, UGround (Gou et al., 2024) supports resolutions up to 1344 × 1344, while
QwenVL (Bai et al., 2023) operates at 448 × 448. Scaling input resolutions further demands novel
model architectures and substantial computational resources for retraining. A promising alternative
lies in leveraging visual search techniques.

Humans naturally rely on contextual information to identify likely areas of interest when searching
for targets in complex scenes. Inspired by this, the V* algorithm (Wu & Xie, 2023) adopts a top-
down search guided by a segmentation module to process high-resolution images. At the core of the
framework are a search queue q and a MLLM with two additional decoders: a detection head, which
serves as the Target Localization Decoder, and a segmentation head, which functions as a Search
Cue Localization Decoder. We denote the MLLM as fMLLM , and the MLLM with the decoder
heads as fDET and fSEG. Given a high-res image I and the search target t, the algorithm starts
with an empty q, and it initially attempts to locate the target:

(d, c) = fDET (I, t) (1)
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Here, d represents the detection box, and c denotes the associated confidence score. If c is suffi-
ciently high, d is accepted as a result. If not, the algorithm finds where t is likely to appear in the
image based on the search cue heatmap h, obtained by segmenting t. The core idea is that, if the
segmentation is uncertain, the algorithm retries to segment a new object which is the most likely
to co-occur with the target. Specifically, the new target t′ is obtained by prompting the MLLM as
t′ = fMLLM (I, t), if the maximum of h falls below a threshold σ:

h =

{
fSEG(I, t) if max(s) > σ

fSEG(I, t
′) if max(s) ≤ σ

(2)

Then the image is split into four uniform patches I1, I2, I3, I4 and enqueued into q for subsequent
search within. The priority of the patches are determined by h in the respective areas. Finally,
the algorithm takes a patch from q, and iteratively executes the search process. By implementing
this recursive partitioning and priority scoring strategy, the V* algorithm effectively handles high-
resolution images and complex visual information.

3 SEECLICK-PRO: GUI GROUNDING VIA VISUAL REASONING AND VISUAL
SEARCH

Professional applications are designed to provide a comprehensive suite of advanced features, cater-
ing to specialized tasks and workflows. These features often involve intricate details, such as high-
definition visuals, precise layouts, or data-dense interfaces, which demand a high-resolution display
to be fully effective. Unlike natural images, the UI of these applications typically follows a well-
defined hierarchy. For example, menus, tools, and properties are often organized within subpanels
or child windows, providing clear cues on where to search for a UI target.

Based on the observation, we propose SeeClick-Pro, adopting the idea of visual reasoning and visual
search to address the problem of GUI grounding in professional high-resolution computer screens.
The algorithm is summarized in Algorithm 1 and an example is visualized in Figure 2.

The proposed algorithm operates through a recursive search process that incrementally refines the
localization of the target. Given a text instruction T and an image I , the algorithm begins the search
over the entire image and progressively narrows the search area based on inferred positions and
visual cues.

Figure 2: A demonstration of our proposed method. Instruction: “delete file or folder”

Position Inference The core of the algorithm lies in Position Inference, where GPT-4 analyzes
the instruction T to predict the potential locations of the target. Initially, it identifies the approximate
location of the target UI and predicts a series of areas that likely enclose the target. It then leverages
common knowledge to infer possible neighboring UI elements in proximity to the target, such as the
“cut” button typically appearing near the “copy” button. This allows the model to generate a set of
candidate regions in the image that are most likely to contain the target.
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Algorithm 1 V*: LLM-guided Visual Search
1: Input: Instruction T , Image Iimg, Max Depth Dmax, Min Size Smin
2: Output: Target Bounding Box b
3: function VISUALSEARCH(T, I,Dmax, Smin, d)
4: d← 0, viewport← (0, 0, 1, 1)
5: if depth ≥ Dmax or Iimg too small then
6: return DIRECTGROUNDING(I, viewport)
7: end if
8: candidates← POSITIONINFERENCE(Y, I)
9: patches← GROUND(candidates)

10: dilated patches← DILATE(patches, Smin, Rmax)
11: scores← SCOREPATCHES(nms patches)
12: nms patches← NMS(dilated patches)
13: sorted patches← SORT(nms patches, scores)
14: for each patch ∈ sorted patches do
15: sub image← CROPIMAGE(I, patch)
16: terminate, b← VISUALSEARCH(T, sub image, d+ 1)
17: if terminate then
18: return b
19: end if
20: end for
21: return None
22: end function

Patch Scoring The grounded bounding boxes are often noisy, so we apply box dilation to expand
them into larger candidate areas. Subsequently, the candidates are scored based on a Gaussian
distribution of the distance between their center points and those of all grounded boxes (including
both the target areas and their neighbors):

S(x′, y′, σ) =

{
exp

(
− (x′−0.5)2+(y′−0.5)2

2σ2

)
, if 0 ≤ x′ ≤ 1 and 0 ≤ y′ ≤ 1

0, otherwise
(3)

x′ =
x− x1

x2 − x1
, y′ =

y − y1
y2 − y1

(4)

where (x, y) is the center of a voting box, and (x1, y1, x2, y2) represent the coordinates of the candi-
date area. Candidates with more voting boxes closer to their center receive higher scores, while those
further away are assigned progressively lower scores. This centrality-based approach emulates hu-
man visual attention, and avoids the prioritization of larger candidates, which would otherwise slow
down the search process.

Recursive Search The candidates are subjected to non-maximum suppression (NMS) to decrease
redundant or overlapping regions, ensuring that the remaining search areas are distinct. The algo-
rithm then recursively searches each candidate patch by cropping out a sub-image, which is passed
into the recursive search function, V isualSearch(I, sub image, d + 1). The grounder model is
invoked if the patch size is sufficiently small (a hyperparameter set to 1280 pixels), and GPT-4o ver-
ifies the correctness of the bounding box. This recursive process continues until GPT-4o determines
that the target has been found or until the maximum search depth is reached.

4 EXPERIMENTS

4.1 THE SCREENSPOT-PRO DATASET

We create ScreenSpot-Pro, aiming to reflect realistic tasks in real-world challenges across various
platforms and applications2. To achieve this, it is crucial to capture the authentic workflows of

2It is important to note that constructing an interactive environment to distribute similar to OSWorld (Xie
et al., 2024) is not feasible due to licensing restrictions.
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professionals. We invited a total of 14 experts with at least five years of experience using the relevant
applications to record the data. They were instructed to perform their regular work routine to ensure
the authenticity of the tasks whenever possible. To minimize disruptions to their workflow, we
developed a silently running screen capture tool, accessible through a shortcut key. When activated,
this tool takes a screenshot and overlays it on the screen, allowing experts to label the bounding
boxes and provide instructions directly. This method enhances the consistency and quality of the
annotations, as experts can label tasks in real-time without the need to recall the purposes and context
of their actions in hindsight. To obtain authentic high-resolution images, we prioritized screens with
a resolution greater than 1080p (1920 × 1080), a configuration commonly found among annotators.
Monitor scaling was disabled. In dual-monitor setups, images were captured to span both displays.

Following SeeClick (Cheng et al., 2024), we also specify the type of the target element, categoriz-
ing it as either text or icon. We refined the classification criteria to better discriminate ambiguous
cases where icons are accompanied by text labels, which is common in AutoCAD and Office suites.
Specifically, a target is classified as icon only when no text hints are present. If text labels are
present, the target is labeled as text, even if an icon is included.

4.2 SETTINGS AND METRICS

We experimented on several VLMs that support GUI Grounding: QwenVL-7B (Bai et al.,
2023), Qwen2VL-7B (Wang et al., 2024), MiniCPM-V-2.6 (8B) (Yao et al., 2024), CogAgent
(18B) 3 (Hong et al., 2023), SeeClick (7B) (Cheng et al., 2024), UGround (7B) (Gou et al., 2024),
OSAtlas-4B, OSAtlas-7B (Wu et al., 2024), ShowUI (2B) (Lin et al., 2024) and Aria-UI (MOE,
3.9B active) (Yang et al., 2024). We precisely evaluate whether the model’s predictions align with
the annotated ground truth boxes. Formally, a prediction is considered correct if xmin ≤ xi ≤
xmax and ymin ≤ yi ≤ ymax, where xi, yi are the predictions, and xmin, xmax, ymin, ymax is the
ground truth box. For models generating bounding box outputs, we calculate the center point as its
prediction.

4.3 BASELINE METHODS

We hypothesize that the main challenge for the models is the large resolution of the screenshots.
Therefore, we come up with several intuitive baselines to perform multi-round grounding to shrink
the image size for a more accurate prediction.

Iterative Zooming. Inspired by V*’s iterative approach (Wu & Xie, 2023), Iterative Zooming first
performs grounding directly on the whole screenshot, and splits the screenshot into smaller patches.
At each step, it chooses the patch the prediction falls into to continue searching within. For the
splitting strategy, we always use a 2 row × 2 column split.

Iterative Narrowing. This baseline operates in the same ground-and-zoom procedure as Iterative
Zooming, but the patches are cropped to center the prediction. The patch size is set to half the
width and height of the image at each step, and the number of iterations is set to 3 to enable a fair
comparison with Iterative Zooming. This approach closely aligns with a concurrent work (Nguyen,
2024).

ReGround. We assess a simple baseline that crops the region surrounding the initial prediction to
re-ground and make a final determination. The size of the crop can be manually configured based
on the optimal input size of the models.

4.4 RESULTS AND FINDINGS

Models struggle on ScreenSpot-Pro, even the specialist models. The full results of the GUI
grounding models are presented in Table 2. OS-Atlas-7B leads the performance with an accuracy of
18.9%, closely followed by UGround and AriaUI. None of the other models achieved an accuracy
above 10%. Notably, GPT-4o, despite its advanced capabilities, scored only 0.9%, highlighting its
limitations for the GUI grounding task.

3THUDM/cogagent-chat-hf
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Table 1: List of software collected in ScreenSpot-Pro.

Icon Abbr. Application Edition & Version OS Icons Texts

Development and Programming
VSC Visual Studio Code 1.95 macOS 22 33
PyC PyCharm 2023.3 macOS 38 40
AS Android Studio 2022.2 macOS 44 36
Qrs Quartus II 13.0 SP1 Windows 32 13
VM VMware Fusion 13.6.1 macOS 9 32

Creative
PS Photoshop 2020 Windows 25 26
PR Premiere 2025 Windows 24 28
AI Adobe Illustrator 2025 Windows 19 12
Bl Blender 4.0.2 Windows 15 56
FL FruitLoops Studio 20.8.3 Windows 31 26
UE Unreal Engine 5.4.4 Windows 6 29
DR DaVinci Resolve 19.0.3 macOS 23 21

CAD and Engineering
CAD AutoCAD Mechanical 2019 Windows 7 27
SW SolidWorks Premium 2018 x64 Windows 14 63
Inv Inventor Professional 2019 Windows 11 59
Vvd Vivado 2018.3 Windows 32 48

Scientific and Analytical
MAT MATLAB R2022b Windows 19 74
Org Origin 2018 Windows 43 19
Stt Stata SE 16 Windows 41 8
Evw EViews 10 Windows 7 43

Office Suite
Wrd Word Office 365 (16.90) macOS 15 69
PPT PowerPoint Home and Student 2019 Windows 25 57
Exc Excel Office 365 (16.82) macOS 13 51

Operating System Commons
Win Windows 11 Professional - 47 34
mac macOS Sonoma 14.5 - 23 42
Lnx Linux Ubuntu 24.04 - 19 31

Table 2: Model Performance by Software. The abbreviations used in the table are defined in Table 1.

Model Development Creative CAD Scientific Office OS AvgAS PyC VSC VM UE PS Bl PR DR AI FL CAD SW Inv Qrs Vvd MAT Org Evw Stt PPT Exc Wrd Lnx mac Win

OS-Atlas-7B 8.8 15.4 25.5 34.1 22.9 17.6 22.5 17.3 27.3 3.2 10.5 2.9 3.9 2.9 13.3 26.3 23.7 11.3 54.0 12.2 22.0 12.5 44.0 20.0 20.0 12.3 18.9
UGround (7B) 7.5 7.7 21.8 31.7 20.0 21.6 25.4 17.3 11.4 0.0 14.0 2.9 0.0 7.1 15.6 28.7 23.7 6.5 46.0 0.0 25.6 15.6 36.9 18.0 12.3 2.5 16.5
AriaUI (MOE, 3.9B active) 0.0 3.8 21.8 2.4 0.0 27.5 26.8 17.3 2.3 0.0 12.3 0.0 1.3 1.4 20.0 17.5 21.5 1.6 44.0 6.1 6.1 1.6 36.9 2.0 3.1 2.5 11.3
ShowUI (2B) 3.8 7.7 5.5 22.0 11.4 5.9 7.0 5.8 0.0 3.2 3.5 0.0 0.0 1.4 15.6 5.0 8.6 12.9 16.0 6.1 9.8 6.3 22.6 4.0 10.8 4.9 7.7
CogAgent (18B) 2.5 5.1 16.4 9.8 2.9 11.8 7.0 7.7 0.0 0.0 5.3 0.0 1.3 0.0 11.1 18.8 16.1 1.6 34.0 2.0 6.1 0.0 21.4 2.0 4.6 2.5 7.7
OS-Atlas-4B 1.3 1.3 12.7 2.4 0.0 0.0 2.8 1.9 2.3 3.2 5.3 0.0 0.0 1.4 2.2 3.8 7.5 3.2 20.0 0.0 4.9 0.0 8.3 6.0 0.0 3.7 3.7
MiniCPM-V (7B) 0.0 2.6 9.1 2.4 0.0 3.9 0.0 3.8 0.0 0.0 0.0 0.0 0.0 0.0 6.7 11.3 2.2 1.6 18.0 0.0 4.9 0.0 3.6 0.0 3.1 3.7 3.0
Qwen2-VL-7B 0.0 0.0 5.5 0.0 2.9 2.0 0.0 0.0 0.0 0.0 1.8 0.0 0.0 0.0 2.2 1.3 2.2 0.0 12.0 2.0 2.4 0.0 6.0 2.0 0.0 0.0 1.6
SeeClick (7B) 0.0 0.0 0.0 2.4 0.0 0.0 1.4 1.9 0.0 0.0 0.0 2.9 0.0 5.7 0.0 0.0 0.0 0.0 8.0 2.0 0.0 0.0 2.4 2.0 1.5 1.2 1.1
GPT-4o 0.0 1.3 0.0 2.4 2.9 2.0 0.0 0.0 0.0 0.0 0.0 0.0 1.3 2.9 0.0 1.3 2.2 0.0 2.0 0.0 0.0 1.6 1.2 0.0 0.0 0.0 0.8
QwenVL-7B 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1

Icons targets are more difficult to ground than texts. Table 3 demonstrates that the bench-
marked models struggle significantly in identifying and grounding icon elements in the GUI, a con-
sistent finding with (Cheng et al., 2024). The challenge is exacerbated by the specialization required
for professional applications, which introduces several issues: 1) the sheer number of functions
makes comprehensive text-based descriptions impractical, e.g. Origin’s toolbar (see Figure ?? in the
Appendix); 2) these applications often assume users are familiar with the icons and buttons; and 3)
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Table 3: Performance breakdown of various models across application categories on ScreenSpot-
Pro.

Model Development Creative CAD Scientific Office OS Avg
Text Icon Avg Text Icon Avg Text Icon Avg Text Icon Avg Text Icon Avg Text Icon Avg Text Icon Avg

OSAtlas-7B 33.1 1.4 17.7 28.8 2.8 17.9 12.2 4.7 10.3 37.5 7.3 24.4 33.9 5.7 27.4 27.1 4.5 16.8 28.1 4.0 18.9
UGround (7B) 26.6 2.1 14.7 27.3 2.8 17.0 14.2 1.6 11.1 31.9 2.7 19.3 31.6 11.3 27.0 17.8 0.0 9.7 25.0 2.8 16.5
AriaUI (MOE, 3.9B active) 16.2 0.0 8.4 23.7 2.1 14.7 7.6 1.6 6.1 27.1 6.4 18.1 20.3 1.9 16.1 4.7 0.0 2.6 17.1 2.0 11.3
CogAgent (18B) 14.9 0.7 8.0 9.6 0.0 5.6 7.1 3.1 6.1 22.2 1.8 13.4 13.0 0.0 10.0 5.6 0.0 3.1 12.0 0.8 7.7
ShowUI (2B) 16.9 1.4 9.4 9.1 0.0 5.3 2.5 0.0 1.9 13.2 7.3 10.6 15.3 7.5 13.5 10.3 2.2 6.6 10.8 2.6 7.7
OSAtlas-4B 7.1 0.0 3.7 3.0 1.4 2.3 2.0 0.0 1.5 9.0 5.5 7.5 5.1 3.8 4.8 5.6 0.0 3.1 5.0 1.7 3.7
MiniCPM-V (7B) 7.1 0.0 3.7 2.0 0.0 1.2 4.1 1.6 3.4 8.3 0.0 4.7 2.8 3.8 3.0 3.7 1.1 2.6 4.5 0.7 3.0
Qwen2-VL-7B 2.6 0.0 1.3 1.5 0.0 0.9 0.5 0.0 0.4 6.3 0.0 3.5 3.4 1.9 3.0 0.9 0.0 0.5 2.5 0.2 1.6
SeeClick (7B) 0.6 0.0 0.3 1.0 0.0 0.6 2.5 0.0 1.9 3.5 0.0 2.0 1.1 0.0 0.9 2.8 0.0 1.5 1.8 0.0 1.1
GPT-4o 1.3 0.0 0.7 1.0 0.0 0.6 2.0 0.0 1.5 2.1 0.0 1.2 1.1 0.0 0.9 0.0 0.0 0.0 1.3 0.0 0.8
QwenVL-7B 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1

Table 4: Performance of GUI grounding models with Chinese instructions. The abbreviations used
in the table are defined in Table 1.

Model Development Creative CAD Scientific Office OS AvgAS PyC VSC VM UE PS Bl PR DR AI FL CAD SW Inv Qrs Vvd MAT Org Evw Stt PPT Exc Wrd Lnx mac Win

OS-Atlas-7B 11.3 15.4 21.8 34.1 22.9 11.8 23.9 21.2 11.4 6.5 14.0 5.9 3.9 2.9 8.9 23.8 14.0 11.3 44.0 12.2 17.1 10.9 36.9 16.0 16.9 14.8 16.8
AriaUI (MOE, 3.9B active) 0.0 3.8 18.2 2.4 0.0 23.5 12.7 11.5 0.0 0.0 10.5 0.0 0.0 0.0 13.3 18.8 19.4 1.6 52.0 6.1 2.4 0.0 20.2 2.0 6.2 2.5 9.0
UGround (7B) 3.8 2.6 10.9 14.6 8.6 9.8 11.3 3.8 9.1 3.2 7.0 0.0 0.0 4.3 6.7 12.5 10.8 4.8 30.0 2.0 12.2 4.7 6.0 12.0 7.7 3.7 7.7
ShowUI (2B) 3.8 6.4 5.5 22.0 5.7 7.8 4.2 3.8 0.0 0.0 3.5 5.9 2.6 1.4 15.6 7.5 9.7 11.3 18.0 10.2 9.8 1.6 8.3 4.0 10.8 6.2 7.0
CogAgent (18B) 0.0 5.1 10.9 4.9 0.0 5.9 5.6 5.8 0.0 3.2 3.5 0.0 1.3 0.0 6.7 5.0 7.5 1.6 14.0 2.0 1.2 0.0 2.4 4.0 3.1 2.5 3.7
OS-Atlas-4B 0.0 1.3 7.3 0.0 0.0 2.0 2.8 0.0 4.5 0.0 7.0 5.9 0.0 1.4 0.0 3.8 5.4 4.8 12.0 0.0 4.9 1.6 2.4 4.0 0.0 2.5 2.8
MiniCPM-V (7B) 1.3 2.6 3.6 0.0 0.0 0.0 0.0 1.9 0.0 0.0 3.5 0.0 1.3 0.0 4.4 8.8 0.0 0.0 28.0 0.0 3.7 3.1 0.0 0.0 1.5 2.5 2.5
Qwen2-VL-7B 0.0 0.0 3.6 0.0 0.0 2.0 1.4 3.8 0.0 0.0 1.8 0.0 0.0 0.0 4.4 1.3 2.2 1.6 22.0 6.1 2.4 0.0 2.4 0.0 1.5 0.0 2.0
GPT-4o 2.5 0.0 0.0 0.0 2.9 2.0 1.4 3.8 0.0 0.0 0.0 0.0 2.6 1.4 0.0 0.0 2.2 0.0 2.0 0.0 1.2 0.0 0.0 0.0 1.5 0.0 0.9
SeeClick (7B) 0.0 2.6 0.0 0.0 0.0 0.0 2.8 0.0 0.0 0.0 0.0 0.0 0.0 4.3 0.0 0.0 1.1 0.0 8.0 0.0 1.2 0.0 1.2 0.0 1.5 0.0 0.9
QwenVL-7B 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 1.5 0.0 0.2

the icons carry unique meanings within professional contexts that are rarely encountered in the web
data, on which many models are primarily trained.

Chinese Instructions Pose Greater Challenges. As shown in Table 4, most models experienced
a significant performance drop when switching to Chinese instructions, with the SOTA model OS-
Atlas-7B achieving only 16.8%. Among these, UGround-7B saw the most severe decline, dropping
from 16.4% to 7.7%, emphasizing its limitations in bilingual contexts. Interestingly, the perfor-
mance of GPT-4o and QwenVL-7B improved, although this increase appears insignificant given
their overall low scores.

Table 5: Comparison of methods on ScreenSpot-Pro with OS-Atlas-7B.

Model Dev Creative CAD Scientific Office OS Overall
Text Icon Avg

OS-Atlas-7B 17.7 17.9 10.3 24.4 27.4 16.8 28.1 4.0 18.9

Iterative Focusing 33.1 27.3 23.8 25.2 43.9 36.2 43.5 10.8 31.0
Iterative Narrowing 34.4 27.3 20.3 29.5 40.9 43.9 43.5 13.1 31.9
ReGround 37.5 38.1 33.3 37.8 59.1 37.8 55.7 15.1 40.2

Ours 49.8 +32.1 41.9 +24.0 37.9 +27.6 47.2 +22.8 64.3 +36.9 52.0 +35.2 64.1 +36.0 22.4 +18.4 48.1 +29.2

Simple Shrinking of Image Size achieves impressive result. Interestingly, we found that shrink-
ing the screenshot size strategically demonstrates impressive performance gains. The ReGround
method with OS-Atlas-7Bachieved the highest performance, reaching 40.2%. Iterative Narrowing
slightly outperformed Iterative Focusing, likely due to its superior image-splitting strategy when the
target is positioned near the center of the x or y axes.

Table 6: ReGround Crop size ablation on
ScreenSpot-Pro.

Crop Size 512 × 512 768 × 768 1024 × 1024 1280 × 1280

OS-Atlas-7B 25.1 34.2 40.2 40.1
UGround (7B) 27.0 28.8 28.2 26.3

Table 6 examines the impact of crop size in
ReGround on the two top-performing models,
OS-Atlas-7B and UGround. Both models ex-
hibit peak performance within specific resolu-
tion ranges, with performance declining as im-
age sizes deviate. OS-Atlas-7B achieves its best
score with 1024×1024 crops, while UGround
performs optimally with 768×768 crops. This
behavior is expected: when images are too
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small, crucial context is lost (Nguyen, 2024), whereas images that are too large exceed the model’s
processing capacity.

State-of-the-Art Performance of SeeClick Pro Agent. The proposed SeeClick Pro Agent
achieves a state-of-the-art (SOTA) performance of 48.1%, outperforming all other approaches across
all subcategories. Notably, the greatest improvements are observed in the Office and OS categories,
whereas the Scientific category shows the least improvement. This discrepancy is likely due to the
planning model’s greater familiarity with commonly used software, which benefits from extensive
documentation and user discussions. In contrast, scientific software typically has a more limited
user base and fewer available resources, making its analysis more challenging for the model.

5 CONCLUSION

This paper presents a novel approach to improving the grounding performance of multi-modal large
language models (MLLMs) in high-resolution, complex UI environments. By incorporating visual
reasoning into the grounding process, we address the challenges posed by high-resolution displays,
small targets, and intricate UI structures. The introduction of the ScreenSpot-Pro benchmark, with
its expert-annotated tasks from professional domains, provides a comprehensive evaluation of model
performance in real-world settings. Our experimental results demonstrate the limitations of existing
GUI grounding models, which struggle to achieve high accuracy, and show that our proposed visual-
reasoning strategy can substantially enhance performance, achieving a notable improvement without
the need for additional training. This work paves the way for more effective and robust GUI agents
capable of handling complex, professional UI environments.
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