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Abstract

Understanding emotions that people express001
during large-scale crises helps inform policy002
makers and first responders about the emo-003
tional states of the population as well as pro-004
vide emotional support to those who need such005
support. We present COVIDEMO, a dataset of006
∼3,000 English tweets labeled with emotions007
and temporally distributed across 18 months.008
Our analyses reveal the emotional toll caused009
by COVID-19, and changes of the social narra-010
tive and associated emotions over time. Moti-011
vated by the time-sensitive nature of crises and012
the cost of large-scale annotation efforts, we013
examine how well large pre-trained language014
models generalize across domains and time-015
line in the task of perceived emotion predic-016
tion in the context of COVID-19. Our analyses017
suggest that cross-domain information trans-018
fers occur, yet there are still significant gaps.019
We propose semi-supervised learning as a way020
to bridge this gap, obtaining significantly bet-021
ter performance using unlabeled data from the022
target domain.023

1 Introduction024

We live in unprecedented times caused by a coron-025

avirus: the COVID-19 pandemic. This pandemic026

has forced extremely rapid changes in our daily027

lives in the push to stem the spread of the COVID-028

19 virus. Many of us have been uprooted, disrupted029

and distanced from family, friends and colleagues.030

We have transitioned in no time into a world that031

is suddenly more virtual than personal, sacrificing032

many of the daily rhythms and joys of life. These033

events coupled with the dramatic lifestyle changes034

consequently led to vast amounts of data generated035

on social media platforms such as Twitter. Un-036

derstanding emotions that people increasingly ex-037

press on social media during large-scale crises can038

have wide-ranging implications, from promoting a039

deeper understanding of the society to informing040

policy makers and first responders about the emo-041

tional states of the population (Dennis et al., 2006; 042

Fraustino et al., 2012). In Natural Language Pro- 043

cessing, multiple datasets have been proposed to de- 044

tect emotions on social media (Mohammad, 2012; 045

Wang et al., 2012; Mohammad and Kiritchenko, 046

2015; Volkova and Bachrach, 2016; Abdul-Mageed 047

and Ungar, 2017; Demszky et al., 2020), includ- 048

ing from hurricane disasters (Schulz et al., 2013; 049

Desai et al., 2020). Recent studies propose the in- 050

vestigation of emotions in COVID-19 (Kabir and 051

Madria, 2021; Imran et al., 2020; Ashokkumar and 052

Pennebaker, 2021; Ng et al., 2020). Ashokkumar 053

and Pennebaker (2021) explore the expression of 054

emotions to analyze the psychological shifts caused 055

by COVID. Nevertheless, their assessment of emo- 056

tions is based on lexical cues and does not capture 057

implicit emotions. In contrast, Ng et al. (2020) 058

train deep learning emotion classifiers outside the 059

COVID-19 and apply it on COVID data to analyze 060

emotions. However, our analyses suggest that emo- 061

tion detection models trained outside the COVID- 062

19 domain struggle to transfer information. 063

In this paper, we explore the detection of per- 064

ceived fine-grained emotions during the COVID-19 065

pandemic to answer two research questions. First, 066

from a social point of view, each crisis is situated in 067

its own unique social context (Palen and Anderson, 068

2016), triggering distinct emotions, and impact- 069

ing different populations in vastly distinct ways. 070

COVID-19 is a crisis that has dominated the world 071

stage and influenced every aspect of human life. 072

What are the emotions expressed through social 073

media, and how do they change over time? Second, 074

from a system point of view, modern data-driven 075

emotion prediction systems are trained on large, 076

annotated datasets. How well can models learn 077

from existing resources since timely annotation of 078

fine-grained emotions can be costly to accumulate 079

as new crises arise, and how well do models gener- 080

alize as a crisis unfolds through different stages? 081

To answer these questions, we introduce 082
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<USER> Please resign, you are the master of
misleading who started politicizing the public
health crisis. You are a part of the problems
the world is facing!

anger,
disgust,
sadness

’Perfect storm’: Haiti COVID-19 peak set to
collide with hurricanes. <URL>

fear, sad-
ness

The German government is taking all kind of
measures to protect its people while the Dutch
government does not care about their people
#corona

surprise,
trust,
anger

Table 1: Examples from COVIDEMO annotated with
the Plutchik-8 emotions.

COVIDEMO, a dataset of ~3K tweets in English an-083

notated with Plutchik-8 emotions (Plutchik, 2001);084

examples are shown in Table 1. Our dataset pro-085

vides an ideal test bed to examine how well modern086

NLP models generalize across domains and crises087

in the task of perceived emotion prediction. More-088

over, COVIDEMO is temporally distributed across089

18 months, which enables the exploration of dis-090

tributional shifts that occurred from the start of091

the pandemic. Our analysis reveals that the co-092

occurrence and distribution of emotions are drasti-093

cally different from natural disasters such as hur-094

ricanes (Desai et al., 2020). However, while De-095

sai et al. (2020) pointed out that emotion distri-096

butions are fairly consistent across hurricanes, in097

COVIDEMO we observe a different phenomenon:098

as COVID-19 progressed, we note considerable dis-099

tributional shifts both in the lexical and the emotion100

label space. Additionally, we found that politically101

related words are more likely to associate with neg-102

ative emotions, while vaccine-related words are103

more likely to associate with positive ones.104

We carry out a comprehensive set of experi-105

ments that evaluate model generalization under106

domain shift. Experimenting with large-scale pre-107

trained language models including BERT (Devlin108

et al., 2019), BERTweet (Nguyen et al., 2020), and109

COVID-Twitter-BERT (Müller et al., 2020), we110

find that directly applying models trained on other111

emotion datasets to COVIDEMO leads to poor over-112

all performance, indicating considerable domain113

gaps. Our analysis also reveals two surprising find-114

ings: 1) Performing direct transfer from a general115

emotion dataset such as GoEmotions (Demszky116

et al., 2020) attains better performance compared to117

transferring information from a disaster-specialized118

corpus such as HurricaneEmo (Desai et al., 2020),119

indicating the vast differences across crises. 2)120

Besides the inter-domain gaps observed, we note121

in-domain model performance gaps along the tem- 122

poral dimension as well. Specifically, we find that 123

training a model on the first 6 months of our data 124

and testing on the last 6 months obtains a 2% de- 125

crease in F-1 score compared to using training 126

and testing data from the same timeframe (last six 127

months). 128

Finally, we investigate methods to bridge both 129

the inter-domain and the in-domain temporal gaps. 130

We motivate the importance of lowering these gaps: 131

first, due to the time-critical, dynamic nature of 132

disasters such as COVID-19, the time needed to 133

acquire labeled data might severely impact the 134

early-risk assessment capabilities of the authori- 135

ties and slow the relief response. Second, labeling 136

data for every potential disaster is not feasible in 137

terms of annotation costs. To this end, we leverage 138

Noisy Student Training (Xie et al., 2020), a semi- 139

supervised learning technique utilizing the readily 140

available COVID-19 unlabeled data, and the non- 141

COVID labeled data, to obtain a better emotion 142

detection model. This improves the performance 143

of the vanilla models significantly, by 1.5% on av- 144

erage. 145

We summarize our contributions as follows: 1) 146

We introduce COVIDEMO, an emotion corpus con- 147

taining∼3K tweets streamed during the COVID-19 148

pandemic, which enables the exploration of model 149

generalization across domains, as well as between 150

different time periods of the same domain. 2) We 151

perform a comprehensive analysis of emotion ex- 152

pression in COVIDEMO, indicating various par- 153

ticularities and comparing our corpus with other 154

datasets in the literature. 3) We observe consider- 155

able domain gaps and offer potential explanations 156

into why models struggle to transfer information. 157

4) We bridge these gaps using semi-supervised 158

learning. We will release our data and models upon 159

publication. 160

2 Data 161

2.1 Data collection 162

Preprocessing. We sample 129, 820 English 163

tweets from Chen et al. (2020)’s ongoing collec- 164

tion of tweets related to the COVID-19 pandemic, 165

starting from January 2020 until June 20211. Our 166

sampling strategy involves selecting an equal num- 167

ber of tweets each month in the time period men- 168

tioned above. The tweets are anonymized by re- 169

1We use the Twarc software to obtain the tweet texts, and
FastText (Joulin et al., 2017) for language identification.
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Emotion Content words/Hashtags

disgust Content words: disgusting, fucking, million, trump, dead, shit, president, america, china, done
Hashtags: #hongkong, #gop, #factsmatter, #ccp, #china, #wuhan, #covid19

anger Content words: fuck, evil, bullshit, stupid, idiot, damn, obama, church, lying
Hashtags: #marr, #covidiots, #trumpvirus, #torycorruption, #skynews, #qanon, #nh, #jacksonville, #gop,
#factsmatter

fear Content words: scared, exam, dangerous, infected, confirmed, worse, sir, wuhan, risk, rate
Hashtags: #stopcovidlies, #jeeneet, #antistudentmodigovt, #health, #wuhan, #china, #stayhome, #covid19

sadness Content words: sad, cry, died, suffering, toll, record, sorry, feel, tested, facing
Hashtags: #notmychild, #quarantine, #rip, #pregnant, #italy, #healthcare, #freepalestine, #askktr, #wuhan,
#vaccine

anticipation Content words: effort, christmas, available, join, start, future, vaccination, vaccinated, coming, open
Hashtags: #stayhomestaysafe, #pregnant, #postponeinicet, #nyc, #launchzone, #fred2020, #cow, #what-
shappeninginmyanmar, #ethereum, #bcpoli

trust Content words: working, support, safe, help, say, being, world, vaccine, good, more
Hashtags: #stayhome, #staysafe, #covid19, #lockdown, #china

joy Content words: grateful, beautiful, thanks, happy, love, great, little, morning, good
Hashtags: #taiwan, #innovation, #breaking, #staysafe, #stayathome, #stayhome, #wearamask, #lockdown,
#covid19

surprise Content words: believe, year, lockdown, new, china, virus, day, america, covid19, get
Hashtags: #china, #covid19

Table 2: Content words and hashtags most associated with each Plutchik-8 emotion.

placing twitter usernames with <USER> and links170

with <URL>, following Cachola et al. (2018). Ad-171

ditionally, prior work found that even in disaster172

contexts, the fraction of tweets expressing an emo-173

tion is small (Desai et al., 2020), thus annotating174

randomly sampled tweets would be costly and un-175

productive. Therefore, we follow their work to176

obtain tweets that are more likely to contain emo-177

tions for annotation. Concretely, we ensure that178

each tweet encompasses at least one word from179

EmoLex (Mohammad and Turney, 2013), a lexi-180

con of ~10K words in various languages annotated181

with emotion labels. After this filtering process,182

we obtain 89,274 tweets. As stated in Desai et al.183

(2020), this filtering is soft, i.e., does not filter out184

tweets with weak or implicit emotions.185

Annotation and quality control. We randomly186

sample 5, 500 tweets from this data and use Ama-187

zon Mechanical Turk to crowdsource Plutchik-8188

emotions: anger, anticipation, joy, trust, fear, sur-189

prise, sadness, disgust. We allow multiple selec-190

tion, as well as a none of the above option in case191

no emotion is perceived. During the annotation pro-192

cess, we determine the inter-annotator agreement193

using the Plutchik Emotion Agreement (PEA) met-194

ric that take into account emotion proximity on the195

Plutchik wheel (Desai et al., 2020).196

We use a qualification process for quality con-197

trol and training. Specifically, two members of our198

research team annotated a small set of tweets, from199

which we selected 20 examples where both anno-200

Figure 1: Emotion distribution of two types of crises:
hurricanes and the COVID-19 pandemic.

tators agree on the emotions. We qualify workers 201

whose annotations attain high agreement with ours 202

(PEA>75.00) calculated against our annotations. 203

This results in a highly capable pool of workers for 204

the main task. Additionally, we exclude annota- 205

tions from workers who have very poor agreement 206

with others (Cachola et al., 2018; Desai et al., 2020) 207

(those whose PEA scores are below the 80th per- 208

centile compared to others). Each tweet has at least 209

2 annotations after filtering. 210

We aggregate labels such that an emotion is 211

considered present if at least two workers per- 212

ceived the emotion. This resulted in 2, 847 tweets 213

in COVIDEMO with an average, per-worker PEA 214

score of 84.05, indicating high inter-annotator 215

agreement. 216

2.2 Analysis 217

Emotion distribution. We show the general dis- 218

tribution of Plutchik-8 emotions in COVIDEMO 219

in Figure 1. We note that the percentage of neg- 220
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Figure 2: Emotion distribution in COVIDEMO over
time (by quarter).

ative emotions (disgust, anger, fear, sadness) is221

much higher than that of positive emotions (trust,222

joy), consistent of the emotional toll of COVID-19.223

Next, we draw comparisons between the emotion224

distribution in COVID-19 and that of natural disas-225

ters, specifically HurricaneEmo (Desai et al., 2020),226

shown in Figure 1. We make a few observations:227

First, the tweets in COVIDEMO contain a higher228

emotion proportion across six out of the eight total229

emotions, indicating that COVID-19 prompted an230

increased multi-label emotional response compared231

to natural disasters. Second, the sadness emotion is232

almost twice more represented in COVIDEMO com-233

pared to HurricaneEmo, whereas we see as much as234

a four-fold increase in the representation of anger.235

Finally, we observe that anticipation is much more236

prevalent in HurricaneEmo and a lot less frequent237

in the pandemic, which matched the COVID-19238

reality that it is hard to anticipate events/facts.239

We also show emotion distribution across240

time in Figure 2, obtained grouping the tweets by241

quarter (e.g., Q1-2020 encompasses the first three242

months of 2020). We observe that the label distri-243

bution varies significantly from quarter to quarter,244

denoting potential changes in the discussion topics245

or the overall feelings of the masses. Notably, we246

note proportion variations as high as 12% in con-247

secutive quarters. For instance, the proportion of248

the sadness emotion increases by as much as 12%249

in the second quarter of 2020 compared to the first250

quarter. Moreover, we see the opposite trend in the251

fear emotion, whose proportion decreases by 10%252

percent. One potential explanation could be that253

the first shock that COVID-19 produced enacted254

fear into people (Q1 2020). However, as people255

started to get accustomed to the lockdown, the fear256

slowly turned into sadness.257

Emotion co-occurrence. Figure 3 depicts how258

emotions co-occur with one another in COVIDEMO.259

For each emotion pair, we compute the Pearson cor-260

relation coefficient. Overall, we observe stronger261

Figure 3: Emotion co-occurrence in COVIDEMO.

ANG ANT DIS FEA JOY SAD SUR TRU

DEV 327 296 163 179 186 388 86 89
TEST 374 296 214 149 170 403 83 78

Table 3: Validation and test set splits for eight Plutchik-
8 emotions, including including anger (ang), anticipa-
tion (ant), disapproval (dis), fear (fea), joy, sadness
(sad), surprise (sur), trust (tru).

correlation between emotions in the same posi- 262

tive/negative categories. For example, (anger, dis- 263

gust) and (sadness, fear) appear much more fre- 264

quently than (anger, anticipation) and (anger, joy). 265

Table 1 shows samples from COVIDEMO with mul- 266

tiple emotions perceived. Notably, in many cases 267

lexical cues alone cannot account for the emotions, 268

as evident in the second example. Although the 269

word “perfect” suggest optimism, the annotations 270

are nowhere near positive. In the third tweet, there 271

is a co-occurrence of polarizing emotion because 272

the tweet deals with a positive and a negative situa- 273

tion at the same time. 274

Lexical analysis. To understand better what top- 275

ics or events are associated with each emotion, 276

we perform a lexical analysis to examine the co- 277

occurrence between content words (nouns, verbs, 278

adjectives and adverbs), hashtags and perceived 279

emotions. In particular, we calculate the log odds 280

ratios (log(P (w|e)/P (w|¬e)) (Nye and Nenkova, 281

2015) with a frequency threshold of 10 for lemma- 282

tized content words and 2 for hashtags. Table 2 283

shows the highest ranked content words and hash- 284

tags for each emotion category. We notice that polit- 285

ically or country-oriented words are more likely to 286

associate with negative emotions (president, amer- 287

ica, china), while vaccine-related words are more 288

likely to associate with positive emotions. 289

2.3 Benchmark Dataset 290

To enhance reproducibility and aid the progress 291

on understanding the expression of emotion in the 292
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COVID-19 context, we use COVIDEMO as a bench-293

mark dataset for perceived emotions. We split our294

data into a development and testing split, as shown295

in Table 3. We also note that the data is evenly dis-296

tributed across the time axis, with an equal number297

of 158 tweets for each of the 18 months that our298

dataset spans. As mentioned previously, disasters299

are time-critical events, and since our goal is to ex-300

amine the emergence of such disasters, we mainly301

focus on domain adaptation techniques, hence we302

omit creating a training set.303

3 Domain Transfer Assessment304

Using COVIDEMO, we evaluate the ability of mod-305

ern NLP models to transfer information from ex-306

isting sources with annotated emotions in an inter-307

domain setting for perceived emotion detection,308

and if models generalize temporally in the same309

larger context (in-domain temporal transfer).310

3.1 Our Framework311

We consider a dataset S labeled with emotions, and312

another collection of labeled examples T from a313

different domain. We aim to assess how well large314

pre-trained language models can transfer informa-315

tion from the domain of S to the domain of T . To316

this end, we train our models on S, then evalu-317

ate the performance on the test set of T . In our318

framework, T is COVIDEMO for the inter-domain319

experiments, or a temporal slice of COVIDEMO320

for the temporal experiments. Due to the uneven321

label distribution and the multi-label nature of the322

data, we develop binary classifiers for each emotion323

following Desai et al. (2020).324

Methods. Motivated by the tremendous success325

of large pre-trained masked language models, we326

use the following models: 1) BERT (Devlin et al.,327

2019) base uncased model trained on Wikipedia328

and BookCorpus (Zhu et al., 2015), 2) BertTweet329

(Nguyen et al., 2020) model trained on 850M en-330

glish tweets, and 3) COVID-Twitter-BERT (CT-331

BERT) (Müller et al., 2020) trained on 97M tweets.332

Additionally, we also employ a basic lexicon-based333

classification approach, 4) EmoLex (Mohammad334

and Turney, 2013) is the word-associated lexicon335

mentioned previously in the paper. In this approach,336

if a tweet contains a word annotated with an emo-337

tion e in EmoLex, then we assign e as a label for338

the tweet.339

Experimental setup. We perform all our experi- 340

ments on an Nvidia P100 GPU. To report the perfor- 341

mance, we average the F-1s of 5 different runs and 342

report the average value. We present in Appendix 343

A detailed information about the hyperparameters 344

used for the best models. Additionally, in Appendix 345

B, we indicate the hyperparameter search space ex- 346

plored, as well as model running times. 347

3.2 Inter-domain Transfer 348

Our first domain transfer assessment explores how 349

well emotion detection models trained outside our 350

domain generalize to the COVID context. We 351

consider two well-established datasets for train- 352

ing. First, we experiment with GoEmotions (Dem- 353

szky et al., 2020), a dataset from the general Red- 354

dit domain annotated with 28 emotions and the 355

neutral class. The emotion space in GoEmotions 356

differs slightly from our Plutchik-8 setup, hence 357

we perform a mapping2 between the emotions in 358

GoEmotions and the Plutchik-8 emotions. Second, 359

we use HurricaneEmo (Desai et al., 2020), a Twit- 360

ter dataset collected from natural disasters such as 361

hurricanes and labeled with fine-grained emotions. 362

HurricaneEmo provides Plutchik-8 labels. 363

Results. We show the results obtained in Table 364

4. Here, we denote by M-DS the model M trained 365

on dataset DS and tested on COVIDEMO. We em- 366

phasize a surprising finding: models trained on 367

a general domain (GoEmotions) generalize bet- 368

ter on COVIDEMO compared to models trained 369

on natural disasters such as hurricanes (Hurri- 370

caneEmo). In fact, the performance gaps between 371

GoEmotions and HurricaneEmo are vast, and we 372

see as much as 0.20 differences in average macro F- 373

1. At the same time, we note that our basic lexicon- 374

based Emolex approach outperforms the Hurrica- 375

neEmo transfer models. This result hints to a size- 376

able divergence between crises such as hurricanes 377

and COVID-19. The CT-BERT model improves 378

the performance by 1% on average (with statistical 379

significance), compared to BERTweet which only 380

obtained marginal improvements. Although both 381

are trained on Twitter data, we postulate that CT- 382

BERT likely benefited from COVID-related biases 383

that the model manages to leverage. 384

2GoEmotions Mapping: Anger → Anger, Disgust → Dis-
gust, Joy → Joy, Sadness → Sadness, Fear → Fear, Nervous-
ness, Desire → Anticipation, Surprise → Surprise, Admira-
tion → Trust.
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MODEL ANG ANT DIS FEA JOY SAD SUR TRU AVG

BERT-GOEMOTIONS 0.735 0.589 0.624 0.625 0.722 0.687 0.588 0.540 0.635
BERT-HURRICANEEMO 0.592 0.339 0.563 0.398 0.385 0.467 0.403 0.347 0.433

BERTWEET-GOEMOTIONS 0.752 0.534 0.631 0.629 0.709 0.708 0.624 0.537 0.637
BERTWEET-HURRICANEEMO 0.677 0.346 0.540 0.311 0.299 0.494 0.354 0.418 0.435

CTBERT-GOEMOTIONS 0.735 0.577 0.629 0.644 0.725 0.717 0.617 0.520 0.644†

CTBERT-HURRICANEEMO 0.655 0.366 0.471 0.311 0.341 0.447 0.243 0.349 0.406

EMOLEX 0.57 0.517 0.547 0.551 0.543 0.560 0.458 0.414 0.504

Table 4: Direct transfer Macro F-1 scores using BERT (Devlin et al., 2019) base uncased model (BERT-*),
BERTweet (Nguyen et al., 2020) (BERTWEET-*) and Covid-Twitter-BERT (CTBERT-*). The results in this ta-
ble are average F-1s across 5 different runs. We assert significance† if p < 0.05 under a paired-t test with the
vanilla BERT model.

MODEL ANG ANT DIS FEA JOY SAD SUR TRU AVG

CTBERT-Ftr 0.762 0.485 0.534 0.661 0.705 0.673 0.492 0.492 0.600
CTBERT-Ltr 0.769 0.631 0.498 0.668 0.781 0.724 0.493 0.502 0.633†

Table 5: Macro F-1 scores using in-domain temporal adaptation. The CTBERT-Ltr improvements are statistically
significant†.

Cosine Similarity Jensen-Shannon Divergence

COVID GOEMOTIONS HURRICANEEMO COVID GOEMOTIONS HURRICANEEMO
COVID 1.0 0.346 0.243 0.0

GOEMOTIONS 1.0 0.378 0.312 0.0
HURRICANEEMO 1.0 0.351 0.374 0.0

Table 6: Cosine similarities and Jensen-Shannon divergence of word distributions between GoEmotions (Demszky
et al., 2020), HurricaneEmo (Desai et al., 2020), and COVIDEMO.

3.3 In-domain Temporal Transfer385

COVIDEMO spans a large period of time (18386

months) marked by substantial narrative shifts in387

the society. Thus we investigate potential distribu-388

tional shifts across the temporal dimension. Specif-389

ically, we aim to analyze how well models trained390

on past COVID-19 data generalize to a fresh batch391

of new data. To this end, we stage the following392

setup: First, we accumulate the subsets F and L393

corresponding to the initial six months and the last394

six months respectively. Denoting the development395

and test sets of COVIDEMO as Ctr and Cts, we cre-396

ate additional sets Ltr = L∩Ctr and Lts = L∩Cts.397

Additionally, we randomly subsample Ftr ⊂ F398

such that |Ftr| = |Ltr|, where |.| denotes the size399

of a set. In this setting, we compare training on Ftr400

and testing on Lts vs. training on Ltr and testing401

on Lts. In other words, we investigate whether402

model performance on COVIDEMO decreases as403

time passes. Here we experiment with CT-BERT404

(Müller et al., 2020) (since it achieved better per-405

formance in Section 3.2).406

Results. Table 5 shows that the models trained407

on the same time period as the testing data out-408

performs the model trained on a different time-409

frame significantly, obtaining a Macro F-1 in-410

crease of 3.3% on average. Notably, we observe 411

improvements as high as 7.6% in F-1 on joy and 412

14.6% on anticipation. Intuitively, since the model 413

is trained on the same temporal distribution as the 414

test set, and anticipation is closely related to ongo- 415

ing events (i.e., people usually anticipate certain 416

events), it is extremely probable that the model has 417

been trained on similar events in the training set, 418

so the model easily recognizes the emotion. 419

4 Understanding Domain Gaps 420

The previous section exposed significant inter- 421

domain and temporal gaps leading to poor transfers 422

of information between these domains. In this sec- 423

tion, we aim to answer the following questions: 424

Why does GoEmotions transfer better than Hurrica- 425

neEmo, even though the latter is a disaster-centric 426

dataset? How did data distribution shift during the 427

pandemic? We hope that our insights can spur fur- 428

ther research into bridging these gaps. In Section 5, 429

we propose semi-supervised learning as a method 430

to build better transfer learning models. 431

Inter-domain gaps. To answer the first question, 432

we analyze the lexical differences between GoE- 433

motions, HurricaneEmo, and COVIDEMO. In order 434

to obtain more accurate comparisons in terms of 435
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the larger vocabulary, we use unlabeled data for436

HurricaneEmo and COVIDEMO to match the num-437

ber of examples in GoEmotions (~60K). Table 6438

shows the cosine similarity and the Jensen-Shannon439

divergence for the frequency distribution of all con-440

tent words (lower-cased and lemmatized) across441

the three datasets. Interestingly, the COVIDEMO442

distribution is significantly closer to GoEmotions443

compared to HurricaneEmo: the cosine similar-444

ity is substantially lower (0.243 vs. 0.346) while445

the divergence is larger (0.312 vs. 0.351). More-446

over, the HurricaneEmo distribution diverges even447

more from GoEmotions compared to COVID-19.448

These findings hint that although HurricaneEmo is449

closer to COVIDEMO than to a general domain, the450

COVID-19 context is significantly more correlated451

with a general domain than a natural disaster one,452

likely due to the wide impact COVID-19 has had453

and a more social nature of the crisis. These find-454

ings could also explain why there are large gaps in455

performance between HurricaneEmo and GoEmo-456

tions transfers.457

In-domain temporal gaps In Section 2.2, we re-458

vealed that the label distribution and topics dis-459

cussed during COVID-19 has shifted over time. To460

consolidate these analyses, we carry out an addi-461

tional experiment that captures distributional shifts462

in vocabulary. In Figure 4 we show the cosine sim-463

ilarities and Jensen-Shannon divergence for the fre-464

quency distributions of content words (lower-cased465

and lemmatized) for unlabeled tweets spanning the466

18 months in our data. As time passes, we observe467

a constant shift in the lexical distribution of the468

tweets. Concretely, while the cosine similarity be-469

tween the first and the second month of COVID-19470

is 0.97, by the end of the 18th month this value471

decreases significantly, getting as low as 0.63. We472

observe the same phenomenon in the divergence473

of the distributions as well. These findings em-474

phasize the considerable temporal gaps found in475

long-lasting disasters such as COVID-19, and that476

temporal slices of the tweets can diverge signifi-477

cantly even though they originate from the same478

domain.479

5 Bridging the Gaps Between Domains480

As crises such as COVID-19 strike, large amounts481

of user-generated content are produced on social482

sites. However, due to the nature of disasters un-483

folding rapidly, the high costs needed for annota-484

tion, and the considerable distributional changes485

Figure 4: Cosine similarities and Jensen-Shannon di-
vergence between the first month of COVID-19 and
each subsequent month.

along the time axis, immediately obtaining labeled 486

data from the ongoing disaster might prove infeasi- 487

ble. However, rapid understanding of such events 488

is critical for rapid risk assessment and effective 489

resource allocations. Therefore, we cannot rely on 490

obtaining large quantities of labeled data, and we re- 491

quire effective domain adaptation techniques which 492

can leverage labeled data from outside the disas- 493

ter domain. However, we emphasized previously 494

that models typically have a hard time effectively 495

transferring information for emotion detection. We 496

argue that even though we cannot timely obtain 497

labels for the ongoing disaster, we can still use the 498

large amounts of unlabeled user-generated Tweets 499

to build better domain adaptation models. To this 500

end, we experiment with semi-supervised learning. 501

Method. Noisy student training (Xie et al., 2020) 502

is an approach leveraging knowledge distillation 503

and self-training, which iteratively jointly trains 504

two models in a teacher-student framework. The 505

model leverages noised unlabeled data alongside 506

labeled data to obtain better performance. We de- 507

tail the setup we use as well as the various noising 508

techniques in Appendix C. A vital aspect of our 509

framework, however, is that we use unlabeled data 510

from COVID-19. Concretely, in the inter-domain 511

adaptation experiments, where we aim to transfer 512

information from GoEmotions to COVIDEMO, we 513

use labeled data from GoEmotions alongside un- 514

labeled data from COVIDEMO (we make sure the 515

model does not see any example from the test set). 516

In the temporal setup, where we train on the first 517

six months Ftr and test on the last six Fts, we use 518

Ftr in conjunction with unlabeled data generated 519

in the last six months. 520

Results. We show the results obtained using 521

Noisy Student training in Table 7. Our SSL tech- 522

nique bridges both the inter-domain and the 523

7



MODEL ANG ANT DIS FEA JOY SAD SUR TRU AVG

CTBERT-GOEMOTIONS 0.735 0.577 0.629 0.644 0.725 0.717 0.617 0.520 0.644
CTBERT-GOEMOTIONS-SSL 0.741 0.554 0.657 0.651 0.741 0.726 0.632 0.532 0.654†

CTBERT-Ftr 0.762 0.485 0.534 0.661 0.705 0.673 0.492 0.492 0.600
CTBERT-Ftr -SSL 0.771 0.501 0.531 0.711 0.711 0.671 0.538 0.501 0.617†

CTBERT-Ltr 0.769 0.631 0.498 0.668 0.781 0.724 0.493 0.502 0.633†

Table 7: Macro F-1 scores using inter-domain adaptation (first block), in-domain temporal adaption (second block),
and of our best performing models using Noisy Student training (Xie et al., 2020). We assert significance† if
p < 0.05 under a paired-t test with base model (CTBERT-GOEMOTIONS for inter-domain transfers and CTBERT-
Ftr for temporal transfers.)

in domain temporal performance gaps. First,524

we note that our SSL-powered CT-BERT model525

trained on GoEmotions outperforms the plain CT-526

BERT by as much as 1% in average macro F-1.527

Moreover, in our temporal transfer experiments,528

Noisy Student improves the performance of the529

model by 1.7%. These results are statistically sig-530

nificant, and emphasize that our method obtains531

better generalization performance and can be lever-532

aged to produces better domain adaptation models.533

6 Related Work534

Emotion datasets. Emotion detection has been535

studied extensively with applications in music536

(Strapparava et al., 2012), social networks (Mo-537

hammad, 2012; Islam et al., 2019), online news538

(Bao et al., 2009), and literature (Liu et al., 2019).539

All these domains can be examined with the help of540

large curated datasets. These datasets are created541

using automated approaches such as distant super-542

vision (Wang et al., 2012; Abdul-Mageed and Un-543

gar, 2017), while others are manually labeled using544

crowdsourcing (Aman and Szpakowicz, 2007; Po-545

ria et al., 2019; Liu et al., 2019; Sosea and Caragea,546

2020; Demszky et al., 2020; Desai et al., 2020).547

In this work, we resort to the latter and create548

COVIDEMO, a dataset of 2, 847 tweets annotated549

with the Pluchik-8 emotions.550

Emotion detection methods. Emotion detection551

has been studied extensively in the past (Cambria552

et al., 2017; Stappen et al., 2021; Cambria et al.,553

2020). In the early stages, most approaches used554

feature-based methods, which usually leveraged555

hand-crafted lexicons, such as EmoLex (Moham-556

mad and Turney, 2013) or the Valance Arousal557

Lexicon (Mohammad, 2018). These features were558

subsequently used to build classifiers such as Lo-559

gistic Regression or SVMs. However, due to the re-560

cent advancements in deep learning as well as large561

pre-trained language models, all state-of-the-art ap-562

proaches (Desai et al., 2020; Sosea and Caragea,563

2020; Demszky et al., 2020) employ BERT-based564

(Devlin et al., 2019) classifiers. 565

COVID-19 emotion analysis. Since the emer- 566

gence of the pandemic, numerous studies have been 567

carried out on social media networks to understand 568

COVID-19 and its effects on the larger population. 569

Ils et al. (2021) annotated 2.3K German and En- 570

glish tweets for the expression of solidarity and 571

used it to carry out an analysis into the expression 572

of solidarity over time. On the other hand, Saakyan 573

et al. (2021) annotated a dataset for detecting gen- 574

eral misinformation in the pandemic. Sentiment 575

analysis and emotion detection on social media 576

during COVID-19 have seen tremendous popular- 577

ity as well (Beck et al., 2021; Kabir and Madria, 578

2021; Adikari et al., 2021; Choudrie et al., 2021; 579

Scarpina, 2020; Calbi et al., 2021) due to the ability 580

to provide vital information into the social aspects 581

and the overall dynamics of the population. In this 582

paper, however, we annotate COVIDEMO, a dataset 583

of fine-grained emotions and employ a compre- 584

hensive analysis into cross-domain and temporal 585

generalization of large pretrained language mod- 586

els. We will make the dataset available to the large 587

public. 588

7 Conclusion 589

We present COVIDEMO, a dataset of tweets anno- 590

tated with perceived Plutchik-8 emotions. Using 591

this dataset, we reveal emotion distributions and 592

associations that are distinctive from prior studies 593

on disaster-related emotion annotation and detec- 594

tion. We further show that models trained on other 595

emotion datasets transfer poorly. Additionally, we 596

indicate that models transfer poorly when trained 597

on different temporal slices of an event such as 598

COVID-19. Next, we conduct a comprehensive 599

analysis of the temporal and inter-domain gaps to 600

offer a better understanding of why models trans- 601

fer poorly. As a potential solution to bridge these 602

gaps and offer a more reliable disaster response, we 603

leverage the large amount of readily available data 604

alongside semi-supervised learning techniques. 605
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A Hyperparameters Used856

In all our experiments, we found that a batch size of857

16 works best. Additionally, we indicate in Table 8858

the best learning rates for our models. We refrain859

from showing the best learning rates on Hurrica-860

neEmo due to low performance, high variance of861

the results.862

B Hyperparameter Search Space863

For each emotion, we investigate with batch sizes in864

the set [8, 16, 32], and train for up to 5 epochs with865

early stopping. In terms of learning rates, we fol-866

low the best practices from the orignal BERT paper867

and explore learning rates around 5e− 5. Specifi-868

cally, we experiment with values in the range 1e−5869

-> 9e− 5 with steps of 2e− 5. Although hyperpa-870

rameter tuning is quite expensive computationally871

(15 runs per emotion per model), we found that872

the default BERT setup (5e-5 learning rate and a873

batch size of 32) works within 0.5% F-1 of the best874

model.875

C Semi-supervised Learning 876

Noisy Student training (Xie et al., 2020) leverages 877

knowledge distillation (KD) and self-training to 878

iteratively train two models in a teacher-student 879

framework. The framework trains the student in 880

traditional KD fashion, matching its predictions to 881

those of the teacher. Concretely the training loss is: 882

L =
∑

(xi,yi)∈Ctr

l(fτ (x
i), fτ ′ (x

i)), 883

where D is the training dataset, l is the cross- 884

entropy loss, and fτ and fτ ′ are the student and 885

the teacher models, respectively. We note one vi- 886

tal particularity of this framework: The student is 887

trained using noised input examples. In the orginal 888

paper, the authors also use a larger network for 889

the student, but we noticed here that using equal- 890

sized architectures works well enough. Leveraging 891

noised inputs, Noisy Student exposes the student 892

to more difficult learning environments, and usu- 893

ally leads to an increased performance compared 894

to the teacher. To add noise to our input exam- 895

ples, we use two approaches: a) Synonym replace- 896

ment: We replace between one and three words in 897

a tweet with its synonym using the WordNet En- 898

glish lexical database (Fellbaum, 2012); b) Back- 899

translation: We use back-translation, and experi- 900

ment with different levels of noise corresponding 901

to different translation chain lengths (e.g., English- 902

French-Spanish-English). Smaller chain lengths 903

lead to less noise, while increasing the length of the 904

chain produces examples with significantly more 905

noise. For each unlabeled example, we sample uni- 906

formly a chain length in the range 1->10, and use 907

the following languages for translation: Russian, 908

French, Spanish, Italian, and German. 909
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ang ant dis fea joy sad sur tru

BERT-GOEMOTIONS 3e− 05 5e− 05 7e− 05 5e− 05 5e− 05 5e− 05 3e− 05 5e− 05
BERTWEET-GOEMOTIONS 3e− 05 3e− 05 5e− 05 5e− 05 5e− 05 7e− 05 7e− 05 5e− 05

CTBERT-GOEMOTIONS 5e− 05 7e− 05 3e− 05 5e− 05 5e− 05 3e− 05 3e− 05 5e− 05
CTBERT-GOEMOTIONS-SSL 3e− 05 1e− 05 5e− 05 3e− 05 7e− 05 7e− 05 5e− 05 5e− 05

CTBERT-Ftr 5e− 05 7e− 05 5e− 05 5e− 05 3e− 05 3e− 05 5e− 05 5e− 05
CTBERT-Ftr -SSL 5e− 05 5e− 05 5e− 05 7e− 05 7e− 05 5e− 05 5e− 05 5e− 05

Table 8: Best Learning Rates for for our models.
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