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Abstract

Understanding emotions that people express
during large-scale crises helps inform policy
makers and first responders about the emo-
tional states of the population as well as pro-
vide emotional support to those who need such
support. We present COVIDEMO, a dataset of
~3,000 English tweets labeled with emotions
and temporally distributed across 18 months.
Our analyses reveal the emotional toll caused
by COVID-19, and changes of the social narra-
tive and associated emotions over time. Moti-
vated by the time-sensitive nature of crises and
the cost of large-scale annotation efforts, we
examine how well large pre-trained language
models generalize across domains and time-
line in the task of perceived emotion predic-
tion in the context of COVID-19. Our analyses
suggest that cross-domain information trans-
fers occur, yet there are still significant gaps.
We propose semi-supervised learning as a way
to bridge this gap, obtaining significantly bet-
ter performance using unlabeled data from the
target domain.

1 Introduction

We live in unprecedented times caused by a coron-
avirus: the COVID-19 pandemic. This pandemic
has forced extremely rapid changes in our daily
lives in the push to stem the spread of the COVID-
19 virus. Many of us have been uprooted, disrupted
and distanced from family, friends and colleagues.
We have transitioned in no time into a world that
is suddenly more virtual than personal, sacrificing
many of the daily rhythms and joys of life. These
events coupled with the dramatic lifestyle changes
consequently led to vast amounts of data generated
on social media platforms such as Twitter. Un-
derstanding emotions that people increasingly ex-
press on social media during large-scale crises can
have wide-ranging implications, from promoting a
deeper understanding of the society to informing
policy makers and first responders about the emo-

tional states of the population (Dennis et al., 2006;
Fraustino et al., 2012). In Natural Language Pro-
cessing, multiple datasets have been proposed to de-
tect emotions on social media (Mohammad, 2012;
Wang et al., 2012; Mohammad and Kiritchenko,
2015; Volkova and Bachrach, 2016; Abdul-Mageed
and Ungar, 2017; Demszky et al., 2020), includ-
ing from hurricane disasters (Schulz et al., 2013;
Desai et al., 2020). Recent studies propose the in-
vestigation of emotions in COVID-19 (Kabir and
Madria, 2021; Imran et al., 2020; Ashokkumar and
Pennebaker, 2021; Ng et al., 2020). Ashokkumar
and Pennebaker (2021) explore the expression of
emotions to analyze the psychological shifts caused
by COVID. Nevertheless, their assessment of emo-
tions is based on lexical cues and does not capture
implicit emotions. In contrast, Ng et al. (2020)
train deep learning emotion classifiers outside the
COVID-19 and apply it on COVID data to analyze
emotions. However, our analyses suggest that emo-
tion detection models trained outside the COVID-
19 domain struggle to transfer information.

In this paper, we explore the detection of per-
ceived fine-grained emotions during the COVID-19
pandemic to answer two research questions. First,
from a social point of view, each crisis is situated in
its own unique social context (Palen and Anderson,
2016), triggering distinct emotions, and impact-
ing different populations in vastly distinct ways.
COVID-19 is a crisis that has dominated the world
stage and influenced every aspect of human life.
What are the emotions expressed through social
media, and how do they change over time? Second,
from a system point of view, modern data-driven
emotion prediction systems are trained on large,
annotated datasets. How well can models learn
from existing resources since timely annotation of
fine-grained emotions can be costly to accumulate
as new crises arise, and how well do models gener-
alize as a crisis unfolds through different stages?

To answer these questions, we introduce



<USER> Please resign, you are the master of  anger,
misleading who started politicizing the public  disgust,
health crisis. You are a part of the problems sadness
the world is facing!

’Perfect storm’: Haiti COVID-19 peak set to  fear, sad-
collide with hurricanes. <URL> ness

The German government is taking all kind of  surprise,
measures to protect its people while the Dutch  trust,
government does not care about their people  anger

#corona

Table 1: Examples from COVIDEMO annotated with
the Plutchik-8 emotions.

CoVvIDEMO, a dataset of ~3K tweets in English an-
notated with Plutchik-8 emotions (Plutchik, 2001);
examples are shown in Table 1. Our dataset pro-
vides an ideal test bed to examine how well modern
NLP models generalize across domains and crises
in the task of perceived emotion prediction. More-
over, COVIDEMO is temporally distributed across
18 months, which enables the exploration of dis-
tributional shifts that occurred from the start of
the pandemic. Our analysis reveals that the co-
occurrence and distribution of emotions are drasti-
cally different from natural disasters such as hur-
ricanes (Desai et al., 2020). However, while De-
sai et al. (2020) pointed out that emotion distri-
butions are fairly consistent across hurricanes, in
CoVIDEMO we observe a different phenomenon:
as COVID-19 progressed, we note considerable dis-
tributional shifts both in the lexical and the emotion
label space. Additionally, we found that politically
related words are more likely to associate with neg-
ative emotions, while vaccine-related words are
more likely to associate with positive ones.

We carry out a comprehensive set of experi-
ments that evaluate model generalization under
domain shift. Experimenting with large-scale pre-
trained language models including BERT (Devlin
et al., 2019), BERTweet (Nguyen et al., 2020), and
COVID-Twitter-BERT (Miiller et al., 2020), we
find that directly applying models trained on other
emotion datasets to COVIDEMO leads to poor over-
all performance, indicating considerable domain
gaps. Our analysis also reveals two surprising find-
ings: 1) Performing direct transfer from a general
emotion dataset such as GoEmotions (Demszky
et al., 2020) attains better performance compared to
transferring information from a disaster-specialized
corpus such as HurricaneEmo (Desai et al., 2020),
indicating the vast differences across crises. 2)
Besides the inter-domain gaps observed, we note

in-domain model performance gaps along the tem-
poral dimension as well. Specifically, we find that
training a model on the first 6 months of our data
and testing on the last 6 months obtains a 2% de-
crease in F-1 score compared to using training
and testing data from the same timeframe (last six
months).

Finally, we investigate methods to bridge both
the inter-domain and the in-domain temporal gaps.
We motivate the importance of lowering these gaps:
first, due to the time-critical, dynamic nature of
disasters such as COVID-19, the time needed to
acquire labeled data might severely impact the
early-risk assessment capabilities of the authori-
ties and slow the relief response. Second, labeling
data for every potential disaster is not feasible in
terms of annotation costs. To this end, we leverage
Noisy Student Training (Xie et al., 2020), a semi-
supervised learning technique utilizing the readily
available COVID-19 unlabeled data, and the non-
COVID labeled data, to obtain a better emotion
detection model. This improves the performance
of the vanilla models significantly, by 1.5% on av-
erage.

‘We summarize our contributions as follows: 1)
We introduce COVIDEMO, an emotion corpus con-
taining ~3K tweets streamed during the COVID-19
pandemic, which enables the exploration of model
generalization across domains, as well as between
different time periods of the same domain. 2) We
perform a comprehensive analysis of emotion ex-
pression in COVIDEMO, indicating various par-
ticularities and comparing our corpus with other
datasets in the literature. 3) We observe consider-
able domain gaps and offer potential explanations
into why models struggle to transfer information.
4) We bridge these gaps using semi-supervised
learning. We will release our data and models upon
publication.

2 Data

2.1 Data collection

Preprocessing. We sample 129,820 English
tweets from Chen et al. (2020)’s ongoing collec-
tion of tweets related to the COVID-19 pandemic,
starting from January 2020 until June 2021'. Our
sampling strategy involves selecting an equal num-
ber of tweets each month in the time period men-
tioned above. The tweets are anonymized by re-

"We use the Twarc software to obtain the tweet texts, and
FastText (Joulin et al., 2017) for language identification.



Emotion | Content words/Hashtags

disgust
anger

#factsmatter

Content words: disgusting, fucking, million, trump, dead, shit, president, america, china, done

Hashtags: #hongkong, #gop, #factsmatter, #ccp, #china, #wuhan, #covid19

Content words: fuck, evil, bullshit, stupid, idiot, damn, obama, church, lying

Hashtags: #marr, #covidiots, #trumpvirus, #torycorruption, #skynews, #qanon, #nh, #jacksonville, #gop,

fear Content words: scared, exam, dangerous, infected, confirmed, worse, sir, wuhan, risk, rate

sadness

#vaccine
anticipation

shappeninginmyanmar, #ethereum, #bcpoli
trust

Hashtags: #stopcovidlies, #jeeneet, #antistudentmodigovt, #health, #wuhan, #china, #stayhome, #covid19
Content words: sad, cry, died, suffering, toll, record, sorry, feel, tested, facing
Hashtags: #notmychild, #quarantine, #rip, #pregnant, #italy, #healthcare, #freepalestine, #askktr, #wuhan,

Content words: effort, christmas, available, join, start, future, vaccination, vaccinated, coming, open
Hashtags: #stayhomestaysafe, #pregnant, #postponeinicet, #nyc, #launchzone, #fred2020, #cow, #what-

Content words: working, support, safe, help, say, being, world, vaccine, good, more
Hashtags: #stayhome, #staysafe, #covid19, #lockdown, #china

joy Content words: grateful, beautiful, thanks, happy, love, great, little, morning, good

#covid19
surprise
Hashtags: #china, #covid19

Hashtags: #taiwan, #innovation, #breaking, #staysafe, #stayathome, #stayhome, #wearamask, #lockdown,

Content words: believe, year, lockdown, new, china, virus, day, america, covid19, get

Table 2: Content words and hashtags most associated with each Plutchik-8 emotion.

placing twitter usernames with <USER> and links
with <URL>, following Cachola et al. (2018). Ad-
ditionally, prior work found that even in disaster
contexts, the fraction of tweets expressing an emo-
tion is small (Desai et al., 2020), thus annotating
randomly sampled tweets would be costly and un-
productive. Therefore, we follow their work to
obtain tweets that are more likely to contain emo-
tions for annotation. Concretely, we ensure that
each tweet encompasses at least one word from
EmoLex (Mohammad and Turney, 2013), a lexi-
con of ~10K words in various languages annotated
with emotion labels. After this filtering process,
we obtain 89,274 tweets. As stated in Desai et al.
(2020), this filtering is soft, i.e., does not filter out
tweets with weak or implicit emotions.

Annotation and quality control. We randomly
sample 5, 500 tweets from this data and use Ama-
zon Mechanical Turk to crowdsource Plutchik-8
emotions: anger, anticipation, joy, trust, fear, sur-
prise, sadness, disgust. We allow multiple selec-
tion, as well as a none of the above option in case
no emotion is perceived. During the annotation pro-
cess, we determine the inter-annotator agreement
using the Plutchik Emotion Agreement (PEA) met-
ric that take into account emotion proximity on the
Plutchik wheel (Desai et al., 2020).

We use a qualification process for quality con-
trol and training. Specifically, two members of our
research team annotated a small set of tweets, from
which we selected 20 examples where both anno-
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Figure 1: Emotion distribution of two types of crises:
hurricanes and the COVID-19 pandemic.

tators agree on the emotions. We qualify workers
whose annotations attain high agreement with ours
(PEA>75.00) calculated against our annotations.
This results in a highly capable pool of workers for
the main task. Additionally, we exclude annota-
tions from workers who have very poor agreement
with others (Cachola et al., 2018; Desai et al., 2020)
(those whose PEA scores are below the 80th per-
centile compared to others). Each tweet has at least
2 annotations after filtering.

We aggregate labels such that an emotion is
considered present if at least two workers per-
ceived the emotion. This resulted in 2, 847 tweets
in COVIDEMO with an average, per-worker PEA
score of 84.05, indicating high inter-annotator
agreement.

2.2 Analysis

Emotion distribution. We show the general dis-
tribution of Plutchik-8 emotions in COVIDEMO
in Figure 1. We note that the percentage of neg-
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Figure 2: Emotion distribution in COVIDEMO over
time (by quarter).

ative emotions (disgust, anger, fear, sadness) is
much higher than that of positive emotions (trust,
Jjoy), consistent of the emotional toll of COVID-19.
Next, we draw comparisons between the emotion
distribution in COVID-19 and that of natural disas-
ters, specifically HurricaneEmo (Desai et al., 2020),
shown in Figure 1. We make a few observations:
First, the tweets in COVIDEMO contain a higher
emotion proportion across six out of the eight total
emotions, indicating that COVID-19 prompted an
increased multi-label emotional response compared
to natural disasters. Second, the sadness emotion is
almost twice more represented in COVIDEMO com-
pared to HurricaneEmo, whereas we see as much as
a four-fold increase in the representation of anger.
Finally, we observe that anticipation is much more
prevalent in HurricaneEmo and a lot less frequent
in the pandemic, which matched the COVID-19
reality that it is hard to anticipate events/facts.

We also show emotion distribution across
time in Figure 2, obtained grouping the tweets by
quarter (e.g., Q1-2020 encompasses the first three
months of 2020). We observe that the label distri-
bution varies significantly from quarter to quarter,
denoting potential changes in the discussion topics
or the overall feelings of the masses. Notably, we
note proportion variations as high as 12% in con-
secutive quarters. For instance, the proportion of
the sadness emotion increases by as much as 12%
in the second quarter of 2020 compared to the first
quarter. Moreover, we see the opposite trend in the
fear emotion, whose proportion decreases by 10%
percent. One potential explanation could be that
the first shock that COVID-19 produced enacted
fear into people (Q1 2020). However, as people
started to get accustomed to the lockdown, the fear
slowly turned into sadness.

Emotion co-occurrence. Figure 3 depicts how
emotions co-occur with one another in COVIDEMO.
For each emotion pair, we compute the Pearson cor-
relation coefficient. Overall, we observe stronger
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Figure 3: Emotion co-occurrence in COVIDEMO.

ANG ANT DIS FEA JOY SAD SUR TRU

DEV 327 296 163 179
TEST 374 296 214 149

186 388 86 89
170 403 83 78

Table 3: Validation and test set splits for eight Plutchik-
8 emotions, including including anger (ang), anticipa-
tion (ant), disapproval (dis), fear (fea), joy, sadness
(sad), surprise (sur), trust (tru).

correlation between emotions in the same posi-
tive/negative categories. For example, (anger, dis-
gust) and (sadness, fear) appear much more fre-
quently than (anger, anticipation) and (anger; joy).
Table 1 shows samples from COVIDEMO with mul-
tiple emotions perceived. Notably, in many cases
lexical cues alone cannot account for the emotions,
as evident in the second example. Although the
word “perfect” suggest optimism, the annotations
are nowhere near positive. In the third tweet, there
is a co-occurrence of polarizing emotion because
the tweet deals with a positive and a negative situa-
tion at the same time.

Lexical analysis. To understand better what top-
ics or events are associated with each emotion,
we perform a lexical analysis to examine the co-
occurrence between content words (nouns, verbs,
adjectives and adverbs), hashtags and perceived
emotions. In particular, we calculate the log odds
ratios (log(P(wle)/P(w|—e)) (Nye and Nenkova,
2015) with a frequency threshold of 10 for lemma-
tized content words and 2 for hashtags. Table 2
shows the highest ranked content words and hash-
tags for each emotion category. We notice that polit-
ically or country-oriented words are more likely to
associate with negative emotions (president, amer-
ica, china), while vaccine-related words are more
likely to associate with positive emotions.

2.3 Benchmark Dataset

To enhance reproducibility and aid the progress
on understanding the expression of emotion in the



COVID-19 context, we use COVIDEMO as a bench-
mark dataset for perceived emotions. We split our
data into a development and testing split, as shown
in Table 3. We also note that the data is evenly dis-
tributed across the time axis, with an equal number
of 158 tweets for each of the 18 months that our
dataset spans. As mentioned previously, disasters
are time-critical events, and since our goal is to ex-
amine the emergence of such disasters, we mainly
focus on domain adaptation techniques, hence we
omit creating a training set.

3 Domain Transfer Assessment

Using COVIDEMO, we evaluate the ability of mod-
ern NLP models to transfer information from ex-
isting sources with annotated emotions in an inter-
domain setting for perceived emotion detection,
and if models generalize temporally in the same
larger context (in-domain temporal transfer).

3.1 Our Framework

We consider a dataset S labeled with emotions, and
another collection of labeled examples 7 from a
different domain. We aim to assess how well large
pre-trained language models can transfer informa-
tion from the domain of S to the domain of 7. To
this end, we train our models on S, then evalu-
ate the performance on the test set of 7. In our
framework, 7 is COVIDEMO for the inter-domain
experiments, or a temporal slice of COVIDEMO
for the temporal experiments. Due to the uneven
label distribution and the multi-label nature of the
data, we develop binary classifiers for each emotion
following Desai et al. (2020).

Methods. Motivated by the tremendous success
of large pre-trained masked language models, we
use the following models: 1) BERT (Devlin et al.,
2019) base uncased model trained on Wikipedia
and BookCorpus (Zhu et al., 2015), 2) BertTweet
(Nguyen et al., 2020) model trained on 850M en-
glish tweets, and 3) COVID-Twitter-BERT (CT-
BERT) (Miiller et al., 2020) trained on 97M tweets.
Additionally, we also employ a basic lexicon-based
classification approach, 4) EmoLex (Mohammad
and Turney, 2013) is the word-associated lexicon
mentioned previously in the paper. In this approach,
if a tweet contains a word annotated with an emo-
tion e in EmoLex, then we assign e as a label for
the tweet.

Experimental setup. We perform all our experi-
ments on an Nvidia P100 GPU. To report the perfor-
mance, we average the F-1s of 5 different runs and
report the average value. We present in Appendix
A detailed information about the hyperparameters
used for the best models. Additionally, in Appendix
B, we indicate the hyperparameter search space ex-
plored, as well as model running times.

3.2 Inter-domain Transfer

Our first domain transfer assessment explores how
well emotion detection models trained outside our
domain generalize to the COVID context. We
consider two well-established datasets for train-
ing. First, we experiment with GoEmotions (Dem-
szky et al., 2020), a dataset from the general Red-
dit domain annotated with 28 emotions and the
neutral class. The emotion space in GoEmotions
differs slightly from our Plutchik-8 setup, hence
we perform a mapping” between the emotions in
GoEmotions and the Plutchik-8 emotions. Second,
we use HurricaneEmo (Desai et al., 2020), a Twit-
ter dataset collected from natural disasters such as
hurricanes and labeled with fine-grained emotions.
HurricaneEmo provides Plutchik-8 labels.

Results. We show the results obtained in Table
4. Here, we denote by M-DS the model M trained
on dataset DS and tested on COVIDEMO. We em-
phasize a surprising finding: models trained on
a general domain (GoEmotions) generalize bet-
ter on COVIDEMO compared to models trained
on natural disasters such as hurricanes (Hurri-
caneEmo). In fact, the performance gaps between
GoEmotions and HurricaneEmo are vast, and we
see as much as 0.20 differences in average macro F-
1. At the same time, we note that our basic lexicon-
based Emolex approach outperforms the Hurrica-
neEmo transfer models. This result hints to a size-
able divergence between crises such as hurricanes
and COVID-19. The CT-BERT model improves
the performance by 1% on average (with statistical
significance), compared to BERTweet which only
obtained marginal improvements. Although both
are trained on Twitter data, we postulate that CT-
BERT likely benefited from COVID-related biases
that the model manages to leverage.

>GoEmotions Mapping: Anger — Anger, Disgust — Dis-
gust, Joy — Joy, Sadness — Sadness, Fear — Fear, Nervous-
ness, Desire — Anticipation, Surprise — Surprise, Admira-
tion — Trust.



MODEL | ANG ANT DIS FEA (00 SAD SUR TRU | AVG
BERT-GOEMOTIONS 0.735 0.589 0.624 0.625 0.722 0.687 0.588 0.540 0.635
BERT-HURRICANEEMO 0.592 0.339 0.563 0.398 0.385 0.467 0.403 0.347 0.433
BERTWEET-GOEMOTIONS 0.752 0.534 0.631 0.629 0.709 0.708 0.624 0.537 0.637
BERTWEET-HURRICANEEMO 0.677 0.346 0.540 0.311 0.299 0.494 0.354 0.418 0.435
CTBERT-GOEMOTIONS 0.735 0.577 0.629 0.644 0.725 0.717 0.617 0.520 0.644"
CTBERT-HURRICANEEMO 0.655 0.366 0.471 0.311 0.341 0.447 0.243 0.349 0.406
EMOLEX \ 0.57 0.517  0.547  0.551 0.543 0.560 0.458 0.414 \ 0.504

Table 4: Direct transfer Macro F-1 scores using BERT (Devlin et al., 2019) base uncased model (BERT-*),
BERTweet (Nguyen et al., 2020) (BERTWEET-*) and Covid-Twitter-BERT (CTBERT-*). The results in this ta-
ble are average F-1s across 5 different runs. We assert significance’ if p < 0.05 under a paired-t test with the
vanilla BERT model.

MODEL | ANG ANT DIS FEA [0} SAD SUR TRU | AVG
CTBERT-Fy, 0.762 0.485 0.534 0.661 0.705 0.673 0.492 0.492 0.600
CTBERT-L, 0.769 0.631 0.498 0.668 0.781 0.724 0.493 0.502 0.633"

Table 5: Macro F-1 scores using in-domain temporal adaptation. The CTBERT-L;,. improvements are statistically
significant!.

\ Cosine Similarity Jensen-Shannon Divergence

CoviID GOEMOTIONS HURRICANEEMO | CoviD GOEMOTIONS HURRICANEEMO
CoviD 1.0 0.346 0.243 0.0
GOEMOTIONS 1.0 0.378 0.312 0.0
HURRICANEEMO 1.0 0.351 0.374 0.0

Table 6: Cosine similarities and Jensen-Shannon divergence of word distributions between GoEmotions (Demszky

et al., 2020), HurricaneEmo (Desai et al., 2020), and COVIDEMO.

3.3 In-domain Temporal Transfer

COVIDEMO spans a large period of time (18
months) marked by substantial narrative shifts in
the society. Thus we investigate potential distribu-
tional shifts across the temporal dimension. Specif-
ically, we aim to analyze how well models trained
on past COVID-19 data generalize to a fresh batch
of new data. To this end, we stage the following
setup: First, we accumulate the subsets F and £
corresponding to the initial six months and the last
six months respectively. Denoting the development
and test sets of COVIDEMO as Cy, and Cy,, we cre-
ate additional sets £y, = LNCyr and L5 = LNCys.
Additionally, we randomly subsample F;. C F
such that | F, | = | L4, where |.| denotes the size
of a set. In this setting, we compare training on J,
and testing on L vs. training on L, and testing
on L;s. In other words, we investigate whether
model performance on COVIDEMO decreases as
time passes. Here we experiment with CT-BERT
(Miiller et al., 2020) (since it achieved better per-
formance in Section 3.2).

Results. Table 5 shows that the models trained
on the same time period as the testing data out-
performs the model trained on a different time-
frame significantly, obtaining a Macro F-1 in-

crease of 3.3% on average. Notably, we observe
improvements as high as 7.6% in F-1 on joy and
14.6% on anticipation. Intuitively, since the model
is trained on the same temporal distribution as the
test set, and anticipation is closely related to ongo-
ing events (i.e., people usually anticipate certain
events), it is extremely probable that the model has
been trained on similar events in the training set,
so the model easily recognizes the emotion.

4 Understanding Domain Gaps

The previous section exposed significant inter-
domain and temporal gaps leading to poor transfers
of information between these domains. In this sec-
tion, we aim to answer the following questions:
Why does GoEmotions transfer better than Hurrica-
neEmo, even though the latter is a disaster-centric
dataset? How did data distribution shift during the
pandemic? We hope that our insights can spur fur-
ther research into bridging these gaps. In Section 5,
we propose semi-supervised learning as a method
to build better transfer learning models.

Inter-domain gaps. To answer the first question,
we analyze the lexical differences between GoE-
motions, HurricaneEmo, and COVIDEMO. In order
to obtain more accurate comparisons in terms of



the larger vocabulary, we use unlabeled data for
HurricaneEmo and COVIDEMO to match the num-
ber of examples in GoEmotions (~60K). Table 6
shows the cosine similarity and the Jensen-Shannon
divergence for the frequency distribution of all con-
tent words (lower-cased and lemmatized) across
the three datasets. Interestingly, the COVIDEMO
distribution is significantly closer to GoEmotions
compared to HurricaneEmo: the cosine similar-
ity is substantially lower (0.243 vs. 0.346) while
the divergence is larger (0.312 vs. 0.351). More-
over, the HurricaneEmo distribution diverges even
more from GoEmotions compared to COVID-19.
These findings hint that although HurricaneEmo is
closer to COVIDEMO than to a general domain, the
COVID-19 context is significantly more correlated
with a general domain than a natural disaster one,
likely due to the wide impact COVID-19 has had
and a more social nature of the crisis. These find-
ings could also explain why there are large gaps in
performance between HurricaneEmo and GoEmo-
tions transfers.

In-domain temporal gaps In Section 2.2, we re-
vealed that the label distribution and topics dis-
cussed during COVID-19 has shifted over time. To
consolidate these analyses, we carry out an addi-
tional experiment that captures distributional shifts
in vocabulary. In Figure 4 we show the cosine sim-
ilarities and Jensen-Shannon divergence for the fre-
quency distributions of content words (lower-cased
and lemmatized) for unlabeled tweets spanning the
18 months in our data. As time passes, we observe
a constant shift in the lexical distribution of the
tweets. Concretely, while the cosine similarity be-
tween the first and the second month of COVID-19
is 0.97, by the end of the 18" month this value
decreases significantly, getting as low as 0.63. We
observe the same phenomenon in the divergence
of the distributions as well. These findings em-
phasize the considerable temporal gaps found in
long-lasting disasters such as COVID-19, and that
temporal slices of the tweets can diverge signifi-
cantly even though they originate from the same
domain.

5 Bridging the Gaps Between Domains

As crises such as COVID-109 strike, large amounts
of user-generated content are produced on social
sites. However, due to the nature of disasters un-
folding rapidly, the high costs needed for annota-
tion, and the considerable distributional changes
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Figure 4: Cosine similarities and Jensen-Shannon di-
vergence between the first month of COVID-19 and
each subsequent month.

along the time axis, immediately obtaining labeled
data from the ongoing disaster might prove infeasi-
ble. However, rapid understanding of such events
is critical for rapid risk assessment and effective
resource allocations. Therefore, we cannot rely on
obtaining large quantities of labeled data, and we re-
quire effective domain adaptation techniques which
can leverage labeled data from outside the disas-
ter domain. However, we emphasized previously
that models typically have a hard time effectively
transferring information for emotion detection. We
argue that even though we cannot timely obtain
labels for the ongoing disaster, we can still use the
large amounts of unlabeled user-generated Tweets
to build better domain adaptation models. To this
end, we experiment with semi-supervised learning.

Method. Noisy student training (Xie et al., 2020)
is an approach leveraging knowledge distillation
and self-training, which iteratively jointly trains
two models in a teacher-student framework. The
model leverages noised unlabeled data alongside
labeled data to obtain better performance. We de-
tail the setup we use as well as the various noising
techniques in Appendix C. A vital aspect of our
framework, however, is that we use unlabeled data
from COVID-19. Concretely, in the inter-domain
adaptation experiments, where we aim to transfer
information from GoEmotions to COVIDEMO, we
use labeled data from GoEmotions alongside un-
labeled data from COVIDEMO (we make sure the
model does not see any example from the test set).
In the temporal setup, where we train on the first
six months 3, and test on the last six F;5, we use
Fir in conjunction with unlabeled data generated
in the last six months.

Results. We show the results obtained using
Noisy Student training in Table 7. Our SSL tech-
nique bridges both the inter-domain and the



MODEL \ ANG ANT DIS FEA Joy SAD SUR TRU \ AVG
CTBERT-GOEMOTIONS 0.735 0.577 0.629 0.644 0.725 0.717 0.617 0.520 0.644
CTBERT-GOEMOTIONS-SSL 0.741 0.554 0.657 0.651 0.741 0.726 0.632 0.532 0.654"
CTBERT-Fi, 0.762 0.485 0.534 0.661 0.705 0.673 0.492 0.492 0.600
CTBERT-JF¢,-SSL 0.771 0.501 0.531 0.711 0.711 0.671 0.538 0.501 0.617"
CTBERT-L¢ 0.769 0.631 0.498 0.668 0.781 0.724 0.493 0.502 0.633"

Table 7: Macro F-1 scores using inter-domain adaptation (first block), in-domain temporal adaption (second block),
and of our best performing models using Noisy Student training (Xie et al., 2020). We assert significance’ if
p < 0.05 under a paired-t test with base model (CTBERT-GOEMOTIONS for inter-domain transfers and CTBERT-

Fi, for temporal transfers.)

in domain temporal performance gaps. First,
we note that our SSL-powered CT-BERT model
trained on GoEmotions outperforms the plain CT-
BERT by as much as 1% in average macro F-1.
Moreover, in our temporal transfer experiments,
Noisy Student improves the performance of the
model by 1.7%. These results are statistically sig-
nificant, and emphasize that our method obtains
better generalization performance and can be lever-
aged to produces better domain adaptation models.

6 Related Work

Emotion datasets. Emotion detection has been
studied extensively with applications in music
(Strapparava et al., 2012), social networks (Mo-
hammad, 2012; Islam et al., 2019), online news
(Bao et al., 2009), and literature (Liu et al., 2019).
All these domains can be examined with the help of
large curated datasets. These datasets are created
using automated approaches such as distant super-
vision (Wang et al., 2012; Abdul-Mageed and Un-
gar, 2017), while others are manually labeled using
crowdsourcing (Aman and Szpakowicz, 2007; Po-
ria et al., 2019; Liu et al., 2019; Sosea and Caragea,
2020; Demszky et al., 2020; Desai et al., 2020).
In this work, we resort to the latter and create
CoVvIDEMO, a dataset of 2, 847 tweets annotated
with the Pluchik-8 emotions.

Emotion detection methods. Emotion detection
has been studied extensively in the past (Cambria
et al., 2017; Stappen et al., 2021; Cambria et al.,
2020). In the early stages, most approaches used
feature-based methods, which usually leveraged
hand-crafted lexicons, such as EmoLex (Moham-
mad and Turney, 2013) or the Valance Arousal
Lexicon (Mohammad, 2018). These features were
subsequently used to build classifiers such as Lo-
gistic Regression or SVMs. However, due to the re-
cent advancements in deep learning as well as large
pre-trained language models, all state-of-the-art ap-
proaches (Desai et al., 2020; Sosea and Caragea,
2020; Demszky et al., 2020) employ BERT-based

(Devlin et al., 2019) classifiers.

COVID-19 emotion analysis. Since the emer-
gence of the pandemic, numerous studies have been
carried out on social media networks to understand
COVID-19 and its effects on the larger population.
IIs et al. (2021) annotated 2.3/ German and En-
glish tweets for the expression of solidarity and
used it to carry out an analysis into the expression
of solidarity over time. On the other hand, Saakyan
et al. (2021) annotated a dataset for detecting gen-
eral misinformation in the pandemic. Sentiment
analysis and emotion detection on social media
during COVID-19 have seen tremendous popular-
ity as well (Beck et al., 2021; Kabir and Madria,
2021; Adikari et al., 2021; Choudrie et al., 2021;
Scarpina, 2020; Calbi et al., 2021) due to the ability
to provide vital information into the social aspects
and the overall dynamics of the population. In this
paper, however, we annotate COVIDEMO, a dataset
of fine-grained emotions and employ a compre-
hensive analysis into cross-domain and temporal
generalization of large pretrained language mod-
els. We will make the dataset available to the large
public.

7 Conclusion

We present COVIDEMO, a dataset of tweets anno-
tated with perceived Plutchik-8 emotions. Using
this dataset, we reveal emotion distributions and
associations that are distinctive from prior studies
on disaster-related emotion annotation and detec-
tion. We further show that models trained on other
emotion datasets transfer poorly. Additionally, we
indicate that models transfer poorly when trained
on different temporal slices of an event such as
COVID-19. Next, we conduct a comprehensive
analysis of the temporal and inter-domain gaps to
offer a better understanding of why models trans-
fer poorly. As a potential solution to bridge these
gaps and offer a more reliable disaster response, we
leverage the large amount of readily available data
alongside semi-supervised learning techniques.
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A Hyperparameters Used

In all our experiments, we found that a batch size of
16 works best. Additionally, we indicate in Table 8
the best learning rates for our models. We refrain
from showing the best learning rates on Hurrica-
neEmo due to low performance, high variance of
the results.

B Hyperparameter Search Space

For each emotion, we investigate with batch sizes in
the set [8, 16, 32], and train for up to 5 epochs with
early stopping. In terms of learning rates, we fol-
low the best practices from the orignal BERT paper
and explore learning rates around 5e — 5. Specifi-
cally, we experiment with values in the range 1e—5
->9e — 5 with steps of 2e — 5. Although hyperpa-
rameter tuning is quite expensive computationally
(15 runs per emotion per model), we found that
the default BERT setup (5e-5 learning rate and a
batch size of 32) works within 0.5% F-1 of the best
model.
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C Semi-supervised Learning

Noisy Student training (Xie et al., 2020) leverages
knowledge distillation (KD) and self-training to
iteratively train two models in a teacher-student
framework. The framework trains the student in
traditional KD fashion, matching its predictions to
those of the teacher. Concretely the training loss is:

L= U(f-(2"), £ (2h),

2.

(xi7yi)ect'r

where D is the training dataset, [ is the cross-
entropy loss, and f; and f_ are the student and
the teacher models, respectively. We note one vi-
tal particularity of this framework: The student is
trained using noised input examples. In the orginal
paper, the authors also use a larger network for
the student, but we noticed here that using equal-
sized architectures works well enough. Leveraging
noised inputs, Noisy Student exposes the student
to more difficult learning environments, and usu-
ally leads to an increased performance compared
to the teacher. To add noise to our input exam-
ples, we use two approaches: a) Synonym replace-
ment: We replace between one and three words in
a tweet with its synonym using the WordNet En-
glish lexical database (Fellbaum, 2012); b) Back-
translation: We use back-translation, and experi-
ment with different levels of noise corresponding
to different translation chain lengths (e.g., English-
French-Spanish-English). Smaller chain lengths
lead to less noise, while increasing the length of the
chain produces examples with significantly more
noise. For each unlabeled example, we sample uni-
formly a chain length in the range 1->10, and use
the following languages for translation: Russian,
French, Spanish, Italian, and German.



ang ant dis fea joy sad sur tru
BERT-GOEMOTIONS 3e—05 5e—05 7e—05 5e—05 5e—05 5e—05 3e—05 5e—05
BERTWEET-GOEMOTIONS 3e—05 3e—05 5e—05 5e—05 5e—05 7e—05 7e—05 5e—05
CTBERT-GOEMOTIONS 5e —05 7e—05 3e—05 5e—05 5e—05 3e—05 3e—05 5e—05
CTBERT-GOEMOTIONS-SSL  3e — 05 le—05 5e—05 3e—05 7e—05 7T7e—05 5e—05 b5e—05
CTBERT-F;,  He—05 T7e—05 5H5e—05 5He—05 3e—05 3e—05 bHe—05 5He—05
CTBERT-F--SSL  5e—05 5H5e—05 5H5e—05 T7e—05 7T7e—05 5e—05 5e—05 5e—05

Table 8: Best Learning Rates for for our models.
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