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ABSTRACT

Graph neural networks (GNNs) are widely used to make predictions on graph-
structured data in urban spatiotemporal forecasting applications, such as predicting
infrastructure problems and weather events. In urban settings, nodes have a true
latent state (e.g., street condition) that is sparsely observed (e.g., via government
inspection ratings). We more frequently observe biased proxies for the latent state
(e.g., via crowdsourced reports) that correlate with resident demographics. We
introduce a GNN-based model that uses both unbiased rating data and biased
reporting data to predict the true latent state. We show that our approach can
both recover the latent state at each node and quantify the reporting biases. We
apply our model to a case study of urban incidents using reporting data from
New York City 311 complaints across 141 complaint types and rating data from
government inspections. We show (i) that our model predicts more correlated
ground truth latent states compared to prior work which trains models only on the
biased reporting data, (ii) that our model’s inferred reporting biases capture known
demographic biases, and (iii) that our model’s learned ratings capture correlations
across locations and between complaint types. Especially in urban crowdsourcing
applications, our analysis reveals a widely applicable approach for using GNNs
and sparse ground truth data to estimate latent states.

1 INTRODUCTION

Graph neural networks (GNNs) have emerged as powerful and expressive models for making pre-
dictions on graph-structured data, especially for urban applications such as air quality monitoring,
forecasting traffic flows, predicting housing prices, and modeling the spread of epidemics (Xie et al.,
2019; Roy et al., 2021; Brimos et al., 2023; Yu et al., 2023; Zhan & Datta, 2024). In urban planning –
our empirical setting – government officials often wish to know where urban incidents like rodents
or floods truly occur so they can make downstream resource allocation decisions; however, this
ground truth is typically unobserved and must be predicted. GNNs are a powerful tool to make these
predictions, as they can naturally encode spatial correlations of the ground truth states across nodes
in a graph (e.g., neighborhoods in a city). For example, if a flood has occurred in one neighborhood,
the adjacent neighborhoods are also likely to be flooded.

Estimating latent ground truth for the hundreds of types of incidents that occur in a city is challenging.
Nevertheless, there are two sources of information we can use, each with its own limitations. First, we
observe the ground truth state via government inspections which generate ratings for neighborhoods.
For example, New York City conducts street inspections for every street and rates them from 1-10.
Importantly, these inspections are only conducted for some incident types and neighborhoods and are
thus sparsely observed. These settings also often have another source of data: frequently observed,
biased proxies of the latent state, e.g., via crowdsourced reports of incidents. Unlike ratings, reports
are observed across all incident types, all neighborhoods, and multiple points in time. However,
previous work has established that underreporting is pervasive and heterogeneous (Clark et al., 2020;
Kontokosta & Hong, 2021; Agostini et al., 2024; Liu et al., 2024); in different neighborhoods that
face similar incidents, residents often report those incidents at different rates. This presents an
identifiability issue; if one neighborhood logs more reports than another, it is unclear whether the
former has a worse ground truth or if given the same ground truth, the latter is less likely to report.
Thus, reports may not accurately predict ground truth across all neighborhoods as the same ground
truth state may have different reporting patterns across the city. For example, Casey et al. (2018)
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Figure 1: We use a GNN-based model to estimate two quantities: ground truth inspection ratings and
reports of incidents. We model inspection ratings rikt using node i’s learned node embedding en[i]
and type k’s learned type embedding eτ [k]. We model reports Tikt as a function of the rating rikt
and a set of node-specific demographic features Xi.

found that in Washington, D.C. crowdsourced reports on rodents did not accurately predict the
outcome of inspections. Moreover, differences in reporting often correlate with demographics, so
learning only from reporting data risks introducing bias against underserved populations.

We propose a novel GNN-based approach to capture the above characteristics of urban incident
reporting – (i) high dimensionality: we have crowdsourced reports across many types (e.g., rodents,
food poisoning, fallen trees, etc.) over time; (ii) frequently observed, biased reporting data: our
reports capture whether incidents of each type were reported in each node in each granular time
period; and (iii) sparsely observed, ground truth rating data: the city conducts periodic inspections
which yield ratings for a sparse set of types, nodes, and time periods.

Our GNN-based approach jointly models both the the true latent state and the probability of a report
for each node (neighborhood) across all incident types. Summarized in Figure 1, the model uses a
GNN to capture spatial correlations in the ground truth state (e.g., street condition) and estimates how
the reporting probability varies across nodes as a function of demographics. We train our model to
simultaneously predict (i) ground truth ratings using learned node and type embeddings and (ii) how
the likelihood of reporting varies by demographics, conditional on ground truth state. Since there is
no way to distinguish between neighborhoods which truly do not have problems and neighborhoods
that do not report them, estimating this model is impossible without some information to constrain
or identify the ground truth state. We show on semi-synthetic data that by supplying the model
with sparse ground truth rating data, we are able to identify which neighborhoods systematically
underreport incidents. Thus, on types for which ground truth ratings are not observed, we are still
able to infer the ground truth and correct for reporting biases.

We apply our model to a case study of New York City 311 complaints (crowdsourced reports),
leveraging 55 million reports across 141 types over two years. We combine this with a carefully
curated dataset of ground truth ratings which are sourced from 300k government inspections across
5 types in the same time frame. Using both semi-synthetic simulations and real data, we show that
our approach can (i) estimate the ground truth inspection ratings and (ii) quantify the biases in the
frequently observed reporting data, capturing the fact that different neighborhoods report similar
issues at different rates. We find that the sparsely observed, ground-truth rating data and the frequently
observed, biased reporting data both confer benefits. Using both the ground truth rating data and the
reporting data, our model can infer ground truth ratings that are 2× more correlated than a model that
only uses reporting data. Additionally, our model predicts ratings that more plausibly reflect spatial
correlations between nodes compared to a model that uses rating data alone. We also show that our
model’s inferred reporting biases align with known demographic patterns of underreporting and that
our model’s learned ratings capture both spatial correlations across neighborhoods and correlations
across 311 complaint types. We will release code and data to replicate all experiments.

Although our primary application is to urban crowdsourcing, our approach is broadly applicable to
other GNN prediction tasks where both sparsely observed, ground truth data and frequently observed,
biased data are available. Specific application areas include other urban challenges (such as estimating
air quality using both resident reports and sparse sensor measurements) and spatiotemporal processes
(such as epidemic forecasting using both internet search data and sparse official health reports). Our
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work also relates to prior work on semi-supervised learning on graphs with sparse ground truth labels
(see related work in §2). Our analysis reveals a generalizable approach to using GNNs and sparse,
ground truth data to identify latent states.

2 RELATED WORK

Our work relates to and extends several literatures: (1) urban spatiotemporal modeling and related
methodology, including semi-supervised learning, (2) learning from noisy and human-reported data,
and (3) GNN learning on noisy graphs. Our work is at the intersection of these literatures, augmenting
biased labels with ground truth for graph learning applied to urban settings.

Spatiotemporal modeling: GNNs are a natural fit for high-dimensional spatiotemporal modeling
in applications like traffic forecasting, epidemic forecasting, and molecular dynamics (Kapoor et al.,
2020; Roy et al., 2021; Wang et al., 2022a;b; He et al., 2023; Pineda et al., 2023; Wu et al., 2024).
Several works also design ways to encode spatiotemporal information in GNNs, including positional
encoders (Klemmer et al., 2023), kriging convolutional networks (Appleby et al., 2020), and inductive
kriging (Wu et al., 2021). Non-GNN-based spatiotemporal models, including Bayesian, clustering,
and matrix factorization models, have also been used for urban issues like crime (Hu et al., 2018),
pedestrian traffic (Zaouche & Bode, 2023), air pollution (Sarto et al., 2016), urban flow (Pan et al.,
2019), and infrastructure monitoring (Budde et al., 2014).

For 311 complaints in particular, prior works have quantified underreporting of floods using spa-
tiotemporal models (Agostini et al., 2024) and have more broadly quantified the geographic and
demographic patterns of underreporting (Kontokosta et al., 2017; Wang et al., 2017; Kontokosta
& Hong, 2021). Disparities in incident reporting rates lead to downstream inequities in resource
allocation, so understanding the patterns of underreporting is crucial (Liu et al., 2024). Especially
notable in relation to our work, one prior study in Washington, D.C. showed that 311 reports are poor
predictors of ground truth ratings, in line with our hypotheses and findings (Casey et al., 2018). Our
work extends this literature by proposing a specific approach to overcome the limitations of biased
reporting data: leveraging sparse ground truth.

Other methodological areas: Our work ties in with three broad methodological areas: semi-
supervised learning, learning from noisy and human-reported data, and GNN learning on noisy
graphs. A long line of prior work has dealt with semi-supervised learning on graphs and noisy
labels. Several prior works address our core issue of semi-supervised learning with sparsely observed,
ground truth labels and frequently observed proxies. In some works, the proxy labels are the outputs
of a machine learning model (Arazo et al., 2020) which are debiased to produce better predictions
(Zhang et al., 2021). Wang et al. (2022c) tries to learn which proxies are reliable and upweights those
which are predicted to be reliable. Our work extends this literature, by showing that models that use
both reliable inspection ratings and less reliable crowdsourced reports improve upon models which
only use the less reliable reports.

One common source of frequently observed, biased data is human behavior (such as crowdsourced
reports). Prior work has shown that models which use this biased data can affect high-stakes
decisions (Lum & Isaac, 2016; Obermeyer et al., 2019; Mullainathan & Obermeyer, 2021) and
that crowdsourced labels vary across annotators and often correlate with demographics, indicating
that different groups may perceive the same data (e.g., text, image, incident/problem) differently
(Chakraborty et al., 2017; Zhang et al., 2017; Ding et al., 2022). There is also work that attempts to
resolve a ground truth label from several annotations (Dawid & Skene, 1979; Bach et al., 2017).

Finally, several prior works provide methods for learning on noisy graphs. For instance, in social
and citation networks the graph itself is often noisy and dynamic, leading to spurious correlations
between nodes (Hamilton et al., 2017). Methods such as graph attention and causal regularization
overcome these issues by filtering spurious correlations from causally relevant ones (Wang et al.,
2019; 2022a; Wu et al., 2023). Other methods deal with noisy and sparse labels for nodes. Dai et al.
(2021) and Qian et al. (2023) generate pseudolabels for nodes by aggregating information from the
most similar labeled nodes. Crucially, these methods do not augment noisy node labels (i.e., reports)
with ground truth data. Applications of the above techniques include inferring links in gene regulatory
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networks (Singh et al., 2024), estimating the spread of infectious diseases (Tomy et al., 2022), and
detecting vulnerabilities in software (Cheng et al., 2021).

Our work extends and combines insights from these areas: we use a GNN to model both sparsely
observed, unbiased data and frequently observed, biased data generated from human behavior. We
use both data sources to predict ground truth latent states and learn about reporting biases.

3 MODEL

Approach overview: Our GNN model is summarized in Figure 1. The purpose of our model
is to (i) estimate the true latent state of a particular incident type at a particular location – e.g.,
what is the true street condition in a particular neighborhood?; and (ii) to quantify biases in the
observed reporting data – e.g., which neighborhoods systematically underreport incidents and how do
reporting behaviors correlate with demographics? In many urban settings, models are fit using only
the frequently observed reporting data, resulting in biased predictions (Xu et al., 2017; Casey et al.,
2018; Li et al., 2020; Hacker et al., 2022). In contrast, our approach learns the true latent state using
both the frequently observed, biased reporting data and the sparsely observed, unbiased rating data.

Notation: Consider a network G with n nodes and adjacency matrix E. In our case study, nodes
are indexed by i and represent neighborhoods, and edges connect adjacent neighborhoods. Each node
i has features Xi ∈ RD, where D is the number of features. These features include demographic
factors that may influence reporting rates. There are τ incident types indexed by k (e.g., rodents,
floods, etc.). We index time by t (e.g., weeks). We have two types of data: sparsely observed,
unbiased true state measures (e.g., inspection ratings) and frequently observed, biased data (e.g.,
crowdsourced reports).

Observed data: For some node/type/time tuples, we observe inspection ratings rikt ∈ R. In
our urban reporting case study, we source ratings from city government inspections for various
government services (e.g., street ratings, park ratings, etc.). A lower inspection rating indicates a
worse true state; e.g., a street with a lower rating has more damage. We normalize (z-score) the
inspection ratings for each type across time and nodes. We use ratings from incident types for which
inspections are conducted randomly and periodically (as opposed to in response to potentially biased
reports) so that ratings are unbiased observations of the true latent state.1 However, our observed
inspection rating data is sparse and only available for a subset of nodes, types, and times.

We also observe reports of incidents Tikt ∈ {0, 1}, where Tikt = 1 indicates that an incident of type
k was reported for node i at time t. In our urban reporting case study, we source reports from New
York City’s resident reporting system, NYC311. Reports are obtained from residents and are thus
biased proxies of the true latent state that correlate with resident demographics.

Examples of rikt and Tikt data exist in many settings. In environmental monitoring, rikt may be
geographically sparse sensor measurements of air quality, and Tikt may be resident reports of air
quality. In epidemic forecasting, rikt may be sparse health reports, and Tikt may be search data
(Bauer & Aschenbruck, 2018; Chang et al., 2024).

Model: We model ratings using a node embedding and a type embedding. Node i’s embedding
en[i] ∈ REn , where En is the embedding dimension, is a low-dimensional representation of a node
and captures the node’s attributes and position. The node embeddings are learned using a GNN
(Kipf & Welling, 2017; Veličković et al., 2018), which is a deep learning model that leverages graph-
structured data by iteratively aggregating and transforming features from neighboring nodes. Thus
our node embeddings are spatially correlated, mirroring the correlation of true incident occurrence
across neighborhoods. We also learn type k’s embedding eτ [k] ∈ REτ , where Eτ is the embedding
dimension. The type embedding is a low-dimensional representation of a type and captures the type’s
features, similarity to other types, and relationship to nodes in the graph. Thus our type embeddings
capture correlations across types.

1In our empirical setting in New York City, many government agencies explicitly conduct proactive, regular
inspections not in response to reports, in addition to also conducting inspections in response to reports (NYC
Open Data, 2024e). We identify and filter out inspections made in response to reports. Details on how we filter
inspections are provided in Appendix C.
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More formally, we model the true latent state as follows:

Predicted rating: r̂ikt = en[i]
⊤eτ [k]

True inspection rating: rikt ∼ fr(·|r̂ikt)
(1)

The predicted rating r̂ikt is estimated from node i’s embedding en[i] and type k’s embedding eτ [k].
The true rating is drawn from a distribution fr parameterized by the predicted rating r̂ikt.

We model reports as follows:

True report: Tikt ∼ Bernoulli(sigmoid(αkrikt + θ⊤k Xi)) (2)

Each report Tikt is drawn from a Bernoulli distribution parameterized by a logistic function of the
true rating rikt and node specific demographic features Xi, with unknown type-specific coefficients
αk ∈ R and θk ∈ RD. These coefficients are unique for each type which reflects that different
incident types have different reporting characteristics, a claim we confirm on our real rating data.

We now discuss how we predict the probability of observing a report. For different node/type/time
pairs (i, k, t), we model the probability of observing a report differently depending on whether rating
rikt is observed and whether ratings for other nodes i′ for type k are observed (i.e., whether ratings
ri′kt are observed). Overall, there are three different cases that we consider:

Case 1: Predicted probability of a report P̂ (Tikt) when rating rikt is observed. In this case, we
model the probability of observing a report as a function of the true, observed rating rikt, and we
estimate type specific reporting coefficients [αk, θk] :

Case 1: P̂ (Tikt) = sigmoid(αkrikt + θ⊤k Xi) (3)

Case 2: Predicted probabiity of a report P̂ (Tikt) when rating rikt is unobserved but ratings ri′kt for
type k are observed at other nodes i′. In this case, we do not have access to node i’s true rating, so we
model the probability of observing a report as a function of the predicted rating r̂ikt and type specific
reporting coefficients [αk, θk]. The type specific coefficients [αk, θk] are learned via equation 3 using
the nodes i′ for which the ground truth ratings ri′kt are observed for type k.

Case 2: P̂ (Tikt) = sigmoid(αkr̂ikt + θ⊤k Xi) (4)

Case 3: Predicted probabiity of a report P̂ (Tikt) when rating rikt is unobserved and no ratings
for type k are observed at any node. We again do not have access to the true rating, so we model
the probability of observing a report as a function of the predicted rating r̂ikt. We also cannot
simultaneously learn the rating rikt and the type specific reporting coefficients [αk, θk], thus we
model the probability of observing a report as a function of the mean reporting coefficients across
types with observed ratings [α, θ].

Case 3: P̂ (Tikt) = sigmoid(αr̂ikt + θ
⊤
Xi) (5)

Learning a separate regression for each type k allows us to recover type-specific reporting coefficients
[αk, θk] which accounts for different types’ reporting propensities. For instance, residents may be
more likely to report rodents than a noise complaint. We implicitly assume here that the mean
coefficients [α, θ] are reasonable for types with unobserved ratings, i.e., the reporting coefficients
transfer across types to some extent. We show in our semi-synthetic experiments that compared
to a model trained on reporting data alone, our model, which uses both inspection rating data and
reporting data, is able to predict ratings that are more correlated to the ground truth ratings, even for
types for which the model does not observe any ground truth ratings.

We note that our approach easily extends to other parameterizations of rikt and Tikt. Thus, while
our described model predicts constant ratings r̂ikt and reporting probabilities P̂ (Tikt) over time, our
method generalizes to spatiotemporal GNN-based models. Full details on our model and learning
procedure are provided in Appendix A.

Loss function: To calculate our loss function we first separately evaluate our model’s performance
on predicting reports and ratings. Our final loss is a weighted sum of each of these individual loss
components. More formally, the loss function consists of four parts:
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Full model Reports-only model Ratings-only model
Correlation on

predicted reports 0.42 0.43 –

Correlation on
predicted ratings 0.60 0.35 0.58

Table 1: Semi-synthetic experimental results. We compare our full model (which uses both
reporting and rating data) to a reports-only and a ratings-only model. Compared to both baselines, our
full model can estimate ratings without compromising accuracy in predicting reports. We calculate the
correlation between our predicted probabilities of reports and the true probabilities for all node/type
pairs. We calculate the correlation between our predicted ratings and the true ratings for all nodes
and for all types with observed ratings. We report the median correlation across 5 synthetic datasets.

(i) Report loss for data points with unobserved inspection ratings: Binary cross entropy (BCE)
between the true Tikt and predicted P̂ (Tikt) for data points with unobserved inspection ratings.

Lreport unobserved =
∑
ikt

1 (rikt is unobserved) · BCE(P̂ (Tikt), Tikt) (6)

(ii) Report loss for data points with observed inspection ratings: BCE between the true Tikt and
predicted P̂ (Tikt) for data points with observed inspection ratings.

Lreport observed =
∑
ikt

1 (rikt is observed) · BCE(P̂ (Tikt), Tikt) (7)

(iii) Rating loss: Mean squared error (MSE) between the true rating rikt and the predicted rating r̂ikt.

Lrating =
∑
ikt

1 (rikt is observed) · MSE(r̂ikt, rikt) (8)

(iv) Regularization loss: L2 norm of the predicted ratings r̂ikt. We include this loss to maintain stable
training and prevent our predicted ratings from exploding.

Lregularization =
∑
ikt

L2(r̂ikt) (9)

The overall loss is as follows:

L = Lreport unobserved + γ1 · Lreport observed + γ2 · Lrating + γ3 · Lregularization (10)

We use weights γ1, γ2, γ3 and fix the weight on Lreport unobserved to 1. We select weights via a
hyperparameter search maximizing the correlation of predicted reports and ratings. Details are in
Appendix A.

4 SEMI-SYNTHETIC EXPERIMENTS

We now validate our proposed approach on semi-synthetic data. We verify that our model can
accurately recover the true data-generating process (i.e., inspection ratings, crowdsourced reports,
and the reporting coefficients) when our model is well-specified.

4.1 SEMI-SYNTHETIC DATA

For our semi-synthetic experiments, we use demographic features Xi and reports Tikt from New
York City 311 data (NYC Open Data, 2024a). We analyze all Census tracts2 with valid demographic
information (n = 2292 nodes), complaint types with a reporting frequency greater than 0.1%
(τ = 141 types), and all weeks in the two years from 2022 - 2023. Xi represents 6 Census tract level
demographic features and Tikt ∈ {0, 1} denotes whether at least one report of type k was made in
node i during week t. In total we analyze more than 55 million reports. We then generate synthetic
ratings rikt so that we can compare our model’s predictions against a known ground truth.

2A Census tract is a geographic region defined by the U.S. Census Bureau to analyze population data. On
average, each census tract has thousands of inhabitants. There are 2326 total Census tracts in New York City.
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Figure 2: Semi-synthetic experimental results. Figure 2a: We show that our full model predicts
more correlated ratings than a model that uses only reporting data. We calculate the correlation
between the average predicted and true rating for each node/type pair. We show results for all types
with observed inspection ratings and for the mean across these types. We plot the median correlation
across 5 synthetic datasets. Error bars denote the range across the 5 trials. Figure 2b: We show
that our model’s predicted coefficients [θ̂k, α̂k] match the true coefficients [θk, αk] for all types with
observed inspection ratings. The red line indicates perfect prediction.

We generate synthetic inspection ratings rikt by inverting equation 2:

rikt =
1

αk

(
logit(Et(Tikt))− θ⊤k Xi

)
(11)

Here, Et(Tikt) is defined as the empirical frequency of Tikt over all weeks in the dataset and [αk, θk]
are type-specific reporting coefficients. Our synthetically generated inspection ratings rikt aim to
replicate our real inspection rating data described in §5.1. Thus, for each type k, we draw αk and
θk from a Gaussian with a standard deviation of 0.1 and a mean equal to the average reporting
coefficients predicted by a logistic regression model run on the real inspection rating data.3 Full
details on our synthetic inspection ratings are available in Appendix B.1.

We report results from 5 trials. For each trial, we draw a set of reporting coefficients [αk, θk]; generate
a new set of synthetic ratings; refit the model to that dataset; and evaluate the predicted ratings,
reports, and reporting coefficients. We use a time-based split. We train on data from January 2022 to
June 2023 and test on data from July 2023 to December 2023. We wish to assess the effect of using
reports and ratings. Thus, we compare inferences from models with (i) both reports and ratings (full
model), (ii) only reports (reports-only model), and (iii) only ratings (ratings-only model).

4.2 SEMI-SYNTHETIC RESULTS

Table 1 shows our results. Compared to the reports-only and ratings-only models, our full model
estimates ratings without compromising performance in predicting reports. Across all types, the
average correlation between our full model’s predicted probability of a report P̂ (Tikt) and the true
probability P (Tikt) is 0.42. Across all types with observed ratings, the average correlation between
our full model’s predicted rating r̂ikt and the true rating rikt is 0.60. We report RMSE results in
Appendix Table 4.

Table 1 shows that compared to the reports-only model, the full model predicts ratings which better
correlate with ground truth (r = 0.60 for the full model versus 0.35 for the reports-only model), and
the full model predicts reporting probabilities which are similarly correlated to the true probabilities
(r = 0.42 for the full model versus 0.43 for the reports-only model). Figure 2a breaks down the
full model’s improvement for each type with observed inspection ratings. In Appendix Figure 5 we
also show that, compared to the reports-only model, our full model predicts ratings that are more
correlated with ground truth even for types with unobserved ratings. This shows that ground truth

3We set the intercept of θk such that our generated rikt are zero mean. Thus, our generated and real inspection
ratings take on both negative and nonnegative values.
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Full model Reports-only model Ratings-only model
Correlation on

predicted reports 0.25 0.55 –

Correlation on
predicted ratings 0.19 0.08 0.18

Table 2: Real data results. We compare our full model to a reports-only and a ratings-only model.
Compared to both baselines, our full model can estimate ratings without overfitting to reports. We
calculate the correlation between our predicted probabilities of reports and the true probabilities for
all node/type pairs. We calculate the correlation between our predicted ratings and the true ratings for
all nodes and for all types with observed ratings.

data for observed types are beneficial in predicting ratings for unobserved types. Importantly, this
demonstrates that our model can learn ground truth characteristics that generalize across types, a key
contribution over prior work which models only a single type at a time.

Next we compare our full model’s predicted ratings to the ratings-only model’s predicted ratings.
When learning only from rating data, a model can only make predictions on the sparse set of types
for which ratings are observed. Thus even though in Table 1, compared to the ratings-only model, the
full model predicts ratings that are similarly correlated with the ground truth ratings (r = 0.60 for the
full model versus 0.58 for the ratings-only model), this comparison is only for types with observed
ratings. For types with unobserved ratings, only our full model can generalize and predict ratings.

A final benefit of our model is that it recovers the true reporting coefficients [αk, θk], as shown in
Figure 2b. In our semi-synthetic data, the reporting probability P (Tikt) is defined as a logistic function
of the node demographics Xi and the true synthetic inspection rating rikt. One cannot identify both
the reporting coefficients [αk, θk] and the inspection ratings rikt using only crowdsourced reporting
data. In particular, with only crowdsourced reporting data it is impossible to distinguish between
a bad inspection rating that is never reported and a truly good inspection rating. Thus, to identify
reporting coefficients, one must either use both rating and reporting data or make strong parametric
assumptions (e.g., assume a shared reporting model across types).

Overall our semi-synthetic results show that our approach helps if our model is well-specified. In the
next section, we assess on real inspection rating data.

5 REAL-WORLD CASE STUDY: NEW YORK CITY RESIDENT REPORTING

0.0 0.2 0.4
Correlation of predicted ratings

Mean

Street

Park

Rodent

Food

DCWP

Full model
Reports only model

Figure 3: On real data, our full model predicts more
correlated ratings than the reports-only model. Results
are shown for all types with observed ratings and the
mean across these types. We plot bootstrapped mean
correlation and 95% CIs over node/type pairs.

In the following sections, we describe our
experimental set up (§5.1), validate our fit-
ted model (§5.2), and investigate cluster-
ings of our learned ratings (§5.3).

5.1 EXPERIMENTAL SETUP

As in the semi-synthetic experiments, we
use 55 million NYC 311 reports across
2292 nodes, 141 types, and two years. We
collect ratings from government inspection
data for five complaint types: (i) street con-
ditions (NYC Open Data, 2023), (ii) park
maintenance or facility conditions (NYC
Open Data, 2024c), (iii) rodents (NYC
Open Data, 2024e), (iv) food establish-
ment/mobile food vendor/food poisoning
(NYC Open Data, 2024d), and (v) DCWP
consumer complaints (NYC Open Data,
2024b). We process the inspection data
to remove any inspections triggered by 311
reports. Details are in Appendix C.
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We split our data into a train and test set using a time-based split, as is standard in urban planning (Yu
et al., 2018; Farahmand et al., 2023; Huang et al., 2023; Agostini et al., 2024). We train our model on
data from January 2022 to June 2023 and we test on data from July 2023 to December 2023.

5.2 VALIDATING THE MODEL

Prediction in real data is more challenging than in our semi-synthetic setting due to model misspecifi-
cation. We model the probability of a report as a logistic function of demographics and true ratings,
which allows us to quantify how reporting rates vary by demographics. But in reality, it is likely
that reports are generated by a more complex function with more complex inputs. Nevertheless, our
model’s predicted ratings and reports still correlate with ground truth. As shown in Table 2, across all
types, the average correlation between our full model’s predicted probability of a report P̂ (Tikt) and
the true probability of a report P (Tikt) is 0.25. Across all types with observed inspection ratings, the
average correlation between our full model’s predicted rating r̂ikt and the true rating rikt is 0.19. We
report RMSE results in Appendix Table 5.

Compared to the reports-only model, our full model’s predicted ratings are more correlated
with the ground truth ratings: Table 2 shows that compared to the reports-only model, the full
model’s predicted ratings are more correlated with ground truth ratings (r = 0.19 for the full model
versus 0.08 for the reports-only model). We also see that, compared to the reports-only model, the full
model’s predicted probabilities of reports are less correlated with ground truth probabilities (r = 0.25
for the full model versus 0.55 for the reports-only model). This is because the reports-only model
overfits to the biased reporting data, evidenced by the model’s large disparity in performance between
predicted reports and ratings. Overall, our priority is to accurately predict ratings, and we find in both
semi-synthetic and real data, that compared to a model that uses reporting data alone, our full model’s
predicted ratings are more correlated with ground truth ratings. Importantly, this highlights a key
contribution of our model which leverages sparse, unbiased rating data over prior work which only
learns from biased reporting data. Figure 3 breaks down the full model’s improvement in predicting
ratings for each type with observed inspection ratings.

Covariate Mean coefficient
log(Population density) 0.27
Bachelors degree population 0.16
Households occupied by renter 0.13
log(Median income) 0.12
White population 0.08
Median age 0.06
True inspection rating −0.20

Table 3: Univariate demographic coefficients. We
report the average predicted univariate demographic
coefficients across types with observed ratings. The
estimated coefficients capture known demographic fac-
tors: tracts that are more dense, more educated, have a
higher income, have more white residents, or are older
are more likely to report incidents. We also report the
average coefficient on the true inspection rating across
all univariate models. Tracts that have lower ratings are
more likely to be reported.

Table 2 shows that compared to the ratings-
only model, the full model’s predicted rat-
ings achieve comparable correlations with
ground truth (r = 0.19 for the full model
versus 0.18 for the ratings-only model).
Investigating whether refinements of our
model can yield improved predictions by
incorporating reporting data represents a
promising direction for future work.

θk captures known demographic predic-
tors of underreporting: θk measures the
contribution of each demographic feature
in Xi to the reporting rate. We estimate
θk by fitting univariate variants of our full
model. Each univariate model is trained
on both rating and reporting data, but only
uses one demographic feature. We run a
separate univariate model for each demo-
graphic feature in Xi. Table 3 shows that
the inferred coefficients capture known demographic predictors of underreporting. Consistent with
prior work, tracts that are more dense, more educated, have a higher income, have more white
residents, or are older are more likely to report incidents (Kontokosta & Hong, 2021; Agostini et al.,
2024; Liu et al., 2024). We report the coefficients predicted by a multivariate model in Table 6.

5.3 CLUSTERING NODES AND INCIDENT TYPES

Predicted ratings are spatially correlated: For each node i, we create a vector ri = {rikt}τk=1
of ratings over all types k. We use each node’s ri vector to cluster the nodes into 4 groups. We find
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that the predicted clusters are spatially correlated and demographically distinct. Figure 4 shows that
our clusters are spatially correlated, e.g., there is a clear spatial separation. The clusters correlate
with New York City (NYC) borough lines, e.g., Manhattan falls mostly into cluster 0 and the Bronx
falls mostly into cluster 3. Each NYC borough functions as a separate administrative area and
corresponds to significant socioeconomic and other demographic differences. We similarly find
significant demographic differences between the nodes in each of our predicted clusters, and we
report the statistically significant differences in Appendix Table 7.

Full model
Cluster 0
Cluster 1
Cluster 2
Cluster 3

Ratings only model

Figure 4: Using each node’s vector of learned ratings over
types, we cluster nodes into 5 groups using a k means clus-
tering algorithm. Our model which learns from both reports
and ratings predict more spatially clustered ratings than a
model which learns only from ratings.

We compare our full model’s cluster-
ing to the ratings-only model’s clus-
tering. Figure 4 shows that our full
model learns more spatially correlated
ratings than the ratings-only model.
Many urban phenomena are spatially
correlated, e.g. if a flood occurs in one
neighborhood, it is likely that adja-
cent neighborhoods have also flooded.
Prior work has used the spatial corre-
lation of ground truth data as an iden-
tification approach (Agostini et al.,
2024). Thus, while adding reporting
data does not improve our rating pre-
dictions, it allows the full model to
predict more reasonable ratings com-
pared to the ratings-only model.

Ratings capture correlations between complaint types: For each type k, we create a vector
rk = {rikt}ni=1 of ratings over all nodes i to cluster the types into 8 groups. We find that each group
contains a coherent cluster of types, and in Appendix Table 8 we describe and list the types captured
by each cluster. Additionally, Appendix Figure 6 shows that the dimension of highest variability (i.e.,
first PCA dimension) of the rk vectors captures type frequency (i.e., Eit[Tikt]).

6 DISCUSSION

We address the challenging problem of estimating graph neural networks (GNNs) in settings where
we observe biased outcome data. In these settings, nodes have a true latent state that is sparsely
observed (e.g., via inspection ratings). We often also frequently observe biased proxies of the latent
states (e.g., via crowdsourced reports). We propose a GNN-based model that uses frequently observed,
biased reporting data and sparsely observed, unbiased rating data. We apply our model to New York
City 311 data and show that (i) our model makes better predictions of the ground truth latent state
compared to a baseline model trained only on reporting data, (ii) our model’s inferred reporting biases
capture known demographic factors of underreporting, and (iii) our model’s learned ratings capture
correlation between nodes and 311 complaint types.

Our model opens several avenues for additional applications and future work. Here we experimented
with a particular model for reporting propensity; one line of future work could investigate whether
other methods of incorporating reporting data can produce more accurate rating predictions. Another
natural direction is to apply our model to other urban settings with biased reporting data. As discussed
in this paper, reporting biases often correlate with demographics, so learning only from reporting
data risks introducing bias against underserved populations. Beyond urban applications, other GNN
tasks may also have sparsely observed ground truth and frequently observed biased proxies. In such
settings, our model is a key advance in using GNNs to estimate ground truth latent states.
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