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Abstract

Generalization of machine learning models can be severely compromised by data poisoning,
where adversarial changes are applied to the training data. This vulnerability has led to
interest in certifying (i.e., proving) that such changes up to a certain magnitude do not affect
test predictions. We, for the first time, certify Graph Neural Networks (GNNs) against
poisoning attacks, including backdoors, targeting the node features of a given graph. Our
certificates are white-box and based upon (i) the neural tangent kernel, which characterizes the
training dynamics of sufficiently wide networks; and (ii) a novel reformulation of the bilevel
optimization problem describing poisoning as a mixed-integer linear program. Consequently,
we leverage our framework to provide fundamental insights into the role of graph structure and
its connectivity on the worst-case robustness behavior of convolution-based and PageRank-
based GNNs. We note that our framework is more general and constitutes the first approach
to derive white-box poisoning certificates for NNs, which can be of independent interest
beyond graph-related tasks.

1 Introduction

Numerous works showcase the vulnerability of modern machine learning models to data poisoning, where
adversarial changes are made to the training data (Biggio et al., 2012; Muñoz-González et al., 2017; Zügner
& Günnemann, 2019a; Wan et al., 2023), as well as backdoor attacks affecting both training and test sets
(Goldblum et al., 2023). The practicability of data poisoning attacks on modern web-scale datasets has been
impressively showcased by Carlini et al. (2024) and is a critical concern for practitioners and enterprises
(Grosse et al., 2023; Siva Kumar et al., 2020). Reliable detection of poisoning examples is an unsolved
problem (Goldblum et al., 2023) and empirical defenses against such threats are continually at risk of being
compromised by future attacks (Koh et al., 2022; Suciu et al., 2018). This motivates the development of
robustness certificates, which provide formal guarantees that the prediction for a given test data point remains
unchanged under certain corruptions of the training data.

Robustness certificates can be categorized as providing deterministic or probabilistic guarantees, and as being
white box, i.e. developed for a particular model, or black box (model-agnostic). While each approach has its
strengths and applications (Li et al., 2023), we focus on white-box certificates as they can provide a more direct
understanding into the worst-case robustness behavior of commonly used models and architectural choices
(Tjeng et al., 2019; Mao et al., 2024; Banerjee et al., 2024). The literature on poisoning certificates is less
developed than certifying against test-time (evasion) attacks and we provide an overview and categorization
in Table 1. Notably, white-box certificates are currently available only for decision trees (Drews et al., 2020),
nearest neighbor algorithms (Jia et al., 2022), and naive Bayes classification (Bian et al., 2024). In the case
of Neural Networks (NNs), the main challenge in white-box poisoning certification comes from capturing
their complex training dynamics. As a result, the current literature reveals that deriving white-box poisoning
certificates for NNs, and by extension Graph Neural Networks (GNNs), is still an unsolved problem, raising
the question if such certificates can at all be practically computed.

In this work, we give a positive answer to this question by developing the first approach towards white-
box certification of NNs against data poisoning and backdoor attacks, and instantiate it for common
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Table 1: Representative selection of data poisoning and backdoor certificates. Poisoning refers to (purely)
training-time attacks. A backdoor attack refers to joint training and test-time perturbations. Certificates
apply to different attack types: (i) Clean-label: modifies the features of the training data; (ii) Label-flipping:
modifies the labels of the training data; (iii) Joint: modifies both features and labels; (iv) General attack:
allows (arbitrary) insertion/deletion, i.e., dataset size doesn’t need to be constant; (v) Node injection:
particular to graphs, refers to adding nodes with arbitrary features and malicious edges into the graph. It is
most related to (iv) but does not allow deletion and can’t be compared with (i) and (ii). Note that certificates
that only certify against (iii) − (v) cannot certify against clean-label or label-flipping attacks individually.

Deterministic Certified Models Perturbation Model Applies to ApproachPois. Backd. Attack Type Node Cls.
(Ma et al., 2019)

Bl
ac

k
Bo

x

✗ Diff. Private Learners ✓ ✗ Joint ✗ Differential Privacy
(Liu et al., 2023) ✗ Diff. Private Learners ✓ ✗ General ✗ Differential Privacy
(Wang et al., 2020) ✗ Smoothed Classifier ✗ ✓ Joint ✗ Randomized Smoothing
(Weber et al., 2023) ✗ Smoothed Classifier ✗ ✓ Clean-label ✗ Randomized Smoothing
(Zhang et al., 2022) ✗ Smoothed Classifier ✓ ✓ Joint ✗ Randomized Smoothing
(Lai et al., 2024b) ✗ Smoothed Classifier ✓ ✗ Node Injection ✓ Randomized Smoothing
(Jia et al., 2021) ✗ Ensemble Classifier ✓ ✗ General ✗ Ensemble (Majority Vote)
(Rosenfeld et al., 2020) ✓ Smoothed Classifier ✓ ✗ Label Flip. ✗ Randomized Smoothing
(Levine & Feizi, 2021) ✓ Ensemble Classifier ✓ ✗ Label Flip./General ✗ Ensemble (Majority Vote)
(Wang et al., 2022) ✓ Ensemble Classifier ✓ ✗ General ✗ Ensemble (Majority Vote)
(Rezaei et al., 2023) ✓ Ensemble Classifier ✓ ✗ General ✗ Ensemble (Run-Off Election)
(Drews et al., 2020) ✓ Decision Trees ✓ ✗ General ✗ Abstract Interpretation
(Meyer et al., 2021) ✓ Decision Trees ✓ ✗ General ✗ Abstract Interpretation
(Jia et al., 2022) ✓ k-Nearest Neighbors ✓ ✗ General ✗ Majority Vote
(Bian et al., 2024) ✓ Naive Bayes Classifier ✓ ✗ Clean-label ✗ Algorithmic
Ours W

hi
te

Bo
x

✓ NNs & SVMs ✓ ✓ Clean-label ✓ NTK & Linear Programming

convolution-based and PageRank-based GNNs. Concretely, poisoning can be modeled as a bilevel op-
timization problem over the training data D that includes training on D as its inner subproblem. To
overcome the challenge of capturing the complex training dynamics of NNs, we consider the Neural
Tangent Kernel (NTK) that characterizes the training dynamics of sufficiently wide NNs under gradi-
ent flow (Jacot et al., 2018; Arora et al., 2019). In particular, we leverage the equivalence between
NNs trained using the soft-margin loss and standard soft-margin Support Vector Machines (SVMs)
with the NN’s NTKs as kernel matrix (Chen et al., 2021). Using this equivalence, we introduce

Figure 1: Illustration of
our poisoning certifica-
tion framework QPCert.

a novel reformulation of the bilevel optimization problem as a Mixed-Integer Linear
Program (MILP) that allows to certify test datapoints against poisoning as well as
backdoor attacks for sufficiently wide NNs (see Fig. 1). Although our framework
applies to wide NNs in general, solving the MILP scales with the number of labeled
training samples. Thus, it is a natural fit for semi-supervised learning tasks, where
one can take advantage of the low labeling rate. In this context, we focus on
semi-supervised node classification in graphs, where certifying against node feature
perturbations is particularly challenging due to the interconnectivity between
nodes (Zügner & Günnemann, 2019b; Scholten et al., 2023). Here, our framework
provides a general and elegant way to handle this interconnectivity inherent to
graph learning, by using the corresponding graph NTKs (Sabanayagam et al.,
2023) of various GNNs. Our contributions are:

(i) We are the first to certify GNNs in node-classification tasks against poisoning and backdoor attacks
targeting node features. Our certification framework called QPCert is introduced in Sec. 3 and leverages the
NTK to capture the complex training-dynamics of GNNs. Further, it can be applied to NNs in general and
thus, it represents the first approach on white-box poisoning certificates for NNs.

(ii) Enabled by the white-box nature of our certificate, we conduct the first study into the role of graph data
and architectural choices on the worst-case robustness of many widely used GNNs against data poisoning and
backdoors (Sec. 4). We focus on convolution and PageRank-based architectures and contribute the derivation
of the closed-form NTK for APPNP (Gasteiger et al., 2019), GIN (Xu et al., 2018), and GraphSAGE
(Hamilton et al., 2017) in App. C.

(iii) We contribute a reformulation of the bilevel optimization problem describing poisoning as a MILP when
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instantiated with kernelized SVMs, allowing for white-box certification of SVMs. While we focus on the NTK
as kernel, our strategy can be transferred to arbitrary kernel choices.

Notation. We represent matrices and vectors with boldfaced upper and lowercase letters, respectively. vi

and Mij denote i-th and ij-th entries of v and M. Mi is the i-th row of M, In the identity matrix, 1n×n the
matrix of all 1s of size n × n. We use ⟨., .⟩ for scalar product, ∥.∥2 for vector Euclidean norm and matrix
Frobenius norm, 1[.] for indicator function, ⊙ for the Hadamard product, E [.] for expectation, and ⌈z⌉ for
the smallest integer ≥ z (ceil). [n] denotes {1, 2, . . . , n}. App. A provides a complete list of symbols we use.

2 Preliminaries

We are given a partially-labeled graph G = (S, X) with n nodes and a graph structure matrix S ∈ Rn×n
≥0 ,

representing for example, a normalized adjacency matrix. Each node i ∈ [n] has features xi ∈ Rd of dimension
d collected in a node feature matrix X ∈ Rn×d. We assume labels yi ∈ {1, . . . , K} are given for the first
m ≤ n nodes. Our goal is to perform node classification, either in a transductive setting where the labels of
the remaining n − m nodes should be inferred, or in an inductive setting where newly added nodes at test
time should be classified. The set of labeled nodes is denoted VL and the set of unlabeled nodes VU .

Perturbation Model. We assume that at training time the adversary A has control over the features of an
ϵ-fraction of nodes and that ⌈(1 − ϵ)n⌉ nodes are clean. For backdoor attacks, the adversary can also change
the features of a test node of interest. Following the semi-verified learning setup introduced in Charikar
et al. (2017), we assume that k < n nodes are known to be uncorrupted. We denote the verified nodes by
set VV and the nodes that can be potentially corrupted as set U . We further assume that the strength of
A to poison training or modify test nodes is bounded by a budget δ ∈ R+. More formally, A can choose
a perturbed x̃i ∈ Bp(xi) := {x̃ | ∥x̃ − xi∥p ≤ δ} for each node i under control. We denote the set of all
perturbed node feature matrices constructible by A from X as A(X) and A(G) = {(S, X̃) | X̃ ∈ A(X)}. In
data poisoning, the goal of A is to maximize misclassification in the test nodes. For backdoor attacks A aims
to induce misclassification only in test nodes that it controls.

Learning Setup. GNNs are functions fθ with (learnable) parameters θ ∈ Rq and L number of layers taking
the graph G = (S, X) as input and outputting a prediction for each node. We consider linear output layers
with weights W L+1 and denote by fθ(G)i ∈ RK the (unnormalized) logit output associated to node i. Note
for binary classification fθ(G)i ∈ R. We define the architectures such as MLP, GCN (Kipf & Welling, 2017),
SGC (Wu et al., 2019), (A)PPNP (Gasteiger et al., 2019) and others in App. B. We focus on binary classes
yi ∈ {±1} and refer to App. F for the multi-class case. Following Chen et al. (2021), the parameters θ are
learned using the soft-margin loss

L(θ, G) = min
θ

1
2∥WL+1∥2

2 + C

m∑
i=1

max(0, 1 − yifθ(G)i)

where the second term is the Hinge loss weighted by a regularization C ∈ R+. Note that due to its non-
differentiability, the NN is trained by subgradient descent. Furthermore, we consider NTK parameterization
(Jacot et al., 2018) in which parameters θ are initialized from a standard Gaussian N (0, 1/width). Under
NTK parameterization and large width limit, the training dynamics of fθ(G) are precisely characterized by
the NTK defined between nodes i and j as Qij = Q(xi, xj) = Eθ[⟨∇θfθ(G)i, ∇θfθ(G)j⟩] ∈ R.

Equivalence of NN to Soft-Margin SVM with NTK. Chen et al. (2021) show that training NNs in the
infinite-width limit with L(θ, G) is equivalent to training a soft-margin SVM with (sub)gradient descent using
the NN’s NTK as kernel. Thus, both methods converge to the same solution. We extend this equivalence to
GNNs, as detailed in App. D. More formally, let the SVM be defined as fθ(G)i = fSV M

θ (xi) = ⟨β, Φ(xi)⟩
where Φ(·) is the feature transformation associated to the used kernel and θ = β are the learnable parameters
obtained by minimizing L(θ, G). Following Chen et al. (2021), we do not include a bias term. To find the
optimal β∗, instead of minimizing L(θ, G), we work with the equivalent dual

P1(Q) : min
α

−
m∑

i=1
αi + 1

2

m∑
i=1

m∑
j=1

yiyjαiαjQij s.t. 0 ≤ αi ≤ C ∀i ∈ [m] (1)
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with the Lagrange multipliers α ∈ Rm and kernel Qij = Q(xi, xj) ∈ R computed between all labeled nodes
i, j ∈ [m]. The optimal dual solution may not be unique and we denote the set of α solving P1(Q) by S(Q).
However, any α∗ ∈ S(Q) corresponds to the same unique β∗ =

∑m
i=1 yiα

∗
i Φ(G)i minimizing L(θ, G) (Burges

& Crisp, 1999). Thus, the SVM prediction for a test node t using the dual is fSV M
θ (xt) =

∑m
i=1 yiα

∗
i Qti

for any α∗ ∈ S(Q), where Qti is the kernel between a test node t and training node i. By choosing Q to
be the NTK of a GNN fθ, the prediction equals fθ(G)t if the width of the GNN’s hidden layers goes to
infinity. Thus, a certificate for the SVM directly translates to a certificate for infinitely-wide GNNs. Given
finite-width, where the smallest layer width is h, the output difference between both methods can be bounded
with high probability by O( ln h√

h
) (the probability → 1 as h → ∞). Thus, the certificate translates to a high

probability guarantee for sufficiently wide finite networks.

3 QPCert: Our Certification Framework

Poisoning a clean training graph G can be described as a bilevel problem where an adversary A tries to find a
perturbed G̃ ∈ A(G) that results in a model θ minimizing an attack objective Latt(θ, G̃):

min
G̃,θ

Latt(θ, G̃) s. t. G̃ ∈A(G) ∧ θ∈arg min
θ′

L(θ′, G̃) (2)

Eq. (2) is called an upper-level problem and minθ′ L(θ′, G̃) the lower-level problem. Now, a sample-wise
poisoning certificate can be obtained by solving Eq. (2) with an Latt(θ, G̃) chosen to describe if the prediction
for a test node t changes compared to the prediction of a model trained on the clean graph. However,
this approach is challenging as even the simplest bilevel problems given by a linear lower-level problem
embedded in an upper-level linear problem are NP-hard (Jeroslow, 1985). Thus, in this section, we develop a
general methodology to reformulate the bilevel (sample-wise) certification problem for kernelized SVMs as a
mixed-integer linear program, making certification tractable through the use of highly efficient modern MILP
solvers such as Gurobi (Gurobi Optimization, LLC, 2023) or CPLEX (Cplex, 2009). Our approach can be
divided into three steps: (1) The bilevel problem is reduced to a single-level problem by exploiting properties
of the quadratic dual P1(Q); (2) We model G̃ ∈ A(G) by assuming a bound on the effect any G̃ can have on
the elements of the kernel Q. This introduces a relaxation of the bilevel problem from Eq. (2) and allows us
to fully express certification as a MILP; (3) In Sec. 3.1, we choose the NTK of different GNNs as kernel and
develop bounds on the kernel elements to use in the certificate. In the following, we present our certificate for
binary classification where yi ∈ {±1} ∀i ∈ [n] and transductive learning, where the test node is already part
of G. We generalize it to a multi-class and inductive setting in App. F.

A Single-Level Reformulation. Given an SVM fSV M
θ trained on the clean graph G, its class prediction

for a test node t is given by sgn(p̂t) = sgn(fSV M
θ (xt)). If for all G̃ ∈ A(G) the sign of the prediction does not

change if the SVM should be retrained on G̃, then we know that the prediction for t is certifiably robust. Thus,
the attack objective reads Latt(θ, G̃) = sgn(p̂t)

∑m
i=1 yiαiQ̃ti, where Q̃ti denotes the kernel computed between

nodes t and i on the perturbed graph G̃, and indicates robustness if greater than zero. Now, notice that the
perturbed graph G̃ only enters the training objective Eq. (1) through values of the kernel matrix Q̃ ∈ Rn×n.
Thus, we introduce the set A(Q) of all kernel matrices Q̃, constructable from G̃ ∈ A(G). Furthermore, we
denote with S(Q̃) the optimal solution set to P1(Q̃). As a result, we rewrite Eq. (2) for kernelized SVMs as

P2(Q) : min
α,Q̃

sgn(p̂t)
m∑

i=1
yiαiQ̃ti s.t. Q̃ ∈ A(Q) ∧ α ∈ S(Q̃) (3)

and certify robustness if the optimal solution to P2(Q) is greater than zero. Crucial in reformulating P2(Q)
into a single-level problem are the Karush–Kuhn–Tucker (KKT) conditions of the lower-level problem P1(Q̃).
Concretely, the KKT conditions of P1(Q̃) are
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∀i ∈ [m] :
m∑

j=1
yiyjαjQ̃ij − 1 − ui + vi = 0, (Stationarity) (4)

αi ≥ 0, C − αi ≥ 0, ui ≥ 0, vi ≥ 0, (Primal and Dual feasibility) (5)
uiαi = 0, vi(C − αi) = 0 (Complementary slackness) (6)

where u ∈ Rm and v ∈ Rm are Lagrange multipliers. Now, we can state (see App. G for the proof):
Proposition 3.1. Problem P1(Q̃) given by Eq. (1) is convex and satisfies strong Slater’s constraint. Conse-
quently, the single-level optimization problem P3(Q) arising from P2(Q) by replacing α ∈ S(Q̃) with Eqs. (4)
to (6) has the same globally optimal solutions as P2(Q).
A Mixed-Integer Linear Reformulation. The computational bottleneck of P3(Q̃) are the non-linear
product terms between continuous variables in the attack objective as well as in Eqs. (4) and (6), making
P3(Q̃) a bilinear problem. Thus, we describe in the following how P3(Q̃) can be transformed into a MILP.
First, the complementary slackness constraints can be linearized by recognizing that they have a combinatorial
structure. In particular, ui = 0 if αi > 0 and vi = 0 if αi < C. Thus, introducing binary integer variables s
and t ∈ {0, 1}m, we reformulate the constraints in Eq. (6) with big-M constraints as

∀i ∈ [m] : ui ≤ Muisi, αi ≤ C(1 − si), si ∈ {0, 1}, (7)
vi ≤ Mviti, C − αi ≤ C(1 − ti), ti ∈ {0, 1}

where Mui and Mvi are positive constants. In general, verifying that a certain choice of big-Ms results in
a valid (mixed-integer) reformulation of the complementary constraints Eq. (6), i.e., such that no optimal
solution to the original bilevel problem is cut off, is at least as hard as solving the bilevel problem itself
(Kleinert et al., 2020). This is problematic as heuristic choices can lead to suboptimal solutions to the original
problem (Pineda & Morales, 2019). However, additional structure provided by P1(Q̃) and P3(Q) together
with insights into the optimal solution set allows us to derive valid and small Mui

and Mvi
for all i ∈ [m].

Concretely, the adversary A can only make a bounded change to G. Thus, the element-wise difference
of any Q̃ ∈ A(Q) to Q will be bounded. As a result, there exist element-wise upper and lower bounds
Q̃L

ij ≤ Q̃ij ≤ Q̃U
ij for all i, j ∈ [m] ∪ {t} and valid for any Q̃ ∈ A(Q). In Sec. 3.1 we derive concrete lower and

upper bounds for the NTKs corresponding to different common GNNs. This, together with 0 ≤ αi ≤ C, allows
us to lower and upper bound

∑m
j=1 yiyjαjQ̃ij in Eq. (4). Now, given an optimal solution (α∗, Q̃∗, u∗, v∗) to

P3(Q), observe that either u∗
i or v∗

i are zero, or can be freely varied between any positive values as long as
Eq. (4) is satisfied without changing the objective value or any other variable. As a result, one can use the
lower and upper bounds on

∑m
j=1 yiyjαjQ̃ij to find the minimal value range for ui and vi, such that Eq. (4)

can always be satisfied for any α∗ and Q̃∗. Consequently, one can find constants Mui
and Mvi

given in
Proposition 3.2 such that only redundant solutions regarding large u∗

i and v∗
i will be cut off and the optimal

solution value stays the same as for P3(Q), not affecting the certification (for a formal proof see App. H).
Proposition 3.2 (Big-M ’s). Replacing the complementary slackness constraints Eq. (6) in P3(Q) with the big-
M constraints given in Eq. (7) does not cut away solution values of P3(Q), if for any i ∈ [m], the big-M values
fulfill the following conditions. For notational simplicity j : Condition(j) denotes j ∈ {j ∈ [m] : Condition(j)}.

If yi = 1 then Mui
≥

∑
j:yj=1∧Q̃U

ij
≥0

CQ̃U
ij −

∑
j:yj=−1∧Q̃L

ij
≤0

CQ̃L
ij − 1 ∧

Mvi
≥

∑
j:yj=−1∧Q̃U

ij
≥0

CQ̃U
ij −

∑
j:yj=1∧Q̃L

ij
≤0

CQ̃L
ij + 1.

If yi = −1 then Mui ≥
∑

j:yj=−1∧Q̃U
ij

≥0

CQ̃U
ij −

∑
j:yj=1∧Q̃L

ij
≤0

CQ̃L
ij − 1 ∧

Mvi
≥

∑
j:yj=1∧Q̃U

ij
≥0

CQ̃U
ij −

∑
j:yj=−1∧Q̃L

ij
≤0

CQ̃L
ij + 1.
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To obtain the tightest formulation for P (Q) we set the big-M ’s to equal the conditions.

Now, the remaining non-linearities come from the product terms αiQ̃ij . We approach this by first introducing
new variables Zij for all i, j ∈ [m] ∪ {t} and set Zij = αjQ̃ij . Then, we replace all αjQ̃ij in Eq. (4) and in
the objective in Eq. (3) with Zij . This alone has not changed the fact that the problem is bilinear, only that
the bilinear terms have now moved to the definition of Zij . However, we have access to lower and upper
bounds on Q̃ij . Thus, replacing Zij = αjQ̃ij with linear constraints Zij ≤ αjQ̃U

ij and Zij ≥ αjQ̃L
ij results in

a relaxation to P3(Q). This resolved all non-linearities and we can write the following theorem.
Theorem 3.3 (MILP Formulation). Node t is certifiably robust against adversary A if the optimal solution
to the following MILP denoted by P (Q) is greater than zero

min
α,u,v,s,t,Z

sgn(p̂t)
m∑

i=1
yiZti s.t.

∀i ∈ [m] ∪ {t}, j ∈ [m] : Zij ≤ αjQ̃U
ij , Zij ≥ αjQ̃L

ij ,

∀i ∈ [m] :
m∑

j=1
yiyjZij − 1 − ui + vi = 0,

αi ≥ 0, C − αi ≥ 0, ui ≥ 0, vi ≥ 0,

ui ≤ Musi, αi ≤ C(1 − si), si ∈ {0, 1},

vi ≤ Mvti, C − αi ≤ C(1 − ti), ti ∈ {0, 1}.

P(Q) includes backdoor attacks through the bounds Q̃L
tj and Q̃U

tj for all j ∈ [m], which for an adversary A
who can manipulate t will be set different. On computational aspects, P(Q) involves (m + 1)2 + 5m variables
out of which 2m are binary. Thus, the number of binary variables, which mainly defines how long it takes
MILP-solvers to solve a problem, scales with the number of labeled samples.

3.1 QPCert for GNNs through their NTKs

Table 2: The NTKs of GNNs have the general form Q =
M(Σ ⊙ Ė)MT + MEMT for L = 1. The definitions of
M, Σ, E and Ė are given in the table. Z = S + In and
T = ((1 + ϵ)In + A) X. κ0(z) = 1

π (π − arccos (z)) and κ1(z) =
1
π

(
z (π − arccos (z)) +

√
1 − z2

)
.

GNN M Σ Eij Ėij

GCN S SXXT ST
√

ΣiiΣjjκ1

(
Σij√
ΣiiΣjj

)
κ0

(
Σij√
ΣiiΣjj

)
SGC S SXXT ST Σij 1

GraphSAGE Z ZXXT ZT
√

ΣiiΣjjκ1

(
Σij√
ΣiiΣjj

)
κ0

(
Σij√
ΣiiΣjj

)
(A)PPNP P XXT + 1n×n

√
ΣiiΣjjκ1

(
Σij√
ΣiiΣjj

)
κ0

(
Σij√
ΣiiΣjj

)
GIN In TTT + 1n×n

√
ΣiiΣjjκ1

(
Σij√
ΣiiΣjj

)
κ0

(
Σij√
ΣiiΣjj

)
MLP In XXT + 1n×n

√
ΣiiΣjjκ1

(
Σij√
ΣiiΣjj

)
κ0

(
Σij√
ΣiiΣjj

)

To certify a specific GNN using our QPCert
framework, we need to derive element-wise
lower and upper bounds valid for all NTK
matrices Q̃ ∈ A(Q) of the corresponding
network, that are constructable by the ad-
versary. As a first step, we introduce the
NTKs for the GNNs of interest before de-
riving the bounds. While Sabanayagam
et al. (2023) provides the NTKs for GCN
and SGC with and without skip connec-
tions, we derive the NTKs for (A)PPNP,
GIN and GraphSAGE in App. C. For clar-
ity, we present the NTKs for fθ(G) with
hidden layers L = 1 here and the gen-
eral case for any L in the appendix. For
L = 1, the NTKs generalize to the form
Q = M(Σ ⊙ Ė)MT + MEMT for all the
networks, with the definitions of M, Σ, E
and Ė detailed in Table 2. Thus, it is im-
portant to note that the effect of the feature matrix X, which the adversary can manipulate, enters into the
NTK only as a product XXT , making this the quantity of interest when bounding the NTK matrix.

Focusing on p = {1, 2, ∞} in Bp(x) and X̃ ∈ A(X), we derive the bounds for X̃X̃T by considering U :=
{i : i ̸∈ VV } as the set of all unverified nodes that the adversary can potentially control. We present the
worst-case element-wise lower and upper bounds for X̃X̃T = XXT + ∆ in terms of ∆ in Lemma 3.4, and
Lemmas E.1 and E.2 in App. E.
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Lemma 3.4 (Bounds for ∆, p = ∞). Given B∞(x) and any X̃ ∈ A(X), then X̃X̃T = XXT + ∆ where the
worst-case bounds for ∆, ∆L

ij ≤ ∆ij ≤ ∆U
ij ∀i, j ∈ [n] are

∆L
ij = −δ∥Xj∥11[i ∈ U ] − δ∥Xi∥11[j ∈ U ] − δ2d1[i ∈ U ∧ j ∈ U ∧ i ̸= j],

∆U
ij = δ∥Xj∥11[i ∈ U ] + δ∥Xi∥11[j ∈ U ] + δ2d1[i ∈ U ∧ j ∈ U ].

The NTK bounds Q̃L
ij and Q̃U

ij , are now derived by simply propagating the bounds for X̃X̃T through the NTK
formulation since the multipliers and addends are positive. To elaborate, we compute Q̃L

ij by substituting
XXT = XXT + ∆L, and likewise for Q̃U

ij . Only bounding Eij and Ėij needs special care as discussed in
App. E.1. Further, we prove that the bounds are tight in the worst-case in App. E.2.
Theorem 3.5 (NTK bounds are tight). The worst-case NTK bounds are tight for GNNs with linear activations
such as SGC and (A)PPNP, and an MLP with σ(z) = z for p = {1, 2, ∞} in Bp(x).

4 Experimental Results

We present (i) the effectiveness of QPCert in certifying different GNNs using their corresponding NTKs against
node feature poisoning and backdoor attacks; (ii) insights into the role of graph data in worst-case robustness
of GNNs, specifically the importance of graph information and its connectivity; (iii) a study of the impact of
different architectural components in GNNs on their provable robustness. The code base and datasets to
reproduce the experimental results can be found at https://figshare.com/s/e155ced9910eb7b3a531 and
will be made public upon acceptance.

Dataset. We use the real-world graph dataset Cora-ML (Bojchevski & Günnemann, 2018), where we generate
continuous 384-dim. embeddings of the abstracts with a modern sentence transformer1. Furthermore, for
binary classification, we use Cora-ML and another real-world graph WikiCS (Mernyei & Cangea, 2022) and
extract the subgraphs defined by the two largest classes. We call the resulting datasets Cora-MLb and
WikiCSb, respectively. Lastly, we use graphs generated from Contextual Stochastic Block Models (CSBM)
(Deshpande et al., 2018) for controlled experiments on graph parameters. We give dataset statistics and
information on the random graph generation scheme in I.1. For Cora-MLb and WikiCSb, we choose 10
nodes per class for training, leaving 1215 and 4640 unlabeled nodes, respectively. For Cora-ML, we choose 20
training nodes per class resulting in 2925 unlabeled nodes. From the CSBM, we sample graphs with 200
nodes and choose 40 per class for training, leaving 120 unlabeled nodes. All results are averaged over 5 seeds
(Cora-ML: 3 seeds) and reported with standard deviation. We do not need a separate validation set, as we
perform 4-fold cross-validation (CV) for hyperparameter tuning.

GNNs and Attack. We evaluate GCN, SGC, (A)PPNP, GIN, GraphSAGE, MLP, and the skip connection
variants GCN Skip-α and GCN Skip-PC (see App. B). All results concern the infinite-width limit and thus,
are obtained through training an SVM with the corresponding GNN’s NTK and, if applicable, applying
QPCert using Gurobi to solve the MILP from Theorem 3.3. We fix the hidden layers to L = 1, and the results
for L = {2, 4} are provided in App. J.2. For CSBMs we fix C = 0.01 for comparability between experiments
and models in the main section. We find that changing C has little effect on the accuracy but can strongly
affect the robustness of different architectures. Other parameters on CSBM and all parameters on real-world
datasets are set using 4-fold Cross Validation (CV) (see App. I.2 for details). The SVM’s quadratic dual
problem is solved using QPLayer (Bambade et al., 2023), a differentiable quadratic programming solver. Thus,
to evaluate tightness regarding graph poisoning, we use APGD (Croce & Hein, 2020), with their reported
hyperparameters as attack, but differentiate through the learning process using two different strategies: (i)
QPLayer, and (ii) the surrogate model proposed in MetaAttack (Zügner & Günnemann, 2019a). To evaluate
backdoor tightness, we use the clean-label backdoor attack from Xing et al. (2024), and the above APGD
attack, but at test time additionally attack the target node.

Adversarial Evaluation Settings. We categorize four settings of interest. (1) Poison Labeled (PL): The
adversary A can potentially poison the labeled data VL. (2) Poison Unlabeled (PU): Especially interesting
in a semi-supervised setting when A can poison the unlabeled data VU , while the labeled data, usually

1all-MiniLM-L6-v2 from https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
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(a) Cora-MLb: padv = 1
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(b) WikiCSb: padv = 1

0 0.01 0.02 0.05 0.1 0.2 0.5

Perturbation Budget δ (p = 2)

0.0

0.2

0.4

0.6

0.8

1.0

C
er

ti
fie

d
A

cc
u

ra
cy

GCN
APPNP
SGC
GraphSAGE
GIN
GCN Skip-PC
GCN Skip-α
MLP

(c) Cora-MLb: padv = 0.1
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(d) WikiCSb: padv = 0.1

Figure 2: Poison Labeled (PL) setting for Cora-MLb and WikiCSb. (a)-(b): QPCert effectively provides
non-trivial guarantees. (a)-(d): All GNNs show higher certified accuracy than an MLP.
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(a) Cora-MLb: P U
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(b) Cora-MLb: BU
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(c) CSBM: P U
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Figure 3: Certifiable robustness in the Poisoning Unlabeled (PU) and Backdoor Unlabeled (BU) setting with
padv = 0.1 for Cora-MLb and padv = 0.2 for CSBM. We refer to App. M for WikiCSb.

representing a small curated set of high quality, is known to be clean (Shejwalkar et al., 2023). (3) Backdoor
Labeled (BL): Like (1) but the test node is also controlled by A. (4) Backdoor Unlabeled (BU): Like (2) but
again, the test node is controlled by A. Settings (1) and (2) are evaluated transductively, i.e. on the unlabeled
nodes VU already known at training time. Note that this means some test nodes may be corrupted for (2).
For the backdoor attack settings (3) and (4) the test node is removed from the graph during training and
added inductively at test time. The size of the untrusted potential adversarial node set U is set in percentage
padv ∈ {0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1} of the scenario-dependent attackable node set and resampled for each
seed. We consider node feature perturbations Bp(x) with p = {1, 2, ∞} and provide all results for p = 1 in
App. J.6 and K.4. In the case of CSBM, δ is set in percentage of 2µ of the underlying distribution, and for
real data to absolute values. Our main evaluation metric is certified accuracy, referring to the percentage of
correctly classified nodes without attack that are provably robust against data poisoning / backdoor attacks
of the assumed adversary A. As there are no other white-box poisoning certificates applicable to neural
networks, there are no white-box certificate baselines. Furthermore, we note that we are the first work to
study certificates for clean-label attacks on node features in graphs. In particular, all current black-box
certificates do not apply to graph learning or ℓp perturbation models (see Sec. 6). Thus, there is no direct
baseline prior work. However, we adapt the split-and-majority vote principle from Levine & Feizi (2021)
for black-box certification of node-feature perturbations in graphs and provide a comparison in App. J.4.
Furthermore, we provide a comparison with two common poisoning defenses in App. J.8.

Non-Trivial Certificates and On the Importance of Graph Information. We evaluate the effectiveness
of our certificates in providing non-trivial robustness guarantees. Consider the PL setting where A can
poison all labeled nodes (padv = 1) for which a trivial certificate would return 0% certified accuracy. Figs. 2a
and 2b prove that QPCert returns non-trivial guarantees. Further, they highlight an interesting insight:
All GNNs have significantly better worst-case robustness behavior than the certified accuracy of an MLP.
Thus, leveraging the graph connectivity, significantly improves their certified accuracy, even when faced with
perturbations on all labeled nodes. In Figs. 2c and 2d we show that this observation stays consistent for
other padv. We observe similar results for Cora-ML (App. L) and CSBM (App. J.1), establishing that this
behavior is not dataset-specific.

In Fig. 3, we evaluate the poison unlabeled (PU) and backdoor unlabeled (BU) settings. When poisoning
only unlabeled data (PU), the MLP’s training process is not affected by the adversary, as the MLP does
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Figure 4: Poison Unlabeled for WikiCSb (padv = 0.02), Cora-MLb (padv = 0.1), CSBM (padv = 0.2). (a)
Certified accuracy gain: difference of certified acc. to an MLP. (b) Graph connectivity analysis where c×
is cp and cq in CSBM model. (c) APPNP analysis based on α. (d) Tightness of QPCert (differentiation
through the learning process using QPLayer).

not access the unlabeled nodes during training. Thus, this provides a good baseline for our certificate to
study GNNs. Again, QPCert provides non-trivial certified robustness beyond the MLP baseline. Close to all
GNNs show certified accuracy exceeding the one of an MLP for small to intermediate perturbation budgets
(δ ≤ 0.1) for Cora-MLb (Fig. 3a) and CSBM (Fig. 3c), with a similar picture for WikiCSb (App. M) and
Cora-ML (App. L). Note that the small certified accuracy drop for an MLP stems from the transductive
learning setting, in which the MLP is confronted with the potentially perturbed unlabeled training nodes at
test time. For WikiCSb, Fig. 4a elucidates in detail the certified accuracy gain of an SGC to an MLP and for
other GNNs, see App. M (and App. K.1 for Cora-MLb, App. J.1 for CSBM). Concerning backdoor attacks
on unlabeled nodes Figs. 3b and 3d show that most GNNs show significantly better certified robustness
than an MLP, even so MLP training is not affected by A. We observe similar results for a BL setting for
Cora-MLb (App. K.1), WikiCSb (App. M), and CSBM (App. J.1). These results show that leveraging
graph information can significantly improve certified accuracy across all attack settings. Further, across all
evaluation settings and datasets, we find GIN and GraphSAGE to provide the lowest certified accuracies
of all GNNs; their most important design difference is choosing a sum-aggregation scheme. We note that
a comparison across architecture can be affected by the certificate’s tightness and we hypothesize that the
high worst-case robustness of SGC compared to other models may be due to the certificate being tighter
(Theorem 3.5). However, this still allows us to derive architectural insights for specific GNNs.

On Graph Connectivity and Architectural Insights. We exemplify study directions enabled through
our certification framework. By leveraging CSBMs, we study the effect of graph connectivity in the poisoning
unlabeled setting in Fig. 4b for a GCN. Interestingly, we observe an inflection point at a perturbation
strength δ = 0.05, where higher connectivity leads to higher certified accuracy against small perturbations,
whereas higher connectivity significantly worsens certified accuracy for strong perturbations. These trends are
consistent across various architectures and attack settings (App. J.2). Secondly, we study the effect of different
α choices in APPNP in a poison unlabeled setting in Fig. 4c on Cora-MLb. Interestingly, it also shows an
inflection point at a perturbation strength (δ = 0.1), where higher α increases the provable robustness for
larger δ, whereas worsens the provable robustness for smaller δ. Notably, this phenomenon is unique to the
PU setting (see App. K.2) and is similarly observed in CSBM as shown in App. J.2. This setup is different to
the connectivity analysis from Fig. 4b, as the α in APPNP results in a weighted adjacency matrix rather than
increasing or decreasing the number of edges in the graph. We compare different normalization choices for S
in GCN and SGC in App. K.3. Through these analyses, we note that our certification framework enables
informed architectural choices from the perspective of robustness.

5 Discussion

How Tight is QPCert? We compute an upper bound on the provable robustness using APGD by
differentiating through the learning process. The results in Fig. 4d show that the provable robustness bounds
are tight for small pertubation budgets δ but less tight for larger δ, demonstrating one limitation (for other
settings and attacks see App. J.3). While theoretically, the NTK bounds are tight (Theorem 3.5), the
approach of deriving element-wise bounds on Q to model A leading to a relaxation of P3(Q) can explain the
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gap between provable robustness and an empirical attack. Thus, an opportunity for future work is to explore
alternative approaches for modeling A in the MILP P (Q).

Is QPCert Deterministic or Probabilistic? Our certification framework is inherently deterministic,
offering deterministic guarantees for kernelized SVMs using the NTK as the kernel. When the width of a
NN approaches infinity, QPCert provides a deterministic robustness guarantee for the NN due to the exact
equivalence between an SVM with the NN’s NTK as kernel and the infinitely wide NN. For sufficiently wide
but finite-width NNs this equivalence holds with high probability (Chen et al., 2021), making our certificate
probabilistic in this context. However, note that this high-probability guarantee is qualitatively different from
other methods such as randomized smoothing (Cohen et al., 2019), in which the certification approach itself
is probabilistic and heavily relies on the number of samplings and thus, inherently introduces randomness.

How General is QPCert? While we focus on (G)NNs for graph data, our framework enables white-box
poisoning certification of NNs on any data domain. QPCert can be readily extended to other architectures,
provided the equivalence between the network and NTK holds and the corresponding NTK bounds are
derived. We detail these criteria in App. O.4. Further, it allows for certifying general kernelized SVMs for
arbitrary kernel choices if respective kernel bounds as in Sec. 3.1 are derived. To the best of our knowledge,
this makes our work the first white-box poisoning certificate for kernelized SVMs. Moreover, the reformulation
of the bilevel problem into a MILP is directly applicable to any quadratic program that satisfies strong
Slater’s constraint and certain bounds on the involved variables, hence the name QPCert. Thus extensions to
certify quadratic programming layers in NN (Amos & Kolter, 2017) or other quadratic learners are thinkable.
Therefore, we believe that our work opens up numerous new avenues of research into the provable robustness
against data poisoning.

On QPCert’s Perturbation Model. We study node feature perturbations due to the fact that: (i) they
are of practical concern in many applications of GNNs such as spam detection (Li et al., 2019) or fake news
detection (Hu et al., 2024), and we refer to App. O.3 for a detailed discussion on their practical relevance;
and (ii) certification against them poses unique graph-related challenges due to the interconnectedness
of nodes (Scholten et al., 2022; Zügner & Günnemann, 2019b). In contrast, certifying against poisoning
the graph structure remains an open, but important problem. We outline the thereby arising complex
technical challenges in App. O.2. Furthermore, we study clean-label attacks bounded by ℓp-threat models
instead of arbitrary perturbations to nodes controlled by A. Goldblum et al. (2023) distinctively names
studying bounded clean-label attacks as an open problem, as most works assume unrealistically large input
perturbations. Moreover, we study semi-verified learning (Charikar et al., 2017). This is particularly
interesting for semi-supervised settings, where often a small fraction of nodes are manually verified and
labeled (Shejwalkar et al., 2023), or when learning from the crowd (Meister & Valiant, 2018; Zeng & Shen,
2023). However, this may produce overly pessimistic bounds when large fractions of the training data are
unverified, but the adversary can only control a small part of it. In App. O.1, we further contextualize our
threat model within the scope of commonly studied poisoning attacks. Last but not least, we note that
we focus on studying certification against poisoning threat models compared to test-time attacks, as they
severely understudied (see Sec. 6), while highly relevant in practice (see Sec. 1).

How Scalable is QPCert? QPCert scales to the size of common benchmark graphs such as Cora-ML or
WikiCS. This is comparable to the size of datasets currently manageable by deterministic certificates for
test-time attacks for GNNs (Hojny et al., 2024). Here, it is important to note that poisoning certification is
inherently more complex as it requires accounting for the model’s training dynamics rather than certifying a
static model. Thus, this demonstrates the effectiveness of our modeling approach. Nevertheless, deterministic
certification even in the "simpler" scenario of test-time attacks is NP-hard (Katz et al., 2017). As a result, all
deterministic certificates, also against test-time attacks, have difficulties scaling to large-scale datasets (Li
et al., 2023) and QPCert is no exception. We explore QPCert’s computational limits in detail in App. N. To
further improve scalability, it would be an interesting avenue for future work to investigate strategies to relax
P (Q) to achieve an even more favorable trade-off between scalability and tightness.
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6 Related Work

The literature on poisoning certificates is significantly less developed than certifying against test-time (evasion)
attacks (Li et al., 2023) and we provide an overview in Table 1.

Black-Box Poisoning Certificates. Black-box certificates for poisoning are derived following three different
approaches: (i) Randomized smoothing, a popular probabilistic test-time certificate strategy (Cohen et al.,
2019), with randomization performed over the training dataset (Rosenfeld et al., 2020; Weber et al., 2023;
Zhang et al., 2022). Also following this approach, Hong et al. (2024) certifies diffusion-based data sanitation
via randomized smoothing. (ii) Ensembles: Creating separate partitions of the training data, training
individual base classifiers on top of them and certifying a constructed ensemble classifier (Levine & Feizi,
2021; Jia et al., 2021; Wang et al., 2022; Rezaei et al., 2023; Chen et al., 2022); (iii) Differential Privacy2

(DP): Ma et al. (2019) show that any (ϵ, δ)-DP learner enjoys a certain provable poisoning robustness. Liu
et al. (2023) extend this result to more general notions of DP. Xie et al. (2023) derives guarantees against
arbitrary data poisoning in DP federated learning setup.

White-Box Poisoning Certificates. There is little literature on white-box poisoning certificates and
existing techniques (see Table 1) cannot be extended to NNs. Drews et al. (2020) and Meyer et al. (2021)
derive poisoning certificates for decision trees using abstract interpretations, while Jia et al. (2022) provides
a poisoning certificate for nearest neighbor algorithms based on their inherent majority voting principle.
Recently, Bian et al. (2024) derives a poisoning certificate for naive Bayes classification. We note that
Steinhardt et al. (2017) develops statistical bounds on the loss for data sanitation defenses that are not
applicable to certify classification.

Poisoning Attacks and Defense Using the Bilevel Formulation. The bilevel problem in Eq. (2) is
studied by several works in the context of developing poisoning attacks or empirical defenses (Biggio et al.,
2012; Xiao et al., 2015; Koh & Liang, 2017; Jagielski et al., 2018). Biggio et al. (2012) and Xiao et al. (2015)
iteratively solve the bilevel problem associated to an SVM trained on the hinge loss with gradient ascent to
generate poisoned samples. Notably, Mei & Zhu (2015) reformulate the bilevel problem P2(Q) for SVMs
to a bilinear single-level problem similar to P3(Q) but only solve it heuristically for attack generation and
do not realize the possibility of a MILP reformulation and certificate. Koh & Liang (2017) also considers
the bilevel problem to detect and generate poisoned samples using influence functions (gradient and Hessian
vector product) for linear model as well as convolutional neural networks. In the case of graphs, Lingam et al.
(2024) develops a label poisoning attack for GNNs using the bilevel problem with a regression objective and
including NTKs as surrogate models.

Poisoning Certificates for Graph Neural Networks. Currently, there are no white-box poisoning
certificates for GNNs, nor clean-label poisoning certificates for the task of node classification. There are only
two type of works on poisoning certificates for GNNs with both being black-box and differing incomparably
in their threat model to QPCert. The first is Lai et al. (2024b) and their follow-up (Lai et al., 2024a),
which uses the randomized smoothing paradigm to develop probabilistic and black-box certificates for
node injection. Second, concurrent to our work, Li et al. (2025) develops a black-box poisoning certificate
for GNNs based on ensembling (Levine & Feizi, 2021). While their method allows to certify clean-label
attacks for graph classification, it cannot be applied to certify clean-label attacks for node classification
as their partitioning strategy includes the poisoned node in each partition. Thus, this affects each base
classifier through the training gradients resulting in no certified accuracy. Furthermore, it assumes arbitrary
(unbounded) modifications of data and thus, settings with high padv such as padv = 1 studied in Figs. 2a
and 2b would always lead to zero certified accuracy and being unable to provide non-trivial guarantees.

Test-time (Evasion) Certificates for Graph Neural Networks. When it comes to certifying test-time
(evasion) attacks instead of training-time perturbations (poisoning), the literature is more extensive. Existing
evasion certificates usually either tackle certifying node feature perturbations (Scholten et al., 2023; 2022;
Zügner & Günnemann, 2019b) or structure perturbations (Schuchardt et al., 2021; Zügner & Günnemann,
2020; Bojchevski & Günnemann, 2019) separately. There are some works whose methods can tackle both under

2The mechanism to derive a poisoning certificate from a certain privacy guarantee is model agnostic, thus we count it as
black-box. However, the calculated privacy guarantees may depend on white-box knowledge.
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limiting assumptions. Exemplary, (Bojchevski et al., 2020) developed a black-box randomized smoothing
evasion certificate and can (probabilistically) certify features of a smoothed classifier if they are discrete. Xia
et al. (2024) derive a black-box evasion certificate based on partitioning the graph and using the ensemble
certification method from Levine & Feizi (2021). However, their certificate only concerns the ensemble
and not individual GNNs and, as is common for all ensemble-based works, assumes arbitrary (unbounded)
perturbations for controlled nodes. Hojny et al. (2024) is the only white-box evasion certificate work that can
certify structure and feature perturbations but is only applicable to GNNs that don’t normalize the adjacency
matrix in any non-linear way excluding most commonly used GNNs such as GCN or APPNP.

7 Conclusion

We derive an effective white-box poisoning certificate framework for sufficiently-wide NNs via their NTKs
and demonstrate its applicability to semi-supervised node classification tasks common in graph learning. In
particular, we show that QPCert provides non-trivial robustness guarantees and insights into the worst-case
poisoning robustness to feature perturbations of a wide range of GNNs. Moreover, our framework extends
beyond GNNs and graph learning tasks, enabling certification of any neural network where NTK equivalence
holds as well as any kernelized SVM, given the derivation of respective kernel bounds. Our extensive analysis
of QPCert showcases both its strengths and directions for future research. We discuss this in detail in Sec. 5
and summarize the main points here. While we show the element-wise bounding of the kernel to be tight
(Theorem 3.5), there is still a gap between the empirical and provable robustness for larger perturbations.
Thus, this motivates further research into developing more sophisticated strategies to derive the kernel bounds.
Furthermore, QPCert focuses on node feature perturbations, while extending it to structural perturbations
presents new technical challenges (App. O.2), offering another avenue for future research. In terms of
scalability, QPCert effectively certifies common benchmark graphs such as Cora-ML and WikiCS. Further
advancing deterministic certification techniques to efficiently scale to significantly larger datasets is an open
and impactful research direction.

Broader Impact Statement

Our method represents a robustness certificate for white-box models. This allows a more informed decision
when it comes to the safety aspects of currently used models. However, insights into worst-case robustness
can be used for good but potentially also by malicious actors. We strongly believe that research about the
limitations of existing models is crucial in making models safer and thus, outweighs potential risks. We are
not aware of any direct risks coming from our work.
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A Symbols and Abbreviations

In addition to the general notations provided, we give a detailed list of symbols and abbreviations we use
with descriptions in the following.

G = (S, X) A graph with structure matrix S ∈ Rn×n
≥0 and feature matrix X ∈ Rn×d

y The label vector ∈ [K] of size m ≤ n

VL The set of all labeled nodes in graph G

VU The set of all unlabeled nodes in graph G

VV The set of verified nodes in graph G

U The set of potentially corrupted nodes in graph G

Bp(x) The set of allowed perturbations {x̃ | ∥x̃ − x∥p ≤ δ} with budget δ ∈ R+

A(G) The adversary A chooses node feature perturbations from Bp

fθ(G) A GNN with learnable parameters θ

fθ(G)i The prediction of a GNN for node i

fSV M
θ (xi) The SVM objective equivalent to fθ(G)i in the infinite-width limit

L(θ, G) The soft-margin loss

C The regularization strength ∈ R+ in L(θ, G)

Wl The weight matrix of l-th layer

Q The NTK matrix of size n × n corresponding to fθ(G)

S(Q) The set of optimal dual solutions to SVM fSV M
θ (xi)

α The dual variables of the SVM fSV M
θ ∈ Rm

p̂t The clean prediction of the SVM for a test node t, i.e.,
∑m

i=1 yiα
∗
i Qti where α∗ ∈ S(Q)

G̃ A perturbed graph ∈ A(G)

Latt(θ, G) The attack objective

Q̃ The NTK matrix ∈ Rn×n corresponding to G̃

A(Q) All NTK matrices Q̃ constructable from G̃ ∈ A(G)

u, v The Lagrangian multipliers ∈ Rm in the stationarity condition of the KKT

s, t The binary integer variables ∈ {0, 1}m

Mui , Mvi The positive constants in big-M constraints

Q̃L
ij The lower bound for Q̃ij

Q̃U
ij The upper bound for Q̃ij

Zij A variable that is = αjQ̃ij

P1(Q̃) The bilevel optimization problem describing node feature poisoning

P2(Q) The bilevel optimization problem in terms of the NTK matrix Q

P3(Q) The single-level optimization problem

P (Q) The final MILP

α∗ The optimal α to P (Q)
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u∗, v∗ The optimal u, v to P (Q)

s∗, t∗ The optimal s, t to P (Q)

Z∗ The optimal Z to P (Q)

∆ The perturbation matrix added to XXT

∆L
ij The lower bound for ∆ij

∆U
ij The upper bound for ∆ij

PL Abbr. for Poison Labeled setting

PU Abbr. for Poison Unlabeled setting

BL Abbr. for Backdoor Labeled setting

BU Abbr. for Backdoor Unlabeled setting

B Architecture Definitions

We consider GNNs as functions fθ with (learnable) parameters θ ∈ Rq and L number of layers taking the
graph G = (S, X) as input and outputs a prediction for each node. We consider linear output layers with
weights W L+1 and denote by fθ(G)i ∈ RK the (unnormalized) logit output associated to node i. In the
following, we formally define the (G)NNs such as MLP, GCN (Kipf & Welling, 2017), SGC (Wu et al., 2019)
and (A)PPNP (Gasteiger et al., 2019) considered in our study.
Definition B.1 (MLP). The L-layer Multi-Layer Perceptron is defined as fθ(G)i = fMLP

θ (xi) =
W L+1ϕ

(L)
θ (xi). With ϕl

θ(xi) = σ(W (l)ϕ
(l−1)
θ (xi) + b(l)) and ϕ

(0)
θ (xi) = xi. W (l) ∈ Rdl+1×dl and b(l) ∈ Rdl

are the weights/biases of the l-th layer with d0 = d and dL+1 = K. σ(·) is an element-wise activation function.
If not mentioned otherwise, we choose σ(z) = ReLU(z) = max{0, z}.
Definition B.2 (GCN & SGC). A Graph Convolution Network fGCN

θ (G) (Kipf & Welling, 2017) of depth L

is defined as fθ(G) = ϕ
(L+1)
θ (G) with ϕ

(l)
θ (G) = Sσ(ϕ(l−1)

θ (G))W (l) and ϕ
(1)
θ (G) = SXW(1). W(l) ∈ Rdl−1×dl

are the l-th layer weights, d0 = d, dL+1 = K, and σ(z) = ReLU(z) applied element-wise. A Simplified Graph
Convolution Network fSGC

θ (G) (Wu et al., 2019) is a GCN with linear σ(z) = z.
Definition B.3 (GraphSAGE). The L-layer GraphSAGE fGSAGE

θ (G) (Hamilton et al., 2017) is defined as
fθ(G) = ϕ

(L+1)
θ (G) with ϕ

(l)
θ (G) = σ(ϕ(l−1)

θ (G))W(l)
1 + Sσ(ϕ(l−1)

θ (G))W(l)
2 and ϕ

(1)
θ (G) = XW(1)

1 + SXW(1)
2 .

W(l)
1 , W(l)

2 ∈ Rdl−1×dl are the l-th layer weights, d0 = d, dL+1 = K, and σ(z) = ReLU(z) applied element-wise.
S is fixed to row normalized adjacency (mean aggregator), D−1A.
Definition B.4 (GIN). A one-layer Graph Isomorphism Network fGIN

θ (G) (Xu et al., 2018) is defined as
fθ(G) = fMLP

θ (G̃) with G̃ = ((1 + ϵ)I + A)X where ϵ is a fixed constant and an one-layer ReLU as MLP.
Definition B.5 ((A)PPNP). The Personalized Propagation of Neural Predictions Network fP P NP

θ (G)
Gasteiger et al. (2019) is defined as fθ(G) = PH where Hi,: = fMLP

θ (xi) and P = α(In − (1 − α)S)−1. The
Approximate PPNP is defined with P = (1 − α)KSK + α

∑K−1
i=0 (1 − α)iSi where α ∈ [0, 1] and K ∈ N is a

fixed constant.

For APPNP and GIN, we consider an MLP with one-layer ReLU activations as given in the default
implementation of APPNP.

Along with the GNNs presented in Definitions B.1 to B.5, we consider two variants of popular skip connections
in GNNs as given a name in Sabanayagam et al. (2023): Skip-PC (pre-convolution), where the skip is added
to the features before applying convolution (Kipf & Welling, 2017); and Skip-α, which adds the features to
each layer without convolving with S (Chen et al., 2020). To facilitate skip connections, we need to enforce
constant layer size, that is, di = di−1. Therefore, the input layer is transformed using a random matrix W to
H0 := XW of size n × h where Wij ∼ N (0, 1) and h is the hidden layer size. Let Hi be the output of layer i
using which we formally define the skip connections as follows.
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Definition B.6 (Skip-PC). In a Skip-PC (pre-convolution) network, the transformed input H0 is
added to the hidden layers before applying the graph convolution S, that is, ∀i ∈ [L], ϕ

(l)
θ (G) =

S
(

σ(ϕ(l−1)
θ (G)) + σs (H0)

)
W (l), where σs(z) can be linear or ReLU.

Skip-PC definition deviates from Kipf & Welling (2017) because we skip to the input layer instead of the
previous one. We define Skip-α as defined in Sabanayagam et al. (2023) similar to Chen et al. (2020).
Definition B.7 (Skip-α). Given an interpolation coefficient α ∈ (0, 1), a Skip-α network is defined
such that the transformed input H0 and the hidden layer are interpolated linearly, that is, ϕ

(l)
θ (G) =(

(1 − α) Sϕ
(l−1)
θ (G) + ασs (H0)

)
Wi ∀i ∈ [L], where σs(z) can be linear or ReLU.

C Derivation of NTKs for (A)PPNP, GIN and GraphSAGE

In this section, we derive the NTKs for (A)PPNP, GIN and GraphSAGE, and state the NTKs for GCN and
SGC from Sabanayagam et al. (2023).

C.1 NTK for (A)PPNP

We derive the closed-form NTK expression for (A)PPNP fθ(G) (Gasteiger et al., 2019) in this section. The
learnable parameters θ are only part of H. In practice, H = ReLU(XW1 + B1)W2 + B2 where node features
X, θ = {W1 ∈ Rd×h, W2 ∈ Rh×K , B1 ∈ Rn×h, B2 ∈ Rn×K}. Note that in the actual implementation of the
MLP, B1 is a vector and we consider it to be a matrix by having the same columns so that we can do matrix
operations easily. Same for B2 as well. We give the full architecture with NTK parameterization in the
following,

fθ(G) = P( cσ√
h

σ(XW1 + B1)W2 + B2) (8)

where h → ∞ and all parameters in θ are initialized as standard Gaussian N (0, 1). cσ is a constant to
preserve the input norm (Sabanayagam et al., 2023). We derive for K = 1 as all the outputs are equivalent in
expectation. The NTK between nodes i and j is E

θ∼N (0,1)
[⟨∇θfθ(G)i, ∇θfθ(G)j⟩]. Hence, we first write down

the gradients for node i following (Arora et al., 2019; Sabanayagam et al., 2023):

∂fθ(G)i

∂W2
= cσ√

h
(Piσ(G1))T ; G1 = XW1 + B1

∂fθ(G)i

∂B2
= (Pi)T 1n

∂fθ(G)i

∂W1
= cσ√

h
XT (PT

i 1nWT
2 ⊙ σ̇(G1))

∂fθ(G)i

∂B1
= cσ√

h
PT

i 1nWT
2 ⊙ σ̇(G1)

We note that B2 has only one learnable parameter for K = 1, but is represented as a vector of size n with all
entries the same. Hence, the derivative is simply adding all entries of Pi. First, we compute the covariance
between nodes i and j in G1.

E
[
(G1)ik (G1)jk′

]
= E

[
(XW1 + B1)ik (XW1 + B1)jk′

]
Since the expectation is over W1 and B1 and all entries are ∼ N (0, 1), and i.i.d, the cross terms will be 0 in
expectation. Also, for k ̸= k′, it is 0. Therefore, it gets simplified to

E
[
(G1)ik (G1)jk

]
= E

[
XiW1WT

1 XT
j +

(
B1BT

1
)

ij

]
=
(
XXT

)
ij

+ 1 = (Σ1)ij (9)
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Thus, Σ1 = XXT + 1n×n and let (E1)ij = E
[
σ(G1)iσ(G1)T

j

]
and

(
Ė1
)

ij
= E

[
σ̇(G1)iσ̇(G1)T

j

]
computed using

the definitions in Theorem C.1 for ReLU non-linearity. Now, we can compute the NTK for each parameter
matrix and then sum it up to get the final kernel.

〈
∂fθ(G)i

∂W2
,

∂fθ(G)j

∂W2

〉
= c2

σ

h
Piσ(G1)σ(G1)T PT

j

h→∞= c2
σPiE

[
σ(G1)σ(G1)T

]
PT

j = c2
σPiE1PT

j (10)

〈
∂fθ(G)i

∂B2
,

∂fθ(G)j

∂B2

〉
= Pi1n×nPT

j (11)

〈
∂fθ(G)i

∂B1
,

∂fθ(G)j

∂B1

〉
h→∞= c2

σPi(E [σ̇(G1)σ̇(G1)])PT
j = c2

σPiĖ1PT
j (12)

〈
∂fθ(G)i

∂W1
,

∂fθ(G)j

∂W1

〉
= c2

σ

h

f,h∑
p,q

(XT (PT
i 1nWT

2 ⊙ σ̇(G1)))pq(XT (PT
j 1nWT

2 ⊙ σ̇(G1)))pq

= c2
σ

h

d∑
p=1

h∑
q=1

[ n∑
a=1

(XT )pa(PT
i WT

2 )aqσ̇(G1)aq

n∑
b=1

(XT )pb(PT
j WT

2 )bqσ̇(G1)bq

]
h→∞= c2

σ

n,n∑
a=1,b=1

(XXT )abPia(PT )bjE [σ̇(G1)σ̇(G1)]ab

= c2
σPi(XXT ⊙ E [σ̇(G1)σ̇(G1)])PT

j = c2
σPi(XXT ⊙ Ė)1PT

j (13)

Finally, the NTK matrix for the considered (A)PPNP is sum of Eqs. (10) to (13) as shown below.

Q = c2
σ

(
PE1PT + P1n×nPT + PĖ1P + P

(
XXT ⊙ Ė1

)
PT
)

= c2
σ

(
P (E1 + 1n×n) PT + P

((
XXT + 1n×n

)
⊙ Ė1

)
PT
)

= c2
σ

(
P (E1 + 1n×n) PT + P

(
Σ1 ⊙ Ė1

)
PT
)

(14)

Note that cσ is a constant, and it only scales the NTK, so we set it to 1 in our experiments. Since we use a
linear output layer without bias term at the end, that is, B2 = 0, the NTK we use for our experiments is
reduced to

Q =
(
PE1PT + P

(
Σ1 ⊙ Ė1

)
PT
)

.

□

C.2 NTK for GIN

The GIN architecture Definition B.4 is similar to APPNP: P and X in APPNP are Identity and G̃ in GIN,
respectively. Hence the NTK is exactly the same as APPNP with these matrices. Thus, the NTK for GIN is

Q = E1 +
(
Σ1 ⊙ Ė1

)
with Σ1 = G̃G̃T + 1n×n, E1 = E

F∼N (0,Σ1)

[
σ(F)σ(F)T

]
and Ė1 = E

F∼N (0,Σ1)

[
σ̇(F)σ̇(F)T

]
. □
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C.3 NTKs for GCN and SGC

We restate the NTK derived in Sabanayagam et al. (2023) for self containment. The GCN of depth L with
width dl → ∞ ∀l ∈ {1, . . . , L}, the network converges to the following kernel when trained with gradient flow.
Theorem C.1 (NTK for Vanilla GCN). For the GCN defined in Definition B.2, the NTK Q at depth L and
K = 1 is

Q(L) =
L+1∑
k=1

S
(

. . . S
(

S︸ ︷︷ ︸
L+1−k terms

(
Σk ⊙ Ėk

)
ST ⊙ Ėk+1

)
ST ⊙ . . . ⊙ ĖL

)
ST . (15)

Here Σk ∈ Rn×n is the co-variance between nodes of layer k, and is given by Σ1 = SXXT ST , Σk = SEk−1ST

with Ek = cσ E
F∼N (0,Σk)

[
σ(F)σ(F)T

]
, Ėk = cσ E

F∼N (0,Σk)

[
σ̇(F)σ̇(F)T

]
and ĖL+1 = 1n×n.

(
Ek

)
ij

=
√

(Σk)ii (Σk)jj κ1

 (Σk)ij√
(Σk)ii (Σk)jj


(
Ėk

)
ij

= κ0

 (Σk)ij√
(Σk)ii (Σk)jj

 ,

where κ0(z) = 1
π

(π − arccos (z)) and κ1(z) = 1
π

(
z (π − arccos (z)) +

√
1 − z2

)
.

C.4 NTK for GraphSAGE

From the definition of GraphSAGE Definition B.3, it is very similar to GCN with row normalization adjacency
S = D̂−1Â where Â and D̂ are adjacency matrix with self-loop and its corresponding degree matrix. The
differences in GraphSAGE are the following: there is no self-loop to the adjacency as S = D−1A, and the
neighboring node features are weighted differently compared to the node itself using W1 and W2. Given
that the NTK is computed as the expectation over weights at initialization and infinite width, both W1 and
W2 behave similarly. Hence, these weights can be replaced with a single parameter W which transforms the
network definition of GraphSAGE to ϕ1

θ(G) = (I + S)XW(1) and similarly ϕl
θ(G) = (I + S)σ(ϕ(l−1)(G)

θ )W(l)

with S = D−1A. Thus, the NTK for GraphSAGE is the same as GCN with the difference in the graph
normalization S. □

D Equivalence of GNNs to SVMs

We show the equivalence between GNNs and SVMs by extending the result from Chen et al. (2021), which
showed that an infinite-width NN trained by gradient descent on a soft-margin loss has the same training
dynamics as that of an SVM with the NN’s NTK as the kernel. The fulcrum of their proof that directly
depends on the NN is that the NTK stays constant throughout the training (refer to (Chen et al., 2021,
Theorem 3.4)). As we consider the same learning setup with only changing the network to GNNs, it is enough
to show that the graph NTKs stay constant throughout training for the equivalence to hold in this case.

Constancy of Graph NTKs. This constancy of the NTK in the case of infinitely-wide NNs is deeply
studied in Liu et al. (2020) and derived the conditions for the constancy as stated in Theorem D.1.
Theorem D.1 ((Liu et al., 2020)). The constancy of the NTK throughout the training of the NN holds if
and only if (i) the last layer of the NN is linear; (ii) the Hessian spectral norm ∥H∥ of the neural network
with respect to the parameters is small, that is, → 0 with the width of the network; (iii) the parameters of
the network w during training and at initialization is bounded, that is, parameters at time t, wt, satisfies
∥wt − w0∥2 ≤ ϵ.

Now, we prove the constancy of graph NTKs of the GNNs by showing the three conditions.
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(i) Linear last layer. The GNNs considered in Definitions B.1 and B.7 have a linear last layer.

(ii) Small Hessian spectral norm. Recollect that we use NTK parameterization for initializing the network
parameters, that is, N (0, 1/width). This is equivalent to initializing the network with standard normal
N (0, 1) and appropriately normalizing the layer outputs (Arora et al., 2019; Sabanayagam et al., 2023). To
exemplify, the APPNP network definition with the normalization is given in Eq. (8). Similarly for other
GNNs, the normalization results in scaling ϕ

(l)
θ as cσ√

h
ϕ

(l)
θ where h is the width of the layer l. As all our GNNs

have a simple matrix multiplication of the graph structure without any bottleneck layer, the Hessian spectral
norm is O(ln h/

√
h) as derived for the multilayer fully connected networks in Liu et al. (2020). Therefore, as

h → ∞ the spectral norm → 0.

(iii) Bounded parameters. This is dependent only on the optimization of the loss function as derived in
Chen et al. (2021, Lemma D.1). We directly use this result as our loss and the optimization are the same as
(Chen et al., 2021).

With this, we show that the considered GNNs trained by gradient descent on soft-margin loss is equivalent to
SVM with the graph NTK as the kernel. □

E Derivation of NTK Bounds and Theorem 3.5

In this section, we first present the bounds for ∆ in the case of p = 2 and p = 1 in Bp(x) (Lemma E.1 and
Lemma E.2), and then derive Lemmas 3.4, E.1 and E.2 and Theorem 3.5 stated in Sec. 3.1.
Lemma E.1 (Bounds for ∆, p = 2). Given B2(x) and any X̃ ∈ A(X), then X̃X̃T = XXT + ∆ where the
worst-case bounds for ∆, ∆L

ij ≤ ∆ij ≤ ∆U
ij for all i and j ∈ [n], is

∆L
ij = −δ∥Xj∥21[i ∈ U ] − δ∥Xi∥21[j ∈ U ] − δ2

1[i ∈ U ∧ j ∈ U ∧ i ̸= j]
∆U

ij = δ∥Xj∥21[i ∈ U ] + δ∥Xi∥21[j ∈ U ] + δ2
1[i ∈ U ∧ j ∈ U ] (16)

Lemma E.2 (Bounds for ∆, p = 1). Given B2(x) and any X̃ ∈ A(X), then X̃X̃T = XXT + ∆ where the
worst-case bounds for ∆, ∆L

ij ≤ ∆ij ≤ ∆U
ij for all i and j ∈ [n], is

∆L
ij = −δ∥Xj∥∞1[i ∈ U ] − δ∥Xi∥∞1[j ∈ U ] − δ2

1[i ∈ U ∧ j ∈ U ∧ i ̸= j]
∆U

ij = δ∥Xj∥∞1[i ∈ U ] + δ∥Xi∥∞1[j ∈ U ] + δ2
1[i ∈ U ∧ j ∈ U ] (17)

To derive Lemmas 3.4, E.1 and E.2, we consider the perturbed feature matrix X̃ ∈ A(X) and derive the
worst-case bounds for X̃X̃T based on the perturbation model Bp(x) where p = ∞, p = 2 and p = 1 in
our study. Let’s say U is the set of nodes that are potentially controlled by the adversary A(X) and
X̃ = X + Γ ∈ Rn×d where Γi is the adversarial perturbations added to node i by the adversary, therefore,
∥Γi∥p ≤ δ and Γi > 0 for i ∈ U and Γi = 0 for i ̸∈ U . Then

X̃X̃T = (X + Γ)(X + Γ)T

= XXT + ΓXT + XΓT + ΓΓT = XXT + ∆. (18)

As a result, it suffices to derive the worst-case bounds for ∆, ∆L ≤ ∆ ≤ ∆U , for different perturbations.
To do so, our strategy is to bound the scalar products ⟨Γi, Xj⟩ and ⟨Γi, Γj⟩ element-wise, hence derive
∆L

ij ≤ ∆ij ≤ ∆U
ij . In the following, we derive ∆L

ij and ∆U
ij for the cases when p = ∞, p = 2 and p = 1 in

Bp(x).

Case (i): Derivation of Lemma 3.4 for p = ∞. In this case, the perturbation allows ∥X̃i − Xi∥∞ ≤ δ,
then by Hölder’s inequality ⟨a, b⟩ ≤ ∥a∥p∥b∥q where 1

p + 1
q = 1 for all p, q ∈ [1, ∞] we have

|⟨Γi, Xj⟩| ≤ ∥Γi∥∞∥Xj∥1 ≤ δ∥Xj∥1

|⟨Γi, Γj⟩| ≤ ∥Γi∥2∥Γj∥2 ≤ d∥∆i∥∞∥∆j∥∞ ≤ dδ2. (19)
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Using Eq. (19), the worst-case lower bound ∆L
ij is the lower bound of ΓXT + XΓT + ΓΓT :

∆L
ij =


0+ if i, j ̸∈ U
−δ∥Xj∥1+ if i ∈ U
−δ∥Xi∥1+ if j ∈ U
−δ2d if i, j ∈ U and i ̸= j.

(20)

The last case in Eq. (20) is due to the fact that ⟨Γi, Γi⟩ ≥ 0, hence ∆L
ii = 0. Finally, the Eq. (20) can be

succinctly written using the indicator function as

∆L
ij = −δ∥Xj∥11[i ∈ U ] − δ∥Xi∥11[j ∈ U ] − δ2d1[i ∈ U ∧ j ∈ U ∧ i ̸= j],

deriving the lower bound in Lemma 3.4. Similarly, applying the Hölder’s inequality for the worst-case upper
bound, we get

∆U
ij =


0+ if i, j ̸∈ U
δ∥Xj∥1+ if i ∈ U
δ∥Xi∥1+ if j ∈ U
δ2d if i, j ∈ U .

(21)

Thus, we derive Lemma 3.4 by succinctly writing it as

∆U
ij = δ∥Xj∥11[i ∈ U ] + δ∥Xi∥11[j ∈ U ] + δ2d1[i ∈ U ∧ j ∈ U ].

□

Case (ii): Derivation of Lemma E.1 for p = 2. The worst-case lower and upper bounds of ∆ij for p = 2
is derived in the similar fashion as p = ∞. Here, the perturbation allows ∥X̃i − Xi∥2 ≤ δ. Hence,

|⟨Γi, Xj⟩| ≤ ∥Γi∥2∥Xj∥2 ≤ δ∥Xj∥2

|⟨Γi, Γj⟩| ≤ ∥Γi∥2∥Γj∥2 ≤ δ2. (22)

Using Eq. (22), we derive the lower and upper bounds of ∆ij :

∆L
ij =


0+ if i, j ̸∈ U
−δ||Xj ||2+ if i ∈ U
−δ||Xi||2+ if j ∈ U
−δ2 if i, j ∈ U

∆U
ij =


0+ if i, j ̸∈ U
δ||Xj ||2+ if i ∈ U
δ||Xi||2+ if j ∈ U
δ2 if i, j ∈ U

□

Case (iii): Derivation of Lemma E.2 for p = 1. The worst-case lower and upper bounds of ∆ij for p = 1
is derived in the similar fashion as p = ∞. Here, the perturbation allows ∥X̃i − Xi∥1 ≤ δ. Hence,

|⟨Γi, Xj⟩| ≤ ∥Γi∥1∥Xj∥∞ ≤ δ∥Xj∥∞

|⟨Γi, Γj⟩| ≤ ∥Γi∥2∥Γj∥2 ≤ ∥Γi∥1∥Γj∥1 ≤ δ2. (23)

Using Eq. (23), we derive the lower and upper bounds of ∆ij :

∆L
ij =


0+ if i, j ̸∈ U
−δ||Xj ||∞+ if i ∈ U
−δ||Xi||∞+ if j ∈ U
−δ2 if i, j ∈ U

∆U
ij =


0+ if i, j ̸∈ U
δ||Xj ||∞+ if i ∈ U
δ||Xi||∞+ if j ∈ U
δ2 if i, j ∈ U
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□

E.1 Bounding Eij and Ėij in the NTK

NTKs for GNNs with non-linear ReLU activation have E and Ė with non-linear κ1(z) and κ0(z) functions in
their definitions, respectively. In order to bound the NTK, we need a strategy to bound these quantities as
well. In this section, we discuss our approach to bound Eij and Ėij through bounding the functions for any
GNN with L layers. For ease of exposition, we ignore the layer indexing for the terms of interest and it is
understood from the context. Recollect that the definitions of E and Ė are based on Σ, which is a linear
combination of S and the previous layer. So, we consider that at this stage, we already have Σ, ΣL and ΣU .
Now, we expand the functions in the definition and write Eij and Ėij using their corresponding Σ as follows:

Eij =
√

ΣiiΣjj

π

 Σij√
ΣiiΣjj

(
π − arccos

(
Σij√
ΣiiΣjj

))
+

√
1 −

Σ2
ij

ΣiiΣjj

 (24)

Ėij = 1
π

(
π − arccos

(
Σij√
ΣiiΣjj

))
(25)

We derive the lower and upper bounds for Eij and Ėij in Algorithm 1.

Algorithm 1 Procedure to compute EL
ij , EU

ij , ĖL
ij and ĖU

ij

Given Σ, ΣL and ΣU

Let sl =
√

ΣL
iiΣL

jj , su =
√

ΣU
iiΣU

jj

if ΣL
ij > 0 then

al =
ΣL

ij

su
, au =

ΣU
ij

sl

else

al =
ΣL

ij

sl
, au =

ΣU
ij

su

end if
if |ΣU

ij | > |ΣL
ij | then

bl =
(

ΣL
ij

su

)2

, bu =
(

ΣU
ij

sl

)2

else

bl =
(

ΣL
ij

sl

)2

, bu =
(

ΣU
ij

su

)2

end if
EL

ij = sl

π

(
al
(
π − arccos

(
al
))

+
√

1 − bu
)

EU
ij = su

π

(
au (π − arccos (au)) +

√
1 − bl

)
ĖL

ij = 1
π

(
π − arccos

(
al
))

ĖL
ij = 1

π (π − arccos (au))

E.2 Derivation of Theorem 3.5: NTK Bounds are Tight

We analyze the tightness of NTK bounds by deriving conditions on graph G = (S, X) when ∆L
ij and ∆U

ij are
attainable exactly. As our NTK bounding strategy is based on bounding the adversarial perturbation X̃X̃T

and the non-linear functions κ0(z) and κ1(z), it is easy to see that the bounds with non-linearities cannot be
tight. So, we consider only linear GCN (=SGC), (A)PPNP and MLP with linear activations.
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Now, we focus on deriving conditions for the given node features X using the classic result on the equality
condition of Hölder’s inequality (Steele, 2004), and then analyze the NTK bounds. Steele (2004, Fig. 9.1)
shows that the bounds on ⟨a, b⟩ using the Höder’s inequality is reached when |ai|p = |bi|q

∥a∥p
p

∥b∥q
q
. Using this,

we analyze

∆ij = ⟨Γi, Xj⟩ + ⟨Γj , Xi⟩ + ⟨Γi, Γj⟩ (26)

in which we call ⟨Γi, Γj⟩ as interaction term. Following this analysis, the tightness of NTK bounds is derived
below for p = ∞ and p = 2.

Case (i): p = ∞. In this case, the feature bounds in Eq. (19) are tight,

∀j, Xj ̸= 0 and ∀i, k Γik = ci

where ci is some constant such that ∥Γi∥∞ ≤ δ so the perturbation budget is satisfied. As a result, the upper
bound of ∆ij in Lemma 3.4 is achieved exactly in the following cases,

(a) Number of adversarial nodes = 1: Here the interaction term in Eq. (26) is 0 for all i and j. Then for the
one adversarial node i, there exists Xj ∈ Rd

+, one can set Γi = +δ1d to achieve the upper bound.

(b) Number of adversarial nodes > 1: Here the interaction term is ̸= 0 for all the adversarial nodes i and j.
Then, for the adversarial nodes i and j if there exist Xi ∈ Rd

+ and Xj ∈ Rd
+ then for Γi = Γj = +δ1d upper

bounds are achieved.

The NTKs with linear activations Qij achieve the upper bound in these cases. Similarly, the lower bound in
Lemma 3.4 is achieved exactly as discussed in the following,

(a) Number of adversarial nodes = 1: Here the interaction term in Eq. (26) is 0 for all i and j. Then for the
adversarial node i, there exists Xj ∈ Rd

+, one can set Γi = −δ1d to achieve the lower bound.

(b) Number of adversarial nodes > 1: Here the interaction term is ̸= 0 for all the adversarial nodes i and
j. Then, for the adversarial nodes i and j if there exist Xi ∈ Rd

+ and Xj ∈ Rd
− then for Γi = −δ1d and

Γj = +δ1d,

leading to tight lower bounds of Lemma 3.4. The lower and upper tight bounds of ∆ together lead to tight
NTK bounds for linear activations. Note that there is no need to impose any structural restriction on the
graph S to achieve the tight bounds for NTK.

Case (ii): p = 2. In this case, the feature bounds in Eq. (22) are tight,

∀i, j, Xj and Γi are linearly dependent

and ∥Γi∥2 ≤ δ so the perturbation budget is satisfied. As a result, the upper bound of ∆ij in Lemma E.1 is
achieved exactly in the following,

(a) Number of adversarial nodes = 1: Here the interaction term in Eq. (26) is 0 for all i and j. Then for the
one adversarial node i, and any Xj ∈ Rd, one can set Γi = +δ

Xj

∥Xj∥2
to achieve the upper bound.

(b) Number of adversarial nodes > 1: Here the interaction term is ̸= 0 for all the adversarial nodes i and j.
Then, for the adversarial nodes i and j, if there exist Xi ∈ Rd

+ and Xj ∈ Rd
+ are linearly dependent, then for

Γi = +δ
Xj

∥Xj∥2
and Γj = +δ Xi

∥Xi∥2
tight upper bound is achieved.

The NTKs with linear activations Qij achieve the worst-case upper bound in these cases. Similarly, the lower
bound in Lemma E.1 is achieved exactly as discussed in the following,

(a) Number of adversarial nodes = 1: Here the interaction term in Eq. (26) is 0 for all i and j. Then for the
adversarial node i, and any Xj ∈ Rd, one can set Γi = −δ

Xj

∥Xj∥2
to achieve the lower bound.

(b) Number of adversarial nodes > 1: Here the interaction term is ̸= 0 for all the adversarial nodes i and j.
Then, for the adversarial nodes i and j, if there exist Xi ∈ Rd

+ and Xj ∈ Rd
− are linearly dependent, then for

Γi = −δ
Xj

∥Xj∥2
and Γi = +δ Xi

∥Xj∥2
,
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leading to tight lower bounds of Lemma E.1. The lower and upper tight bounds of ∆ together leads to tight
NTK bounds for linear activations. Note that there is no need to impose any structural restriction on the
graph S to achieve the tight bounds for NTK, same as the p = ∞ case. We further note that only one
instance of achieving the worst-case bound is stated, and one can construct similar cases, for example by
considering opposite signs for the features and perturbations.

Case (iii): p = 1. In this case, the feature bounds in Eq. (23) are tight,

∀j, Xj and ∀i, k Γik = c1[k = arg max
k′

Xj ]

where c = δ to satisfy ∥Γi∥1 ≤ δ. As a result, the upper bound of ∆ij in Lemma E.2 is achieved exactly in
the following cases,

(a) Number of adversarial nodes = 1: Here the interaction term in Eq. (26) is 0 for all i and j. Then for
the one adversarial node i, for any j, Xj ̸= 0 and arg max Xj = k, one can set Γik = sgn(Xjk)δ and
Γik′ = 0 ∀ k′ ̸= k to achieve the upper bound.

(b) Number of adversarial nodes > 1: Here the interaction term is ̸= 0 for all the adversarial nodes i and j.
Then, for the adversarial nodes i and j if there exist arg max Xi = arg max Xj = k and sgn(Xik) = sgn(Xjk)
then for Γik = Γjk = sgn(Xik)δ and ∀k′ ̸= k, Γik′ = Γjk′ = 0 upper bounds are achieved.

The NTKs with linear activations Qij achieve the upper bound in these cases. Similarly, the lower bound in
Lemma E.2 is achieved exactly as discussed in the following,

(a) Number of adversarial nodes = 1: Here the interaction term in Eq. (26) is 0 for all i and j. Then for
the one adversarial node i, for any j, Xj ̸= 0 and arg max Xj = k, one can set Γik = − sgn(Xjk)δ and
Γik′ = 0 ∀ k′ ̸= k to achieve the lower bound.

(b) Number of adversarial nodes > 1: Here the interaction term is ̸= 0 for all the adversarial nodes i and j.
Then, for the adversarial nodes i and j if there exist arg max Xi = arg max Xj = k and sgn(Xik) = − sgn(Xjk)
then for Γik = − sgn(Xik)δ, Γjk = − sgn(Xjk)δ and ∀k′ ̸= k, Γik′ = Γjk′ = 0,

leading to tight lower bounds of Lemma E.2. The lower and upper tight bounds of ∆ together leads to tight
NTK bounds for linear activations. Again, there is no need to impose any structural restriction on the graph
S to achieve the tight bounds for NTK. □

F Multi-Class Certification

In this section, we discuss the certification for multi-class. We abstract the NN and work with NTK here.
Hence, to do multi-class classification using SVM with NTK, we choose One-Vs-All strategy, where we learn
K classifiers. Formally, we learn β1, . . . , βK which has corresponding duals α1, . . . , αK . In order to learn βc,
all samples with class label c are assumed to be positive and the rest negative. Assume from hence on that
for all c, βc corresponds to the optimal solution with the corresponding dual αc. Then the prediction for a
node t is c∗ = arg maxc p̂c

t where p̂c
t =

∑m
i=1 yiα

c
i Qti where Q is the NTK matrix.

Given this, we propose a simple extension of our binary certification where to certify a node t as provably
robust, we minimize the MILP objective in Theorem 3.3 for the predicted class c∗ and maximize the objective
for the remaining K − 1 classes. Finally, certify t to be provably robust only if the objective for c∗ remains
maximum. Formally, we state the objective below.
Theorem F.1. Node t with original predicted class c∗ is certifiably robust against adversary A if c′ = c∗

where c′ is defined in the following. Using the MILP P (Q) in Theorem 3.3, we define

P (Q)c := P (Q) using αc, with the only change in obj. to (−1)1[c̸=c∗]
m∑

i=1
yiZti

c′
t = arg max

c∈[K]
P (Q)c. (27)
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G Proof of Proposition 3.1

We restate Proposition 3.1.
Proposition 1. Problem P1(Q̃) given by Eq. (1) is convex and satisfies strong Slater’s constraint. Conse-
quently, the single-level optimization problem P3(Q) arising from P2(Q) by replacing α ∈ S(Q̃) with Eqs. (4)
to (6) has the same globally optimal solutions as P2(Q).

Given any Q̃ ∈ A(Q). We prove two lemmas, leading us towards proving Proposition 3.1.

Lemma G.1. Problem P1(Q̃) is convex.

Proof. The dual problem Pb
1(Q̃) associated do an SVM with bias term reads

Pb
1(Q̃) : min

α
−

m∑
i=1

αi + 1
2

m∑
i=1

m∑
j=1

yiyjαiαjQ̃ij s.t.
m∑

i=1
αiyi = 0 0 ≤ αi ≤ C ∀i ∈ [m] (28)

It is a known textbook result that Pb
1(Q̃) is convex and we refer to Mohri et al. (2018) for a proof. A necessary

and sufficient condition for an optimization problem to be convex is that the objective function as well as all
inequality constraints are convex and the equality constraints affine functions. Furthermore, the domain of
the variable over which is optimized must be a convex set. As removing the bias term of an SVM results in
a dual problem P1(Q̃) which is equivalent to Pb

1(Q̃) only with the constraint
∑m

i=1 αiyi = 0 removed, the
necessary and sufficient conditions for convexity stay fulfilled.

Now, we define strong Slater’s condition for P1(Q̃) embedded in the upper-level problem P2(Q) defined in
Eq. (3), which we from here on will call strong Slater’s constraint qualification (Dempe & Dutta, 2012).

Definition G.2 (Slater’s CQ). The lower-level convex optimization problem P1(Q̃) fulfills strong Slater’s
Constraint Qualification, if for any upper-level feasible Q̃ ∈ A(Q), there exists a point α(Q̃) in the feasible
set of P1(Q̃) such that no constraint in P1(Q̃) is active, i.e. 0 < α(Q̃)i < C for all i ∈ [m].

Lemma G.3. Problem P1(Q̃) fulfills strong Slater’s constraint qualification.

Proof. We prove Lemma G.3 through a constructive proof. Given any upper-level feasible Q̃ ∈ A(Q). Let α

be an optimal solution to P1(Q̃). We restrict ourselves to cases, where P1(Q̃) is non-degenerate, i.e. the
optimal solution to the SVM fSV M

θ corresponds to a weight vector β ≠ 0. Then, at least for one index
i ∈ [m] it must hold that αi > 0.

Assume that j is the index in [m] with the smallest αj > 0. Let ϵ = αj/m + 1 > 0. Now, we construct a new
α′ from α by for each i ∈ [m] setting:

• If αi = 0, set α′
i = ϵ.

• If αi = C, set α′
i = C − ϵ.

The new α′ fulfills 0 < α′(Q̃)i < C for all i ∈ [m]. If P1(Q̃) is degenerate, set α′(Q̃)i = C/2 for all i ∈ [m].
This concludes the proof.

(Dempe & Dutta, 2012) establish that any bilevel optimization problem U whose lower-level problem L is
convex and fulfills strong Slater’s constraint qualification for any upper-level feasible point has the same
global solutions as another problem defined by replacing the lower-level problem L in U with L’s Karash
Kuhn Tucker conditions. This, together with Lemmas G.1 and G.3 concludes the proof for Proposition 1. □
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H Setting big-M constraints

We repeat Proposition 3.2 for readability.
Proposition H.1 (Big-M ’s). Replacing the complementary slackness constraints Eq. (6) in P3(Q) with the big-
M constraints given in Eq. (7) does not cut away solution values of P3(Q), if for any i ∈ [m], the big-M values
fulfill the following conditions. For notational simplicity j : Condition(j) denotes j ∈ {j ∈ [m] : Condition(j)}.

If yi = 1 then

Mui
≥

∑
j:yj=1∧Q̃U

ij
≥0

CQ̃U
ij −

∑
j:yj=−1∧Q̃L

ij
≤0

CQ̃L
ij − 1 (29)

Mvi
≥

∑
j:yj=−1∧Q̃U

ij
≥0

CQ̃U
ij −

∑
j:yj=1∧Q̃L

ij
≤0

CQ̃L
ij + 1 (30)

If yi = −1 then

Mui
≥

∑
j:yj=−1∧Q̃U

ij
≥0

CQ̃U
ij −

∑
j:yj=1∧Q̃L

ij
≤0

CQ̃L
ij − 1 (31)

Mvi ≥
∑

j:yj=1∧Q̃U
ij

≥0

CQ̃U
ij −

∑
j:yj=−1∧Q̃L

ij
≤0

CQ̃L
ij + 1 (32)

Proof. Denote by UB an upper bound to
∑m

j=1 yiyjZij and by LB a lower bound to
∑m

j=1 yiyjZij . The
existence of these bounds follows from yi and yj ∈ {−1, 1} and Zij = αjQ̃ij with 0 ≤ αj ≤ C and
Q̃L

ij ≤ Q̃ij ≤ Q̃U
ij , i.e. the boundedness of all variables.

ui and vi need to be able to be set such that
∑m

j=1 yiyjZij − ui + vi = 1 (see Eq. (4)) can be satisfied given
any α∗ and Q̃∗ part of an optimal solution to P3(Q). By using UB and LB we get the following inequalities:

UB − ui + vi ≥ 1 (33)

and

LB − ui + vi ≤ 1 (34)

Denote
∑m

j=1 yiyjZij by T . Thus, if T ≥ 1, setting vi = 0 and ui ≤ UB − 1 ∧ ui ≥ LB − 1 allows to satisfy
Eq. (4). If T < 1, setting ui = 0 and vi ≤ 1 − LB ∧ vi ≥ 1 − UB allows to satisfy Eq. (4). Note that for a
given i, we are free to set ui and vi to arbitrary positive values, as long as they satisfy Eq. (4), as they don’t
affect the optimal solution value nor the values of other variables.

Thus, adding ui ≤ UB − 1 and vi ≤ 1 − LB as constraints to P3(Q) does not affect its optimal solution.
Consequently, setting Mui ≥ UB − 1 and Mvi ≥ 1 − LB, are valid big-M constraints in the mixed-integer
reformulation of the complementary slackness constraints Eq. (6). The UB and LB values depend on the
sign of yi, yj and the bounds on αj and Q̃ij and the right terms in Eqs. (29) to (32) represent the respective
UB and LB arising. This concludes the proof.

I Additional Experimental Details

I.1 Datasets

The CSBM implementation is taken from (Gosch et al., 2023) publicly released under MIT license. Cora-ML
taken from (Bojchevski & Günnemann, 2018) is also released under MIT license. Cora-ML has 2995 nodes
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with 8158 edges, and 7 classes. It traditionally comes with a 2879 dimensional discrete bag-of-words node
feature embedding from the paper abstract. As we focus on continuous perturbation models, we use the
abstracts provided by (Bojchevski & Günnemann, 2018) together with all-MiniLM-L6-v2, a modern sentence
transformer from https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2 to generate 384-
dimensional continuous node-feature embeddings. From Cora-ML, we extract the subgraph defined by the two
most largest classes, remove singleton nodes, and call the resulting binary-classification dataset Cora-MLb. It
has 1235 nodes and 2601 edges. WikiCSb, created from extracting the two largest classes from WikiCS, is
the largest used dataset with 4660 nodes and 72806 edges.

I.1.1 CSBM Sampling Scheme

A CSBM graph G with n nodes is iteratively sampled as: (a) Sample label yi ∼ Bernoulli(1/2) ∀i ∈ [n];
(b) Sample feature vectors Xi|yi ∼ N (yiµ, σ2Id); (c) Sample adjacency Aij ∼ Bernoulli(p) if yi = yj ,
Aij ∼ Bernoulli(q) otherwise, and Aji = Aij . Following Gosch et al. (2023) we set p, q through the maximum
likelihood fit to Cora (Sen et al., 2008) (p = 3.17%, q = 0.74%), and µ element-wise to Kσ/2

√
d with

d = ⌊n/ ln2(n)⌋, σ = 1, and K = 1.5, resulting in an interesting classification scheme where both graph
structure and features are necessary for good generalization. We sample n = 200 and choose 40 nodes per
class for training, leaving 120 unlabeled nodes.

I.2 Code, Hyperparameters, and Architectural Details

Code. We provide the code base with datasets and configuration files to reproduce the experiments in
https://figshare.com/s/e155ced9910eb7b3a531. The randomness in the experiments is controlled by
setting fixed seeds which are given in the experiment configuration files.

Hyperparameters and Architectural Details. We fix S to Srow for GCN, SGC, GCN Skip-α and GCN
Skip-PC following Sabanayagam et al. (2023), and to Ssym for APPNP following its original implementation.
From the GNN definitions App. B, the graph convolution for GIN is (1+ϵ)I+A, for GraphSAGE is I+D−1A.
For APGD, we use the reported hyperparameters from Croce & Hein (2020).

We outline the hyperparameters for Cora-MLb, for CSBM all parameters are mentioned above except the
Skip-α for GCN Skip-α which was set to 0.2.

• GCN (Row Norm.): C = 0.75

• GCN (Sym. Norm.): C = 1

• SGC (Row Norm.): C = 0.75

• SGC (Sym Norm.): C = 0.75

• APPNP (Sym. Norm.): C = 1, α = 0.1

• MLP: C = 0.5

• GCN Skip-α: C = 1, α = 0.1

• GCN Skippc: C = 0.5

For Cora-ML, the following hyperparameters were set:

• GCN (Row Norm.): C = 0.05

• SGC (Row Norm.): C = 0.0575

• MLP: C = 0.004

For WikiCSb:
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• GCN (Row Norm.): C = 1

• SGC (Row Norm.): C = 5

• APPNP (Sym. Norm.): C = 0.75, α = 0.1

• MLP: C = 0.175

• GCN Skip-α: C = 0.1, α = 0.1

• GCN Skippc: C = 1

I.3 Hardware

Experiments are run on CPU using Gurobi on an internal cluster. Experiments for CSBM, Cora-MLb and
WikiCSb do not require more than 15GB of RAM. Cora-ML experiments do not require more than 20GB
of RAM. The time to certify a node depends on the size of MILP as well as the structure of the concrete
problem. On our hardware, for CSBM and Cora-MLb certifying one node typically takes several seconds up
to one minute on a single CPU. For Cora-ML, certifying a node can take between one minute and several
hours (≤ 10) using two CPUs depending on the difficulty of the associated MILP.

J Additional Results: CSBM

J.1 Evaluating QPCert and Importance of Graph Information

Fig. 5a shows the same result as Fig. 2a from Sec. 4 establishing that including graph information boosts
worst-case robustness in CSBM too. This also shows that the result is not dataset-specific. In Fig. 5, we
provide the remaining settings in correspondence to Fig. 3, Poison Labeled PL and Backdoor Labeled BL
for CSBM. Similarly, the heatmaps showing the certified accuracy gain with respect to MLP is presented in
Fig. 6.
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(a) CSBM: P L, padv = 1
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(b) CSBM: P L, padv = 0.2
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(c) CSBM: BL, padv = 0.2

Figure 5: Certifiable robustness for different (G)NNs in Poisoning Labeled (PL) and Backdoor Labeled (BL)
setting.
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(b) SGC
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(c) APPNP
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(d) GIN
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(e) GraphSAGE
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(f) GCN Skip-PC
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(g) GCN Skip-α

Figure 6: Heatmaps of different GNNs for Poison Unlabeled (PU) setting.

J.2 On Graph Connectivity and Architectural Insights

We present the sparsity analysis for SGC and APPNP in (a) and (b) of Fig. 7, showing a similar observation
to GCN in App. J.2. The APPNP α analysis for PU and PL are provided in (c) and (d) of Fig. 7, showing
the inflection point in PU but not in PL. Additionally, we show the influence of depth, linear vs ReLU,
regularization C and row vs symmetric normalized adjacency in Fig. 8.
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Figure 7: (a)-(b): Graph connectivity analysis where c× is cp and cq in CSBM model. GCN is provided in
Fig. 4b. (c)-(d): APPNP analysis based on α.
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(a) S in GCN, SGC
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Figure 8: (a): Symmetric and row normalized adjacencies as the choice for S in GCN and SGC. (b): Effect of
number of hidden layers L. (c): Linear and relu for the Skip-PC and Skip-α. (d): Regularization C in GCN.
All experiments in PU setting and padv = 0.2.
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J.3 Tightness of QPCert

First, we present the tightness of QPCert in Figs. 9 and 10 evaluated with our strongest employed attacks for
each setting: For graph poisoning (Fig. 9), APGD is employed with direct differentiation through the learning
process (QPLayer) for the PU setting in Fig. 9b and for the PL setting in Fig. 9a. For the backdoor attack
setting (Fig. 10), first a poisoning attack is carried out with APGD (QPLayer) and then, the respective test
node is additionally attacked with APGD in an evasion setting. Fig. 10b shows the result for the BU setting
and Fig. 10a for the BL setting. Interstingly, QPCert seems to be more tight in a backdoor setting than in a
pure poisoning setting. However, this could also be explained by the fact that an evasion attack is easier to
perform than a poisoning attack and thus, APGD potentially provided lower upper bounds to the actual
robustness than for the pure poisoning setting. Another interesting observation is that for the backdoor
settings, the rankings of the GNNs regarding certified robustness seems to roughly correspond to the robust
accuracies obtained by the backdoor attack.

In Fig. 11 performing a gradient-based attack (APGD) using either exact gradients with QPLayer or meta-
gradients obtained through MetaAttack’s surrogate model is compared. For both the PL (Fig. 11a) and
PU (Fig. 11b) setting using exact gradients results in a lower upper bound to the robust accuracy (i.e.,
a stronger attack). Thus, we use the exact gradients from QPLayer to measure the tightness of QPCert.
Meta-gradients from MetaAttack are obtained by adapting Algorithm 2 in (Zügner & Günnemann, 2019a) to
feature perturbations, through setting a maximum number of iterations as the stop criterion and instead
of choosing an edge with maximal score, update the feature matrix with the meta-gradient using APGD.
In MetaAttack, λ trading of the self-supervised with the training loss is set to 0.5. Interestingly, for small
budgets, MetaAttack can lead to the opposite intended effect. Exemplary, for a GCN in the PL setting
with δ = 0.1, the generalization performance is slightly increased. This indicates that for small perturbation
budgets, the meta-gradient of MetaAttack’s surrogate model does not transfer well to the infinite-width
networks. However, for larger budgets, MetaAttack still provides a strong, albeit weaker attack than exact
gradients. In Figure Fig. 12 we compare performing the above mentioned gradient-based backdoor attack
with the simple backdoor strategy proposed by Xing et al. (2024) with a trigger size of 0.5. We observe that
Xing et al. (2024)’s attack is significantly weaker compared to the gradient-based attack and only starts
to reduce accuracy of the models for high attack budgets. This can be explained by several observations:
For small ℓp-budgets, the backdoor trigger is often distorted in the backdoored nodes by having to project
the perturbation back into the allowed ℓp-ball and secondly, the attack is simple, static and not adaptive.
Concretely, it simply copies certain features to other nodes without considering the attacked model. We
want to note that similar to MetaAttack, for small budgets, for BU we can observe for MLP that the change
actually results in slightly higher generalization of the model under attack, showing that for small budgets,
the backdoor strategy in Xing et al. (2024) is not effective.
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(a) CSBM: P L
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Figure 9: Tightness of our certificate for data poisoning. Both PU and PL with padv = 0.2 evaluated with
APGD (QPLayer).
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(a) CSBM: BL
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(b) CSBM: BU

Figure 10: Tightness of our certificate for backdoor attacks. Both BU and BL again with padv = 0.2.
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(b) CSBM: P U

Figure 11: Comparison of performing a gradient-based attack (APGD) using either exact gradients using
QPLayer or using surrogate meta-gradients using MetaAttack’s surrogate model. Both PL and PU with
padv = 0.2.
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Figure 12: Comparison of performing a gradient-based backdoor attack versus the simple backdoor attack
proposed in Xing et al. (2024).
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Figure 13: QPCert (ℓ∞) in comparison to DPA (k = 20 partitions) for different architectures in the poison-
labeled setting on CSBM. QPCert clearly outperforms DPA except for very large ℓ∞-norms.

J.4 Comparing QPCert with Deep Partition Aggregation (DPA)

Technical Details of Adapting DPA to Graphs. To compare QPCert with the split-and-majority
voting-based certification strategy called Deep Partition Aggregation (DPA) first outlined by (Levine & Feizi,
2021), we partition the graph into k subgraphs, by creating k node-partitions Pi through hashing. Denote
the set of nodes by V, then the node-partitions are created as follows:

Pi := {v ∈ V|v mod k = i} (35)

The (induced) subgraph Gi corresponding to Pi is then created by connecting all nodes in Pi that have an
original edge in G. The certificate is then obtained by training k independent classifiers fi on the k partitions
and take the majority vote over all fi for a new incoming test data point. The certificate derived in (Levine &
Feizi, 2021) then pertains to the majority-voting classifier and not to the individual fi. To make the certificate
applicable to transductive node classification, if the test node t is not already part of Pi, it is added to Gi

after training, where edges from t to nodes in Pi are added to Gi, if they are existing in the original graph G.

Important Differences between QPCert to DPA. We want to note some fundamental differences in the
two certification approaches that are important to have in mind when discussing any comparison between
them. QPCert is white-box vs DPA being black-box. This means that QPCert derives a certificate for the
neural network under question, whereas DPA derives a certificate for the majority-ruling classifier and not for
the underlying neural networks. Thus, they certify two different classifiers. As a result, DPA does not allow to
gain insights into the poisoning robustness behavior of different neural networks, but a comparison to QPCert
can illuminate which method under which setting allows for the highest robustness guarantees. Furthermore,
QPCert assumes an ℓp-normed adversary whereas DPA assumes that the adversary can arbitrarily perturb a
controlled data point. As a result, DPA would always result in trivial (zero) certified robustness if all nodes
can be perturbed, which is the setting we study in Figs. 2a and 2b and where QPCert provides non-trivial
certified robustness. Furthermore, if not more is known about the adversary, based on its proof strategy,
DPA can provide at most a certificate against k/2-perturbed nodes. This is problematic for semi-supervised
learning settings such as node classification, if the underlying graph is sparsely labeled, as then the number of
partitions k must be set relatively low as there are otherwise no labeled samples to populate the partitions.

Results. Fig. 13 compares QPCert with DPA in the poison-labeled setting. For DPA, we use k = 20 partitions
as it leads to the best accuracy-robustness tradeoff for DPA (see Fig. 14). Fig. 13 clearly highlights that
QPCert leads to significantly higher certified accuracies for ℓp-bounded adversaries up to strong perturbations
δ ≤ 0.5. This clearly highlights given an ℓp-bounded adversary QPCert significantly outperforms DPA. The
high certified accuracy of QPCert also stems from leveraging white-box knowledge not available to DPA. As
δ is in percent of the distance between the two class means of the Gaußian from which the node features
are sampled, choosing δ = 1 and ℓ∞-norm perturbations allows to completely recenter the node features in
a high-probability area of the other class. Here, it is interesting to observe that the bounds of DPA and
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Figure 14: Comparing different partition sizes k in DPA for different GNN architectures on CSBM. On
average, k = 5 leads to 16 labeled nodes per partition, k = 10 to 8 labeled nodes per partition, and k = 20 to
4 labeled nodes per partition. k = 20 leads to the best trade-off between accuracy and certified robustness.

QPCert roughly overlap. If δ → ∞, the bounds from QPCert will become trivial (zero). However, δ >> 1
would be strong outliers in the training data and could be easily detected and removed.

Further Experimental Details. We test k = {5, 10, 20} as it leads to 16, 8 and 4 labeled nodes per
partition, respectively. At k = 20, the hashing can result in partitions with no labeled samples. If this
happens, we ignore such partitions in the majority voting classifier. Furthermore, the perturbation model
assumed in our work allows a certain fraction of trusted nodes. Thus, applying DPA can provide certificates
slightly above the k/2 threshold.

J.5 Results for p = 2 Perturbation Budget

We present the results for p = 2 perturbation budget evaluated on CSBM and all the GNNs considered. We
focus on Poison Unlabeled setting. Fig. 15 show the results of the certifiable robustness for all GNNs and the
heatmaps showing the accuracy gain with respect to MLP is in Fig. 15. All the results are in identical to
p = ∞ setting and we do not see any discrepancy.
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Figure 15: (a): Certifiable robustness for different (G)NNs in Poisoning Unlabeled (PU) for p = 2. (b)-(h):
Certified accuracy gain for heatmap for all GNNs. All experiments with Poisoning Unlabeled (PU) and
padv = 0.2
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J.6 Results for p = 1 Perturbation Budget

Similar to p = 2, we also present the results for p = 1 perturbation budget evaluated on CSBM and all the
GNNs considered for Poison Unlabeled setting in Fig. 16. All the results are in identical to p = ∞ setting
and we do not see any discrepancy.
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Figure 16: (a): Certifiable robustness for different (G)NNs in Poisoning Unlabeled (PU) for p = 1. (b)-(h):
Certified accuracy gain for heatmap for all GNNs. All experiments with Poisoning Unlabeled (PU) and
padv = 0.2.

J.7 Comparison Between p = ∞ and p = 2

We provide a comparison between p = ∞ and p = 2 perturbation budget, showing that p = 2 is tighter than
p = ∞ for the same budget as expected.
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Figure 17: Comparison between p = ∞ and p = 2 for Poison Unlabeled setting. padv = 0.2.
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J.8 Comparison to Common Poisoning Defenses

In Fig. 18 we compare two common poisoning defenses namely GNNGuard (Zhang & Zitnik, 2020) and
ElasticGNN (Liu et al., 2021) with the certified accuracy provided by QPCert. While the accuracies provided
by a defense are not certified accuracies (i.e., they are only upper bounds to the true robust accuracy) and
hence, can only be compared partly with the certified accuracy which represents a true lower bound to the
robust accuracy. However, a comparison is still interesting as it allows to answer the question, of how big the
gap between the best-certified accuracy to the robust accuracy provided by defenses is and if we could even
get a certified accuracy result comparable to a poisoning defense’s accuracy. Interestingly, Fig. 18 shows that
for small to intermediate budgets, the certified accuracy of an infinite-width GCN as provided by QPCert is
higher than the robust accuracy provided by the defense baselines. This can be explained by the fact that
even ElasticGNN and GNNGuard show lower base clean accuracy despite significant hyperparameter tuning
(experimental details see below paragraph) paired with a few very brittle predictions. We hypothesize that
this is due to the difficult learning problem a CSBM poses (despite being a small dataset) paired with the fact
that both poisoning defenses have GCN-like base models where the graph / propagation scheme is adapted
to be more robust to poisoning while potentially trading off clean accuracy.

Both poisoning defenses are trained using the non-negative likelihood loss and the ADAM optimizer following
Zhang & Zitnik (2020). GNNGuard uses a 2-layer GCN as a baseline model and hyperparameters are searched
in the grid: (i) number of filters {8, 16, 32}, (ii) dropout {0, 0.2, 0.5}, (iii) learning rate {0.01, 0.001}, (iv)
weight decay {5e − 3, 1e − 3, 5e − 4, 1e − 4} over 10 seeds resulting in 720 models. For ElasticGNN the
hyperparameter grid reported in Liu et al. (2021) is explored over 10 seeds resulting in 11520 models due to
ElasticGNN having more hyperparameters to tune. It’s hidden layer size is fixed to 32. Both baseline defenses
are attacked using MetaAttack adapted to feature perturbations as done in App. J.3. The infinite-width
GCN is attacked using the exact gradient obtained from the QPLayer implementation.
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Figure 18: Comparison of different poisoning defenses with the certified accuracy obtained by QPCert on
CSBM.

K Additional Results: Cora-MLb

K.1 Evaluating QPCert

Fig. 19a shows the certified accuracy on Cora-MLb for the BL settings for pcert = 0.1. Figs. 19b to 19d
and 20 show a detailed analysis into the certified accuracy difference of different GNN architectures for PU
setting for pcert = 0.1.
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(a) BL, padv = 0.1
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Figure 19: (a) Backdoor Labeled (BL) Setting. (b)-(d) Heatmaps of GCN, SGC, and APPNP for Poison
Unlabeled (PU) setting on Cora-MLb with padv = 0.1.
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(c) GraphSAGE
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(d) GIN

Figure 20: Heatmaps of GCN Skip-α, GCN Skippc, GraphSAGE, and GIN for Poison Unlabeled (PU) setting
on Cora-MLb with padv = 0.1.

K.2 APPNP

Fig. 21 shows that the inflection point observed in Fig. 4c is not observed in the other settings.
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Figure 21: Cora-MLb, all settings with padv = 0.05.

K.3 Symmetric vs. Row Normalization of the Adjacency Matrix
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Figure 22: Influence of symmetric and row normalized adjacency in GCN and SGC for poison unlabeled and
poison labeled settings.

K.4 Results on p = 1 Adversary

Fig. 23 shows the certifiable robustness to p = 1 adversary on Cora-MLb dataset. The observation is consistent
to the CSBM case.
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Figure 23: Cora-MLb results for PL, PU, BL and BU under p = 1 perturbation.

L Additional Results: Cora-ML

For Cora-ML we choose 100 test nodes at random and investigate in Fig. 24a the poison labeled (PL) setting
with a strong adversary padv = 1.0 for GCN, SGC and MLP. It shows that QPCert can provide non-trivial
robustness guarantees even in multiclass settings. Fig. 24b shows the results for poison unlabeled (PU)
and padv = 0.05. Only SGC shows better worst-case robustness than MLP. This, together with both plots
showing that the certified radii are lower compared to the binary-case, highlights that white-box certification
of (G)NNs for the multiclass case is a more challenging task.
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Figure 24: Cora-ML results for PL and PU.
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M Additional Results: WikiCSb

Fig. 25a shows for the poisoned unlabeled setting that until a certain perturbation budget, GNNs lead to
higher certified accuracy as an MLP. However, as padv = 0.02 it also shows that the certified accuracy of
GNNs can be highly susceptible even to few perturbed nodes. Figs. 26b to 26d and 27 show a more detailed
analysis into the certified accuracy difference of different GNN architectures for PU setting for pcert = 0.02.
We want to note the especially good performance of choosing linear activations (SGC). Fig. 25b shows that all
GNNs achieve better certified accuracy as an MLP. Lastly, Fig. 26a shows the certified accuracy on WikiCSb
for the BL settings for pcert = 0.1.
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Figure 25: Certifiable robustness for different (G)NNs in Poisoning Unlabeled (PU) and Backdoor Unlabeled
(BU) setting with padv = 0.02 for WikiCSb.
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(a) BL, padv = 0.1
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(b) GCN
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(c) SGC
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(d) APPNP

Figure 26: (a) Backdoor Labeled (BL) Setting. (b)-(d) Heatmaps of GCN, SGC, and APPNP for Poison
Unlabeled (PU) setting on WikiCSb with padv = 0.02.
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(a) GCN Skip-α
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(b) GCN Skippc
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Figure 27: Heatmaps of GCN Skip-α, GCN Skippc, GraphSAGE, and GIN for Poison Unlabeled (PU) setting
on WikiCSb with padv = 0.02.
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N Computational Limits of QPCert

To understand the computational limits of QPCert, we evaluate the certification runtime on synthetic graphs
generated using the CSBM with 1000 and 10000 nodes. For each graph, we vary the number of labeled nodes
per class as {10, 20, 50, 100, 200, 500}. Thereby, we effectively simulate the semi-supervised learning setting.
Note that in the case of 1000 nodes, 500 labeled nodes per class leaves no test node, thus we do not evaluate
this setting. We compute the average runtime to certify a single test node, computed over 50 test nodes and
3 random seeds as shown in Fig. 28.
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Figure 28: Certification time measured in seconds for graphs of sizes 1, 000 and 10, 000 nodes with varying
number of labeled nodes per class.

Importantly, Fig. 28 shows that the computational complexity of QPCert is not determined by the total
number of nodes in the graph, as evidenced by the difference in time between 1000 and 10000 nodes is within
the standard deviation. It rather scales near-exponentially with the number of labeled nodes, which is typically
small in practical semi-supervised settings. As a result, QPCert remains tractable even on significantly large
graphs, provided the number of labeled nodes remains moderate. This type of scaling behavior may be
different to other approaches for poisoning certification such as the split-and-majority voting approach, whose
computation time depends on the total size of the graph and the number of partitions, but not necessarily
on the number of labeled data. However, all approaches on poisoning certification independent of the data
domain have some computational bottleneck and are thus, currently limited to small to medium-sized datasets
and we refer to the references in Sec. 6 for more details.
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O Further Discussions

O.1 Applicability to Commonly Studied Perturbation Models and Attacks

QPCert applies to any poisoning or backdoor attack that performs ℓp-bounded feature perturbations. As
such, QPCert is directly applicable to clean-label (graph) backdoor attacks as proposed by Turner et al.
(2019) and Xing et al. (2024), and clean-label poisoning attacks such as Huang et al. (2020) and Geiping
et al. (2021). It is not directly applicable to poisoning of the graph structure as performed by MetaAttack
(Zügner & Günnemann, 2019a). However, the MetaAttack strategy can be easily adapted to poison node
features as done in App. J.3 and we discuss the challenges to extend QPCert to structure perturbations in
App. O.2. The backdoor attack proposed by Dai et al. (2023) changes the node features and training labels
jointly and thus, our method is applicable if the training labels will be kept constant or the poisoned nodes
are sampled only from the class, the training label should be changed to. Similar, Xi et al. (2021) develops a
backdoor attack that changes the features and graph structure jointly and thus, QPCert is not applicable
given the graph structure changes.

O.2 Certifying Against Graph Structure Perturbations

In the following, we discuss how to approach certifying against poisoning of the graph structure and the open
challenges that arise in the process. To certify against poisoning the graph structure, again Eq. (2) has to be
solved but now, the adversary A can change the graph structure instead of the node features, meaning the
optimization in Eq. (2) is performed w.r.t. the graph structure matrix S and thus, reads

min
S̃,θ

Latt(θ, G̃) s. t. S̃ ∈ A(S) ∧ θ ∈ arg min
θ′

L(θ′, G̃) (36)

with S̃ ∈ A(S) representing the perturbed graph structure matrices constructable by the adversary and
G̃ = (S̃, X). Indeed, it will be possible to reformulate this problem into a single-level problem similar to
the description in Sec. 3. While in theory, QPCert Theorem 3.3 also applies to structure perturbations, the
bounding strategy from Sec. 3.1 does result in loose bounds for structure perturbations, as an untrusted node
will always result in a lower bound in the respective adjacency matrix entry of 0 and an upper bound of 1 -
thus, spanning the whole space of possible entries.

To overcome this, one can approach certifying graph structure perturbations by including the NTK computation
into the optimization problem with the drawback that each type of GNN architecture will require slight
adaptations of the optimization problem depending on its corresponding NTK. Assuming that the chosen
model is an L = 1 layer GCN (the formulation can be easily extended to arbitrary layers, see App. C.3), the
bilevel optimization problem reads as follows

min
α,S̃,Q,Σ1,Σ2,E1,Ė1,Ė2

sgn(p̂t)
m∑

i=1
yiαiQti s.t. S̃ ∈ A(S) ∧ α ∈ S(Q) (37)

Q = S̃(Σ1 ⊙ Ė1)S̃T + Σ2 ⊙ Ė2 (38)
Σ1 = S̃XXS̃T (39)
Σ2= S̃E1S̃T (40)
E1= cσ E

F∼N (0,Σl)

[
σ(F)σ(F)T

]
(41)

Ė1= cσ E
F∼N (0,Σl)

[
σ̇(F)σ̇(F)T

]
(42)

Ė2= 1n×n (43)
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This (non-linear) bilevel problem can be transformed into a single-level problem as described in Sec. 3, as
the inner-level problem α ∈ S(Q) is the same as in Eq. (3) and the same strategy can be applied to linearly
model the resulting constraints from the KKT conditions. However, a crucial difference to Eq. (3) are the
additional non-linear constraints arising from optimizing over the NTK computation. Eqs. (38) to (40) are
multilinear constraints that can be reduced to bilinear constraints by introducing additional variables as
follows (for brevity, again writing the problem in its bilevel form):

min sgn(p̂t)
m∑

i=1
yiαiQti s.t. S̃∈ A(S) ∧ α ∈ S(Q) (44)

Q= H ′′
1 + H2 (45)

H1= Σ1 ⊙ Ė1 (46)
H ′

1= H1ST (47)
H ′′

1 = SH ′
1 (48)

H2= Σ2 ⊙ Ė2 (49)
Σ1 = M1MT

1 (50)
M1= SX (51)
M2= E1ST (52)
Σ2= SM2 (53)
E1= cσ E

F∼N (0,Σ1)

[
σ(F)σ(F)T

]
(54)

Ė1= cσ E
F∼N (0,Σ1)

[
σ̇(F)σ̇(F)T

]
(55)

Ė2= 1n×n (56)

where the optimization is over the same variables as in the previous problem, and additionally the variables
H1, H ′

1, H ′′
1 , H2, M1, and M2. Eqs. (45) and (51) are linear constraints, the rest of the newly introduced

constraints represent bilinear terms. The same bilinearization strategy can be applied given the NTK
computation over arbitrary layers. The remaining non-linear and non-bilinear terms are Eqs. (54) and (55).
They can be solved in closed-form resulting in relatively well-behaved functions as shown in App. E.1. Thus,
a convex relaxation of the expectation terms can be derived by e.g., choosing linear functions that lower and
upper bound the expectation terms.

Assume for now that one can linearly model S̃ ∈ A(S), this can be achieved by e.g., choosing the adjacency
matrix without normalization as graph structure matrix as done by Hojny et al. (2024). Then, the crucial
question is:

How to effectively solve the arising bilinear problem?

In particular, the bilinearities arise in both, the constraints and objective, and thereby this contrasts e.g.,
with Zügner & Günnemann (2020) who only have to deal with a bilinear objective but have linear constraints.
The problem can be slightly simplified if S is chosen to be the unnormalized adjacency matrix, as then any S̃
is discrete and thus Eqs. (47), (48) and (52) represent multiplications of a continuous with a discrete variable
and thus, can be linearly modeled using standard modeling techniques. However, the objective and Eqs. (46),
(49) and (50) remain products of continuous variables and thus, can fundamentally not be modeled linearly.
One potential way to tackle this, is to use techniques of convex relaxations of bilinear functions as e.g., the
so called McCormic envelope (McCormick, 1976). However, it is not clear if common bilinear relaxation
techniques can scale to problems of the size necessary to compute practical certificates for machine learning
datasets, nor is it clear if the relaxations introduced in the process result in tight enough formulations to
yield non-trivial certificates. This is complicated by the fact that problems that are studied in the bilinear
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optimization literature are often significantly smaller than the problem size we can expect from certifying
graph structure perturbations. However, it is not unlikely that further progress in bilinear optimization will
make this problem tractable.

We want to note that linearly modeling S̃ ∈ A(S) by choosing an unnormalized adjacency matrix as the
graph structure matrix results in a restriction of possible architecture to certify. It could be possible to adapt
Zügner & Günnemann (2020)’s modeling technique for the symmetric-degree normalized adjacency matrix
they use to certify a finite-width GCN to the above optimization problem without increasing its difficulty as
it is already bilinear.

O.3 Practical Implication of Feature and Structure Perturbations

Both feature and structure perturbations find complementary applications in real-world scenarios. In
particular, important application areas for graph learning methods with adversarial actors are fake news
detection (Hu et al., 2024) and spam detection (Li et al., 2019). Regarding fake news detection, feature
perturbations can model changes to the fake news content or to (controlled) user account comments and
profiles to mislead detectors (Hu et al., 2024; Le et al., 2020). Structure perturbations allow to model a change
in the propagation patterns (e.g., through changing a retweet graph) (Wang et al., 2023). The qualitative
difference in the application of feature compared to structure perturbations is similar for spam detection.
Here, feature perturbation can model spammers trying to adapt their comments to avoid detection (Li et al.,
2019; Wang et al., 2012). In contrast, structure perturbations can model behavioral changes in the posting
patterns of spammers to imitate real users (Soliman & Girdzijauskas, 2017; Wang et al., 2012).

O.4 QPCert for other GNNs

While our analysis focused on commonly used GNNs with and without skip connections, QPCert is broadly
applicable to any GNN and NN with a well-defined analytical form of the NTK. The following challenges and
considerations have to be taken into account when extending QPCert to other architectures:

1. NTK-network equivalence: The equivalence between the network and NTK breaks down when
the network has non-linear last layer or bottleneck layers (Liu et al., 2020). Consequently, our
certificates do not hold for such networks.

2. Analytical form of NTK: Deriving a closed-form expression for NTK is needed to derive bounds
on the kernel. This might be challenging for networks with batch-normalizations or advanced pooling
layers.

3. Bounds for the NTK: Ensuring non-trivial certificates requires deriving tight bounds for the NTK.
Depending on the NTK, additional adaptation of our bounding strategy may be necessary.

Most message-passing networks satisfy these criteria, making QPCert readily applicable to a wide range of
architectures. However, we note that the equivalence between the network and NTK becomes difficult to
establish when the training optimization procedure is changed to any other momentum-based or second-order
gradient descent, or adversarial training where the optimization is minimization of the maximum adversarial
loss. Specifically, the bounded parameter evolution required for the NTK equivalence as discussed in App. D
is hard to guarantee and can significantly deviate from initialization even in the infinite-width setting.
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