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ABSTRACT

Machine unlearning—enabling a trained model to forget specific data—is crucial
for addressing biased data and adhering to privacy regulations like the General
Data Protection Regulation (GDPR)’s “right to be forgotten.” Recent works have
paid little attention to privacy concerns, leaving the data intended for forgetting
vulnerable to membership inference attacks. Moreover, they often come with high
computational overhead. In this work, we propose Pseudo-Probability Unlearn-
ing (PPU), a novel method that enables models to forget data efficiently and in a
privacy-preserving manner. Our method replaces the final-layer output probabil-
ities of the neural network with pseudo-probabilities for the data to be forgotten.
These pseudo-probabilities follow either a uniform distribution or align with the
model’s overall distribution, enhancing privacy and reducing risk of membership
inference attacks. Our optimization strategy further refines the predictive proba-
bility distributions and updates the model’s weights accordingly, ensuring effec-
tive forgetting with minimal impact on the model’s overall performance. Through
comprehensive experiments on multiple benchmarks, our method achieves over
20% improvements in forgetting error compared to the state-of-the-art. Addi-
tionally, our method enhances privacy by preventing the forgotten set from being
inferred to around random guesses.

1 INTRODUCTION

Machine unlearning, which focuses on eliminating the negative impact of specific data sub-
sets—such as biased, erroneous, or privacy-leaking instances (Jagielski et al., 2018; Yang et al.,
2024)—used in model training (Baumhauer et al., 2022; Fu et al., 2022; Golatkar et al., 2020a;b;
Guo et al., 2019; Kim & Woo, 2022; Mehta et al., 2022; Nguyen et al., 2020; Shah et al., 2023),
has emerged as a critical area of research. Its significance is increasing due to growing concerns
about data privacy (Pardau, 2018), legal requirements for data deletion(Mantelero, 2013), and the
necessity for models to adapt to new information without complete retraining. Though the most
straightforward approach is to retrain the model with a new dataset that excludes the data needing
removal, this approach is computationally expensive and needs continuous access to the training set.

There are two main challenges in existing machine unlearning methods. On the one hand, they
still face high computational time (Xu et al., 2023) without retraining the model if they aim to
maintain decent unlearning performance in two aspects: the efficiency of forgetting the specified
data subset, and the need to maintain performance on the remaining data. For example, an existing
machine unlearning work (Kurmanji et al., 2024) requires 4.30 seconds to forget 25 data samples,
while retraining takes 4.21 seconds. The retraining process is even faster due to the unlearning
method’s complexity of the loss computation.

On the other hand, existing methods are vulnerable to privacy leakage attacks (Hu et al., 2024),
where an attacker can infer which data is within the forgetting set from the post-unlearning models.
This still violates the right to be forgotten, even though the model has been updated to remove
the data. This vulnerability arises because existing methods typically require the model to perform
poorly (i.e., have a high loss) on the forgetting set, making it easier to distinguish from the retraining
set. We denote this vulnerability as privacy leakage, measured by Membership Inference Attacks
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(MIA) (Hui et al., 2021). There is a lack of existing work addressing privacy leakage in machine
unlearning; to the best of our knowledge, Kurmanji et al. (Kurmanji et al., 2024) has considered this
issue, but it is computationally costly as mentioned earlier.

Figure 1: This is an overview of Pseudo-Probability Unlearning (PPU). In this approach, we extract
the output layer probabilities and replace the forget set probabilities with pseudo-probabilities. After
performing optimization, the model’s weights are fine-tuned using the refined pseudo-probabilities.

To address these issues, we propose Pseudo-Probability Unlearning (PPU) in Figure 1, which targets
the final-layer output probabilities of the model and replaces them with pseudo-probabilities for the
data to be forgotten, thus being computationally efficient. To achieve good forgetting performance,
these pseudo-probabilities for the forgetting set are initialized from a uniform distribution and are
further refined to maintain performance on the remaining data. To protect privacy, the entire model’s
weights are updated with the objective of ensuring that the pseudo-probabilities do not deviate too
far from the original model’s output probabilities, thus making the forgetting set indistinguishable
from the remaining data. Besides, we provide a proof for the efficiency of Pseudo-Probability,
making it theoretically sound. Extensive evaluations show that PPU reduces computational time by
half compared to existing methods while improving unlearning performance and preventing privacy
leakage, reducing the success rate of membership inference attacks to around random guessing.

2 RELATED WORK

The discussion on unlearning has been broadened to include two principle paradigms: exact unlearn-
ing and approximate unlearning (Izzo et al., 2021). Exact unlearning mandates that the performance
of a model, post-unlearning, should be indistinguishable from that of a model retrained in the ab-
sence of the forgotten data. In this vein, Brophy and Lowd (Brophy & Lowd, 2021), along with
Schelter et al. (Schelter et al., 2021), applied exact unlearning methods specifically to random forest
models. Similarly, Ginart et al. (Ginart et al., 2019) developed an exact unlearning technique for
k-means clustering. Despite the efficacy and precision of exact unlearning approaches in diminish-
ing the influence of specific data, they face significant constraints related to underlying assumptions
and scalability issues, as highlighted by Xu et al. (Xu et al., 2023). In particular, these methods
are unsuitable for models such as Convolutional Neural Networks (CNN) (O’Shea & Nash, 2015)
and Residual Networks (ResNet) (He et al., 2016). To address this, Golatkar et al. (Golatkar et al.,
2020a) introduced the concept of selective unlearning, aiming to achieve forgetting by adjusting
model weights. Moreover, Bourtoule et al. (Bourtoule et al., 2021) introduced the Sharded, Isolated,
Sliced, and Aggregated (SISA) training approach, which ingeniously reduces the influence of indi-
vidual data points on the training process. However, this approach can significantly compromise the
model’s performance and generalization capacity, especially when multiple data points need to be
unlearned. Furthermore, Golatkar et al. (Golatkar et al., 2020b) proposed approximating the weights
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that would result from unlearning by using a linearization inspired by Neural Tangent Kernel (NTK)
theory (Jacot et al., 2018).

Approximate unlearning is designed to diminish the impact of data designated for removal to a tol-
erable extent, rather than achieving its complete elimination. This method recognizes the inherent
difficulties in fully erasing the influence of data from complex models. Cao and Yang (Cao & Yang,
2015) developed a strategy to reconfigure learning algorithms to ease data deletion, but this method
faces scalability issues with more complex models. Wu et al. (Wu et al., 2020) proposed using
cached information from the original training to ease the retraining process, though this technique
struggles with large-scale data removal. Taking a different approach, Kurmanji et al. (Kurmanji
et al., 2024) introduced a novel approach involving the optimization of the min-max problem to im-
prove the unlearning process. Zhang et al. (Zhang et al., 2022) also presented a method that leverages
quantized gradients and randomized smoothing to potentially prevent the need for future unlearn-
ing, offering certain guarantees under specific conditions. Nevertheless, a data deletion request that
significantly alters the data distribution, such as class unlearning, may exceed the “deletion budget”
and challenge the assumptions underlying their approach.

Overall, most approaches improve upon retraining but still require significant computational re-
sources, making them less practical for large-scale applications. Although some approximations
aim to enhance efficiency, few explicitly prioritize privacy, which remains a critical concern. Ad-
ditionally, there is still room to reduce forget set error and further improve privacy protections,
highlighting the need for more balanced and effective solutions.

3 NOTATIONS AND PROBLEM DEFINITION

Consider a dataset D = (xi, yi)
N
i=1, composed of N data points, where each instance consists of an

input feature vector xi and its corresponding label yi. Let f(·;w) represent a function implemented
by a deep neural network, parameterized by the weights w. In this context, we are provided with
a “forget set” Dfog = (xf , yf )

Nf

f=1 ⊂ D, consisting of Nf instances extracted from D, as well as

a“retain set” Dret(xr, yr)
Nr

r=1 ⊂ D containing Nr training samples. For simplicity, we assume that
Dret is the complement of Dfog, satisfying the condition Dfog ∪Dret = D and Nf +Nr = N , thereby
covering the entire original dataset.

This formulation sets the foundation for exploring methods capable of effectively “unlearning” the
specified Dfog from the original model, ensuring that the resulting model’s performance is primarily
influenced by the data in Dret. The goal of deep machine unlearning is to derive a new set of
weights, wu, such that the updated model, f(·;wu), effectively “erases” the information related to
Dfog. This process should be carried out without compromising the model’s utility, as demonstrated
by its performance on Dret and its ability to generalize to unseen data. We propose an optimization
technique that refines the model’s last layer output predictive probability distribution to efficiently
achieve unlearning objectives.

4 METHODS

Building on the foundational framework, we propose an approach for deep machine unlearning that
leverages pseudo-label optimization. In this method, we construct a matrix where each column
represents a class, and each row corresponds to the probability of a data point belonging to each
class. If the training dataset contains N data points and k classes, the resulting matrix has dimensions
N × k. For instance, in a neural network trained on the CIFAR-10 dataset with 50,000 training
images, the matrix would have 50,000 rows and 10 columns. This matrix serves as the foundation
for refining the model’s predictions and optimizing the unlearning process.

We define the output probabilities as p, where each p vector has a length of k for each data point.
Specifically, we assign the probabilities for the forgotten data as pf and for the retained data as pr.
Thus, each cell in the matrix represents the probability of a data point belonging to a particular class,
consisting of values from both pf and pr. For a data point x1 in the forget set, the probability of
x1 belonging to class k is denoted as pf1(k). Here, we define f(x;w) as the output probability
generated by the input x when passed through the model with weights w. Additionally, fk(xf ;w)
represents the probability of the forgotten data point xf belonging to class k.
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The core of our method lies in the formulation of an optimization objective tailored to adjust the
model’s output distribution in such a manner that it effectively “forgets” the information related to
the forget set Df , while maintaining or even enhancing its performance on the retain set Dr. To
this end, we introduce an optimization objective designed to measure the discrepancy between the
desired output distribution and the one currently produced by the model with original weights w.

4.1 PSEUDO-PROBABILITY REFINEMENT FOR DEEP MACHINE UNLEARNING

In the proposed formulation, {p̂fi}
Nf

i=1 represents the set of pseudo-probabilities for the forget set.
To ensure the model forgets this data, we can either set the pseudo-probabilities to a uniform distri-
bution or generate them randomly. These strategies help to “mask” or obscure the model’s previous
knowledge about the forget set, making it harder for the model to retain those associations with the
forget set, thereby improves the precision and effectiveness of the unlearning process. While the
pseudo-probabilities for the forget set p̂f are adjusted to obscure the model’s learned associations
with Dfog, the probabilities for the retain set p̂r are f(xr;w) to ensure consistency with the model’s
knowledge of Dret.

During optimization, p̂r evolves from the initial model output f(xr,w) into a distribution that better
reflects the knowledge the model should retain. The objective function incorporates a KL-divergence
term for both the forget set and the retain set, weighted by the parameter λ. This ensures a balanced
approach to managing knowledge across both sets. The aim is to reach a state of neutrality or
ignorance for the forget set, while ensuring the output distribution of the retain set aligns closely
with the target distribution. We assume that the total probability for class k across all data points
is Mk, and we strive to maintain this constant, regardless of any changes in the probabilities. This
constraint prevents the unlearning process from excessively distorting the model’s ability to forget
the specified data while retaining knowledge about the retained set.

min
{f(xf ;w)}

Nf
f=1,{f(xr;w)}Nr

r=1

 Nf∑
f=1

DKL(f(xf ;w)∥p̂f ) + λ

Nr∑
r=1

DKL(f(xr;w)∥p̂r)

 (1)

subject to
Nf∑
f=1

fk(xf ;w) +

Nr∑
r=1

fk(xr;w) = Mk, ∀k, (2)

K∑
k=1

fk(xf ;w) = 1, ∀f,
K∑

k=1

fk(xr;w) = 1, ∀r, (3)

fk(xf ;w) ∈ [0, 1], ∀f, k, fk(xr;w) ∈ [0, 1], ∀r, k. (4)

Additionally, within the constraints, we must ensure that the sum of the probabilities across all
classes for each data point equals 1. Furthermore, the probabilities should be bounded between 0
and 1, meaning they must be greater than or equal to 0 and less than or equal to 1.

The constraints guarantee that the pseudo-labels for both sets adhere to predefined distributions
and form valid probability distributions over class labels. This optimization strategy thus offers a
comprehensive framework for managing the objectives of unlearning and adaptive retention within
a machine learning model.

4.1.1 CONVERGENCE TO THE UNIQUE OPTIMAL SOLUTION

To address computational efficiency, particularly for large datasets, we adopt an iterative solution
reminiscent of coordinate ascent algorithms applied to the Lagrangian dual of our problem.

Theorem 1 The proposed iterative procedure for the optimization problem described in ( 1) con-
verges to the unique optimal solution, provided that feasible initial conditions are used and the total
KL divergence remains finite for all feasible pseudo-labels.

The Kullback-Leibler (KL) divergence, DKL(p∥q), is a well-known convex function in p when q is
fixed. The optimization objective function is a sum of convex KL divergence terms. Consequently,
the entire objective function is convex. Since the optimization problem consists of minimizing a con-
vex function subject to linear constraints, the problem is a convex optimization problem. Convexity
ensures that there is a unique global minimum.
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The iterative algorithm begins with feasible initial conditions, where the f(xf ;w) and f(xr;w)
satisfy the constraints ( 2) ( 3) ( 4). These feasible initial conditions guarantee that the optimization
process starts in the valid region and remains within this region during the optimization. Because the
objective function is convex and the constraints are linear, the iterative procedure will converge to
the global optimal solution. Strong duality ensures that the primal and dual solutions will converge
to a common point, satisfying both the objective function and the constraints.

The uniqueness of the solution follows from the strict convexity of the KL divergence and the linear
constraints. Therefore, the iterative procedure converges to the unique global minimum, as guaran-
teed by the structure of the problem.

Given this property, we can choose an initialization that is close to the pseudo-probabilities. Starting
from a point near the optimal solution significantly reduces the number of iterations required for
convergence. This improves computational efficiency by reducing the overall cost of optimization,
while still guaranteeing that the solution is optimal.

4.1.2 INTEGRATION INTO DEEP MACHINE UNLEARNING

Moreover, our approach can be combined with other unlearning methods. After an initial unlearning
phase conducted using existing techniques, our post-processing step can further refine the model’s
output distribution, ensuring that the unlearning is both comprehensive and efficient.

4.2 PROOF FOR OPTIMIZATION STRATEGY

We now provide a detailed mathematical proof to establish the connection between the optimization
strategy for model unlearning and the adaptive post-learning method, using Lagrangian duality and
iterative coordinate ascent.

4.2.1 LAGRANGIAN DUAL FORMULATION

Consider the optimization problem where the goal is to find the refined probabilities fk(xf ;w) and
fk(xr;w) for the forget and retain sets, respectively, to minimize the objective function (1).

The objective is to adjust the model outputs f(xf ;w) and f(xr;w) such that the pseudo-labels for
the forget set f(xf ;w) obscure the model’s learned associations while ensuring that the retain set
pseudo-labels f(xr;w) are aligned with the model’s original predictions.

To handle the class distribution constraints, we introduce dual variables αk associated with the class
distribution constraint for each class k and define the Lagrangian as follows:

L(f(xf ;w), f(xr;w), α) =

Nf∑
f=1

DKL(p̂f ∥ f(xf ;w)) + λ

Nr∑
r=1

DKL(p̂r ∥ f(xr;w))

+
∑
k

αk

 Nf∑
f=1

fk(xf ;w) +

Nr∑
r=1

fk(xr;w)−Mk

 (5)

The Lagrangian formulation allows us to handle the constraints directly by incorporating them into
the objective function using the dual variables αk. Given the convexity of the objective function,
strong duality holds, meaning that the optimal solution can be found by solving the Lagrangian dual
problem.

4.2.2 SOLUTION VIA COORDINATE ASCENT

The coordinate ascent method can now be applied to solve the optimization problem. The dual
variables αk are updated iteratively to ensure that the class distribution constraints are satisfied. For
each iteration, the primal variables f(xf ;w) and f(xr;w) are updated to minimize the Lagrangian,
followed by updates to the dual variables αk to satisfy the class constraints.

The primal and dual updates can be written as:

fk(xf ;w) = Af,ke
−wk+αk

wk , fk(xr;w) = Ar,ke
−wk+αk

wk (6)
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where Af,k and Ar,k are the initial probabilities.

The dual variable update follows:

α
(t+1)
k = α

(t)
k + η

 Nf∑
f=1

fk(xf ;w) +

Nr∑
r=1

fk(xr;w)−Mk

 (7)

where η is the step size.

4.3 CHANGE THE WEIGHTS

After updating the probabilities, we adjust the model’s weights accordingly by using the KL diver-
gence as the loss function to calculate the loss.

5 EXPERIMENT

5.1 DATASETS AND METRICS

In this study, we employ two distinct datasets that were also used in prior research: CIFAR-10
and Lacuna-10. Lacuna-10 is a curated dataset formed by selecting data from 10 distinct classes,
randomly chosen from the extensive VGG-Face2 dataset(Cao et al., 2018). These selected classes
each have a minimum of 500 samples, with the data further segmented into 400 training and 100
testing images per class. Lacuna-100 expands on this concept by selecting 100 classes with the
same criteria. Our evaluation metric focuses on the model’s accuracy, specifically assessing its
performance on both the forget set and the retain set to evaluate memory retention. Additionally, we
measure the model’s resistance to membership inference attacks for the privacy task.

5.2 IMPLEMENTATION DETAILS

To facilitate a comprehensive comparison with the performance of other models, we follow the setup
in (Kurmanji et al., 2024). We establish two experimental conditions: small-scale and large-scale.
The small-scale setting, referred to as CIFAR-5/Lacuna-5, involves a subset of 5 classes from each
dataset, comprising 100 training, 25 validation, and 100 testing samples per class. Notably, the
forget set includes 25 samples from the initial class, accounting for 5% of the dataset. Conversely,
the large-scale setting encompasses all classes from both CIFAR-10 and Lacuna-10, providing a
broader spectrum for analysis. In the large-scale scenario, we will explore both class unlearning and
selective unlearning. For class unlearning, we define the forget set as the entirety of the training set
for class 5, which constitutes 10% of the data. In the selective unlearning scenario, we aim to forget
100 examples from class 5, representing 0.25% of CIFAR-10 and 2% of Lacuna-10.

To align with precedents in the field, our experiments will be conducted using two established ar-
chitectures: ResNet-18 and ALL-CNN (Springenberg et al., 2014). The baseline model will be
pretrained on CIFAR-100 and Lacuna-100 datasets for initial weight setting. Additionally, λ will be
set to a default value of 1 in the following experiments.

5.3 BASELINE

Our approach is benchmarked against the latest state-of-the-art methods and established baselines
to highlight its efficacy: Retrain: This involves retraining the original model solely on the retain
set Dr, considered the gold standard. However, this method is typically deemed impractical for
real-world applications. Original: TThe baseline model trained on the complete dataset D, without
any modifications for data forgetting. Finetuning: The original model is fine-tuned on the retain
set Dr, incorporating no specific forgetting mechanism. NegGrad+ (Kodge et al., 2023): An in-
novative method that applies gradient ascent to the forget set and gradient descent to the retain set
over 500 iterations. Fisher Forgetting (Golatkar et al., 2020a): Adjusts the model’s weights to
effectively “unlearn” the data meant to be forgotten, simulating a scenario where the model was
never exposed to this data. NTK Forgetting (Doan et al., 2021): Employs novel techniques like
PCA-OGD to minimize forgetting by orthogonally projecting onto principal directions, preserving
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Table 1: Unlearning results with ResNet-18 for the bias removal task. Our method achieves higher
forget rates while preserving overall model performance. “PPU w/ uniform” indicates that pseudo-
probabilities are set to a uniform distribution, while “PPU w/ random” refers to pseudo-probabilities
following a random distribution.

CIFAR-5 Lacuna-5
Model Test error (↓) Retain error (↓) Forget error (↑) Test error (↓) Retain error (↓) Forget error (↑)

Retrain 24.90 0.00 28.80 5.80 0.00 4.80
Original 24.20 0.00 0.00 5.70 0.00 0.00
Finetune 24.30 0.00 0.00 5.60 0.00 0.00
Fisher 31.60 14.00 4.80 6.70 14.00 6.40
NTK 24.40 0.00 22.40 5.60 0.00 0.00
NegGrad+ 25.50 0.00 41.3 6.10 0.00 1.30
CF-k 22.60 0.00 0.00 5.80 0.00 0.00
EU-k 23.50 0.00 10.70 5.90 0.00 0.00
Bad-T 22.73 5.12 8.00 5.00 8.64 0.14
SCRUB 24.20 0.00 40.80 6.20 0.00 24.80
PPU w/ random 22.00 0.00 80.00 2.20 0.00 64.00
PPU w/ uniform 27.00 0.21 80.00 2.80 0.42 68.00

Table 2: Seletive unlearning results with ALL-CNN for the bias removal task. Our method achieves
higher forget rates while preserving overall model performance. “PPU w/ uniform” indicates that
pseudo-probabilities are set to a uniform distribution, while “PPU w/ random” refers to pseudo-
probabilities following a random distribution.

CIFAR-10 Lacuna-10
Model Test error (↓) Retain error (↓) Forget error (↑) Test error (↓) Retain error (↓) Forget error (↑)

Retrain 16.71 0.00 25.67 1.60 0.00 0.67
Original 16.43 0.00 0.00 1.53 0.00 0.00
Finetune 16.50 0.00 0.00 1.43 0.00 0.00
Fisher 21.39 4.00 13.00 1.87 0.01 0.00
NegGrad+ 21.36 3.23 45.33 2.77 0.40 8.67
CF-k 16.29 0.00 0.00 1.53 0.00 0.00
EU-k 17.62 0.11 0.33 1.83 0.00 0.00
Bad-T 22.43 10.13 1.67 4.90 1.34 0.67
SCRUB 16.55 0.00 20.33 2.07 0.00 1.67
PPU w/ random 17.00 0.00 86.00 2.20 0.00 64.00
PPU w/ uniform 16.60 0.00 95.00 2.80 0.42 68.00

data structure integrity. CF-k, EU-k (Goel et al., 2022): These methods focus on the model’s last
k layers. “Exact-unlearning” (EU-k) re-trains these layers from scratch, while “Catastrophic For-
getting” (CF-k) fine-tunes them on the retain set Dr. SCRUB(Kurmanji et al., 2024): Introduces a
novel training objective and has demonstrated superior performance in prior metrics.

5.4 REMOVE BIAS

In addressing bias removal, our goal is to maximize the forget set error. Thus, instead of performing
optimizations, we can directly modify the forget set probabilities to reflect pseudo probabilities.
Additionally, we experimented with various distributions for the pseudo-probabilities, including
uniform and random distributions.Specifically, the random distribution will be generated by applying
the softmax function to randomly generated numbers. In general, the uniform distribution tends to
perform better in terms of forget error, but it often leads to worse results in test error and retain error.
As shown in Table 1, our method PPU comes with a much higher forget error (60-80 percent higher),
which is the desired outcome in unlearning scenarios. Table 2 also demonstrates that PPU achieves
better performance in forget error for selective unlearning in larger models. Based on the forget error
metric, our method appears to be the most successful at unlearning, achieving the desired outcome
of complete forgetfulness without severely compromising the performance of the data that should
be retained. Additionally, our method exhibits the lowest test error, demonstrating that the model’s
performance and generalizability are well-preserved even after applying our unlearning technique.
The results demonstrate that using pseudo-probabilities is effective for bias removal.
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Table 3: Unlearning results with ALL-CNN for the privacy protection task.
CIFAR-10 Lacuna-10

Model Test error Retain error Forget error Test error Retain error Forget error

Retrain 16.71 0.00 26.67 1.50 0.00 0.33
Original 16.71 0.00 0.00 1.57 0.00 0.00
Finetune 16.86 0.00 0.00 1.40 0.00 0.00
NegGrad+ 21.65 4.54 47.00 3.60 0.87 14.33
CF-k 16.82 0.00 0.00 1.57 0.00 0.00
EU-k 18.44 0.32 0.33 3.90 0.76 0.00
Bad-T 22.43 10.13 1.67 4.90 0.67 1.34
SCRUB 17.01 0.00 33.00 1.67 0.00 0.00
SCRUB+R 16.88 0.00 26.33 1.67 0.00 0.00
PPU 18.05 0.00 25.35 1.05 0.00 0.05

5.5 PROTECT PRIVACY

To protect privacy, our goal is to ensure that the forget error remains close to that of retraining. For
membership inference attacks, we adopt the approach outlined by Kurmanji et al.(Kurmanji et al.,
2024). Specifically, we train a binary classifier (the “attacker”) using the losses of the unlearned
model on both the forget and test examples, with the objective of classifying instances as either “in”
(forget) or “out” (test). The attacker then predicts labels for held-out losses—losses that were not
used during training—balanced between the forget and test sets. A successful defense is indicated
by an attacker accuracy of 50%, signifying that the attacker is unable to distinguish between the two
sets, demonstrating the effectiveness of the unlearning method.

To preserve privacy, we monitor both the training and retain accuracy at each epoch. As shown
in Figure 2, the experiment on selective unlearning with ALL-CNN on CIFAR-10 reveals that the
forget error gradually increases during training. Therefore, checkpoints are saved at each epoch, and
the model closest to the original is selected. In this setup, pseudo-probabilities are initialized using
a uniform distribution. According to Table 3, PPU’s forget error is very close to that of retraining,
particularly in the Lacuna-10 experiment, where it is the closest match. In the membership inference
attack experiment, shown in Table 4, PPU consistently achieves nearly 50% accuracy, indicating
strong privacy preservation. This demonstrates that, with the refinement of pseudo-probabilities, the
model can maintain the original distribution while effectively forgetting the designated forget set.

Figure 2: Forget set error on selective unlearning with ALL-CNN on CIFAR-10

5.6 COMPUTATIONAL EFFICIENCY

We compare the time required for SCRUB (Kurmanji et al., 2024), retraining, and our method, with
all experiments conducted on an NVIDIA RTX-4090. Time is recorded over 5 runs, and we report
both the mean and the standard error. In Figure 3, we present the time required for the bias removal
tasks using the ResNet-18 model and selective unlearning using ALL-CNN. Compared to other
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Table 4: Membership inference attack results with ResNet-18 and ALL-CNN in large-scale unlearn-
ing. The closer the result is to 50%, the better the performance.

ResNet ALL-CNN
Class Selective Class Selective

Model mean std mean std mean std mean std

Retrain 49.33 1.67 54.00 1.63 55.00 4.00 48.73 0.24
Original 71.10 0.67 65.33 0.47 66.50 0.50 71.40 0.70
Finetune 75.57 0.69 64.00 0.82 68.00 1.00 74.97 1.27
NegGrad+ 69.57 1.19 66.67 1.70 72.00 0.00 70.03 1.92
CF-k 75.73 0.34 65.00 0.00 69.00 2.00 72.93 1.06
EU-k 54.20 2.27 53.00 3.27 66.50 3.50 51.60 1.22
Bad-T 54.00 1.10 59.67 4.19 63.4 1.2 77.67 4.11
SCRUB 52.20 1.71 78.00 2.45 52.00 0.00 54.30 2.24
SCRUB+R 52.20 1.71 58.67 1.89 52.00 0.00 54.30 2.24
PPU 51.00 1.05 58.00 0.93 54.00 0.70 50.00 0.40

methods, PPU significantly reduces computation time, cutting it to less than half of what is required
by SCRUB. The results further emphasize the high effectiveness of the optimization approach and
the use of pseudo-probabilities to fine-tune the model weights.

Figure 3: Time needed for the unlearning method (measured over 5 runs)

5.7 ADAPTIVE UNLEARNING

Our method can also be applied as post-processing after unlearning methods to enhance their results.
PPU can be considered a plug-in that is compatible with nearly all existing methods. In our experi-
ments, we built on SCRUB (Kurmanji et al., 2024) and applied our method afterward. For the bias
removal task, this approach improves forget error by more than 50%, with less than a 0.5% decrease
in retain error. Detailed results can be found in Appendix A.1. In addition to SCRUB, we applied
our method after fine-tuning on CIFAR-10 with a pretrained ResNet, achieving a 2.5% retain error
and a 60% forget error. In comparison, the original fine-tuning method achieved only a 2% retain
error and a 16% forget error.

6 ABLATION STUDY

In the optimization objective function ( 1), the value of λ was set to 1 in all previous experiments.
Here, we explore the impact of varying λ on the retain and forget errors in a small-scale unlearn-
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Table 5: The retain error and forget error with varying λ values were evaluated in a small-scale
unlearning experiment on CIFAR-5 using ResNet.

λ = 1 λ = 2 λ = 3 λ = 4
Model Retain error Forget error Retain error Forget error Retain error Forget error Retain error Forget error

PPU 0.21 80.00 0.00 56.00 0.00 23.00 0.00 30.00

ing experiment on CIFAR-5 with ResNet. As λ increases, more weight is assigned to the retain
set, resulting in a decrease in retain error from 0.21% to 0%. However, this reduction comes at a
significant cost to the forget error.

To investigate our method in a larger setting, we also conducted an additional experiment on the
CIFAR-100 dataset with one class unlearning. Our method demonstrated very good performance.
Using the ResNet architecture, SCRUB achieved a forget error of 5.19 and a retain error of 0.00015.
In contrast, our method achieved a retrain 031 error of 0.00 and a forget error of 98.25.

7 CONCLUSION

This research introduces a novel approach to machine unlearning, presenting an optimization frame-
work that refines predictive probability distributions within deep learning models. Our method ex-
cels in striking an optimal balance between forgetting effectiveness and preserving model perfor-
mance on retained data. Additionally, it demonstrates superior resilience against membership infer-
ence attacks. Empirical results across diverse datasets and model architectures, including CIFAR-10
and Lacuna-10 with ResNet and ALL-CNN, highlight the superiority of our approach over existing
state-of-the-art methods.

Furthermore, the operational flexibility, theoretical insights, and high computational efficiency of
our approach provide a solid foundation for further developments. However, we acknowledge cer-
tain limitations. Our current method is limited to addressing unlearning in classification tasks and
may encounter convergence issues during the optimization process. Additionally, the approach is
restricted to supervised learning settings and does not extend to unsupervised tasks at this stage. Fu-
ture work will focus on extending the method to various models, including large language models,
and broadening its applicability beyond classification tasks.
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A APPENDIX

A.1 MORE RESULTS FOR ADAPTIVE UNLEARNING

Here, we present additional results for our method, applied as a post-processing step after SCRUB.
For the bias removal task, our method significantly improves the forget error while having mini-
mal impact on the model’s original performance. The results are incorporated in Table 6, Table 7,
Table 8, Table 9, and Table 10.
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Table 6: Unlearning results with ALL-CNN. Our method gets top performance in forget with little
influence on model performance (retain error).

CIFAR-5 Lacuna-5
Model Retain error (↓) Forget error (↑) Retain error (↓) Forget error (↑)

Retrain 0.13 28.80 0.00 4.67
Original 0.17 0.00 0.00 0.00
Finetune 0.04 0.00 6.63 19.33
Fisher 31.83 15.20 51.09 39.33
NTK 0.17 13.6 0.00 3.33
NegGrad+ 0.56 36.00 0.14 12.00
CF-k 0.00 0.00 0.00 0.00
EU-k 3.23 8.00 0.00 0.00
Bad-T 9.68 10.67 2.32 0.00
SCRUB 0.08 40.80 0.00 25.33
SCRUB + PPU 1.05 68.00 1.47 78.00

Table 7: Class unlearning results with ResNet. Our method gets top performance in forget with little
influence on model performance (retain error).

CIFAR-10 Lacuna-10
Model Retain error (↓) Forget error (↑) Retain error (↓) Forget error (↑)

Retrain 0.00 100.00 0.00 99.75
Original 0.00 0.00 0.00 0.00
Finetune 0.00 0.00 0.00 0.00
Fisher 2.45 100.00 0.00 100.00
NegGrad+ 1.74 91.26 0.00 14.90
CF-k 0.00 0.03 0.00 0.00
EU-k 0.00 98.79 0.01 4.06
Bad-T 11.34 94.67 1.06 67.60
SCRUB 0.51 100.00 0.28 100.00
SCRUB+PPU 2.48 100.00 0.00 100.00

Table 8: Class unlearning results with ALL-CNN. Our method gets top performance in forget with
little influence on model performance (retain error).

CIFAR-10 Lacuna-10
Model Retain error (↓) Forget error (↑) Retain error (↓) Forget error (↑)

Retrain 0.00 100.00 0.00 100.00
Original 0.00 0.00 0.00 0.00
Finetune 0.00 0.00 0.00 0.00
Fisher 3.66 99.00 0.00 89.00
NegGrad+ 0.58 87.22 0.00 6.56
CF-k 0.00 0.00 0.00 0.00
EU-k 0.13 100.00 0.00 77.19
Bad-T 5.84 81.93 0.37 38.65
SCRUB 0.12 100.00 0.00 100.00
SCRUB+PPU 0.20 100.00 0.00 100.00

Table 9: Selective unlearning results with ResNet. Our method gets top performance in forget with
little influence on model performance (retain error).

CIFAR-10 Lacuna-10
Model Retain error (↓) Forget error (↑) Retain error (↓) Forget error (↑)

Retrain 0.00 29.67 0.00 1.0
Original 0.00 0.00 0.00 0.00
Finetune 0.00 0.00 0.00 0.00
Fisher 2.88 3.00 0.00 0.00
NegGrad+ 4.10 53.70 0.90 13.00
CF-k 0.00 0.00 0.00 0.00
EU-k 0.40 23.70 0.00 0.00
Bad-T 14.53 34.67 3.26 0.33
SCRUB 0.00 70.33 0.00 4.67
SCRUB+PPU 0.01 100.00 5.39 100.00

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Table 10: Selective unlearning results with ALL-CNN. Our method gets top performance in forget
with little influence on model performance (retain error).

CIFAR-10 Lacuna-10
Model Retain error (↓) Forget error (↑) Retain error (↓) Forget error (↑)

Retrain 0.00 25.67 0.00 0.67
Original 0.00 0.00 0.00 0.00
Finetune 0.00 0.00 0.00 0.00
Fisher 4.00 13.00 0.01 0.00
NegGrad+ 3.23 45.33 0.40 8.67
CF-k 0.00 0.00 0.00 0.00
EU-k 0.11 0.33 0.00 0.00
Bad-T 10.13 1.67 1.34 0.67
SCRUB 0.00 29.33 0.00 1.67
SCRUB+PPU 0.00 100.00 0.00 88.12
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