

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 UNDERSTANDING ROBUSTNESS AGAINST GRADIENT INVERSION ATTACKS: A FLAT MINIMA PERSPECTIVE

Anonymous authors

Paper under double-blind review

ABSTRACT

Gradient Inversion Attacks (GIAs), which aim to reconstruct input data from its gradients, pose substantial risks of data leakage and challenges of data privacy in distributed learning systems, e.g., federated learning (FL). Nevertheless, existing defenses against GIA are mostly ad-hoc by relying on gradient modifications without a principle of when gradients are vulnerable to GIA and how we can fundamentally suppress the possibility of data leakage. We interpret GIA with the mutual information between the gradients G and their data X , i.e., $I(X; G)$, which is revealed to be upper-bounded by the Hessian of loss. Based on the findings, we rethink the robustness against GIA for a flat minima searching-based FL algorithm, where it inherently suppresses Hessian values, thus minimizing $I(X; G)$. We extensively demonstrate that the gradients computed by searching flatter minima in the FL scenario achieve a substantial improvement in robustness against GIAs. Our work sheds light on novel benefits of flat minima searching, not only promoting better generalization but also hardening privacy in FL systems.

1 INTRODUCTION

Federated Learning (FL) has emerged as one of the most promising frameworks for decentralized training. The primary objective of FL is to enable model training on individual client devices without transmitting data to a central server, thereby mitigating privacy risks such as data leakage. In this paradigm, each client trains a local model, and the server aggregates these locally computed model updates to construct a global model (McMahan et al., 2017). Nevertheless, recent studies have revealed that FL remains vulnerable to significant privacy risks. In particular, gradients from local models can leak sufficient information about client data via an attacking mechanism widely known as Gradient Inversion Attacks (GIAs) (Zhu et al., 2019; Geiping et al., 2020; Li et al., 2022).

As baselines for mitigating these GIA threats, prior approaches directly distort the gradient values, e.g., adding random Gaussian noise to gradients (Geyer et al., 2017) or noising the original data itself (Sun et al., 2021), thereby leading to insufficient reconstruction by GIA. Alternatively, gradient sparsification by partially dropping (Aji & Heafield, 2017) or clipping (Wei et al., 2021) the gradient values has been shown to impede reconstruction. However, these approaches primarily modify the gradient or the data themselves, thereby not only hindering reconstruction but also taking a risk of wrongly altering the training. More importantly, prior approaches lack of principled way of knowing when gradients become vulnerable to GIA and suppressing the possibility of data leakage via GIA. These limitations leave the existing defensive ways still vulnerable to the novel advanced attacks (Mo et al., 2021; Liu et al., 2021).

To establish a fundamental understanding, we frame GIA through a lens of mutual information between the gradients G and the corresponding data X , i.e., $I(X; G)$. Because gradients inherently encode the direction and magnitude of parameter updates toward an optimal point in the loss landscape, G naturally contains substantial information about the underlying data X , formalized by the high mutual information with the data. We conjecture that the ground truth of gradients is indeed an ensemble across datasets; thus, it does not have to form a one-to-one mapping to each sample. Therefore, we argue that reducing the sensitivity of G to X instances, equivalently lowering $I(X; G)$, is fundamentally feasible, making it more difficult for adversaries to reconstruct X from G while keeping the distributed training undamaged.

054 In this work, we formulate an upper bound of $I(X; G)$ in terms of the empirical Hessian, thereby
 055 revealing the connection between $I(X; G)$ and the curvature of the loss landscape. By pursuing a
 056 flatter loss surface during training, i.e., keeping the Hessian minimal, we can suppress $I(X; G)$ to
 057 defend against GIAs. Based on this intuition, we rethink FL with flat minima searching, such as
 058 FedSAM (Qu et al., 2022a), FedASAM (Caldarola et al., 2022), FedGF (Lee & Yoon, 2024), etc.,
 059 with a view to tightly bounding $I(X; G)$ and ultimately hindering GIA. Finally, we rigorously prove
 060 that convergence toward flat minima in FL ensures robustness against GIA while achieving stable
 061 convergence. Our contributions are summarized as follows:

- 062 • **A mutual information perspective of GIA:** We establish an upper bound on the mutual
 063 information $I(X; G)$ by explicitly associating it to the empirical Hessian H . Our key
 064 lessons are: **i**) A larger Hessian makes gradients vulnerable to GIAs, and **ii**) Gradients
 065 computed on a smooth loss surface can be a remedy for GIAs.
- 066 • **Rethinking of flat minima for defending GIA:** We argue that flat minima searching paves
 067 a smooth path toward minima, thereby resulting in suppressed $I(X; G)$ and hindering GIA.
- 068 • **Convergence and robustness guarantees:** We rephrase the convergence analysis of Fed-
 069 SAM, which is a simple baseline of flat minima searching FL, so that it theoretically guar-
 070antees the robustness against GIA during the training phase.
- 071 • **Benchmarking the existing defenses and attacks:** By an extensive investigation of the
 072 existing defensive FL and GIAs, we demonstrate that the robustness correlates with Hes-
 073 sian, and flat minima suppress the Hessian spectrum, reducing attack performance.

075 2 RELATED WORK

076 We introduce prior studies on federated learning (FL), gradient inversion attacks (GIAs), defense
 077 mechanisms, and flat minima-based optimization methods to establish the context of this work.

078 **Federated Learning:** FL enables multiple clients to collaboratively train a global model distributed
 079 from a central server without revealing their local datasets (McMahan et al., 2017). Each client
 080 computes updates on its local datasets and transmits resulting updates (e.g., parameters or gradients)
 081 to the central server, which aggregates and updates to refine the global model. This framework
 082 mitigates the risk of direct data leakage from the central server. Nevertheless, recent studies have
 083 demonstrated that gradients during communication still encode sensitive information about local
 084 data, thereby allowing adversaries to reconstruct training data.

085 **Gradient Inversion Attacks:** We investigate an honest-but-curious server in GIA. In this setting,
 086 the adversary exploits shared gradients to reconstruct private training data. Early studies propose
 087 optimization-based approaches, such as Deep Leakage from Gradients (DLG) (Zhu et al., 2019),
 088 which iteratively optimize dummy inputs to match observed gradients. iDLG (Zhao et al., 2020)
 089 extends DLG by identifying ground-truth labels from last-layer gradients, enabling more accurate
 090 reconstruction. Geiping et al. (2020) adopts cosine similarity for high-fidelity recovery of input data.
 091 While these optimization-based methods rely on gradient matching, subsequent studies further pro-
 092 pose generative-model-based methods that leverage priors from generative model for reconstruction.

093 The generative-model-based approaches utilize priors to improve data reconstruction. GIAS (Jeon
 094 et al., 2021) optimizes latent representation of models with observed gradients, while GGL (Li et al.,
 095 2022) employs Generative Adversarial Networks (GAN) priors to reconstruct private data under
 096 defense mechanisms. GIFD (Fang et al., 2023) extends to out-of-distribution settings by optimizing
 097 intermediate feature layers, undermining the assumption that GANs and FL operate on the same
 098 data distribution. These studies indicate that GIA evolves into highly effective threats, diminishing
 099 the effectiveness of basic defense strategies.

100 **Defense Strategies Against GIA:** To counteract GIA, several defense strategies have been pro-
 101 posed. Differential privacy (Geyer et al., 2017) perturbs gradients with stochastic noise, while
 102 Soteria (Sun et al., 2021) adds noise to data representations. Other approaches, such as gradient
 103 sparsification (Aji & Heafield, 2017) and clipping (Wei et al., 2021), selectively truncate or mask
 104 gradient components to limit information leakage. Although these methods hinder gradient-based
 105 reconstruction, they remain vulnerable to generative-model-based attacks. More importantly, most
 106 strategies directly distort gradients or data while overlooking the intrinsic sensitivity of gradients to

108 training data, the fundamental source of information leakage. In this work, we address this issue by
 109 establishing a theoretical connection between gradient sensitivity and mutual information.
 110

111 **Flat Minima and Privacy in Federated Learning:** Flat minima searching (Hochreiter & Schmid-
 112 huber, 1997), which characterizes the tendency of models to converge toward regions where the
 113 loss remains stable under small perturbation, has been widely recognized as a key factor for model
 114 generalization. Sharpness-Aware Minimization (SAM) (Foret et al., 2020) formalizes this idea by
 115 explicitly seeking flat minima through min-max optimization of local perturbations within a neigh-
 116 borhood of the parameters. Extension of SAM to FL setting, including FedSAM (Qu et al., 2022a),
 117 FedASAM (Caldarola et al., 2022), and FedGF (Lee & Yoon, 2024) demonstrate improved opti-
 118 mization stability under heterogeneous data distribution and enhance generalization by analyzing
 119 optimization trajectories and gradient variance (Jastrzebski et al., 2020). Beyond generalization,
 120 several studies integrate flat minima with differential privacy (DP) to mitigate the negative impact of
 121 noise on training while preserving optimization ability (Park et al., 2023; Wang et al., 2025). How-
 122 ever, a principled theoretical understanding of how flatness relates to gradient leakage, particularly
 123 in FL, remains unexplored. In this work, we establish a formal connection between flat minima and
 124 mutual information, showing that flat minima inherently strengthen model robustness against GIA.
 125

3 ROBUSTNESS AGAINST GRADIENT INVERSION ATTACK VIA FLAT MINIMA

127 In this section, we provide a fundamental understanding of how the mutual information between
 128 gradients and input has been bounded by the Hessian of the loss, thus leading to a theoretical analysis
 129 that demonstrates how FedSAM prevents GIA attacks.
 130

131 **Notations:** \mathbb{R} means the real number set. The training data and labels are given by $X \in \mathbb{R}^{m \times n}$
 132 and $Y \in \mathbb{R}^m$. A batch is represented as $(X_B, Y_B) = (x_i, y_i)_{i=1}^B$, where B is the batch size and
 133 $\hat{X} \in \mathbb{R}^{m \times n}$ states the reconstructed data from an adversary. The per-sample loss is defined as
 134 $\mathcal{L}(\theta; x, y) = -\log p(y | x; \theta)$, i.e., the cross-entropy loss. The batch loss is $\mathcal{L}_B(\theta; X_B, Y_B) =$
 135 $\frac{1}{B} \sum_{i=1}^B \mathcal{L}(\theta; x_i, y_i)$. Let θ indicate the local parameter, whose model is $f_\theta : X \mapsto G$, and the at-
 136 tack model is $g_\phi : G \mapsto \hat{X}$ parameterized by ϕ . The observed gradient is $G = \nabla_\theta \mathcal{L}_B(\theta; X_B, Y_B) \in$
 137 \mathbb{R}^d and the Hessian is $\mathbf{H}_B = \nabla_\theta^2 \mathcal{L}_B(\theta; X_B, Y_B) \in \mathbb{R}^{d \times d}$. For per-sample gradient $g_i =$
 138 $\nabla_\theta \mathcal{L}(\theta; x_i, y_i)$, the covariance of the batch gradient is $\Sigma_G = \frac{1}{B} \sum_{i=1}^B (g_i - G)(g_i - G)^\top$.
 139

140 **FL Problem Settings:** We consider FL setting with N clients. Each client $i \in [N]$ possesses
 141 private data distribution D_i , which may differ across clients due to data heterogeneity. A sample
 142 from client i is denoted as $\xi_{ij} = (x_{ij}, y_{ij}) \sim D_i$. At each communication round $r \in [R]$, the server
 143 randomly selects a subset $S^r \subseteq [N]$ of clients and broadcasts the current global model θ^r to them.
 144 Each selected client performs K steps of local updates with a mini-batch of size B and learning rate
 145 η_i . Specifically, the local empirical risk for client i is defined as $F_i(\theta) := \mathbb{E}_{\xi \sim D_i} [\mathcal{L}(\theta; \xi)]$. After
 146 local training, clients send their model updates Δ_i^r to the server. The server then aggregates the
 147 updates and obtains the new global model θ^{r+1} with global learning rate η_g : $\theta^{r+1} = \theta^r + \eta_g \Delta^r$,
 148 $\Delta^r = \frac{1}{s} \sum_{i \in S^r} \Delta_i^r$. Consequently, FL minimizes the global objective $F(\theta)$:
 149

$$\theta^* = \arg \min_{\theta} \{F(\theta) := \sum_{i \in [N]} \frac{m_i}{m} F_i(\theta)\}, \quad (1)$$

152 where m_i is the number of samples in client i , and $m = \sum_{i \in [N]} m_i$. In the case of FedSAM, each
 153 local update is modified by perturbing the parameters with radius ρ , based on the SAM principle.
 154

3.1 BOUNDING MUTUAL INFORMATION VIA EMPIRICAL HESSIAN

155 We analyze mutual information $I(X; G)$, which quantifies how much information the gradients G
 156 encode about the training data X . This information-theoretic perspective has been employed in prior
 157 work to evaluate privacy leakage (Liu et al., 2021; Mo et al., 2021). From this standpoint, we inter-
 158 pret $I(X; G)$ through the entropy of the gradients $H(G)$, since the amount of information preserved
 159 in G is reflected in its uncertainty. However, the exact computation of $H(G)$ is intractable, we con-
 160 sider the worst-case uncertainty instead, which is bounded above by the entropy of the multivariate
 161

162 Gaussian distribution with covariance matrix Σ_G :
 163

$$164 \quad H(G) \leq \frac{d}{2} \log(2\pi e) + \frac{1}{2} \log \det(\Sigma_G), \quad (2)$$

166 where $\Sigma_G \succ 0$ ensures that $\log \det(\Sigma_G)$ is well defined.
 167

168 **Theorem 3.1 (Bound on Mutual Information with Empirical Hessian and Batch Size)**

169 *Consider the score function $s(\theta; x, y) = \nabla_\theta \log p(y | x; \theta)$, which is the negative gradient of
 170 loss function. The covariance of gradients Σ_G can be related to the empirical Hessian, leading to
 171 following upper bound on the mutual information $I(X; G)$.*

$$172 \quad I(X; G) \leq \frac{d}{2} \log\left(\frac{2\pi e}{B}\right) + \frac{1}{2} \log(\det(\mathbf{H})), \quad (3)$$

174 Theorem 3.1 shows that the determinant of the empirical Hessian fundamentally governs mutual
 175 information. A smaller Hessian, which corresponds to flatter curvature, reduces the information
 176 encoded in the gradients and strengthens robustness to the gradient inversion attack, hindering data
 177 reconstruction. In addition, the batch size B serves as a mitigating factor, increasing B tightens the
 178 mutual information bound and enhances robustness. The proof is presented in Appendix B.1.
 179

180 **3.2 ROBUSTNESS THROUGH SHARPNESS-AWARE MINIMIZATION**
 181

182 We then step forward to elucidate how Sharpness-Aware Minimization (SAM) (Foret et al., 2020),
 183 a principled method for finding flatter minima, smoothly renders the loss surface curvature captured
 184 by the Hessian, leading to a tightened mutual information bound. As a preliminary, the objective
 185 function of SAM is formalized as follows:

$$186 \quad F_{\text{SAM}}(\theta) := \sum_i^N \frac{m_i}{m} F_i^{\text{SAM}}(\theta), \quad F_i^{\text{SAM}}(\theta) := \max_{\|\delta\|_2 \leq \rho} F_i(\theta + \delta).$$

189 **Theorem 3.2 (Mutual Information Bound via Sharpness-Aware Minimization)** *Considering
 190 $\delta = \rho v$, $\|v\|_2 = 1$ and a second-order Taylor expansion of the SAM objective, we can derive the
 191 following upper bound of $I(X; G)$:*

$$193 \quad I(X; G) \leq \frac{d}{2} \log\left(\frac{2\pi e}{B}\right) + \frac{1}{2} \log \det(\mathbf{H}) \quad (4)$$

$$195 \quad \leq \frac{d}{2} \log\left(\frac{2\pi e}{B}\right) + \frac{d}{2} \log\left(\frac{2}{\rho^2} (F_{\text{SAM}}(\theta) - F(\theta) + \rho \|G\|_2)\right) \quad (5)$$

197 where B is the batch size, d is the number of model parameters, F_{SAM} the SAM objective function.
 198

199 In Theorem 3.2, the SAM objective F_{SAM} appears explicitly in the bound. When the training ob-
 200 jective F becomes F_{SAM} , i.e., adopting flatter minima searching, it directly reduces the empirical
 201 Hessian and $I(X; G)$. Moreover, the batch size B tightens the bound. From a robustness per-
 202 spective, this indicates that gradient computed under FedSAM carry less specific information about
 203 input data, mitigating gradient leakage. In other words, learning toward flatness enhances model
 204 generalization and strengthens robustness against gradient inversion attacks.

205 **Convergence Analysis of FL with Batch size and Hessian Perspectives:** The theoretical bounds
 206 in Theorem 3.1 and Theorem 3.2 reveal that the determinant of the empirical Hessian $\det(\mathbf{H})$ and
 207 the batch size B are the key quantities to mitigate GIA. We subsidiarily verify these quantities in the
 208 optimization dynamics, and among the family of SAM-based methods, we focus on FedSAM, which
 209 directly reflects our targeting FL system. We reformulate the convergence analysis of FedSAM done
 210 in Qu et al. (2022a) by using the term of the empirical Hessian.

211 For the case of full client participation with learning rates $\eta_l = \mathcal{O}(\frac{1}{\sqrt{R}KL})$, $\eta_g = \sqrt{KN}$ and the
 212 perturbation $\rho = \mathcal{O}(\frac{1}{\sqrt{R}})$, the iterates generated by FedSAM satisfy:

$$214 \quad \mathcal{O}\left(\frac{FL}{\sqrt{RKN}} + \frac{\sigma_g^2}{R} + \frac{L^2 \sigma_l^2}{R^{3/2} \sqrt{KN}} + \frac{L}{BK^{3/2} \sqrt{RN}} + \frac{\det(\mathbf{H})}{BK^{3/2} L' \sqrt{RN}}\right)$$

216 For partial client participation with $S \geq K$, and learning rates $\eta_l = \mathcal{O}(\frac{1}{\sqrt{RKL}})$, $\eta_g = \sqrt{KS}$, and
 217 $\rho = \mathcal{O}(\frac{1}{\sqrt{R}})$, iterates satisfy:
 218

$$219 \quad \mathcal{O}\left(\frac{FL}{\sqrt{RKS}} + \frac{\sqrt{K}G^2}{\sqrt{RS}} + \frac{L^2\sigma_l^2}{R^{3/2}K} + \frac{\sqrt{KL}}{B\sqrt{RS}} + \frac{\sqrt{K}\det(\mathbf{H})}{B\sqrt{RSL'}}\right)$$

222 By analyzing the convergence terms of FedSAM, we observed $\det(\mathbf{H})$ and B explicitly emerge in
 223 the rate. These results demonstrate that the convergence rate of FedSAM is directly accessed by
 224 $\det(\mathbf{H})$ and B . This aligns with our theoretical bounds, minimal $\det(\mathbf{H})$ and maximal B jointly
 225 diminish $I(X; G)$, while concurrently stabilizing optimization. Thus, FedSAM achieves stable
 226 convergence and enhances robustness against GIA, underscoring the role of curvature reduction.
 227

228 In summary, the convergence analysis confirms that $\det(\mathbf{H})$ and B , identified from Theorem 3.1
 229 and Theorem 3.2, contribute both robustness and optimization. The proof is given in Appendix B.3.
 230

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

234 **Setup:** We have conducted main experiments on the CIFAR-10 (Krizhevsky et al., 2009) classifica-
 235 tion task. Across all experiments, we have used a randomly initialized LeNet (Zhu et al., 2019), a
 236 simple baseline architecture for FL. The FL scenario consists of one server and 10 clients. In each
 237 round, 5 clients are randomly selected to participate in each round. We run 1,000 rounds in total.
 238 We consider Independent and Identically Distributed (IID) cases of data partitioning across clients.
 239 The hyperparameters are provided in the Appendix C. All reconstruction attacks targeted the same
 240 image drawn from the training set, and the target gradient used for reconstruction was computed
 241 with a batch size of $B = 1$, using a single minibatch over a single epoch. For all attacks, we first
 242 inferred labels using the procedure proposed by iDLG (Zhao et al., 2020) and subsequently used
 243 them during the attack. We calculated four different metrics —PSNR(Peak Signal to Noise Ratio),
 244 SSIM(Structural Similarity Index Map), LPIPS(Learned Perceptual Image Patch Similarity), and
 245 MSE(Mean Squared Error) —to evaluate the difference between the reconstructed image and the
 246 ground-truth image. A pre-trained VGG network is used to calculate the LPIPS score.
 247

248 **Gradient inversion attack baselines:** We evaluated vulnerability to gradient inversion using
 249 optimization-based attacks **iDLG** (Zhao et al., 2020), **GI** (Yin et al., 2021), **IG** (Geiping et al.,
 250 2020) and generative-model attacks dubbed **GIA** (Jeon et al., 2021) and **GIFD** (Fang et al., 2023).
 251 For these generative model-based attacks, we used a pretrained StyleGAN2 (Karras et al., 2020) to
 252 generate high-quality images with sufficient fidelity.
 253

254 **SAM baselines:** We have adopted various FL plus SAM methods and compared them with FedAvg.
 255 We use **FedSAM** (Qu et al., 2022a), **FedASAM** (Caldarola et al., 2022), **FedGF** (Lee & Yoon,
 256 2024) for baselines. We additionally test **Sharpness Aware Initialization (SAI)** (Wang et al., 2025)
 257 in FL, which provides a flat initialization.
 258

4.2 RELATIONSHIP BETWEEN HESSIAN AND GRADIENT INVERSION ATTACK

259 For a baseline FedAvg, we estimate the Hessian and perform gradient inversion attacks at every
 260 100 rounds to investigate the relationship between the Hessian values and the reconstruction quality.
 261 The empirical Hessian matrix was computed as the average of the Hessian matrix over 100 samples
 262 drawn from the training set. Since Hessian \mathbf{H} can be indefinite, directly evaluating $\log \det(\mathbf{H})$ may
 263 be numerically unstable. We therefore adopt a sign-invariant and positive semi-definite argument
 264 surrogate: $\log \det(\mathbf{H} + \lambda I) \approx \frac{1}{2} \text{tr} [\log(\mathbf{H}^T \mathbf{H} + \lambda I)]$, where damping $\lambda > 0$ ensures $\mathbf{H}^2 + \lambda I \succ 0$.
 265 In this experiment, we fixed damping $\lambda = 10^{-3}$.
 266

267 **Analysis on the relationship between Hessian and GIA:** Figure 1a shows the PSNR score of the
 268 reconstructed image by GIA methods over training rounds, while Figure 1b shows the log determin-
 269 ant value of the empirical Hessian of global models at the same rounds. PSNR begins at the peaks
 270 around 0 with a randomly scratched model and reduces as the training round proceeds, eventually
 271 plateauing with only minor variation. The log determinant value of Hessian follows a similar
 272 trend. It has the highest value at the initial state and stabilizes after decreasing. Moreover, this
 273

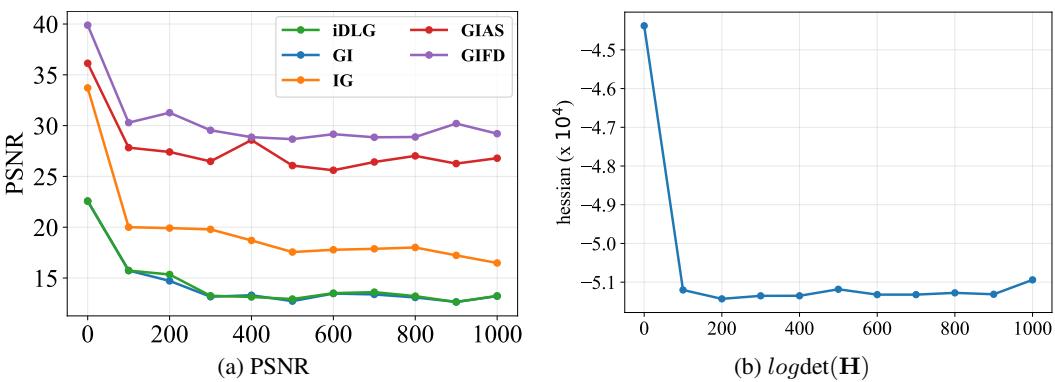


Figure 1: (a) PSNR scores between reconstructed image and ground truth. (b) log determinant of Hessian over rounds

tendency aligns with previous observations that reconstruction quality (measured by PSNR) drops in trained networks. The similar tendency between Hessian and the reconstruction quality is empirical evidence of **Theorem 3.1**, which states that the mutual information between input data and the gradient is upper bounded by the log determinant value of the empirical Hessian term. The results for other reconstruction metrics are shown in Appendix D.

4.3 FL WITH FLAT MINIMA SEARCHING IMPROVES ROBUSTNESS AGAINST GIAs

We demonstrate the reconstruction fidelity by performing GIAs on the models trained with SAM-based FL methods. As previous results indicate that early rounds are more susceptible to GIAs, we focus particularly on rounds from 1 to 200, which are considered risky. All attacks are repeated every 10-round interval within rounds 1 to 200, averaging over 10 target samples. For a fair comparison, all attacks target the same local client and the same target samples.

SAM settings: For FedSAM, FedGF, and FedSAI¹, we set the perturbation radius to $\rho = 0.2$, while $\rho = 0.3$ for FedASAM. The step size $\eta = 0.9$ equals to the learning rate of FedAvg. Fixed interpolation coefficient $c = 0.1$ is used for FedGF. All other FL configurations follow the details described in Section 4.1. For FedSAI, we employ 10,000 images from CIFAR-100 as an auxiliary dataset to find a flat initialization. This initialization step runs for 5 epochs with a batch size of 64. We then replace and reinitialize the fully connected layer so that its output dimensionality aligns with that of CIFAR-10, and perform FedSAM to preserve the initial flatness.

Comparison with SAM-based FL methods: As shown in Table 1 and Figure 2, flat minima are shown to effectively suppress the GIA’s reconstruction across all metrics and rounds. For instance, in round 100, the IG in FedSAM drops PSNR (lower is preferred) from 23.98 to 13.17 (**-45.1%** reduction) and increases LPIPS (higher is preferred) from 0.160 to 0.502 (**$\times 3.14$** improvement). GIFD demonstrates PSNR 31.46 and LPIPS 0.039 for FedAvg, but it becomes worse for FedAvg, such that PSNR 21.65 (**-31.2%**) and LPIPS 0.295 (**$\times 7.56$**). In round 200, PSNR of IG decrease from 21.62 to 12.89 (**-40.4%**) and LPIPS rises from 0.238 to 0.512 (**$\times 2.15$**). In case of GIFD, PSNR reduced from 29.65 to 22.74 (**-23.3%**), while LPIPS increases from 0.082 to 0.226 (**$\times 2.76$**).

These empirical outcomes are conjectured by the fact that SAM suppresses large eigenvalues and sharp directions, thereby reducing the determinant of the Hessian. According to **Theorem 3.1**, a smaller Hessian determinant indicates that less information is encoded within the gradients. The consistent robustness shown in Table 1 and Figure 2 is clear evidence that the suppression of $I(G; X)$ via flat minima searching is a principled way to resist against various types of GIAs.

Consistent with this interpretation, FedSAM and FedGF manifest comparable characteristics, while FedASAM exhibits marginally stronger robustness than both algorithms. Although FedSAI is initialized from a flatter region via an auxiliary dataset, dataset mismatch sustains a large gradient norm in the initial round, resulting in overall robustness that remains comparable to FedSAM.

¹We utilize a flat initialization by SAI Wang et al. (2025) as the random scratch of FL, so-called FedSAI.

324 Table 1: Reconstruction metrics over communication rounds for federated learning methods
325

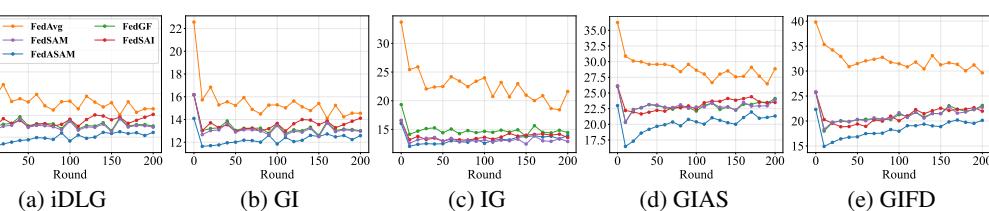
326	327	Defense / Attack	328 Round 0					329 Round 100					330 Round 200					
			iDLG	GI	IG	GIAS	GIFD	iDLG	GI	IG	GIAS	GIFD	iDLG	GI	IG	GIAS	GIFD	
328	329	330 FedAvg	PSNR \downarrow	22.58	22.57	33.71	36.25	39.80	15.31	15.29	23.98	28.63	31.46	14.61	14.55	21.62	28.85	29.65
			LPIPS \uparrow	0.203	0.204	0.032	0.014	0.006	0.426	0.428	0.160	0.085	0.039	0.462	0.463	0.238	0.081	0.082
			SSIM \downarrow	0.770	0.769	0.955	0.979	0.989	0.446	0.443	0.791	0.898	0.948	0.385	0.382	0.671	0.906	0.906
			MSE † \uparrow	0.696	0.699	0.0710	0.0320	0.0140	3.28	3.34	0.609	0.235	0.109	4.01	4.08	1.57	0.267	0.313
332	333	334 FedSAM	PSNR \downarrow	16.16	16.17	16.55	26.12	25.79	13.47	13.47	13.17	22.77	21.65	12.92	12.97	12.89	23.94	22.74
			LPIPS \uparrow	0.428	0.428	0.419	0.164	0.175	0.492	0.492	0.502	0.220	0.295	0.516	0.514	0.512	0.183	0.226
			SSIM \downarrow	0.504	0.505	0.521	0.828	0.821	0.391	0.391	0.378	0.733	0.709	0.332	0.333	0.334	0.768	0.735
			MSE † \uparrow	2.49	2.49	2.27	0.262	0.292	4.63	4.63	4.90	0.627	0.702	5.15	5.09	5.19	0.429	0.551
336	337	338 FedASAM	PSNR \downarrow	14.08	14.09	16.05	22.99	22.32	11.65	11.85	12.57	20.40	17.96	12.44	12.58	13.94	21.32	20.12
			LPIPS \uparrow	0.515	0.515	0.459	0.244	0.270	0.559	0.556	0.535	0.275	0.394	0.538	0.534	0.499	0.237	0.324
			SSIM \downarrow	0.391	0.391	0.477	0.734	0.723	0.288	0.295	0.330	0.671	0.570	0.309	0.313	0.370	0.658	0.603
			MSE † \uparrow	3.98	3.97	2.57	0.556	0.645	7.04	6.73	5.76	0.983	1.78	5.80	5.61	4.08	0.834	1.05
340	341	342 FedGF	PSNR \downarrow	16.18	16.18	19.33	26.05	25.77	13.64	13.63	14.66	22.11	21.26	13.03	13.02	14.45	24.12	23.11
			LPIPS \uparrow	0.428	0.428	0.331	0.161	0.173	0.488	0.489	0.454	0.228	0.306	0.516	0.513	0.473	0.174	0.218
			SSIM \downarrow	0.505	0.505	0.634	0.827	0.820	0.398	0.398	0.440	0.719	0.696	0.335	0.335	0.398	0.768	0.746
			MSE † \uparrow	2.48	2.48	1.23	0.267	0.290	4.45	4.47	3.50	0.725	0.762	5.04	5.04	3.73	0.434	0.506
344	345	346 FedSAI	PSNR \downarrow	16.17	16.17	16.56	26.10	25.75	13.63	13.66	13.63	22.43	20.04	14.10	14.12	13.58	23.49	21.97
			LPIPS \uparrow	0.428	0.428	0.419	0.161	0.177	0.482	0.481	0.477	0.213	0.333	0.493	0.491	0.493	0.216	0.268
			SSIM \downarrow	0.505	0.505	0.521	0.830	0.819	0.391	0.392	0.399	0.734	0.653	0.391	0.392	0.372	0.766	0.694
			MSE † \uparrow	2.48	2.48	2.27	0.264	0.291	4.51	4.49	4.48	0.601	1.13	4.07	4.04	4.53	0.476	0.785

347 † MSE value is scaled by $\times 10^2$. \downarrow : a lower is preferred. \uparrow : a higher is preferred. Here, ‘preferred’ means a successful defense.
348349

5 ANALYSIS

350351

5.1 ANALYSIS ACROSS COMMUNICATION ROUND

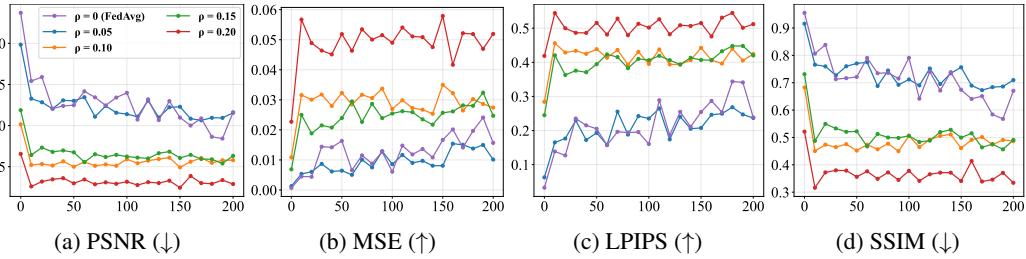
352353 Here, we examine the effect of communication rounds on the reconstruction quality of various
354 gradient inversion attacks (GIAs). In particular, we focus on PSNR and related metrics to assess how
355 SAM-based methods compare with FedAvg under different attack strategies.
356357 **PSNR Comparison across Communication Round** Figure 2 illustrates the PSNR trends of each
358 attack mechanism across communication rounds. Consistent with our theoretical framework, which
359 posits that approaches directly reducing Hessian values such as SAM-based methods can enhance
360 defense against various attack mechanisms, Figure 2 shows that SAM-based approaches substantially
361 outperform FedAvg. Even as the number of communication rounds increases, SAM-based
362 methods continue to yield lower PSNR scores, indicating stronger resistance to these attacks.
363364 For example, SAM-based approaches on IG, GIAS, and GIFD methods consistently maintain suffi-
365 cient gap between relative to FedAvg. The reason is that since mechanisms of IG, GIAS, and GIFD
366 are related to gradient-direction alignment, SAM-based approaches directly suppresses sharp direc-
367 tions, which counterattack the attack mechanisms. Similarly, SAM-based approaches outperforms
368 FedAvg against iDLG and GI, that compute Euclidean distance to match gradients. While the per-
369 formance gap, measured in PSNR, is marginal during training progresses, the consistent advantage
370 of SAM-based methods holds, where it still supports our theoretical expectations.
371372 Figure 2: PSNR scores of the reconstructed image by GIAs during rounds
373

378
 379 **Convergence Analysis of the Hessians:** Figure 3 illustrates
 380 the trajectory of the log-determinant value of empirical
 381 Hessian values over 1,000 training rounds for each
 382 method. Consistent with previous trends, SAM-based
 383 approaches yield lower determinant values compared to
 384 FedAvg and exhibit substantially reduced volatility in
 385 later rounds. Notably, since FedSAI begins from a
 386 smoother loss landscape, it exhibits a lower initial Hessian
 387 determinant, which is consistent with our theoretical
 388 framework. These results demonstrate that with lower
 389 determinant of the Hessian term across rounds. For read-
 390 ability, all reported values have been scaled by 10^{-4} .
 391

392 In Table 1, some attacks achieve a higher reconstruction score in round 200 than round 100. This
 393 pattern is consistent with Figure 3. Under SAM, Hessian is significantly low at initialization, rises
 394 modestly during an early transient, and then stabilizes. Reconstruction metrics can mirror this tra-
 395 jectory with a brief increase before plateauing, which explains corner cases for rounds around 100.

396 5.2 ABLATION STUDY

397 We perform ablation experiments to explore the effect of the perturbation radius. We vary the Fed-
 398 SAM perturbation radius $\rho = \{0.05, 0.1, 0.15, 0.2\}$ while keeping all other FL settings, local mod-
 399 els, and optimization settings. We here used IG as a representative attack method.

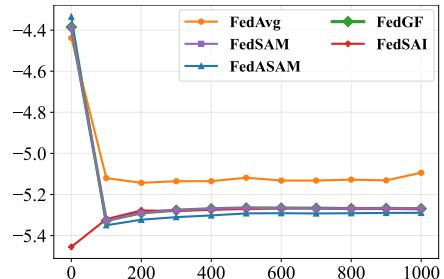


400
 401 Figure 4: **Effect of ρ on each Metrics** This figure illustrates how varying the perturbation radius
 402 affects the results. Since $\rho = 0$ is equivalent to the FedAvg, the findings indicate stronger defensive
 403 performance as the radius increases, where SAM-based usually outperforms.
 404

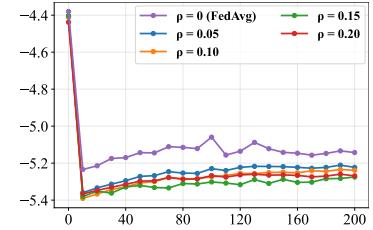
405 **Effect of Perturbation Radius on Reconstruction:** Figure 4 shows the quality of reconstruction
 406 with evaluation metrics under varying perturbed radius in FedSAM. As the perturbation radius ρ
 407 increases, MSE and LPIPS increase accordingly, while PSNR and SSIM decrease, revealing the
 408 degraded attack fidelity. At $\rho = 0.05$, FedSAM produces reconstruction quality akin to FedAvg
 409 across metrics and indicates that flattening curvature is minimal.
 410

411 With increases in ρ , the results consistently reveal a gradual
 412 degradation in data reconstruction across all evaluation metrics.
 413 To further understand this phenomenon, we measure Hessian under
 414 varying values ρ , as illustrated in Figure 5, which captures
 415 the loss landscape. In SAM, a larger perturbation radius ρ broadens
 416 the parameter exploration space, thereby encouraging the
 417 model to avoid high-curvature directions and consequently en-
 418 hancing the likelihood of convergence toward flatter minima. As
 419 a result of this tendency, the gradient encodes less information
 420 about the input data, thereby leading to the mitigation of GIA.
 421

422 **Effect of batch size:** Note that the above analysis considers a single batch. However, in a practical
 423 FL setting, clients typically train their model with multiple batches. To evaluate the effect of batch
 424 size, we conducted experiments on CIFAR-10 with batch size $B = \{1, 2, 4\}$ under both FedAvg
 425 and FedSAM at round 0, where GIA occurs frequently. As shown in Figure 6, enlarging the batch
 426 size reduces reconstruction fidelity, demonstrating that a larger batch size mitigates the success of
 427 such attacks. Moreover, compare FedSAM to FedAvg, applying SAM with expanded batch size
 428 alleviates GIA, supporting the insight in Theorem 3.2.
 429



430 Figure 3: $\log \det(\mathbf{H})$ over rounds.
 431



432 Figure 5: Effect of ρ on Hessian

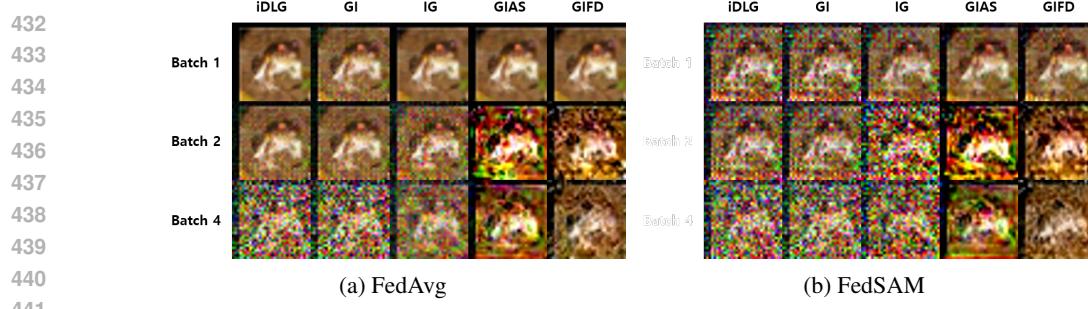


Figure 6: Effect of batch size on the performance of GIA

5.3 QUALITATIVE RESULTS

In Figure 7, we visually present the qualitative results of the reconstructed image samples. Among the traditional optimization-based attacks, we select GI [Yin et al. \(2021\)](#) and IG [Geiping et al. \(2020\)](#), where GI shows the minimal gap between FedAvg and SAM-based approaches, while IG demonstrates the most significant gap. We observe a clear advantage of SAM-based approaches beyond FedAvg, where their gap is slightly amplified in IG cases. For the recent generative model-based attacks, we investigate GIAS [Jeon et al. \(2021\)](#) and GIFD [Fang et al. \(2023\)](#). We found that FedAvg and SAM-based approaches are both shown to be slightly vulnerable to these attacks, but we confirm the qualitative gains of SAM-based approaches over FedAvg. Notably, FedASAM marginally outperforms FedSAM in the GIAS case.

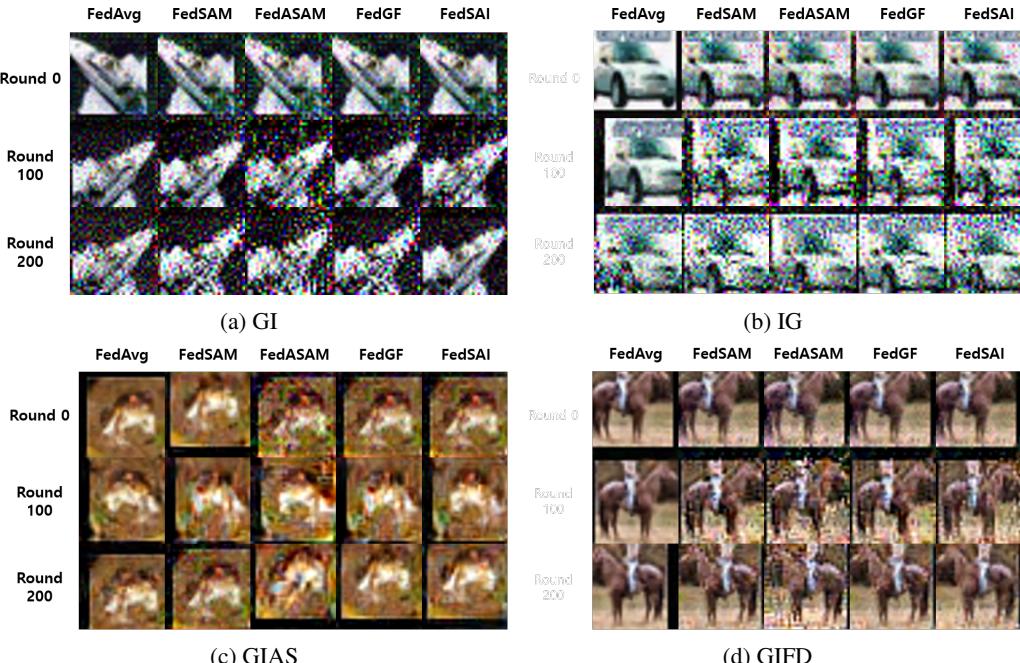


Figure 7: Visualization of images reconstructed by SAM-based federated learning approaches

6 CONCLUSION

In this work, we investigate robustness against Gradient Inversion Attacks (GIAs) from the perspective of searching for flat minima. To provide a principled understanding, we present both theoretical and empirical results, specifically, highlighting a flatter minima searching-based FL algorithm that tightens the information encoded in gradients and hinders GIA. Furthermore, our analysis indicates that convergence toward flatter minima simultaneously suppresses mutual information, thereby mitigating privacy leakage, and guarantees stable optimization of model. This demonstrates that searching for flat minima is an effective strategy in FL, by enhancing both model utility and robustness.

486 REFERENCES
487

488 Alham Fikri Aji and Kenneth Heafield. Sparse communication for distributed gradient descent.
489 *arXiv preprint arXiv:1704.05021*, 2017.

490 Debora Caldarola, Barbara Caputo, and Marco Ciccone. Improving generalization in federated
491 learning by seeking flat minima. In *European Conference on Computer Vision*, pp. 654–672.
492 Springer, 2022.

493 Hao Fang, Bin Chen, Xuan Wang, Zhi Wang, and Shu-Tao Xia. Gifd: A generative gradient inver-
494 sion method with feature domain optimization. In *Proceedings of the IEEE/CVF International*
495 *Conference on Computer Vision*, pp. 4967–4976, 2023.

496 Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimiza-
497 tion for efficiently improving generalization. *arXiv preprint arXiv:2010.01412*, 2020.

498 Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and Michael Moeller. Inverting gradients-
499 how easy is it to break privacy in federated learning? *Advances in neural information processing*
500 *systems*, 33:16937–16947, 2020.

501 Robin C Geyer, Tassilo Klein, and Moin Nabi. Differentially private federated learning: A client
502 level perspective. *arXiv preprint arXiv:1712.07557*, 2017.

503 Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. *Neural computation*, 9(1):1–42, 1997.

504 Stanislaw Jastrzebski, Maciej Szymczak, Stanislav Fort, Devansh Arpit, Jacek Tabor, Kyunghyun
505 Cho, and Krzysztof Geras. The break-even point on optimization trajectories of deep neural
506 networks. *arXiv preprint arXiv:2002.09572*, 2020.

507 Jinwoo Jeon, Kangwook Lee, Sewoong Oh, Jungseul Ok, et al. Gradient inversion with generative
508 image prior. *Advances in neural information processing systems*, 34:29898–29908, 2021.

509 Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyz-
510 ing and improving the image quality of StyleGAN. In *Proc. CVPR*, 2020.

511 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
512 2009.

513 Taehwan Lee and Sung Whan Yoon. Rethinking the flat minima searching in federated learning. In
514 *Forty-first International Conference on Machine Learning*, 2024.

515 Zhuohang Li, Jiaxin Zhang, Luyang Liu, and Jian Liu. Auditing privacy defenses in federated learn-
516 ing via generative gradient leakage. In *Proceedings of the IEEE/CVF conference on computer*
517 *vision and pattern recognition*, pp. 10132–10142, 2022.

518 Yong Liu, Xinghua Zhu, Jianzong Wang, and Jing Xiao. A quantitative metric for privacy leakage in
519 federated learning. In *ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech*
520 *and Signal Processing (ICASSP)*, pp. 3065–3069. IEEE, 2021.

521 Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
522 Communication-efficient learning of deep networks from decentralized data. In *Artificial intelli-
523 gence and statistics*, pp. 1273–1282. PMLR, 2017.

524 Fan Mo, Anastasia Borovykh, Mohammad Malekzadeh, Soteris Demetriadis, Deniz Gündüz, and
525 Hamed Haddadi. Quantifying and localizing usable information leakage from neural network
526 gradients. *arXiv preprint arXiv:2105.13929*, 2021.

527 Jinseong Park, Hoki Kim, Yujin Choi, and Jaewook Lee. Differentially private sharpness-aware
528 training. In *International Conference on Machine Learning*, pp. 27204–27224. PMLR, 2023.

529 Zhe Qu, Xingyu Li, Rui Duan, Yao Liu, Bo Tang, and Zhuo Lu. Generalized federated learning
530 via sharpness aware minimization. In *International conference on machine learning*, pp. 18250–
531 18280. PMLR, 2022a.

540 Zhe Qu, Xingyu Li, Rui Duan, Yao Liu, Bo Tang, and Zhuo Lu. Generalized federated learning
 541 via sharpness aware minimization. In *International conference on machine learning*, pp. 18250–
 542 18280. PMLR, 2022b.

543

544 Jingwei Sun, Ang Li, Binghui Wang, Huanrui Yang, Hai Li, and Yiran Chen. Soteria: Provable de-
 545 fense against privacy leakage in federated learning from representation perspective. In *Proceed-
 546 ings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 9311–9319,
 547 2021.

548 Zihao Wang, Rui Zhu, Dongruo Zhou, Zhikun Zhang, XiaoFeng Wang, and Haixu Tang.
 549 {Sharpness-Aware} initialization: Improving differentially private machine learning from first
 550 principles. In *34th USENIX Security Symposium (USENIX Security 25)*, pp. 3103–3122, 2025.

551

552 Wenqi Wei, Ling Liu, Yanzhao Wu, Gong Su, and Arun Iyengar. Gradient-leakage resilient feder-
 553 ated learning. In *2021 IEEE 41st International Conference on Distributed Computing Systems
 (ICDCS)*, pp. 797–807. IEEE, 2021.

554

555 Hongxu Yin, Arun Mallya, Arash Vahdat, Jose M Alvarez, Jan Kautz, and Pavlo Molchanov. See
 556 through gradients: Image batch recovery via gradinversion. In *Proceedings of the IEEE/CVF
 557 conference on computer vision and pattern recognition*, pp. 16337–16346, 2021.

558

559 Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. idlg: Improved deep leakage from gradients.
 560 *arXiv preprint arXiv:2001.02610*, 2020.

561

562 Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients. *Advances in neural infor-
 563 mation processing systems*, 32, 2019.

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594 **A DISCUSSION ON THE ROBUSTNESS OF GRADIENT INVERSION ATTACKS**
 595

596 Recent Gradient Inversion Attack (GIA) mechanisms have substantially increased the difficulty of
 597 maintaining model privacy. In response, a parallel line of research has focused on strengthening
 598 defense strategies, with an emphasis on the notion of robustness against GIA. In this work, we revisit
 599 the robustness against GIA from a new perspective grounded in the geometry of the loss landscape.
 600 Specifically, we develop a theoretical framework centered on loss-surface flatness and we apply
 601 Sharpness-Aware Minimization (SAM) as one of the most representative approaches. While SAM
 602 was originally introduced to improve generalization by smoothing the loss landscape, we are, to our
 603 best knowledge, the first to explicitly connect SAM to the study of the robustness against GIA.

604 Our empirical findings show that SAM yields measurable gains in robustness against GIA, suggesting
 605 that flatness is indeed correlated with counterattack of GIA. However, because SAM is not the
 606 only mechanism through which flatness can be achieved, current SAM-based approaches have inher-
 607 ent limitations when treating flat-minima search as a sufficient defense strategy, particularly against
 608 advanced generative model-based GIAs. Therefore, a key direction for future research is to move
 609 beyond gradient- or data-level manipulations and instead develop principled, loss-curvature-based
 610 defense mechanisms that can explicitly counter GIA attacks.

611 **B MATHEMATICAL PROOFS**
 612

613 **B.1 PROOF OF BOUND ON MUTUAL INFORMATION WITH HESSIAN AND BATCH SIZE**
 614

615 We consider the empirical risk function

$$617 \quad F(\theta) := \sum_i^N \frac{m_i}{m} F_i(\theta), \quad F_i(\theta) := \mathbb{E}_{\xi \sim D_i} [\mathcal{L}(\theta; \xi)],$$

616 and the aggregated gradient is given by $G = \nabla_{\theta} F(\theta)$. Since G is deterministically computed from
 617 the training batch X , the conditional entropy vanishes, and thus the mutual information reduced
 618 to $I(X; G) = H(G)$. Among all distributions with a given covariance, the multivariate Gaussian
 619 distribution maximizes the differential entropy. Therefore, the entropy of G is upper-bounded by
 620 that of Gaussian distribution with mean μ and covariance Σ_G , i.e., $I(X; G) \leq H(\mathcal{N}(\mu, \Sigma_G))$.

621 To express the covariance in terms of the score function, we define the corresponding per-sample
 622 score function as $s_i = \nabla_{\theta} \log p(y | x; \theta)$. Then, the covariance of stochastic gradient estimation with
 623 batch size B can be expressed as: $\Sigma_G = \frac{1}{B^2} \sum_{i=1}^B \text{Cov}(-s_i) = \frac{1}{B} \mathbb{E}[ss^T]$. To handle the connection
 624 between the Fisher information and the Hessian of the loss function, we differentiate the score
 625 function as follows: $\mathbb{E}[\nabla_{\theta} s] = \mathbb{E}\left[\frac{\nabla_{\theta}^2 p(y|x;\theta)}{p(y|x;\theta)}\right] - \mathbb{E}\left[\left(\frac{\nabla_{\theta} p(y|x;\theta)}{p(y|x;\theta)}\right)^2\right] = -\mathbb{E}\left[\left(\frac{\nabla_{\theta} p(y|x;\theta)}{p(y|x;\theta)}\right)^2\right] = -\mathbb{E}[ss^T]$, where the expectation of the score function vanishes by the Leibniz integral rule.

626 Since the per-sample Hessian is defined as $\mathbf{H}(\theta; \xi) = \nabla_{\theta}^2 \mathcal{L}(\theta; \xi)$, we obtain $\mathbb{E}[ss^T] = \mathbb{E}[\mathbf{H}(\theta; \xi)]$.
 627 Finally, recalling the empirical Hessian, $\mathbf{H} = \sum_i^N \frac{m_i}{m} \nabla_{\theta}^2 \mathcal{L}(\theta, \xi_i)$, we conclude that the gradient
 628 covariance scales with the empirical Hessian

$$629 \quad \Sigma_G \approx \frac{1}{B} \mathbf{H}.$$

630 From the differential entropy of a multivariate Gaussian and the correlation of covariance and Hes-
 631 sian, we obtain the bound stated in Theorem 3.1.

632 **B.2 PROOF OF MUTUAL INFORMATION BOUND VIA SHARPNESS-AWARE MINIMIZATION**
 633

634 Recall that $F_{\text{SAM}}(\theta) := \max_{\|\delta\|_2 \leq \rho} F(\theta + \delta)$, which denotes empirical risk under SAM objective.
 635 Since FedSAM seeks the worst-case perturbation with $\|\delta\| \leq \rho$, we set $\delta = \rho v$ with $\|v\| = 1$ to
 636 represent the maximization direction. By the second-order Taylor expansion of $F(\theta + \rho v)$, we obtain

$$637 \quad F(\theta + \rho v) = F(\theta) + \rho G^T v + \frac{\rho^2}{2} v^T \mathbf{H} v + \mathcal{O}(\rho^3),$$

648 Here, $\mathcal{O}(\rho^3)$ is the higher-order remainder term arising from the Lipschitz continuity of the Hessian
 649 and we omit this higher-order term.

650 To capture the worst-case scenario, we consider the direction aligned with the largest curvature of
 651 F , that is, the unit eigenvector v_{\max} corresponding to the largest eigenvalue $\lambda_{\max}(\mathbf{H})$. This leads to
 652 the following

$$653 \quad F_{\text{SAM}}(\theta) \geq F(\theta) + \rho G^\top v_{\max} + \frac{\rho^2}{2} \lambda_{\max}(\mathbf{H})$$

656 However, the alignment between G and v_{\max} is generally anonymous. To preserve generality, we
 657 bound the inner product by $G^\top u_{\max} \geq -\|G\|_2$ to provide a tight lower bound in the worst case.
 658 Substituting this bound to the Taylor expansion inequality, we acquire

$$659 \quad \lambda_{\max}(\mathbf{H}) \leq \frac{2}{\rho^2} (F_{\text{SAM}}(\theta) - F(\theta) + \rho \|G\|_2).$$

661 Finally, let $\{\lambda_i\}_{i=1}^d$ be the eigenvalue of \mathbf{H} . The upper bound of $I(X; G)$ is formulated as follows

$$\begin{aligned} 663 \quad & \frac{d}{2} \log \left(\frac{2\pi e}{B} \right) + \frac{1}{2} \log (\det(\mathbf{H})) \stackrel{(a)}{=} \frac{d}{2} \log \left(\frac{2\pi e}{B} \right) + \frac{1}{2} \log \left(\prod_{i=1}^d \lambda_i \right) \\ 664 \quad & \stackrel{(b)}{=} \frac{d}{2} \log \left(\frac{2\pi e}{B} \right) + \frac{d}{2} \log \left(\left(\prod_{i=1}^d \lambda_i \right)^{\frac{1}{d}} \right) \\ 665 \quad & \stackrel{(c)}{\leq} \frac{d}{2} \log \left(\frac{2\pi e}{B} \right) + \frac{d}{2} \log \left(\frac{1}{d} \sum_{i=1}^d \lambda_i \right) \\ 666 \quad & \stackrel{(d)}{\leq} \frac{d}{2} \log \left(\frac{2\pi e}{B} \right) + \frac{d}{2} \log (\lambda_{\max}(\mathbf{H})). \end{aligned}$$

667 where (c) proceeds from the AM-GM inequality and (d) handles the fact that the maximum eigenvalue
 668 upper bounds the average. This completes the proof of Theorem 3.2.

669 B.3 PROOF OF CONVERGENCE ANALYSIS

670 B.3.1 PRELIMINARY ASSUMPTIONS, LEMMAS AND DESCRIPTION OF FEDSAM

671 We recall the following lemmas and assumptions from (Qu et al., 2022b) and omit their proofs, as
 672 these are provided in detail in (Qu et al., 2022b).

673 **Lemma 1** (Relaxed triangle inequality) Let $\{v_1, \dots, v_\tau\}$ be τ vectors in \mathbb{R}^d . Then, the following
 674 are true: (1) $\|v_i + v_j\|^2 \leq (1 + \alpha)\|v_i\|^2 + (1 + \frac{1}{\alpha})\|v_j\|^2$ for any $\alpha > 0$, and (2) $\left\| \sum_{i=1}^\tau v_i \right\|^2 \leq$
 675 $\tau \sum_{i=1}^\tau \|v_i\|^2$.

676 **Lemma 2** For random variables x_1, \dots, x_n , we have

$$677 \quad \mathbb{E}[\|x_1 + \dots + x_n\|^2] \leq n \mathbb{E}[\|x_1\|^2 + \dots + \|x_n\|^2].$$

678 **Lemma 3** For independent, mean 0 random variables x_1, \dots, x_n , we have

$$679 \quad \mathbb{E}[\|x_1 + \dots + x_n\|^2] = \mathbb{E}[\|x_1\|^2 + \dots + \|x_n\|^2].$$

680 **Lemma 4** (Separating mean and variance for SAM) The stochastic gradient $\nabla F_i(\theta, \xi_i)$ computed
 681 by the i -th client at model parameter θ using minibatch ξ is an unbiased estimator of $\nabla F_i(\theta)$ with
 682 variance bounded by σ_i^2 . The gradient of SAM is formulated by

$$\begin{aligned} 683 \quad & \mathbb{E} \left[\left\| \sum_{k=0}^{K-1} g_{i,k}^r \right\|^2 \right] \leq K \sum_{k=0}^{K-1} \mathbb{E}[\|\nabla F_i(\theta_{i,k}^r)\|^2] + \frac{KL^2\rho^2}{N} \sigma_i^2 \\ 684 \quad & \mathbb{E} \left[\left\| \sum_{k=0}^{K-1} g_{i,k}^r \right\|^2 \right] \leq K \sum_{k=0}^{K-1} \mathbb{E}[\|\nabla F_i(\theta_{i,k}^r)\|^2] + KL^2\rho^2 \sigma_i^2. \end{aligned}$$

702 From the shared global parameters θ^{r-1} , the local updates for $k \in [K]$ are given by
 703

$$704 \quad \tilde{\theta}_{i,k}^r = \theta_{i,k-1}^r + \rho \frac{g_{i,k-1}^r}{\|g_{i,k-1}^r\|} \quad \theta_{i,k}^r = \theta_{i,k-1}^r - \eta_l \tilde{g}_{i,k-1}^r.$$

705 After K times local epochs, where the update $\Delta_i^r = \theta_{i,K}^r - \theta^r$ procured, the server aggregates update
 706 from clients $i \in \mathcal{S}^r$ with global learning rate η_g ,

$$707 \quad \Delta^{r+1} = \frac{1}{S} \sum_{i \in \mathcal{S}^r} \Delta_i^r, \quad \theta^{r+1} = \theta^r + \eta_g \Delta^r.$$

708 **Assumption 1** (Smoothness) Each local empirical risk F_i satisfy L -smooth, i.e.,
 709

$$710 \quad \|\nabla F_i(\theta) - \nabla F_i(\theta')\| \leq L\|\theta - \theta'\|.$$

711 for all θ, θ' in its domain and $i \in [N]$.
 712

713 **Assumption 2** (Bounded variance of global gradient without perturbation) Without perturbation
 714 δ_i , the global variability of the local gradient of the loss function is bounded by σ_g^2 , i.e.,
 715

$$716 \quad \|\nabla F_i(\theta^r) - \nabla F(\theta^r)\|^2 \leq \sigma_g^2, \quad \forall i \in [N] \text{ and } \forall r.$$

717 **Assumption 3** (Bounded variance of stochastic gradient) The stochastic gradient $\nabla F_i(\theta, \xi_i)$, com-
 718 puted by the i -th client of model parameter θ using mini-batch ξ_i of size B , is an unbiased estimator
 719 of $\nabla F_i(\theta)$ with variance bounded by σ_l^2 , i.e.,
 720

$$721 \quad \mathbb{E}_{\xi_i} \left\| \frac{\nabla F_i(\theta, \xi_i)}{\|\nabla F_i(\theta, \xi_i)\|} - \frac{\nabla F_i(\theta)}{\|\nabla F_i(\theta)\|} \right\|^2 \leq \sigma_l^2, \quad \forall i \in [N].$$

722 where the expectation is over all local datasets.
 723

724 **Lemma 5** (Bounded \mathcal{E}_δ of FedSAM) Suppose Assumptions 1-2 hold. Then, for any $\eta_l \leq \frac{1}{4KL}$, drift
 725 due to $\delta_{i,k} - \delta$ satisfies
 726

$$727 \quad \mathcal{E}_\delta = \frac{1}{N} \sum_i \mathbb{E}[\|\delta_{i,k} - \delta\|^2] \leq 2K^2 \beta^2 \eta_l^2 \rho^2.$$

728 **Lemma 6** (Bounded \mathcal{E}_θ of FedSAM) Suppose Assumptions 1-2 hold. Then, for any $\eta_l \leq \frac{1}{10KL}$, the
 729 drift due to $\theta_{i,k} - \theta$ satisfies
 730

$$731 \quad \mathcal{E}_\theta = \frac{1}{N} \sum_i \mathbb{E}[\|\theta_{i,k} - \theta\|^2] \leq 5K\eta_l^2 \left(2L^2 \rho^2 \sigma_l^2 + 6K(3\sigma_g^2 + 6L^2 \rho^2) \right) + 6K\|\nabla f(\tilde{\theta})\|^2 + 24K^3 \eta_l^4 L^4 \rho^2.$$

732 B.3.2 CONVERGENCE ANALYSIS FEDSAM WITH FULL CLIENT PARTICIPANT

733 To present the convergence of full client participant, we adopt lemmas from (Qu et al., 2022b) and
 734 modify them under the empirical risk minimization formulation.
 735

736 **Lemma 7**

$$737 \quad \langle \nabla F(\tilde{\theta}^r), \mathbb{E}_r[\Delta^r + \eta_l K \nabla F(\tilde{\theta}^r)] \rangle \leq \frac{\eta_l K}{2} \|\nabla F(\tilde{\theta}^r)\|^2 + K\eta_l L^2 \mathcal{E}_\theta + K\eta_l L^2 \mathcal{E}_\delta - \frac{\eta_l}{2KN^2} \mathbb{E}_r \left\| \sum_{i,k} \nabla F_i(\tilde{\theta}_{i,k}) \right\|^2.$$

738 **Lemma 8** For the full client participation scheme, we can bound $\mathbb{E}[\|\Delta^r\|^2]$ as follows:
 739

$$740 \quad \mathbb{E}_r[\|\Delta^r\|^2] \leq \frac{K\eta_l^2 L^2 \rho^2}{N} \sigma_l^2 + \frac{\eta_l^2}{N^2} \left[\left\| \sum_{i,k} \nabla F_i(\tilde{\theta}_{i,k}) \right\|^2 \right] + \frac{\eta_l^2 K}{B} \left((d-1)K + \frac{\det(\mathbf{H})}{L'} + dL_H \rho \right).$$

756 *Proof.* For the full client participation scheme, we have:

$$\begin{aligned}
 759 \quad \mathbb{E}_r[\|\Delta^r\|^2] &\stackrel{(a)}{\leq} \frac{\eta_l^2}{N^2} \mathbb{E}_r \left[\left\| \sum_{i,k} \tilde{g}_{i,k}^r \right\|^2 \right] \stackrel{(b)}{=} \frac{\eta_l^2}{N^2} \mathbb{E}_r \left[\left\| \sum_{i,k} (\tilde{g}_{i,k}^r - \nabla F_i(\tilde{\theta}_{i,k}^r)) \right\|^2 \right] + \frac{\eta_l^2}{N^2} \mathbb{E}_r \left[\left\| \sum_{i,k} \nabla F_i(\tilde{\theta}_{i,k}^r) \right\|^2 \right] \\
 760 &\stackrel{(c)}{\leq} \frac{K\eta_l^2 L^2 \rho^2}{N} \sigma_l^2 + \frac{\eta_l^2}{N^2} \left\| \mathbb{E}_r \left[\sum_{i,k} \nabla F_i(\tilde{\theta}_{i,k}^r) \right] \right\|^2 + \frac{\eta_l^2}{N^2} \text{Tr} \left(\text{Cov} \left(\sum_{i,k} \nabla F_i(\tilde{\theta}_{i,k}^r) \right) \right) \\
 761 &\stackrel{(d)}{\leq} \frac{K\eta_l^2 L^2 \rho^2}{N} \sigma_l^2 + \frac{\eta_l^2}{N^2} \left\| \mathbb{E}_r \left[\sum_{i,k} \nabla F_i(\tilde{\theta}_{i,k}^r) \right] \right\|^2 + \frac{\eta_l^2}{N^2} \text{Tr} \left(\text{Cov} \left(\sum_{i,k} \tilde{g}_{i,k}^r \right) \right) \\
 762 &\stackrel{(e)}{=} \frac{K\eta_l^2 L^2 \rho^2}{N} \sigma_l^2 + \frac{\eta_l^2}{N^2} \left\| \mathbb{E}_r \left[\sum_{i,k} \nabla F_i(\tilde{\theta}_{i,k}^r) \right] \right\|^2 + \eta_l^2 K \text{Tr}(\tilde{\Sigma}_G) \\
 763 &\stackrel{(f)}{\leq} \frac{K\eta_l^2 L^2 \rho^2}{N} \sigma_l^2 + \frac{\eta_l^2}{N^2} \left\| \mathbb{E}_r \left[\sum_{i,k} \nabla F_i(\tilde{\theta}_{i,k}^r) \right] \right\|^2 + \frac{\eta_l^2}{B} K \text{Tr}(\mathbf{H}(\tilde{\theta})) \\
 764 &\stackrel{(g)}{\leq} \frac{K\eta_l^2 L^2 \rho^2}{N} \sigma_l^2 + \frac{\eta_l^2}{N^2} \left\| \mathbb{E}_r \left[\sum_{i,k} \nabla F_i(\tilde{\theta}_{i,k}^r) \right] \right\|^2 + \frac{\eta_l^2}{B} K \text{Tr}(\mathbf{H}(\theta) + dL_H \rho) \\
 765 &\stackrel{(h)}{\leq} \frac{K\eta_l^2 L^2 \rho^2}{N} \sigma_l^2 + \frac{\eta_l^2}{N^2} \left\| \mathbb{E}_r \left[\sum_{i,k} \nabla F_i(\tilde{\theta}_{i,k}^r) \right] \right\|^2 + \frac{\eta_l^2 K}{B} \left((d-1)L + \frac{\det(\mathbf{H})}{L'} + dL_H \rho \right).
 \end{aligned}$$

780
 781 Here, (a) and (b) are based on Lemma 2 and Lemma 3, respectively, (c) follows from Lemma 4 and
 782 the bias-variance decomposition $\mathbb{E}[\|Z\|^2] = \|\mathbb{E}[Z]\|^2 + \text{Tr}(\text{Cov}(Z))$, (d) employs that $\tilde{g}_{i,k}$ is an
 783 unbiased estimator of $\nabla F_i(\tilde{\theta}_{i,k})$.

784 For step (e), by assuming $\sum_{i,k} \tilde{g}_{i,k} = N \sum_k \tilde{g}_k$ with $\text{Cov}(\tilde{g}_k) = \tilde{\Sigma}_G$, we obtain
 785 $\text{Tr}(\text{Cov}(\sum_{i,k} \tilde{g}_{i,k})) = N^2 \text{Tr}(\text{Cov}(\sum_k \tilde{g}_k)) = N^2 K \text{Tr}(\tilde{\Sigma}_G)$. Therefore, the third term be-
 786 comes $\eta_l^2 K \text{Tr}(\tilde{\Sigma}_G)$.

787 Step (f) follows $\Sigma_G \approx \frac{1}{B} \mathbf{H}$ in Theorem 3.1 which associates the covariance to empirical Hessian.
 788 And step (g) applies L_H Lipschitz continuity of the Hessian in Theorem 3.1.

789 Let $\mathbf{H} \succeq 0$ with eigenvalues $\lambda_d \geq \dots \geq \lambda_1 \geq 0$. Assume L-smoothness (Assumption 1), where
 790 L denote as the maximum Lipschitz constant, i.e., $\mathbf{H} \preceq L\mathbf{I}$. Then each eigenvalue is bounded by
 791 $\lambda_i \preceq L$, thus the sum of the smallest $d-1$ eigenvalues satisfies $\sum_{i=1}^{d-1} \lambda_i \leq \sum_{i=1}^{d-1} L = (d-1)L$.
 792 Moreover, we define $L' := \prod_{i=1}^{d-1} \lambda_i(\mathbf{H})$. Since $\det(\mathbf{H}) = (\prod_{i=1}^{d-1} \lambda_i) \lambda_d = L' \lambda_d$, we obtain
 793 $\text{Tr}(\mathbf{H}) = \sum_{i=1}^{d-1} \lambda_i + \lambda_d \leq (d-1)L + \lambda_d = (d-1)L + \frac{\det(\mathbf{H})}{L'}$. By substituting the bound
 794 $\text{Tr}(\mathbf{H}) \leq (d-1)L + \frac{\det(\mathbf{H})}{L'}$ into step (g) yields (h).

795
 800 **Lemma 9 (Descent Lemma)** For all $r \in R-1$ and $i \in S^r$, the iterates generated by FedSAM
 801 satisfy:

$$\begin{aligned}
 803 \quad \mathbb{E}_r[F(\tilde{\theta}^{r+1})] &\leq F(\tilde{\theta}^r) - K\eta_g\eta_l \left(\frac{1}{2} - 30K^2L^2\eta_l^2 \right) \|\nabla F(\tilde{\theta}^r)\|^2 \\
 804 &\quad + K\eta_g\eta_l \left(10KL^4\eta_l^2\rho^2\sigma_l^2 + 90K^2L^2\eta_l^2\sigma_g^2 + 180K^2L^4\eta_l^2\rho^2 + 120K^4L^6\eta_l^6\rho^2 \right. \\
 805 &\quad \left. + 16K^3\eta_l^4L^6\rho^2 + \frac{\eta_g\eta_lL^3\rho^2}{N}\sigma_l^2 \right) + \frac{(d-1)}{2BK} + \frac{\det(\mathbf{H})}{2BKL^d} + \frac{dL_H\rho}{2BKL}.
 \end{aligned}$$

810 *Proof*

$$\begin{aligned}
& \mathbb{E}_r[F(\tilde{\theta}^{r+1})] \leq F(\tilde{\theta}^r) + \mathbb{E}_r \left\langle \nabla F(\tilde{\theta}^r), \tilde{\theta}^{r+1} - \tilde{\theta}^r \right\rangle + \frac{L}{2} \mathbb{E}_r \left\| \tilde{\theta}^{r+1} - \tilde{\theta}^r \right\|^2 \\
& \stackrel{(a)}{=} F(\tilde{\theta}^r) + \mathbb{E}_r \left\langle \nabla F(\tilde{\theta}^r), -\Delta^r + K\eta_g\eta_l \nabla F(\tilde{\theta}^r) - K\eta_g\eta_l \nabla F(\tilde{\theta}^r) \right\rangle + \frac{L}{2} \eta_g^2 \mathbb{E}_r [\|\Delta^r\|^2] \\
& \stackrel{(b)}{=} F(\tilde{\theta}^r) - K\eta_g\eta_l \|\nabla F(\tilde{\theta}^r)\|^2 + \eta_g \langle \nabla F(\tilde{\theta}^r), \mathbb{E}_r[-\Delta^r + K\eta_l \nabla F(\tilde{\theta}^r)] \rangle + \frac{L}{2} \eta_g^2 \mathbb{E}_r [\|\Delta^r\|^2] \\
& \stackrel{(c)}{\leq} F(\tilde{\theta}^r) - \frac{K\eta_g\eta_l}{2} \|\nabla F(\tilde{\theta}^r)\|^2 + K\eta_g\eta_l L^2 \mathcal{E}_\theta + K\eta_g\eta_l L^2 \mathcal{E}_\delta + \frac{\eta_g\eta_l}{2KN} \mathbb{E}_r \left[\left\| \sum_{i,k} \nabla F_i(\tilde{\theta}_{i,k}^r) \right\|^2 \right] \\
& \quad + \frac{L}{2} \eta_g^2 \mathbb{E}_r [\|\Delta^r\|^2] \\
& \stackrel{(d)}{\leq} F(\tilde{\theta}^r) - \frac{K\eta_g\eta_l}{2} \|\nabla F(\tilde{\theta}^r)\|^2 + K\eta_g\eta_l L^2 \mathcal{E}_\theta + K\eta_g\eta_l L^2 \mathcal{E}_\delta + \frac{K\eta_g^2\eta_l^3 L^3 \rho^2}{N} \sigma_l^2 \\
& \quad + \frac{KL}{2B} \eta_l^2 \eta_g^2 \left((d-1) + \frac{\det(\mathbf{H})}{L'} + dL_H \rho \right) \\
& \stackrel{(e)}{\leq} F(\tilde{\theta}^r) - K\eta_g\eta_l \left(\frac{1}{2} - 30K^2 L^2 \eta_l^2 \right) \|\nabla F(\tilde{\theta}^r)\|^2 \\
& \quad + K\eta_g\eta_l \left(10KL^4 \eta_l^2 \rho^2 \sigma_l^2 + 90K^2 L^2 \eta_l^2 \sigma_g^2 + 180K^2 L^4 \eta_l^2 \rho^2 + 120K^4 L^6 \eta_l^6 \rho^2 + 16K^3 \eta_l^4 L^6 \rho^2 + \frac{\eta_g\eta_l L^3 \rho^2}{N} \sigma_l^2 \right) \\
& \quad + \frac{(d-1)}{2BK} + \frac{\det(\mathbf{H})}{2BKL^d} + \frac{dL_H \rho}{2BKL}.
\end{aligned}$$

837
838 Here, (a) is from the iterate update of FedSAM, (b) is required from the unbiased estimators, (c)
839 relies on Lemma 7, (d) follows Lemma 8, and (e) holds under the learning rate $\eta_l\eta_g \leq \frac{1}{KL}$.

840 By applying the telescoping sum of the result in Lemma 9 for $r = [R]$ with learning rate conditions
841 $\eta_l = \frac{1}{\sqrt{RKL}}$, $\eta_g = \sqrt{KN}$ and perturbation amplitude $\rho = \frac{1}{\sqrt{R}}$ yields
842
843

$$\begin{aligned}
& \frac{1}{R} \sum_{r=1}^R \mathbb{E} \|F(\theta^{r+1})\| \\
& = \mathcal{O} \left(\frac{FL}{\sqrt{RKN}} + \frac{\sigma_g^2}{R} + \frac{L^2 \sigma_l^2}{R^{3/2} \sqrt{KN}} + \frac{L^2}{R^{3/2}} + \frac{L}{BK^{3/2} \sqrt{RN}} + \frac{\det(\mathbf{H})}{BK^{3/2} L' \sqrt{RN}} + \frac{L_H}{BK^{3/2} R \sqrt{N}} \right)
\end{aligned}$$

844
845
846 Note that both $\frac{L^2}{R^{3/2}}$ term and $\frac{L_H}{BK^{3/2} R \sqrt{N}}$ term decay faster with R than $\frac{L}{BK^{3/2} \sqrt{RN}}$ and
847 $\frac{\det(\mathbf{H})}{BK^{3/2} L' \sqrt{RN}}$. Hence, in large R , these terms are asymptotically negligible. In addition, the term
848 $\frac{L_H}{BK^{3/2} R \sqrt{N}}$ appears due to the Lipschitz continuity of Hessian and contributes only marginally to
849 robustness and convergence. By dropping faster decaying terms in R , we can obtain the following.
850
851

$$\frac{1}{R} \sum_{r=1}^R \mathbb{E} \|F(\theta^{r+1})\| = \mathcal{O} \left(\frac{FL}{\sqrt{RKN}} + \frac{\sigma_g^2}{R} + \frac{L^2 \sigma_l^2}{R^{3/2} \sqrt{KN}} + \frac{L}{BK^{3/2} \sqrt{RN}} + \frac{\det(\mathbf{H})}{BK^{3/2} L' \sqrt{RN}} \right)$$

864 *Proof.* Multiplying $\frac{1}{CK\eta_l\eta_gR}$ on both sides with $(\frac{1}{2} - 30K^2L^2\eta_l^2) > C > 0$ if $\eta_l < \frac{1}{\sqrt{30KL}}$, we
 865 obtain
 866

$$\begin{aligned}
 & \frac{1}{R} \sum_{r=1}^R \mathbb{E} \left[\left\| \nabla F(\theta^{r+1}) \right\|^2 \right] \\
 & \leq \frac{F(\tilde{\theta}^r) - F(\tilde{\theta}^{r+1})}{CK\eta_g\eta_lR} \\
 & + \frac{1}{C} \left(10KL^4\eta_l^2\rho^2\sigma_l^2 + 90K^2L^2\eta_l^2\sigma_g^2 + 180K^2L^4\eta_l^2\rho^2 + 120K^4L^6\eta_l^6\rho^2 + 16K^3\eta_l^4L^6\rho^2 + \frac{\eta_g\eta_lL^3\rho^2}{N}\sigma_l^2 \right) \\
 & + \frac{1}{CK\eta_g\eta_lR} \left(\frac{(d-1)}{2BK} + \frac{\det(\mathbf{H})}{2BKL'} + \frac{dL_H\rho}{2BKL} \right) \\
 & \leq \frac{F(\tilde{\theta}^0) - F^*}{CK\eta_g\eta_lR} \\
 & + \frac{1}{C} \left(10KL^4\eta_l^2\rho^2\sigma_l^2 + 90K^2L^2\eta_l^2\sigma_g^2 + 180K^2L^4\eta_l^2\rho^2 + 120K^4L^6\eta_l^6\rho^2 + 16K^3\eta_l^4L^6\rho^2 + \frac{\eta_g\eta_lL^3\rho^2}{N}\sigma_l^2 \right) \\
 & + \frac{1}{CK\eta_g\eta_lR} \left(\frac{(d-1)}{2BK} + \frac{\det(\mathbf{H})}{2BKL'} + \frac{dL_H\rho}{2BKL} \right) \\
 & = \frac{F}{CK\eta_g\eta_lR} \\
 & + \frac{1}{C} \left(10KL^4\eta_l^2\rho^2\sigma_l^2 + 90K^2L^2\eta_l^2\sigma_g^2 + 180K^2L^4\eta_l^2\rho^2 + 120K^4L^6\eta_l^6\rho^2 + 16K^3\eta_l^4L^6\rho^2 + \frac{\eta_g\eta_lL^3\rho^2}{N}\sigma_l^2 \right) \\
 & + \frac{1}{CK\eta_g\eta_lR} \left(\frac{(d-1)}{2BK} + \frac{\det(\mathbf{H})}{2BKL'} + \frac{dL_H\rho}{2BKL} \right)
 \end{aligned}$$

893
 894 where F equals to $F(\tilde{\theta}^0) - F^*$.
 895

896 B.3.3 CONVERGENCE ANALYSIS FEDSAM WITH PARTIAL CLIENT PARTICIPANT

897 To establish the convergence properties under the partial client participant, we adapt lemmas introduced in (Qu et al., 2022b) and adjust to our empirical risk and Hessian framework.
 898

901 **Lemma 10** For the partial client participation with $S \subseteq N$, the variance is bounded as $\mathbb{E}_r[\|\Delta^r\|^2]$:
 902

$$\mathbb{E}_r[\|\Delta^r\|^2] \leq \frac{K\eta_l^2L^2\rho^2}{S}\sigma_l^2 + \frac{S}{N} \sum_i \left\| \sum_{j=1}^{K-1} \nabla F_i(\tilde{\theta}_{i,k}^r) \right\|^2 + \frac{S(S-1)}{N^2} \left\| \sum_{j=0}^{K-1} \nabla F_i(\tilde{\theta}_{i,j}^r) \right\|^2.$$

903
 904 **Lemma 11** Suppose $\nabla F_i(\tilde{\theta}_{i,k})$ for all $k \in [K]$ and $i \in [N]$ is chosen according to FedSAM, we
 905 have
 906

$$\begin{aligned}
 & \sum_i \mathbb{E} \left[\left\| \sum_k \nabla F_i(\tilde{\theta}_{i,k}) \right\|^2 \right] \leq 30NK^2L^2\eta_l^2 \left(2L^2\rho^2\sigma_l^2 + 6K(3\sigma_g^2 + 6L^2\rho^2) + 6K\|\nabla F(\tilde{\theta})\|^2 \right) \\
 & + 144K^4L^6\eta_l^4\rho^2 + 12NK^4L^2\eta_l^2\rho^2 + 3NK^2(3\sigma_g^2 + 6L^2\rho^2) + 3NK^2\|\nabla F(\tilde{\theta})\|^2.
 \end{aligned}$$

911 Let local and global learning rates η_l and η_g be $\eta_l \leq \frac{1}{10KL}$, $\eta_l\eta_g \leq \frac{1}{KL}$. From descent lemma, the
 912 convergence under partial client participant is obtained as follows.
 913

918 *Proof.*

$$\begin{aligned}
& \mathbb{E}_r \left[F(\tilde{\theta}^{r+1}) \right] \\
& \stackrel{(a)}{\leq} F(\tilde{\theta}^r) - \frac{K\eta_g\eta_l}{2} \|\nabla F(\tilde{\theta}^r)\|^2 + K\eta_g\eta_l L^2 \mathcal{E}_\theta + K\eta_g\eta_l L^2 \mathcal{E}_\delta - \frac{\eta_g\eta_l}{2KN} \mathbb{E}_r \left[\left\| \sum_{i,k} \nabla F_i(\tilde{\theta}_{i,k}^r) \right\|^2 \right] + \frac{L}{2} \eta_g^2 \mathbb{E}_r [\|\Delta^r\|^2] \\
& \stackrel{(b)}{\leq} F(\tilde{\theta}^r) - \frac{K\eta_g\eta_l}{2} \|\nabla F(\tilde{\theta}^r)\|^2 + K\eta_g\eta_l L^2 \mathcal{E}_\theta + K\eta_g\eta_l L^2 \mathcal{E}_\delta + \frac{K\eta_g^2\eta_l^3 L^3 \rho^2}{S} \sigma_l^2 \\
& \quad - \frac{\eta_g\eta_l}{2KN} \mathbb{E}_r \left[\left\| \sum_{i,k} \nabla F_i(\tilde{\theta}_{i,k}^r) \right\|^2 \right] + \frac{\eta_g^2 LS}{2N} \sum_i \left\| \sum_{j=1}^{K-1} \nabla F_i(\tilde{\theta}_{i,k}^r) \right\|^2 + \frac{\eta_g^2 LS(S-1)}{2N^2} \left\| \sum_{j=0}^{K-1} \nabla F_i(\tilde{\theta}_{i,j}^r) \right\|^2 \\
& \stackrel{(c)}{\leq} F(\tilde{\theta}^r) - \frac{K\eta_g\eta_l}{2} \|\nabla F(\tilde{\theta}^r)\|^2 + K\eta_g\eta_l L^2 \mathcal{E}_\theta + K\eta_g\eta_l L^2 \mathcal{E}_\delta + \frac{K\eta_g^2\eta_l^3 L^3 \rho^2}{2S} \sigma_l^2 + \frac{L\eta_g^2\eta_l^2}{2NS} \sum_i \left\| \sum_k \nabla F_i(\tilde{\theta}_{i,k}^r) \right\|^2 \\
& \stackrel{(d)}{\leq} F(\tilde{\theta}^r) - \frac{K\eta_g\eta_l}{2} \|\nabla F(\tilde{\theta}^r)\|^2 + K\eta_g\eta_l L^2 \mathcal{E}_\theta + K\eta_g\eta_l L^2 \mathcal{E}_\delta + \frac{K\eta_g^2\eta_l^3 L^3 \rho^2}{N} \sigma_l^2 + \frac{L\eta_g^2\eta_l^2}{2NS} K \sum_{i,k} \|\nabla F_i(\tilde{\theta}_{i,k}^r)\|^2 \\
& \stackrel{(e)}{\leq} F(\tilde{\theta}^r) - \frac{K\eta_g\eta_l}{2} \|\nabla F(\tilde{\theta}^r)\|^2 + K\eta_g\eta_l L^2 \mathcal{E}_\theta + K\eta_g\eta_l L^2 \mathcal{E}_\delta + \frac{K\eta_g^2\eta_l^3 L^3 \rho^2}{N} \sigma_l^2 \\
& \quad + \frac{L\eta_g^2\eta_l^2}{2S} K \sum_k \left[\left\| \frac{1}{N} \sum_{i=1}^N \nabla F_i(\tilde{\theta}_{i,k}^r) \right\|^2 + \text{Tr}(\text{Cov}(\nabla F_i(\tilde{\theta}_{i,k}^r))) \right] \\
& \stackrel{(f)}{\leq} F(\tilde{\theta}^r) - \frac{K\eta_g\eta_l}{2} \|\nabla F(\tilde{\theta}^r)\|^2 + K\eta_g\eta_l L^2 \mathcal{E}_\theta + K\eta_g\eta_l L^2 \mathcal{E}_\delta + \frac{K\eta_g^2\eta_l^3 L^3 \rho^2}{N} \sigma_l^2 \\
& \quad + \frac{L^2\eta_g^2\eta_l^2}{2S} \frac{K}{N} \sum_i \mathbb{E} \left[\left\| \sum_k \nabla F_i(\tilde{\theta}_{i,k}^r) \right\|^2 \right] + \frac{L\eta_g^2\eta_l^2 K^2}{2BS} \left((d-1)L + \frac{\det(\mathbf{H})}{L'} + dL_H \rho \right) \\
& \stackrel{(g)}{\leq} F(\tilde{\theta}^r) - K\eta_g\eta_l \left(\frac{1}{2} - 30K^2L^2\eta_l^2 - \frac{L\eta_g\eta_l}{2S} (3K + 180K^3L^2\eta_l^2) \right) \|\nabla F(\tilde{\theta}^r)\|^2 \\
& \quad + K\eta_g\eta_l \left(10KL^4\eta_l^2\rho^2\sigma_l^2 + 90K^2L^2\eta_l^2\sigma_g^2 + 180K^2L^4\eta_l^2\rho^2 + 120K^4L^6\eta_l^6\rho^2 + 16K^3\eta_l^4L^6\rho^2 + \frac{L^3\eta_g\eta_l\rho^2}{2S}\sigma_l^2 \right) \\
& \quad + \frac{K^2\eta_g^2\eta_l^2}{S} \left(30KL^5\eta_l^2\rho^2\sigma_l^2 + 180K^2L^3\eta_l^2\rho^2 + 360KL^5\eta_l^2\rho^2 + 72K^3L^7\eta_l^4\rho^2 + 6K^3L^3\eta_l^2\rho^2 + 6KL\sigma_g^2 + 6KL^3\rho^2 \right) \\
& \quad + \frac{K^2L\eta_g^2\eta_l^2}{2BS} \left((d-1)L + \frac{\det(\mathbf{H})}{L'} + dL_H \rho \right)
\end{aligned}$$

956 Here, (a) is based on Lemma 9, (b) from Lemma 10, (c) considering the expectation of r -th that
957 $KL\eta_g\eta_l \leq \frac{S-1}{S}$, (d) applies Lemma 2, (e) is based on bias-variance decomposition $\mathbb{E}[\|Z\|^2] =$
958 $\|\mathbb{E}[Z]\|^2 + \text{Tr}(\text{Cov}(Z))$, (f) applies the step (h) in Lemma 8, (g) combines Lemmas 5, 6 and 11.

960 For partial client participation, considering the telescope sum over R communication rounds with
961 local and global learning rates $\eta_l = \frac{1}{\sqrt{RKL}}$, $\eta_g = \sqrt{KS}$ and perturbation $\rho = \frac{1}{\sqrt{R}}$, we obtain
962

$$\begin{aligned}
& \frac{1}{R} \sum_{r=1}^R \mathbb{E} \|F(\theta^{r+1})\| \\
& = \mathcal{O} \left(\frac{FL}{\sqrt{RKS}} + \frac{\sqrt{K}G^2}{\sqrt{RS}} + \frac{L^2\sigma_l^2}{R^{3/2}K} + \frac{\sqrt{KL}^2}{R^{3/2}\sqrt{S}} + \frac{\sqrt{KL}}{B\sqrt{RS}} + \frac{\sqrt{K}\det(\mathbf{H})}{B\sqrt{RSL'}} + \frac{\sqrt{KL}_H}{BR\sqrt{S}} \right)
\end{aligned}$$

970 *Proof.* Multiplying $\frac{1}{CK\eta_l\eta_g R}$ on both sides, $\left(\frac{1}{2} - 30K^2L^2\eta_l^2 - \frac{L\eta_g\eta_l}{2S} (3K + 180K^3L^2\eta_l^2) \right) > C > 0$,
971 on the descent lemma of partial client, we obtain

$$\begin{aligned}
& R \sum_{r=1}^R \mathbb{E} \left[\left\| F(\tilde{\theta}^{r+1}) \right\| \right] \leq \frac{F(\tilde{\theta}^r) - F(\tilde{\theta}^{r+1})}{CK\eta_g\eta_\ell R} \\
& + \frac{1}{C} \left(10KL^4\eta_\ell^2\rho^2\sigma_\ell^2 + 90K^2L^2\eta_\ell^2\sigma_g^2 + 180K^2L^4\eta_\ell^2\rho^2 + 120K^4L^6\eta_\ell^6\rho^2 + 16K^3\eta_\ell^4L^6\rho^2 + \frac{L^3\eta_g\eta_\ell\rho^2}{2S}\sigma_\ell^2 \right) \\
& + \frac{\eta_g\eta_\ell}{S} \left(30KL^5\eta_\ell^2\rho^2\sigma_\ell^2 + 180K^2L^3\eta_\ell^2\rho^2 + 360KL^5\eta_\ell^2\rho^2 + 72K^3L^7\eta_\ell^4\rho^2 + 6K^3L^3\eta_\ell^2\rho^2 + 6KL\sigma_g^2 + 6KL^3\rho^2 \right) \\
& + \frac{KL\eta_g\eta_\ell}{2BS} \left((d-1)L + \frac{\det(\mathbf{H})}{L'} + dL_H\rho \right) \\
& \leq \frac{F}{CK\eta_g\eta_\ell R} \\
& + \frac{1}{C} \left(10KL^4\eta_\ell^2\rho^2\sigma_\ell^2 + 90K^2L^2\eta_\ell^2\sigma_g^2 + 180K^2L^4\eta_\ell^2\rho^2 + 120K^4L^6\eta_\ell^6\rho^2 + 16K^3\eta_\ell^4L^6\rho^2 + \frac{L^3\eta_g\eta_\ell\rho^2}{2S}\sigma_\ell^2 \right) \\
& + \frac{\eta_g\eta_\ell}{S} \left(30KL^5\eta_\ell^2\rho^2\sigma_\ell^2 + 180K^2L^3\eta_\ell^2\rho^2 + 360KL^5\eta_\ell^2\rho^2 + 72K^3L^7\eta_\ell^4\rho^2 + 6K^3L^3\eta_\ell^2\rho^2 + 6KL\sigma_g^2 + 6KL^3\rho^2 \right) \\
& + \frac{KL\eta_g\eta_\ell}{2BS} \left((d-1)L + \frac{\det(\mathbf{H})}{L'} + dL_H\rho \right)
\end{aligned}$$

where, the second equality employ $F = F(\tilde{\theta}_0) - F^* \leq F(\tilde{\theta}_r) - F(\tilde{\theta}_{r+1})$.

Note that the terms $\frac{\sqrt{K}L^2}{R^{3/2}\sqrt{S}}$ and $\frac{\sqrt{K}L_H}{BR\sqrt{S}}$ vanish faster in R than $\frac{\sqrt{K}L}{B\sqrt{RS}}$ and $\frac{\sqrt{K}\det(\mathbf{H})}{B\sqrt{RSL'}}$. Moreover, the term $\frac{\sqrt{K}L_H}{BR\sqrt{S}}$ is introduced to account for Hessian L_H -Lipschitz continuity and provides a minor contribution to robustness and convergence. Thus, we obtain the simplified rate as follows.

$$\frac{1}{R} \sum_{r=1}^R \mathbb{E} \|F(\theta^{r+1})\| = \mathcal{O} \left(\frac{FL}{\sqrt{RKS}} + \frac{\sqrt{KG^2}}{\sqrt{RS}} + \frac{L^2\sigma_l^2}{R^{3/2}K} + \frac{\sqrt{KL}}{B\sqrt{RS}} + \frac{\sqrt{K}\det(\mathbf{H})}{B\sqrt{RSL'}} \right)$$

C EXPERIMENTAL SETTING

C.1 HYPERPARAMETERS AND FL SETTING

We provide all training hyperparameters and federated learning settings used in our main experiments as below.

Table 2: Hyperparameters and FL settings

Hyperparameters	Value
Datasets D	CIFAR-10
Local model M	LeNet
Clients K	10
Clients per round m	5
Rounds R	1000
Local epochs E	5
Batch size B	64
Learning rate η	0.01
Optimizer	SGD
Weight decay λ	0.0005
Non-IID α	10(IID)

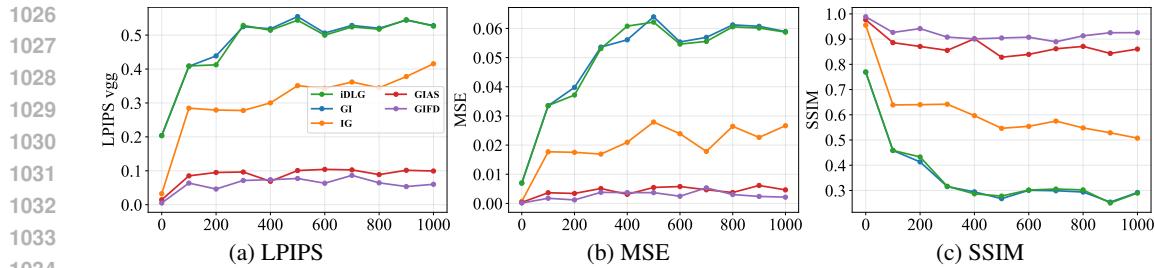


Figure 8: LPIPS, MSE, SSIM scores reconstructed by all of gradient inversion attacks in FedAvg over communication rounds.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 RECONSTRUCTION METRICS OVER ROUNDS

Figure 8 shows the evolution of gradient inversion attack performance under FedAvg across the communication round, evaluated by LPIPS, MSE, and SSIM. The three metrics exhibit tendencies consistent with PSNR. As communication rounds progress, LPIPS and MSE increase while SSIM decreases, indicating that gradient inversion attacks become more difficult.

D.2 ADDITIONAL COMPARISON

We evaluated the reconstruction quality of the gradient inversion attacks using four metrics. Section 4.3 provides an analysis using the PSNR score. We utilize the remaining three metrics to analyze the effect of SAM on the gradient inversion attack.

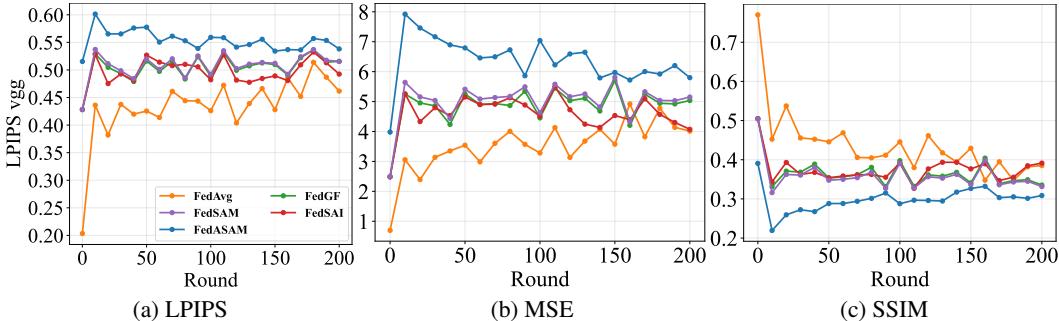


Figure 9: LPIPS, MSE, SSIM scores reconstructed by iDLG in all federated learning methods over communication rounds.

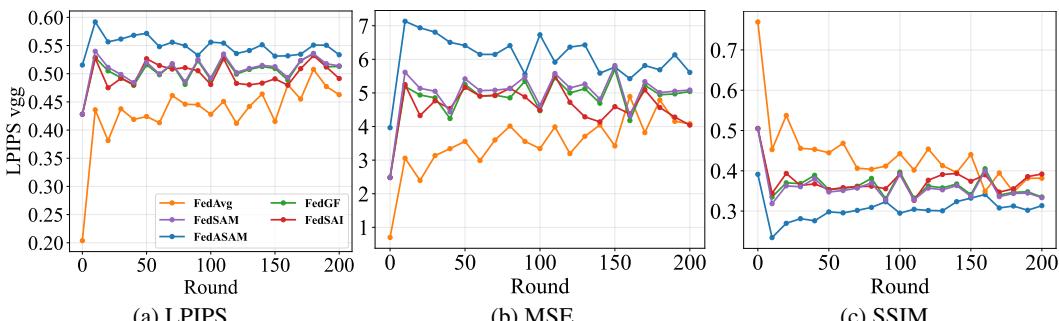


Figure 10: LPIPS, MSE, SSIM scores reconstructed by GI in all federated learning methods over communication rounds.

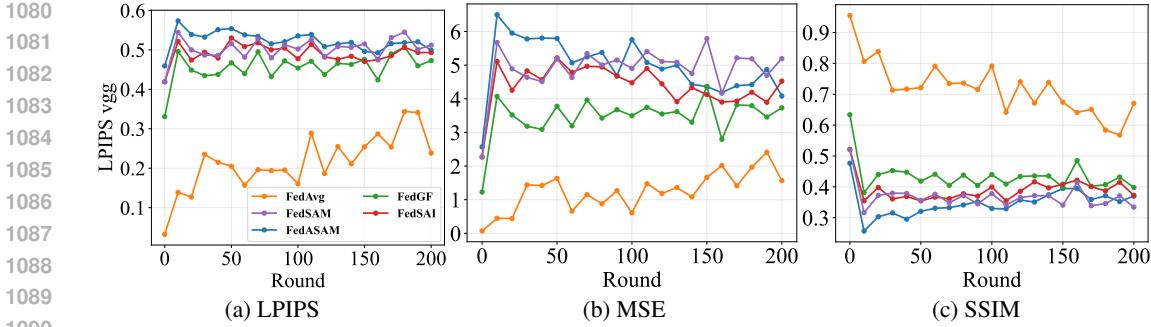


Figure 11: LPIPS, MSE, SSIM scores reconstructed by IG in all federated learning methods over communication rounds.

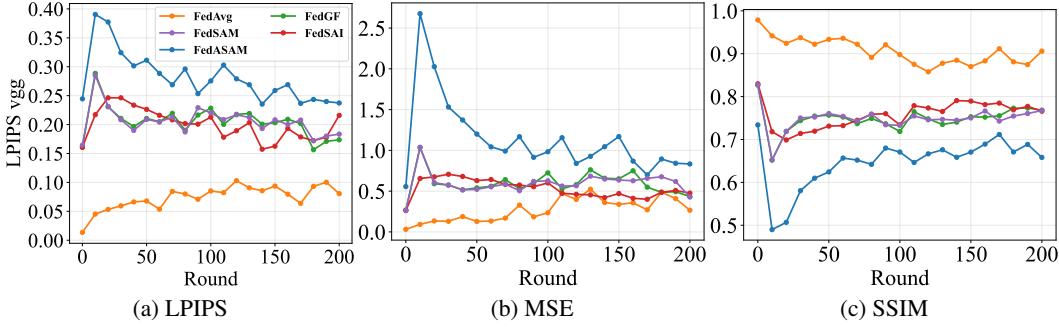


Figure 12: LPIPS, MSE, SSIM scores reconstructed by GIAS in all federated learning methods over communication rounds.

Figure 9 - 13 show that FedAvg achieves lower LPIPS and MSE and higher SSIM compared to SAM-based federated learning methods, demonstrating that SAM makes gradient inversion attack difficult.

1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

