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ABSTRACT

Gradient Inversion Attacks (GIAs), which aim to reconstruct input data from its
gradients, pose substantial risks of data leakage and challenges of data privacy
in distributed learning systems, e.g., federated learning (FL). Nevertheless, exist-
ing defenses against GIA are mostly ad-hoc by relying on gradient modifications
without a principle of when gradients are vulnerable to GIA and how we can
fundamentally suppress the possibility of data leakage. We interpret GIA with the
mutual information between the gradients G and their data X , i.e., I(X;G), which
is revealed to be upper-bounded by the Hessian of loss. Based on the findings, we
rethink the robustness against GIA for a flat minima searching-based FL algo-
rithm, where it inherently suppresses Hessian values, thus minimizing I(X;G).
We extensively demonstrate that the gradients computed by searching flatter min-
ima in the FL scenario achieve a substantial improvement in robustness against
GIAs. Our work sheds light on novel benefits of flat minima searching, not only
promoting better generalization but also hardening privacy in FL systems.

1 INTRODUCTION

Federated Learning (FL) has emerged as one of the most promising frameworks for decentralized
training. The primary objective of FL is to enable model training on individual client devices without
transmitting data to a central server, thereby mitigating privacy risks such as data leakage. In this
paradigm, each client trains a local model, and the server aggregates these locally computed model
updates to construct a global model (McMahan et al., 2017). Nevertheless, recent studies have
revealed that FL remains vulnerable to significant privacy risks. In particular, gradients from local
models can leak sufficient information about client data via an attacking mechanism widely known
as Gradient Inversion Attacks (GIAs) (Zhu et al., 2019; Geiping et al., 2020; Li et al., 2022).

As baselines for mitigating these GIA threats, prior approaches directly distort the gradient values,
e.g., adding random Gaussian noise to gradients (Geyer et al., 2017) or noising the original data
itself (Sun et al., 2021), thereby leading to insufficient reconstruction by GIA. Alternatively, gradient
sparsification by partially dropping (Aji & Heafield, 2017) or clipping (Wei et al., 2021) the gradient
values has been shown to impede reconstruction. However, these approaches primarily modify the
gradient or the data themselves, thereby not only hindering reconstruction but also taking a risk of
wrongly altering the training. More importantly, prior approaches lack of principled way of knowing
when gradients become vulnerable to GIA and suppressing the possibility of data leakage via GIA.
These limitations leave the existing defensive ways still vulnerable to the novel advanced attacks
(Mo et al., 2021; Liu et al., 2021).

To establish a fundamental understanding, we frame GIA through a lens of mutual information be-
tween the gradients G and the corresponding data X , i.e., I(X;G). Because gradients inherently
encode the direction and magnitude of parameter updates toward an optimal point in the loss land-
scape, G naturally contains substantial information about the underlying data X , formalized by the
high mutual information with the data. We conjecture that the ground truth of gradients is indeed
an ensemble across datasets; thus, it does not have to form a one-to-one mapping to each sam-
ple. Therefore, we argue that reducing the sensitivity of G to X instances, equivalently lowering
I(X;G), is fundamentally feasible, making it more difficult for adversaries to reconstruct X from
G while keeping the distributed training undamaged.
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In this work, we formulate an upper bound of I(X;G) in terms of the empirical Hessian, thereby
revealing the connection between I(X;G) and the curvature of the loss landscape. By pursuing a
flatter loss surface during training, i.e., keeping the Hessian minimal, we can suppress I(X;G) to
defend against GIAs. Based on this intuition, we rethink FL with flat minima searching, such as
FedSAM (Qu et al., 2022a), FedASAM (Caldarola et al., 2022), FedGF (Lee & Yoon, 2024), etc.,
with a view to tightly bounding I(X;G) and ultimately hindering GIA. Finally, we rigorously prove
that convergence toward flat minima in FL ensures robustness against GIA while achieving stable
convergence. Our contributions are summarized as follows:

• A mutual information perspective of GIA: We establish an upper bound on the mutual
information I(X;G) by explicitly associating it to the empirical Hessian H . Our key
lessons are: i) A larger Hessian makes gradients vulnerable to GIAs, and ii) Gradients
computed on a smooth loss surface can be a remedy for GIAs.

• Rethinking of flat minima for defending GIA: We argue that flat minima searching paves
a smooth path toward minima, thereby resulting in suppressed I(X;G) and hindering GIA.

• Convergence and robustness guarantees: We rephrase the convergence analysis of Fed-
SAM, which is a simple baseline of flat minima searching FL, so that it theoretically guar-
antees the robustness against GIA during the training phase.

• Benchmarking the existing defenses and attacks: By an extensive investigation of the
existing defensive FL and GIAs, we demonstrate that the robustness correlates with Hes-
sian, and flat minima suppress the Hessian spectrum, reducing attack performance.

2 RELATED WORK

We introduce prior studies on federated learning (FL), gradient inversion attacks (GIAs), defense
mechanisms, and flat minima-based optimization methods to establish the context of this work.

Federated Learning: FL enables multiple clients to collaboratively train a global model distributed
from a central server without revealing their local datasets (McMahan et al., 2017). Each client
computes updates on its local datasets and transmits resulting updates (e.g., parameters or gradients)
to the central server, which aggregates and updates to refine the global model. This framework
mitigates the risk of direct data leakage from the central server. Nevertheless, recent studies have
demonstrated that gradients during communication still encode sensitive information about local
data, thereby allowing adversaries to reconstruct training data.

Gradient Inversion Attacks: We investigate an honest-but-curious server in GIA. In this setting,
the adversary exploits shared gradients to reconstruct private training data. Early studies propose
optimization-based approaches, such as Deep Leakage from Gradients (DLG) (Zhu et al., 2019),
which iteratively optimize dummy inputs to match observed gradients. iDLG (Zhao et al., 2020)
extends DLG by identifying ground-truth labels from last-layer gradients, enabling more accurate
reconstruction. Geiping et al. (2020) adopts cosine similarity for high-fidelity recovery of input data.
While these optimization-based methods rely on gradient matching, subsequent studies further pro-
pose generative-model-based methods that leverage priors from generative model for reconstruction.

The generative-model-based approaches utilize priors to improve data reconstruction. GIAS (Jeon
et al., 2021) optimizes latent representation of models with observed gradients, while GGL (Li et al.,
2022) employs Generative Adversarial Networks (GAN) priors to reconstruct private data under
defense mechanisms. GIFD (Fang et al., 2023) extends to out-of-distribution settings by optimizing
intermediate feature layers, undermining the assumption that GANs and FL operate on the same
data distribution. These studies indicate that GIA evolves into highly effective threats, diminishing
the effectiveness of basic defense strategies.

Defense Strategies Against GIA: To counteract GIA, several defense strategies have been pro-
posed. Differential privacy (Geyer et al., 2017) perturbs gradients with stochastic noise, while
Soteria (Sun et al., 2021) adds noise to data representations. Other approaches, such as gradient
sparsification (Aji & Heafield, 2017) and clipping (Wei et al., 2021), selectively truncate or mask
gradient components to limit information leakage. Although these methods hinder gradient-based
reconstruction, they remain vulnerable to generative-model-based attacks. More importantly, most
strategies directly distort gradients or data while overlooking the intrinsic sensitivity of gradients to
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training data, the fundamental source of information leakage. In this work, we address this issue by
establishing a theoretical connection between gradient sensitivity and mutual information.

Flat Minima and Privacy in Federated Learning: Flat minima searching (Hochreiter & Schmid-
huber, 1997), which characterizes the tendency of models to converge toward regions where the
loss remains stable under small perturbation, has been widely recognized as a key factor for model
generalization. Sharpness-Aware Minimization (SAM) (Foret et al., 2020) formalizes this idea by
explicitly seeking flat minima through min-max optimization of local perturbations within a neigh-
borhood of the parameters. Extension of SAM to FL setting, including FedSAM (Qu et al., 2022a),
FedASAM (Caldarola et al., 2022), and FedGF (Lee & Yoon, 2024) demonstrate improved opti-
mization stability under heterogeneous data distribution and enhance generalization by analyzing
optimization trajectories and gradient variance (Jastrzebski et al., 2020). Beyond generalization,
several studies integrate flat minima with differential privacy (DP) to mitigate the negative impact of
noise on training while preserving optimization ability (Park et al., 2023; Wang et al., 2025). How-
ever, a principled theoretical understanding of how flatness relates to gradient leakage, particularly
in FL, remains unexplored. In this work, we establish a formal connection between flat minima and
mutual information, showing that flat minima inherently strengthen model robustness against GIA.

3 ROBUSTNESS AGAINST GRADIENT INVERSION ATTACK VIA FLAT MINIMA

In this section, we provide a fundamental understanding of how the mutual information between
gradients and input has been bounded by the Hessian of the loss, thus leading to a theoretical analysis
that demonstrates how FedSAM prevents GIA attacks.

Notations: R means the real number set. The training data and labels are given by X ∈ Rm×n

and Y ∈ Rm. A batch is represented as (XB , YB) = (xi, yi)
B
i=1, where B is the batch size and

X̂ ∈ Rm×n states the reconstructed data from an adversary. The per-sample loss is defined as
L(θ;x, y) = − log p(y | x; θ), i.e., the cross-entropy loss. The batch loss is LB(θ;XB , YB) =
1
B

∑B
i=1 L(θ;xi, yi). Let θ indicate the local parameter, whose model is fθ : X 7→ G, and the at-

tack model is gϕ : G 7→ X̂ parameterized by ϕ. The observed gradient is G = ∇θLB(θ;XB , YB) ∈
Rd and the Hessian is HB = ∇2

θLB(θ;XB , YB) ∈ Rd×d. For per-sample gradient gi =

∇θL(θ;xi, yi), the covariance of the batch gradient is ΣG = 1
B

∑B
i=1(gi −G)(gi −G)⊤.

FL Problem Settings: We consider FL setting with N clients. Each client i ∈ [N ] possesses
private data distribution Di, which may differ across clients due to data heterogeneity. A sample
from client i is denoted as ξij = (xij , yij) ∼ Di. At each communication round r ∈ [R], the server
randomly selects a subset Sr ⊆ [N ] of clients and broadcasts the current global model θr to them.
Each selected client performs K steps of local updates with a mini-batch of size B and learning rate
ηl. Specifically, the local empirical risk for client i is defined as Fi(θ) := Eξ∼Di

[
L(θ; ξ)

]
. After

local training, clients send their model updates ∆r
i to the server. The server then aggregates the

updates and obtains the new global model θr+1 with global learning rate ηg: θr+1 = θr + ηg∆
r,

∆r = 1
s

∑
i∈Sr ∆r

i . Consequently, FL minimizes the global objective F (θ):

θ∗ = argmin
θ

{F (θ) :=
∑
i∈[N ]

mi

m
Fi(θ)}, (1)

where mi is the number of samples in client i, and m =
∑

i∈[N ] mi. In the case of FedSAM, each
local update is modified by perturbing the parameters with radius ρ, based on the SAM principle.

3.1 BOUNDING MUTUAL INFORMATION VIA EMPIRICAL HESSIAN

We analyze mutual information I(X;G), which quantifies how much information the gradients G
encode about the training data X . This information-theoretic perspective has been employed in prior
work to evaluate privacy leakage (Liu et al., 2021; Mo et al., 2021). From this standpoint, we inter-
pret I(X;G) through the entropy of the gradients H(G), since the amount of information preserved
in G is reflected in its uncertainty. However, the exact computation of H(G) is intractable, we con-
sider the worst-case uncertainty instead, which is bounded above by the entropy of the multivariate
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Gaussian distribution with covariance matrix ΣG:

H(G) ≤ d

2
log(2πe) +

1

2
log det(ΣG), (2)

where ΣG ≻ 0 ensures that log det(ΣG) is well defined.

Theorem 3.1 (Bound on Mutual Information with Empirical Hessian and Batch Size)
Consider the score function s(θ;x, y) = ∇θ log p(y | x; θ), which is the negative gradient of
loss function. The covariance of gradients ΣG can be related to the empirical Hessian, leading to
following upper bound on the mutual information I(X;G).

I(X;G) ≤ d

2
log(

2πe

B
) +

1

2
log
(
det(H)

)
, (3)

Theorem 3.1 shows that the determinant of the empirical Hessian fundamentally governs mutual
information. A smaller Hessian, which corresponds to flatter curvature, reduces the information
encoded in the gradients and strengthens robustness to the gradient inversion attack, hindering data
reconstruction. In addition, the batch size B serves as a mitigating factor, increasing B tightens the
mutual information bound and enhances robustness. The proof is presented in Appendix B.1.

3.2 ROBUSTNESS THROUGH SHARPNESS-AWARE MINIMIZATION

We then step forward to elucidate how Sharpness-Aware Minimization (SAM) (Foret et al., 2020),
a principled method for finding flatter minima, smoothly renders the loss surface curvature captured
by the Hessian, leading to a tightened mutual information bound. As a preliminary, the objective
function of SAM is formalized as follows:

FSAM(θ) :=

N∑
i

mi

m
F SAM
i (θ), F SAM

i (θ) := max
||δ||2≤ρ

Fi(θ + δ).

Theorem 3.2 (Mutual Information Bound via Sharpness-Aware Minimization) Considering
δ = ρv, ∥v∥2 = 1 and a second-order Taylor expansion of the SAM objective, we can derive the
following upper bound of I(X;G):

I(X;G) ≤ d

2
log
(2πe

B

)
+

1

2
log det(H) (4)

≤ d

2
log
(2πe

B

)
+

d

2
log

(
2

ρ2
(
FSAM(θ)− F (θ) + ρ∥G∥2

))
(5)

where B is the batch size, d is the number of model parameters, FSAM the SAM objective function.

In Theorem 3.2, the SAM objective FSAM appears explicitly in the bound. When the training ob-
jective F becomes FSAM, i.e., adopting flatter minima searching, it directly reduces the empirical
Hessian and I(X;G). Moreover, the batch size B tightens the bound. From a robustness per-
spective, this indicates that gradient computed under FedSAM carry less specific information about
input data, mitigating gradient leakage. In other words, learning toward flatness enhances model
generalization and strengthens robustness against gradient inversion attacks.

Convergence Analysis of FL with Batch size and Hessian Perspectives: The theoretical bounds
in Theorem 3.1 and Theorem 3.2 reveal that the determinant of the empirical Hessian det(H) and
the batch size B are the key quantities to mitigate GIA. We subsidiarily verify these quantities in the
optimization dynamics, and among the family of SAM-based methods, we focus on FedSAM, which
directly reflects our targeting FL system. We reformulate the convergence analysis of FedSAM done
in Qu et al. (2022a) by using the term of the empirical Hessian.

For the case of full client participation with learning rates ηl = O( 1√
RKL

), ηg =
√
KN and the

perturbation ρ = O( 1√
R
), the iterates generated by FedSAM satisfy:

O
(

FL√
RKN

+
σ2
g

R
+

L2σ2
l

R3/2
√
KN

+
L

BK3/2
√
RN

+
det(H)

BK3/2L′
√
RN

)
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For partial client participation with S ≥ K, and learning rates ηl = O( 1√
RKL

), ηg =
√
KS, and

ρ = O( 1√
R
), iterates satisfy:

O
(

FL√
RKS

+

√
KG2

√
RS

+
L2σ2

l

R3/2K
+

√
KL

B
√
RS

+

√
Kdet(H)

B
√
RSL′

)
By analyzing the convergence terms of FedSAM, we observed det(H) and B explicitly emerge in
the rate. These results demonstrate that the convergence rate of FedSAM is directly accessed by
det(H) and B. This aligns with our theoretical bounds, minimal det(H) and maximal B jointly
diminish I(X;G)), while concurrently stabilizing optimization. Thus, FedSAM achieves stable
convergence and enhances robustness against GIA, underscoring the role of curvature reduction.

In summary, the convergence analysis confirms that det(H) and B, identified from Theorem 3.1
and Theorem 3.2, contribute both robustness and optimization. The proof is given in Appendix B.3.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

Setup: We have conducted main experiments on the CIFAR-10 (Krizhevsky et al., 2009) classifica-
tion task. Across all experiments, we have used a randomly initialized LeNet (Zhu et al., 2019), a
simple baseline architecture for FL. The FL scenario consists of one server and 10 clients. In each
round, 5 clients are randomly selected to participate in each round. We run 1,000 rounds in total.
We consider Independent and Identically Distributed (IID) cases of data partitioning across clients.
The hyperparameters are provided in the Appendix C. All reconstruction attacks targeted the same
image drawn from the training set, and the target gradient used for reconstruction was computed
with a batch size of B = 1, using a single minibatch over a single epoch. For all attacks, we first
inferred labels using the procedure proposed by iDLG (Zhao et al., 2020) and subsequently used
them during the attack. We calculated four different metrics —PSNR(Peak Signal to Noise Ratio),
SSIM(Structural Similarity Index Map), LPIPS(Learned Perceptual Image Patch Similarity), and
MSE(Mean Squared Error) —to evaluate the difference between the reconstructed image and the
ground-truth image. A pre-trained VGG network is used to calculate the LPIPS score.

Gradient inversion attack baselines: We evaluated vulnerability to gradient inversion using
optimization-based attacks iDLG (Zhao et al., 2020), GI (Yin et al., 2021), IG (Geiping et al.,
2020) and generative-model attacks dubbed GIAS (Jeon et al., 2021) and GIFD (Fang et al., 2023).
For these generative model–based attacks, we used a pretrained StyleGAN2 (Karras et al., 2020) to
generate high-quality images with sufficient fidelity.

SAM baselines: We have adopted various FL plus SAM methods and compared them with FedAvg.
We use FedSAM (Qu et al., 2022a), FedASAM (Caldarola et al., 2022), FedGF (Lee & Yoon,
2024) for baselines. We additionally test Sharpness Aware Initialization (SAI) (Wang et al., 2025)
in FL, which provides a flat initialization.

4.2 RELATIONSHIP BETWEEN HESSIAN AND GRADIENT INVERSION ATTACK

For a baseline FedAvg, we estimate the Hessian and perform gradient inversion attacks at every
100 rounds to investigate the relationship between the Hessian values and the reconstruction quality.
The empirical Hessian matrix was computed as the average of the Hessian matrix over 100 samples
drawn from the training set. Since Hessian H can be indefinite, directly evaluating log det(H) may
be numerically unstable. We therefore adopt a sign-invariant and positive semi-definite argument
surrogate: log det(H+λI) ≈ 1

2 tr
[
log
(
HTH+λI

)]
, where damping λ > 0 ensures H2+λI ≻ 0.

In this experiment, we fixed damping λ = 10−3.

Analysis on the relationship between Hessian and GIA: Figure 1a shows the PSNR score of the
reconstructed image by GIA methods over training rounds, while Figure 1b shows the log determi-
nant value of the empirical Hessian of global models at the same rounds. PSNR begins at the peaks
around 0 with a randomly scratched model and reduces as the training round proceeds, eventually
plateauing with only minor variation. The log determinant value of Hessian follows a similar ten-
dency. It has the highest value at the initial state and stabilizes after decreasing. Moreover, this

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

0 200 400 600 800 1000

15

20

25

30

35

40

PS
N

R

iDLG
GI
IG

GIAS
GIFD

(a) PSNR

0 200 400 600 800 1000

5.1

5.0

4.9

4.8

4.7

4.6

4.5

he
ss

ia
n 

(x
 1

04 )

(b) logdet(H)

Figure 1: (a) PSNR scores between reconstructed image and ground truth. (b) log determinant of
Hessian over rounds

tendency aligns with previous observations that reconstruction quality (measured by PSNR) drops
in trained networks. The similar tendency between Hessian and the reconstruction quality is empir-
ical evidence of Theorem 3.1, which states that the mutual information between input data and the
gradient is upper bounded by the log determinant value of the empirical Hessian term. The results
for other reconstruction metrics are shown in Appendix D.

4.3 FL WITH FLAT MINIMA SEARCHING IMPROVES ROBUSTNESS AGAINST GIAS

We demonstrate the reconstruction fidelity by performing GIAs on the models trained with SAM-
based FL methods. As previous results indicate that early rounds are more susceptible to GIAs, we
focus particularly on rounds from 1 to 200, which are considered risky. All attacks are repeated every
10-round interval within rounds 1 to 200, averaging over 10 target samples. For a fair comparison,
all attacks target the same local client and the same target samples.

SAM settings: For FedSAM, FedGF, and FedSAI1, we set the perturbation radius to ρ = 0.2,
while ρ = 0.3 for FedASAM. The step size η = 0.9 equals to the learning rate of FedAvg. Fixed
interpolation coefficient c = 0.1 is used for FedGF. All other FL configurations follow the details
described in Section 4.1. For FedSAI, we employ 10,000 images from CIFAR-100 as an auxiliary
dataset to find a flat initialization. This initialization step runs for 5 epochs with a batch size of 64.
We then replace and reinitialize the fully connected layer so that its output dimensionality aligns
with that of CIFAR-10, and perform FedSAM to preserve the initial flatness.

Comparison with SAM-based FL methods: As shown in Table 1 and Figure 2, flat minima are
shown to effectively suppress the GIA’s reconstruction across all metrics and rounds. For instance,
in round 100, the IG in FedSAM drops PSNR (lower is preferred) from 23.98 to 13.17 (−45.1%
reduction) and increases LPIPS (higher is preferred) from 0.160 to 0.502 (×3.14 improvement).
GIFD demonstrates PSNR 31.46 and LPIPS 0.039 for FedAvg, but it becomes worse for FedAvg,
such that PSNR 21.65 (−31.2%) and LPIPS 0.295 (×7.56). In round 200, PSNR of IG decrease
from 21.62 to 12.89 (−40.4%) and LPIPS rises from 0.238 to 0.512 (×2.15). In case of GIFD,
PSNR reduced from 29.65 to 22.74 (−23.3%), while LPIPS increases from 0.082 to 0.226 (×2.76).

These empirical outcomes are conjectured by the fact that SAM suppresses large eigenvalues and
sharp directions, thereby reducing the determinant of the Hessian. According to Theorem 3.1,
a smaller Hessian determinant indicates that less information is encoded within the gradients. The
consistent robustness shown in Table 1 and Figure 2 is clear evidence that the suppression of I(G;X)
via flat minima searching is a principled way to resist against various types of GIAs.

Consistent with this interpretation, FedSAM and FedGF manifest comparable characteristics, while
FedASAM exhibits marginally stronger robustness than both algorithms. Although FedSAI is ini-
tialized from a flatter region via an auxiliary dataset, dataset mismatch sustains a large gradient norm
in the initial round, resulting in overall robustness that remains comparable to FedSAM.

1We utilizes a flat inialization by SAI Wang et al. (2025) as the random scratch of FL, so-called FedSAI.
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Table 1: Reconstruction metrics over communication rounds for federated learning methods

Round 0 Round 100 Round 200

Defense / Attack iDLG GI IG GIAS GIFD iDLG GI IG GIAS GIFD iDLG GI IG GIAS GIFD

FedAvg

PSNR ↓ 22.58 22.57 33.71 36.25 39.80 15.31 15.29 23.98 28.63 31.46 14.61 14.55 21.62 28.85 29.65

LPIPS ↑ 0.203 0.204 0.032 0.014 0.006 0.426 0.428 0.160 0.085 0.039 0.462 0.463 0.238 0.081 0.082

SSIM ↓ 0.770 0.769 0.955 0.979 0.989 0.446 0.443 0.791 0.898 0.948 0.385 0.382 0.671 0.906 0.906

MSE† ↑ 0.696 0.699 0.0710 0.0320 0.0140 3.28 3.34 0.609 0.235 0.109 4.01 4.08 1.57 0.267 0.313

FedSAM

PSNR ↓ 16.16 16.17 16.55 26.12 25.79 13.47 13.47 13.17 22.77 21.65 12.92 12.97 12.89 23.94 22.74

LPIPS ↑ 0.428 0.428 0.419 0.164 0.175 0.492 0.492 0.502 0.220 0.295 0.516 0.514 0.512 0.183 0.226

SSIM ↓ 0.504 0.505 0.521 0.828 0.821 0.391 0.391 0.378 0.733 0.709 0.332 0.333 0.334 0.768 0.735

MSE† ↑ 2.49 2.49 2.27 0.262 0.292 4.63 4.63 4.90 0.627 0.702 5.15 5.09 5.19 0.429 0.551

FedASAM

PSNR ↓ 14.08 14.09 16.05 22.99 22.32 11.65 11.85 12.57 20.40 17.96 12.44 12.58 13.94 21.32 20.12

LPIPS ↑ 0.515 0.515 0.459 0.244 0.270 0.559 0.556 0.535 0.275 0.394 0.538 0.534 0.499 0.237 0.324

SSIM ↓ 0.391 0.391 0.477 0.734 0.723 0.288 0.295 0.330 0.671 0.570 0.309 0.313 0.370 0.658 0.603

MSE† ↑ 3.98 3.97 2.57 0.556 0.645 7.04 6.73 5.76 0.983 1.78 5.80 5.61 4.08 0.834 1.05

FedGF

PSNR ↓ 16.18 16.18 19.33 26.05 25.77 13.64 13.63 14.66 22.11 21.26 13.03 13.02 14.45 24.12 23.11

LPIPS ↑ 0.428 0.428 0.331 0.161 0.173 0.488 0.489 0.454 0.228 0.306 0.516 0.513 0.473 0.174 0.218

SSIM ↓ 0.505 0.505 0.634 0.827 0.820 0.398 0.398 0.440 0.719 0.696 0.335 0.335 0.398 0.768 0.746

MSE† ↑ 2.48 2.48 1.23 0.267 0.290 4.45 4.47 3.50 0.725 0.762 5.04 5.04 3.73 0.434 0.506

FedSAI

PSNR ↓ 16.17 16.17 16.56 26.10 25.75 13.63 13.66 13.63 22.43 20.04 14.10 14.12 13.58 23.49 21.97

LPIPS ↑ 0.428 0.428 0.419 0.161 0.177 0.482 0.481 0.477 0.213 0.333 0.493 0.491 0.493 0.216 0.268

SSIM ↓ 0.505 0.505 0.521 0.830 0.819 0.391 0.392 0.399 0.734 0.653 0.391 0.392 0.372 0.766 0.694

MSE† ↑ 2.48 2.48 2.27 0.264 0.291 4.51 4.49 4.48 0.601 1.13 4.07 4.04 4.53 0.476 0.785

† MSE value is scaled by ×102. ↓: a lower is preferred. ↑: a higher is preferred. Here, ‘preferred’ means a successful defense.

5 ANALYSIS

5.1 ANALYSIS ACROSS COMMUNICATION ROUND

Here, we examine the effect of communication rounds on the reconstruction quality of various gra-
dient inversion attacks (GIAs). In particular, we focus on PSNR and related metrics to assess how
SAM-based methods compare with FedAvg under different attack strategies.

PSNR Comparison across Communication Round Figure 2 illustrates the PSNR trends of each
attack mechanism across communication rounds. Consistent with our theoretical framework, which
posits that approaches directly reducing Hessian values such as SAM-based methods can enhance
defense against various attack mechanisms, Figure 2 shows that SAM-based approaches substan-
tially outperform FedAvg. Even as the number of communication rounds increases, SAM-based
methods continue to yield lower PSNR scores, indicating stronger resistance to these attacks.

For example, SAM-based approaches on IG, GIAS, and GIFD methods consistently maintain suffi-
cient gap between relative to FedAvg. The reason is that since mechanisms of IG, GIAS, and GIFD
are related to gradient-direction alignment, SAM-based approaches directly suppresses sharp direc-
tions, which counterattack the attack mechanisms Similarly, SAM-based approaches outperforms
FedAvg against iDLG and GI, that compute Euclidean distance to match gradients. While the per-
formance gap, measured in PSNR, is marginal during training progresses, the consistent advantage
of SAM-based methods holds, where it still supports our theoretical expectations.

0 50 100 150 200
Round

12

14

16

18

20

22 FedAvg
FedSAM
FedASAM

FedGF
FedSAI

(a) iDLG

0 50 100 150 200
Round

12

14

16

18

20

22

(b) GI

0 50 100 150 200
Round

15

20

25

30

(c) IG

0 50 100 150 200
Round

17.5
20.0
22.5
25.0
27.5
30.0
32.5
35.0

(d) GIAS

0 50 100 150 200
Round

15

20

25

30

35

40

(e) GIFD

Figure 2: PSNR scores of the reconstructed image by GIAs during rounds
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0 200 400 600 800 1000

5.4

5.2
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4.8

4.6

4.4 FedAvg
FedSAM
FedASAM

FedGF
FedSAI

Figure 3: log det(H) over rounds.

Convergence Analysis of the Hessians: Figure 3 illus-
trates the trajectory of the log-determinant value of em-
pirical Hessian values over 1,000 training rounds for each
method. Consistent with previous trends, SAM-based
approaches yield lower determinant values compared to
FedAvg and exhibit substantially reduced volatility in
later rounds. Notably, since FedSAI begins from a
smoother loss landscape, it exhibits a lower initial Hes-
sian determinant, which is consistent with our theoretical
framework. These results demonstrate that with lower
determinant of the Hessian term across rounds. For read-
ability, all reported values have been scaled by 10−4.

In Table 1, some attacks achieve a higher reconstruction score in round 200 than round 100. This
pattern is consistent with Figure 3. Under SAM, Hessian is significantly low at initialization, rises
modestly during an early transient, and then stabilizes. Reconstruction metrics can mirror this tra-
jectory with a brief increase before plateauing, which explains corner cases for rounds around 100.

5.2 ABLATION STUDY

We perform ablation experiments to explore the effect of the perturbation radius. We vary the Fed-
SAM perturbation radius ρ = {0.05, 0.1, 0.15, 0.2} while keeping all other FL settings, local mod-
els, and optimization settings. We here used IG as a representative attack method.

0 50 100 150 200

15

20

25

30

 = 0 (FedAvg)
 = 0.05
 = 0.10

 = 0.15
 = 0.20

(a) PSNR (↓)

0 50 100 150 200
0.00

0.01

0.02

0.03

0.04

0.05

0.06

(b) MSE (↑)

0 50 100 150 200

0.1

0.2

0.3

0.4

0.5

(c) LPIPS (↑)

0 50 100 150 200
0.3

0.4

0.5

0.6

0.7

0.8

0.9

(d) SSIM (↓)

Figure 4: Effect of ρ on each Metrics This figure illustrates how varying the perturbation radius
affects the results. Since ρ = 0 is equivalent to the FedAvg, the findings indicate stronger defensive
performance as the radius increases, where SAM-based usually outperforms.

Effect of Perturbation Radius on Reconstruction: Figure 4 shows the quality of reconstruction
with evaluation metrics under varying perturbed radius in FedSAM. As the perturbation radius ρ
increases, MSE and LPIPS increase accordingly, while PSNR and SSIM decrease, revealing the
degraded attack fidelity. At ρ = 0.05, FedSAM produces reconstruction quality akin to FedAvg
across metrics and indicates that flattening curvature is minimal.

0 40 80 120 160 200
5.4

5.2

5.0

4.8

4.6

4.4  = 0 (FedAvg)
 = 0.05
 = 0.10

 = 0.15
 = 0.20

Figure 5: Effect of ρ on Hessian

With increases in ρ, the results consistently reveal a gradual
degradation in data reconstruction across all evaluation metrics.
To further understand this phenomenon, we measure Hessian un-
der varying values ρ, as illustrated in Figure 5, which captures
the loss landscape. In SAM, a larger perturbation radius ρ broad-
ens the parameter exploration space, thereby encouraging the
model to avoid high-curvature directions and consequently en-
hancing the likelihood of convergence toward flatter minima. As
a result of this tendency, the gradient encodes less information
about the input data, thereby leading to the mitigation of GIA.

Effect of batch size: Note that the above analysis considers a single batch. However, in a practical
FL setting, clients typically train their model with multiple batches. To evaluate the effect of batch
size, we conducted experiments on CIFAR-10 with batch size B = {1, 2, 4} under both FedAvg
and FedSAM at round 0, where GIA occurs frequently. As shown in Figure 6, enlarging the batch
size reduces reconstruction fidelity, demonstrating that a larger batch size mitigates the success of
such attacks. Moreover, compare FedSAM to FedAvg, applying SAM with expanded batch size
alleviates GIA, supporting the insight in Theorem 3.2.
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(a) FedAvg (b) FedSAM

Figure 6: Effect of batch size on the performance of GIA

5.3 QUALITATIVE RESULTS

In Figure 7, we visually present the qualitative results of the reconstructed image samples. Among
the traditional optimization-based attacks, we select GI Yin et al. (2021) and IG Geiping et al.
(2020), where GI shows the minimal gap between FedAvg and SAM-based approaches, while IG
demonstrates the most significant gap. We observe a clear advantage of SAM-based approaches
beyond FedAvg, where their gap is slightly amplified in IG cases. For the recent generative model-
based attacks, we investigate GIAS Jeon et al. (2021) and GIFD Fang et al. (2023). We found
that FedAvg and SAM-based approaches are both shown to be slightly vulnerable to these attacks,
but we confirm the qualitative gains of SAM-based approaches over FedAvg. Notably, FedASAM
marginally outperforms FedSAM in the GIAS case.

(a) GI (b) IG

(c) GIAS (d) GIFD

Figure 7: Visualization of images reconstructed by SAM-based federated learning approaches

6 CONCLUSION

In this work, we investigate robustness against Gradient Inversion Attacks (GIAs) from the perspec-
tive of searching for flat minima. To provide a principled understanding, we present both theoretical
and empirical results, specifically, highlighting a flatter minima searching-based FL algorithm that
tightens the information encoded in gradients and hinders GIA. Furthermore, our analysis indicates
that convergence toward flatter minima simultaneously suppresses mutual information, thereby miti-
gating privacy leakage, and guarantees stable optimization of model. This demonstrates that search-
ing for flat minima is an effective strategy in FL, by enhancing both model utility and robustness.
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A DISCUSSION ON THE ROBUSTNESS OF GRADIENT INVERSION ATTACKS

Recent Gradient Inversion Attack (GIA) mechanisms have substantially increased the difficulty of
maintaining model privacy. In response, a parallel line of research has focused on strengthening
defense strategies, with an emphasis on the notion of robustness against GIA. In this work, we revisit
the robustness against GIA from a new perspective grounded in the geometry of the loss landscape.
Specifically, we develop a theoretical framework centered on loss-surface flatness and we apply
Sharpness-Aware Minimization (SAM) as one of the most representative approaches. While SAM
was originally introduced to improve generalization by smoothing the loss landscape, we are, to our
best knowledge, the first to explicitly connect SAM to the study of the robustness against GIA.

Our empirical findings show that SAM yields measurable gains in robustness against GIA, suggest-
ing that flatness is indeed correlated with counterattack of GIA. However, because SAM is not the
only mechanism through which flatness can be achieved, current SAM-based approaches have inher-
ent limitations when treating flat-minima search as a sufficient defense strategy, particularly against
advanced generative model–based GIAs. Therefore, a key direction for future research is to move
beyond gradient- or data-level manipulations and instead develop principled, loss-curvature–based
defense mechanisms that can explicitly counter GIA attacks.

B MATHEMATICAL PROOFS

B.1 PROOF OF BOUND ON MUTUAL INFORMATION WITH HESSIAN AND BATCH SIZE

We consider the empirical risk function

F (θ) :=

N∑
i

mi

m
Fi(θ), Fi(θ) := Eξ∼Di

[
L(θ; ξ)

]
,

and the aggregated gradient is given by G = ∇θF (θ). Since G is deterministically computed from
the training batch X , the conditional entropy vanishes, and thus the mutual information reduced
to I(X;G) = H(G). Among all distributions with a given covariance, the multivariate Gaussian
distribution maximizes the differential entropy. Therefore, the entropy of G is upper-bounded by
that of Gaussian distribution with mean µ and covariance ΣG, i.e., I(X;G) ≤ H(N (µ,ΣG)).

To express the covariance in terms of the score function, we define the corresponding per-sample
score function as si = ∇θ log p(y | x; θ). Then, the covariance of stochastic gradient estimation with
batch size B can be expressed as: ΣG = 1

B2

∑B
i=1 Cov(−si) =

1
BE[ss⊤]. To handle the connection

between the Fisher information and the Hessian of the loss function, we differentiate the score

function as follows: E[∇θs] = E
[
∇2

θ p(y|x;θ)
p(y|x;θ)

]
− E

[(
∇θ p(y|x;θ)
p(y|x;θ)

)2]
= −E

[(
∇θ p(y|x;θ)
p(y|x;θ)

)2]
=

−E[ssT ], where the expectation of the score function vanishes by the Leibniz integral rule.

Since the per-sample Hessian is defined as H(θ; ξ) = ∇2
θL(θ; ξ), we obain E[ss⊤] = E[H(θ; ξ)].

Finally, recalling the empirical Hessian, H =
∑N

i
mi

m ∇2
θL(θ, ξi), we conclude that the gradient

covariance scales with the empirical Hessian

ΣG ≈ 1

B
H.

From the differential entropy of a multivariate Gaussian and the correlation of covariance and Hes-
sian, we obtain the bound stated in Theorem 3.1.

B.2 PROOF OF MUTUAL INFORMATION BOUND VIA SHARPNESS-AWARE MINIMIZATION

Recall that FSAM(θ) := max∥δ∥2≤ρ F (θ + δ), which denotes empirical risk under SAM objective.
Since FedSAM seeks the worst-case perturbation with ∥δ∥ ≤ ρ, we set δ = ρv with ∥v∥ = 1 to
represent the maximization direction. By the second-order Taylor expansion of F (θ+ρv), we obtain

F (θ + ρv) = F (θ) + ρG⊤v +
ρ2

2
v⊤Hv +O(ρ3),

12
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Here, O(ρ3) is the higher-order remainder term arising from the Lipschitz continuity of the Hessian
and we omit this higher-order term.

To capture the worst-case scenario, we consider the direction aligned with the largest curvature of
F, that is, the unit eigenvector vmax corresponding to the largest eigenvalue λmax(H). This leads to
the following

FSAM(θ) ≥ F (θ) + ρG⊤vmax +
ρ2

2
λmax(H)

However, the alignment between G and vmax is generally anonymous. To preserve generality, we
bound the inner product by G⊤umax ≥ −∥G∥2 to provide a tight lower bound in the worst case.
Substituting this bound to the Taylor expansion inequality, we acquire

λmax(H) ≤ 2

ρ2

(
FSAM (θ)− F (θ) + ρ∥G∥2

)
.

Finally, let {λi}di=1 be the eigenvalue of H . The upper bound of I(X;G) is formulated as follows

d

2
log

(
2πe

B

)
+

1

2
log
(
det(H)

) (a)
=

d

2
log

(
2πe

B

)
+

1

2
log
( d∏

i=1

λi

)
(b)
=

d

2
log

(
2πe

B

)
+

d

2
log

(( d∏
i=1

λi

) 1
d

)
(c)

≤ d

2
log

(
2πe

B

)
+

d

2
log

(
1

d

d∑
i=1

λi

)
(d)

≤ d

2
log

(
2πe

B

)
+

d

2
log
(
λmax(H)

)
.

where (c) proceeds from the AM-GM inequality and (d) handles the fact that the maximum eigen-
value upper bounds the average. This completes the proof of Theorem 3.2.

B.3 PROOF OF CONVERGENCE ANALYSIS

B.3.1 PRELIMINARY ASSUMPTIONS, LEMMAS AND DESCRIPTION OF FEDSAM

We recall the following lemmas and assumptions from (Qu et al., 2022b) and omit their proofs, as
these are provided in detail in (Qu et al., 2022b).

Lemma 1 (Relaxed triangle inequality) Let {v1, . . . , vτ} be τ vectors in Rd. Then, the following

are true: (1) ∥vi + vj∥2 ≤ (1 + α)∥vi∥2 +
(
1 + 1

α

)
∥vj∥2 for any α > 0, and (2)

∥∥∥∑τ
i=1 vi

∥∥∥2 ≤
τ
∑τ

i=1 ∥vi∥2.

Lemma 2 For random variables x1, . . . , xn, we have

E
[
∥x1 + · · ·+ xn∥2

]
≤ nE

[
∥x1∥2 + · · ·+ ∥xn∥2

]
.

Lemma 3 For independent, mean 0 random variables x1, . . . , xn, we have

E
[
∥x1 + · · ·+ xn∥2

]
= E

[
∥x1∥2 + · · ·+ ∥xn∥2

]
.

Lemma 4 (Separating mean and variance for SAM) The stochastic gradient ∇Fi(θ, ξi) computed
by the i-th client at model parameter θ using minibatch ξ is an unbiased estimator of ∇Fi(θ) with
variance bounded by σ2

l . The gradient of SAM is formulated by

E

[∥∥∥K−1∑
k=0

gri,k

∥∥∥2] ≤ K

K−1∑
k=0

E
[
∥∇Fi(θ

r
i,k)∥2

]
+

KL2ρ2

N
σ2
l

E

[∥∥∥K−1∑
k=0

gri,k

∥∥∥2] ≤ K

K−1∑
k=0

E
[
∥∇Fi(θ

r
i,k)∥2

]
+KL2ρ2σ2

l .
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From the shared global parameters θr−1, the local updates for k ∈ [K] are given by

θ̃ri,k = θri,k−1 + ρ
gri,k−1

∥gri,k−1∥
θri,k = θri,k−1 − ηlg̃

r
i,k−1.

After K times local epochs, where the update ∆r
i = θri,K−θr procured, the server aggregates update

from clients i ∈ Sr with global learning rate ηg ,

∆r+1 =
1

S

∑
i∈Sr

∆r
i , θr+1 = θr + ηg∆

r.

Assumption 1 (Smoothness) Each local empirical risk Fi satisfy L-smooth, i.e.,

∥∇Fi(θ)−∇Fi(θ
′)∥ ≤ L∥θ − θ′∥.

for all θ, θ′ in its domain and i ∈ [N ].

Assumption 2 (Bounded variance of global gradient without perturbation) Without perturbation
δi, the global variability of the local gradient of the loss function is bounded by σ2

g , i.e.,

∥∇Fi(θ
r)−∇F (θr)∥2 ≤ σ2

g , ∀i ∈ [N ] and ∀r.

Assumption 3 (Bounded variance of stochastic gradient) The stochastic gradient ∇Fi(θ, ξi), com-
puted by the i-th client of model parameter θ using mini-batch ξi of size B, is an unbiased estimator
of ∇Fi(θ) with variance bounded by σ2

l , i.e.,

Eξi

∥∥∥∥∥ ∇Fi(θ, ξi)

∥∇Fi(θ, ξi)∥
− ∇Fi(θ)

∥∇Fi(θ)∥

∥∥∥∥∥
2

≤ σ2
l , ∀i ∈ [N ].

where the expectation is over all local datasets.

Lemma 5 (Bounded Eδ of FedSAM) Suppose Assumptions 1-2 hold. Then, for any ηl ≤ 1
4KL , drift

due to δi,k − δ satisfies

Eδ =
1

N

∑
i

E
[
∥δi,k − δ∥2

]
≤ 2K2β2η2l ρ

2.

Lemma 6 (Bounded Eθ of FedSAM) Suppose Assumptions 1-2 hold. Then, for any ηl ≤ 1
10KL , the

drift due to θi,k − θ satisfies

Eθ =
1

N

∑
i

E
[
∥θi,k − θ∥2

]
≤ 5Kη2l

(
2L2ρ2σ2

l + 6K(3σ2
g + 6L2ρ2)

)
+ 6K∥∇f(θ̃)∥2 + 24K3η4l L

4ρ2.

B.3.2 CONVERGENCE ANALYSIS FEDSAM WITH FULL CLIENT PARTICIPANT

To present the convergence of full client participant, we adopt lemmas from (Qu et al., 2022b) and
modify them under the empirical risk minimization formulation.

Lemma 7〈
∇F (θ̃r),Er

[
∆r + ηlK∇F (θ̃r)

]〉
≤ ηlK

2
∥∇F (θ̃r)∥2 +KηlL

2Eθ +KηlL
2Eδ −

ηl
2KN2

Er

∥∥∥∑
i,k

∇Fi(θ̃i,k)
∥∥∥2.

Lemma 8 For the full client participation scheme, we can bound E[∥∆r∥2] as follows:

Er

[
∥∆r∥2

]
≤ Kη2l L

2ρ2

N
σ2
l +

η2l
N2

[∥∥∥∥∥∑
i,k

∇Fi(θ̃
r
i,k)

∥∥∥∥∥
2]

+
η2l K

B

(
(d− 1)K +

det(H)

L′ + dLHρ

)
.
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Proof. For the full client participation scheme, we have:

Er[∥∆r∥2]
(a)

≤ η2l
N2

Er

[∥∥∥∥∥∑
i,k

g̃ri,k

∥∥∥∥∥
2]

(b)
=

η2l
N2

Er

[∥∥∥∥∥∑
i,k

(
g̃ri,k −∇Fi(θ̃

r
i,k)
)∥∥∥∥∥

2]
+

η2l
N2

Er

[∥∥∥∥∥∑
i,k

∇Fi(θ̃
r
i,k)

∥∥∥∥∥
2]

(c)

≤ Kη2l L
2ρ2

N
σ2
l +

η2l
N2

∥∥∥∥Er

[∑
i,k

∇Fi(θ̃
r
i,k)
]∥∥∥∥2 + η2l

N2
Tr

(
Cov

(∑
i,k

∇Fi(θ̃
r
i,k)

))
(d)

≤ Kη2l L
2ρ2

N
σ2
l +

η2l
N2

∥∥∥∥Er

[∑
i,k

∇Fi(θ̃
r
i,k)
]∥∥∥∥2 + η2l

N2
Tr

(
Cov

(∑
i,k

g̃i,k)

))
(e)
=

Kη2l L
2ρ2

N
σ2
l +

η2l
N2

∥∥∥∥Er

[∑
i,k

∇Fi(θ̃
r
i,k)
]∥∥∥∥2 + η2l K Tr(Σ̃G)

(f)

≤ Kη2l L
2ρ2

N
σ2
l +

η2l
N2

∥∥∥∥Er

[∑
i,k

∇Fi(θ̃
r
i,k)
]∥∥∥∥2 + η2l

B
K Tr

(
H(θ̃)

)
(g)

≤ Kη2l L
2ρ2

N
σ2
l +

η2l
N2

∥∥∥∥Er

[∑
i,k

∇Fi(θ̃
r
i,k)
]∥∥∥∥2 + η2l

B
K Tr

(
H(θ) + dLHρ

)
(h)

≤ Kη2l L
2ρ2

N
σ2
l +

η2l
N2

∥∥∥∥Er

[∑
i,k

∇Fi(θ̃
r
i,k)
]∥∥∥∥2 + η2l K

B

(
(d− 1)L+

det(H)

L′ + dLHρ

)
.

Here, (a) and (b) are based on Lemma 2 and Lemma 3, respectively, (c) follows from Lemma 4 and
the bias-variance decomposition E[∥Z∥2] = ∥E[Z]∥2 + Tr(Cov(Z)), (d) employs that g̃i,k is an
unbiased estimator of ∇Fi(θ̃i,k).

For step (e), by assuming
∑

i,k g̃i,k = N
∑

k g̃k with Cov(g̃k) = Σ̃G, we obtain

Tr
(
Cov

(∑
i,k g̃i,k

))
= N2 Tr

(
Cov

(∑
k g̃k)

)
= N2K Tr(Σ̃G). Therefore, the third term be-

comes η2l K Tr(Σ̃G).

Step (f) follows ΣG ≈ 1
BH in Theorem 3.1 which associates the covariance to empirical Hessian.

And step (g) applies LH Lipschitz continuity of the Hessian in Theorem 3.1.

Let H ⪰ 0 with eigenvalues λd ≥ · · · ≥ λ1 ≥ 0. Assume L-smoothness (Assumption 1), where
L denote as the maximum Lipschitz constant, i.e., H ⪯ LI . Then each eigenvalue is bounded by
λi ⪯ L, thus the sum of the smallest d − 1 eigenvalues satisfies

∑d−1
i=1 λi ≤

∑d−1
i=1 L = (d − 1)L.

Moreover, we define L′ :=
∏d−1

i=1 λi(H). Since det(H) =
(∏d−1

i=1 λi

)
λd = L′λd, we obtain

Tr(H) =
∑d−1

i=1 λi + λd ≤ (d − 1)L + λd = (d − 1)L + det(H)
L′ . By substituting the bound

Tr(H) ≤ (d− 1)L+ det(H)
L′ into step (g) yields (h).

Lemma 9 (Descent Lemma) For all r ∈ R − 1 and i ∈ Sr, the iterates generated by FedSAM
satisfy:

Er

[
F (θ̃ r+1)

]
≤ F (θ̃ r)−Kηgηl

(
1

2
− 30K2L2η2l

)∥∥∇F (θ̃ r)
∥∥2

+Kηgηl

(
10KL4η2l ρ

2σ2
l + 90K2L2η2l σ

2
g + 180K2L4η2l ρ

2 + 120K4L6η6l ρ
2

+ 16K3η4l L
6ρ2 +

ηgηlL
3ρ2

N
σ2
l

)
+

(d− 1)

2BK
+

det(H)

2BKLd
+

dLHρ

2BKL
.
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Proof

Er

[
F (θ̃ r+1)

]
≤ F (θ̃ r) + Er

〈
∇F (θ̃ r), θ̃ r+1 − θ̃ r

〉
+

L

2
Er

∥∥∥θ̃ r+1 − θ̃ r
∥∥∥2

(a)
= F (θ̃ r) + Er

〈
∇F (θ̃r) , −∆r +Kηgηl∇F (θ̃r)−Kηgηl∇F (θ̃r)

〉
+

L

2
η2g Er[∥∆r∥2]

(b)
= F (θ̃ r)−Kηgηl

∥∥∇F (θ̃ r)
∥∥2 + ηg

〈
∇F (θ̃r),Er[−∆r +Kηl∇F (θ̃r)]

〉
+

L

2
η2g Er[∥∆r∥2]

(c)

≤ F (θ̃ r)− Kηgηl
2

∥∥∇F (θ̃ r)
∥∥2 +KηgηlL

2Eθ +KηgηlL
2Eδ +

ηgηl
2KN

Er

[∥∥∥∑
i,k

∇Fi(θ̃
r
i,k)
∥∥∥2]

+
L

2
η2g Er

[
∥∆r∥2

]
(d)

≤ F (θ̃ r)− Kηgηl
2

∥∥∇F (θ̃ r)
∥∥2 +KηgηlL

2Eθ +KηgηlL
2Eδ +

Kη2gη
3
l L

3ρ2

N
σ2
l

+
KL

2B
η2l η

2
g

(
(d− 1) +

det(H)

L′ + dLHρ

)
(e)

≤ F (θ̃ r)−Kηgηl

(
1

2
− 30K2L2η2l

)∥∥∇F (θ̃ r)
∥∥2

+Kηgηl

(
10KL4η2l ρ

2σ2
l + 90K2L2η2l σ

2
g + 180K2L4η2l ρ

2 + 120K4L6η6l ρ
2 + 16K3η4l L

6ρ2 +
ηgηlL

3ρ2

N
σ2
l

)
+

(d− 1)

2BK
+

det(H)

2BKLd
+

dLHρ

2BKL
.

Here, (a) is from the iterate update of FedSAM, (b) is required from the unbiased estimators, (c)
relies on Lemma 7, (d) follows Lemma 8, and (e) holds under the learning rate ηlηg ≤ 1

KL .

By applying the telescoping sum of the result in Lemma 9 for r = [R] with learning rate conditions
ηl =

1√
RKL

, ηg =
√
KN and perturbation amplitude ρ = 1√

R
yields

1

R

R∑
r=1

E∥F (θr+1)∥

= O
(

FL√
RKN

+
σ2
g

R
+

L2σ2
l

R3/2
√
KN

+
L2

R3/2
+

L

BK3/2
√
RN

+
det(H)

BK3/2L′
√
RN

+
LH

BK3/2R
√
N

)

Note that both L2

R3/2 term and LH

BK3/2R
√
N

term decay faster with R than L
BK3/2

√
RN

and
det(H)

BK3/2L′
√
RN

. Hence, in large R, these terms are asymptotically negligible. In addition, the term
LH

BK3/2R
√
N

appears due to the Lipschitz continuity of Hessian and contributes only marginally to
robustness and convergence. By dropping faster decaying terms in R, we can obtain the following.

1

R

R∑
r=1

E∥F (θr+1)∥ = O
(

FL√
RKN

+
σ2
g

R
+

L2σ2
l

R3/2
√
KN

+
L

BK3/2
√
RN

+
det(H)

BK3/2L′
√
RN

)
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Proof. Multiplying 1
CKηlηgR

on both sides with
(
1
2 − 30K2L2η2l

)
> C > 0 if ηl <

1√
30KL

, we
obtain

1

R

R∑
r=1

E
[∥∥∇F

(
θ r+1

)∥∥2]
≤ F (θ̃ r)− F (θ̃ r+1)

CKηgηlR

+
1

C

(
10KL4η2l ρ

2σ2
l + 90K2L2η2l σ

2
g + 180K2L4η2l ρ

2 + 120K4L6η6l ρ
2 + 16K3η4l L

6ρ2 +
ηgηlL

3ρ2

N
σ2
l

)
+

1

CKηgηlR

(
(d− 1)

2BK
+

det(H)

2BKL′ +
dLHρ

2BKL

)

≤ F (θ̃ 0)− F ⋆

CKηgηlR

+
1

C

(
10KL4η2l ρ

2σ2
l + 90K2L2η2l σ

2
g + 180K2L4η2l ρ

2 + 120K4L6η6l ρ
2 + 16K3η4l L

6ρ2 +
ηgηlL

3ρ2

N
σ2
l

)
+

1

CKηgηlR

(
(d− 1)

2BK
+

det(H)

2BKL′ +
dLHρ

2BKL

)

=
F

CKηgηlR

+
1

C

(
10KL4η2l ρ

2σ2
l + 90K2L2η2l σ

2
g + 180K2L4η2l ρ

2 + 120K4L6η6l ρ
2 + 16K3η4l L

6ρ2 +
ηgηlL

3ρ2

N
σ2
l

)
+

1

CKηgηlR

(
(d− 1)

2BK
+

det(H)

2BKL′ +
dLHρ

2BKL

)

where F equals to F (θ̃ 0)− F ⋆.

B.3.3 CONVERGENCE ANALYSIS FEDSAM WITH PARTIAL CLIENT PARTICIPANT

To establish the convergence properties under the partial client participant, we adapt lemmas intro-
duced in (Qu et al., 2022b) and adjust to our empirical risk and Hessian framework.

Lemma 10 For the partial client participation with S ⊆ N , the variance is bounded as Er[∥∆r∥2]:

Er

[
∥∆r∥2

]
≤ Kη2l L

2ρ2

S
σ2
l +

S

N

∑
i

∥∥∥∥∥
K−1∑
j=1

∇Fi(θ̃
r
i,k)

∥∥∥∥∥
2

+
S(S − 1)

N2

∥∥∥∥∥
K−1∑
j=0

∇Fi(θ̃
r
i,j)

∥∥∥∥∥
2

.

Lemma 11 Suppose ∇Fi(θ̃i,k) for all k ∈ [K] and i ∈ [N ] is chosen according to FedSAM, we
have

∑
i

E
[∥∥∥∑

k

∇Fi(θ̃i,k)
∥∥∥2] ≤ 30NK2L2η2l

(
2L2ρ2σ2

l + 6K(3σ2
g + 6L2ρ2) + 6K∥∇F (θ̃)∥2

)
+ 144K4L6η4l ρ

2 + 12NK4L2η2l ρ
2 + 3NK2(3σ2

g + 6L2ρ2) + 3NK2∥∇F (θ̃)∥2.

Let local and global learning rates ηl and ηg be ηl ≤ 1
10KL , ηlηg ≤ 1

KL . From descent lemma, the
convergence under partial client participant is obtained as follows.
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Proof.

Er

[
F (θ̃ r+1)

]
(a)

≤ F (θ̃ r)− Kηgηl
2

∥∥∇F (θ̃ r)
∥∥2 +KηgηlL

2Eθ +KηgηlL
2Eδ −

ηgηl
2KN

Er

[∥∥∥∑
i,k

∇Fi(θ̃
r
i,k)
∥∥∥2]+ L

2
η2g Er

[
∥∆r∥2

]
(b)

≤ F (θ̃ r)− Kηgηl
2

∥∥∇F (θ̃ r)
∥∥2 +KηgηlL

2Eθ +KηgηlL
2Eδ +

Kη2gη
3
l L

3ρ2

S
σ2
l

− ηgηl
2KN

Er

[∥∥∥∑
i,k

∇Fi(θ̃
r
i,k)
∥∥∥2]+ η2gLS

2N

∑
i

∥∥∥∥∥
K−1∑
j=1

∇Fi(θ̃i,k)

∥∥∥∥∥
2

+
η2gLS(S − 1)

2N2

∥∥∥∥∥
K−1∑
j=0

∇Fi(θ̃i,j)

∥∥∥∥∥
2

(c)

≤ F (θ̃ r)− Kηgηl
2

∥∥∇F (θ̃ r)
∥∥2 +KηgηlL

2Eθ +KηgηlL
2Eδ +

Kη2gη
3
l L

3ρ2

2S
σ2
l +

Lη2gη
2
l

2NS

∑
i

∥
∑
k

∇Fi(θ̃
r
i,k)∥2

(d)

≤ F (θ̃ r)− Kηgηl
2

∥∥∇F (θ̃ r)
∥∥2 +KηgηlL

2Eθ +KηgηlL
2Eδ +

Kη2gη
3
l L

3ρ2

N
σ2
l +

Lη2gη
2
l

2NS
K
∑
i,k

∥∇Fi(θ̃
r
i,k)∥2

(e)

≤ F (θ̃ r)− Kηgηl
2

∥∥∇F (θ̃ r)
∥∥2 +KηgηlL

2Eθ +KηgηlL
2Eδ +

Kη2gη
3
l L

3ρ2

N
σ2
l

+
Lη2gη

2
l

2S
K
∑
k

[∥∥∥∥ 1

N

N∑
i=1

∇Fi(θ̃
r
i,k)

∥∥∥∥2 +Tr
(
Cov

(
∇Fi(θ̃

r
i,k)
))]

(f)

≤ F (θ̃ r)− Kηgηl
2

∥∥∇F (θ̃ r)
∥∥2 +KηgηlL

2Eθ +KηgηlL
2Eδ +

Kη2gη
3
l L

3ρ2

N
σ2
l

+
L2η2gη

2
l

2S

K

N

∑
i

E
[∥∥∥∑

k

∇Fi(θ̃i,k)
∥∥∥2]+ Lη2gη

2
l K

2

2BS

(
(d− 1)L+

det(H)

L′ + dLHρ
)

(g)

≤ F (θ̃ r)−Kηgηl

(
1

2
− 30K2L2η2l −

Lηgηl
2S

(
3K + 180K3L2η2l

))∥∥∇F (θ̃ r)
∥∥2

+Kηgηl

(
10KL4η2l ρ

2σ2
l + 90K2L2η2l σ

2
g + 180K2L4η2l ρ

2 + 120K4L6η6l ρ
2 + 16K3η4l L

6ρ2 +
L3ηgηlρ

2

2S
σ2
l

)
+

K2η2gη
2
l

S

(
30KL5η2l ρ

2σ2
l + 180K2L3η2l ρ

2 + 360KL5η2l ρ
2 + 72K3L7η4l ρ

2 + 6K3L3η2l ρ
2 + 6KLσ2

g + 6KL3ρ2
)

+
K2Lη2gη

2
l

2BS

(
(d− 1)L+

det(H)

L′ + dLHρ
)

Here, (a) is based on Lemma 9, (b) from Lemma 10, (c) considering the expectation of r-th that
KLηgηl ≤ S−1

S , (d) applies Lemma 2, (e) is based on bias-variance decomposition E[∥Z∥2] =
∥E[Z]∥2 +Tr(Cov(Z)), (f) applies the step (h) in Lemma 8, (g) combines Lemmas 5, 6 and 11.

For partial client participation, considering the telescope sum over R communication rounds with
local and global learning rates ηl = 1√

RKL
, ηg =

√
KS and perturbation ρ = 1√

R
, we obtain

1

R

R∑
r=1

E∥F (θr+1)∥

= O
(

FL√
RKS

+

√
KG2

√
RS

+
L2σ2

l

R3/2K
+

√
KL2

R3/2
√
S

+

√
KL

B
√
RS

+

√
Kdet(H)

B
√
RSL′

+

√
KLH

BR
√
S

)

Proof. Multiplying 1
CKηlηgR

on both sides,
(
1
2−30K2L2η2l −

Lηgηl

2S (3K+180K3L2η2l )
)
> C > 0,

on the descent lemma of partial client, we obtain

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

1

R

R∑
r=1

E
[∥∥∥F (θ̃ r+1)

∥∥∥] ≤ F (θ̃ r)− F (θ̃ r+1)

CKηgηℓR

+
1

C

(
10KL4η2ℓρ

2σ2
ℓ + 90K2L2η2ℓσ

2
g + 180K2L4η2ℓρ

2 + 120K4L6η6ℓρ
2 + 16K3η4ℓL

6ρ2 +
L3ηgηℓρ

2

2S σ2
ℓ

)
+

ηgηℓ
S

(
30KL5η2ℓρ

2σ2
ℓ + 180K2L3η2ℓρ

2 + 360KL5η2ℓρ
2 + 72K3L7η4ℓρ

2 + 6K3L3η2ℓρ
2 + 6KLσ2

g + 6KL3ρ2
)

+
KLηgηl
2BS

(
(d− 1)L+

det(H)

L′ + dLHρ
)

≤ F

CKηgηℓR

+
1

C

(
10KL4η2ℓρ

2σ2
ℓ + 90K2L2η2ℓσ

2
g + 180K2L4η2ℓρ

2 + 120K4L6η6ℓρ
2 + 16K3η4ℓL

6ρ2 +
L3ηgηℓρ

2

2S σ2
ℓ

)
+

ηgηℓ
S

(
30KL5η2ℓρ

2σ2
ℓ + 180K2L3η2ℓρ

2 + 360KL5η2ℓρ
2 + 72K3L7η4ℓρ

2 + 6K3L3η2ℓρ
2 + 6KLσ2

g + 6KL3ρ2
)

+
KLηgηl
2BS

(
(d− 1)L+

det(H)

L′ + dLHρ
)

where, the second equality employ F = F (θ̃0)− F ∗ ≤ F (θ̃r)− F (θ̃r+1).

Note that the terms
√
KL2

R3/2
√
S

and
√
KLH

BR
√
S

vanish faster in R than
√
KL

B
√
RS

and
√
Kdet(H)

B
√
RSL′ . Moreover,

the term
√
KLH

BR
√
S

is introduced to account for Hessian LH -Lipschitz continuity and provides a minor
contribution to robustness and convergence. Thus, we obtain the simplified rate as follows.

1

R

R∑
r=1

E∥F (θr+1)∥ = O
(

FL√
RKS

+

√
KG2

√
RS

+
L2σ2

l

R3/2K
+

√
KL

B
√
RS

+

√
Kdet(H)

B
√
RSL′

)

C EXPERIMENTAL SETTING

C.1 HYPERPARAMETERS AND FL SETTING

We provide all training hyperparameters and federated learning settings used in our main experi-
ments as below.

Table 2: Hyperparameters and FL settings

Hyperparameters Value
Datasets D CIFAR-10
Local model M LeNet
Clients K 10
Clients per round m 5
Rounds R 1000
Local epochs E 5
Batch size B 64
Learning rate η 0.01
Optimizer SGD
Weight decay λ 0.0005
Non-IID α 10(IID)
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Figure 8: LPIPS, MSE, SSIM scores reconstructed by all of gradient inversion attacks in FedAvg
over communication rounds.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 RECONSTRUCTION METRICS OVER ROUNDS

Figure 8 shows the evolution of gradient inversion attack performance under FedAvg across the
communication round, evaluated by LPIPS, MSE, and SSIM. The three metrics exhibit tendencies
consistent with PSNR. As communication rounds progress, LPIPS and MSE increase while SSIM
decreases, indicating that gradient inversion attacks become more difficult.

D.2 ADDITIONAL COMPARISON

We evaluated the reconstruction quality of the gradient inversion attacks using four metrics. Section
4.3 provides an analysis using the PSNR score. We utilize the remaining three metrics to analyze
the effect of SAM on the gradient inversion attack.
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Figure 9: LPIPS, MSE, SSIM scores reconstructed by iDLG in all federated learning methods over
communication rounds.
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Figure 10: LPIPS, MSE, SSIM scores reconstructed by GI in all federated learning methods over
communication rounds.
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Figure 11: LPIPS, MSE, SSIM scores reconstructed by IG in all federated learning methods over
communication rounds.
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Figure 12: LPIPS, MSE, SSIM scores reconstructed by GIAS in all federated learning methods over
communication rounds.

Figure 9 - 13 show that FedAvg achieves lower LPIPS and MSE and higher SSIM compared to
SAM-based federated learning methods, demonstrating that SAM makes gradient inversion attack
difficult.
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Figure 13: LPIPS, MSE, SSIM scores reconstructed by GIFD in all federated learning methods over
communication rounds.
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