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Abstract

Structured knowledge bases in the forms of graphs often suffer from incompleteness
and inaccuracy in representing information. One popular method of densifying
graphs involves constructing a reinforcement learning agent that learns to traverse
entities and relations in a sequential way from a query entity, according to a query
relation until it reaches the desired answer entity. However, these agents are often
limited by sparse reward structures of the environment, as well as their inability to
find diverse paths from the question to the answer entities. In this paper, we attempt
to address these issues by augmenting the agent with intrinsic rewards which can
help in exploration as well as offering meaningful feedback at intermediate steps
to push the agent in the right direction.

1 Introduction

The landscape of multi-hop reasoning in knowledge graphs has seen continued innovation with the
introduction of novel reinforcement learning methods. This refers to the ability of an intelligent
system to make inferences by traversing multiple "hops" through interconnected pieces of information,
such like those present in knowledge graphs or relational datasets where entities are linked by various
relationships.

Existing attempts at multi-hop reasoning fall broadly two categories: those that predict relations given
query entities and answer entities, and those that predict answer entities given query entities and
relations. Relation prediction methods [Xiong et al., 2018, Chen et al., 2018, Neelakantan et al., 2015,
Das et al., 2017, Lao et al., 2011, Wang et al., 2019] are common in tasks such as link prediction
whereas entity prediction methods [Shen et al., 2018, Lin et al., 2018, Lv et al., 2019, Das et al., 2018,
Li and Cheng, 2019, Wan and Du, 2021] are useful in query answering tasks.

Of the entity prediction methods, several are based on on the reinforcement learning paradigm.
In Das et al. [2018], path finding capabilities of the agent have been prioritized. Specifically, the
REINFORCE algorithm has been used to train an end-to-end question answering agent. In other work,
hierarchical reinforcement learning has been proposed [Wan et al., 2020] to decompose relations
in sub-tasks in order for the agent to understand actions better in different contexts. This helps in
solving the multiple semantic issue, where relations may occur many times in the relation vocabulary,
but may mean different things depending on it’s surroundings. GaussianPath [Wan and Du, 2021]
explores a bayesian algorithm where the uncertainty of different hops are expressed using a posterior,

NeurIPS 2023 New Frontiers in Graph Learning Workshop (NeurIPS GLFrontiers 2023).



which is derived from a prior and likelihood which is provided by an oracle. Thompson sampling
is conducted over the posterior distributions to incorporate exploration and diversity. However, the
reward structure of these environments offer delayed binary rewards, and may not be generalizable.

Current literature does attempt to address sparsity. For example, Dual Agents [Zhang et al., 2021]
have been applied to interactively perform coarse and fine reasoning. Here, a mutual reinforcement
reward has been constructed to help the coarse reasoner provide hints to the fine reasoner, as well as
learn to traverse trajectories consistent with each other. Adversarial multi-agent systems have also
emerged as a promising direction for future research. In particular, agents have been designed to
extract arguments from graphs and debate over them [Hildebrandt et al., 2020], with a common judge
to classify the winner as well as process the arguments and provide rewards in the form of score
representations which take the arguments as inputs. In reward shaping [Lin et al., 2018], sparsity is
mitigated with the assumption that all intermediate rewards take the form of a fact function which is
known beforehand [Trouillon et al., 2016, Dettmers et al., 2018].

In our work, we attempt to generate intrinsic rewards using random network distillation [Burda et al.,
2018], which is a curiosity based method originally intended to improve intrinsic curiosity module
[Pathak et al., 2017] based methods in highly stochastic environments. To the best of our knowledge,
CuriousWalk is the first method that uses an intrinsic reward to improve reasoning performance.

2 Method

We present a novel approach to enhancing multi-hop reasoning in knowledge graphs through Random
Network Distillation. Our method addresses the challenges of sparsity mitigation and improves the
diversity of identified paths, which have been limitations in existing techniques.

2.1 Environment

Our goal is to be able to answer queries of the form (eq, r, ?). We formulate the environment as a
partially observable Markov decision process. Following MINERVA [Das et al., 2018], the problem
can be represented using a knowledge graph derived from a knowledge base. Within this graph, we
define states, observations, actions, transitions and extrinsic rewards as follows:

1. States are described by the tuple (eq, rq, et, ea), where the query entity, query relation and
answer entity are eq , rq and ea respectively. In addition to these, the current location of the
agent et is also included in the state.

2. Observation for a given state S is given by (eq, rq, et).

3. Actions at a exploratory entity et is defined by all the outgoing relations from et. If the
current location is sufficient, a self-looping action can be taken. Furthermore, inverse
relations for undoing wrong actions is also possible.

4. Transitions in our POMDP transitions are deterministic and consist of updating the ex-
ploratory state et according to the agent’s action.

5. Extrinsic rewards obtained at a given exploratory state et ∈ S depend on the true labels of
answer entities ea and are formulated as:

R(S) =

{
1 et = ea
0 et ̸= ea

2.2 Intrinsic rewards

In order to enhance the reward structure, we employ random network distillation [Burda et al.,
2018]. We prefer this method over intrinsic curiosity module (ICM) methods because ICM uses state
information present in consecutive time steps to generate rewards, and would not work well when
the environment is unpredictable, due to the popularly known noisy-TV problem. An overall reward
which combines both intrinsic and extrinsic rewards is calculated later.
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2.2.1 Target network

The target network is a neural network that serves as a reference or teacher network, It is used to
estimated the expected intrinsic reward the agent should receive for it’s current state-action pairs. The
target network weights are initialized randomly and are not trained. Our network architecture can
formally be written as:

f(S) = W3ReLU(W2ReLU(W1[et; at]))

Where f is the target network feature representation and ; denotes vector concatenation. Additionally
, the network takes the actions possible at the exploratory state S, i.e. the outgoing relations as inputs.
The hidden layers all have 128 units and the output has 64 units.

2.2.2 Predictor network

This network estimates the intrinsic reward and drives the agent’s exploration. The weights are
initialized randomly and are trained according to a loss function who’s target is defined by the target
network. The predictor network architecture can formally be written as:

f̂(S) = W2ReLU(W1[et; at])

where f is the predictor network feature representation, and has one hidden layer with 64 hidden
units, and 64 output units.

2.2.3 Training the predictor network

The predictor network tries to match the target network’s output for a given state S. We found that
the L2 loss function between the target and predictor network works well, as given by:

L(f(S), f̂(S)) = ||f(S)− f̂(S)||22

This is also the intrinsic reward at state S for our agent. As training goes on, the predictor network
makes small errors on familiar states and larger errors on unfamiliar states. This translates into a
higher reward for unexplored areas of the graph.

2.3 History, relation and entity embeddings

Since the knowledge graph is incomplete, embeddings [Trouillon et al., 2016, Dettmers et al., 2018]
are used to mitigate the issue of rewarding false negatives the same as true negatives [Lin et al., 2018].
The history of states and actions taken by the agent in an episode as input to an LSTM along with the
observation and action at t− 1 to forecast the encoded history at t. This encoded history is used in
the policy network later [Das et al., 2018].

ht = LSTM(ht−1, [at−1; ot])

The actions taken by the agent are embedded into a action embedding space, which comprises of
the outgoing relation embedding and the destination entity embedding. Both relation and entity
embedding spaces have embedding vector length d.

2.4 Policy network

The policy network was trained to maximize the cumulative expected return as:

θ = maxθ E(e1,r,e2)∼D EA1,...,AT−1∼πθ
[G1|S1 = (eq, eq, r, ea)]

Where θ are the parameters of policy π. An underlying distribution D is assumed for transitions
(e1, r, e2). Gt, the goal is defined as:
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Gt = Rc,t + γRc,t+1 + γ2Rc,t+2 + ...+ γT−t+1Rc,T

Where Rc is the combined reward and γ is the discount factor. The first expectation is replaced with
sample average approximation and for the second expectation several trajectories are rolled out for
each state [Das et al., 2018]. The policy network is stochastic over the actions available and uses a
feedforward neural network as below.:

dt = softmax(At(W2ReLU(W1[ht; ot; rq])))

At ∼ Categorical(dt)

Where the query relation rq gives context to the network in selecting actions. Overall, the trainable
weights of our policy include both the LSTM weights as well as the policy network weights.

3 Training the agent

The agent was trained using a modified version of REINFORCE [Williams, 1992], as shown below.
The goal of training is to maximize the expected cumulative reward over trajectories that were
generated from the query entity until the terminal length of the path. Training can be divided into
two stages, namely the pretraining of the predictor network, and the simultaneous training of both
the predictor network and the policy network. Note that it is important to continue training of the
predictor network in the second phase, as repeating observations should receive lower intrinsic
rewards over time.

Algorithm 1 REINFORCE with RND pseudocode
Sample input I = (et, rt+1, et+1) from validation set
for all Ii ∈ I do

Get f̂(I) and f(I) from predictor and target networks
Calculate loss L(f(St), f̂(St)) = ||f(Ii)− f̂(Ii)||22
Train predictor weights θp w.r.t backpropagated loss

end for
for Episode in Episodes do

for t in (1, 2, ..., T ) do ▷ T = number of time steps in trajectory
Sample action from policy At ∼ π(a|St; θπ)
Get new state and extrinsic reward St+1, RE,t+1 ∼ p(St+1, RE,t+1|St, At)

Calculate intrinsic reward RI,t = ||f(Ii)− f̂(Ii)||22
Train predictor network on current (et, rt+1, et+1)
Normalize all intrinsic rewards: RI,t ← (RI,t − µrI )/σrI

Calculate expected return Gt = ΣT
k=tγ

k−t+1(rE,k + rI,k)
Update policy weights θπ: θπ ← θπ + αGtγ

t∇θπ log(π(At|St; θπ))
end for

end for

3.1 Pretraining predictor network

The predictor network was pretrained over samples from the validation set, since exposing the
predictor network to training samples directly might lead to overfitting. Although the number of
samples in the validation set is low, pretraining the network helps it "get used to" matching the
target network’s representation, and familiarize itself with different states. This led to an appreciable
improvement in the first few hops our agent takes in the second stage, since MINERVA is vulnerable
to bias from initial training steps [Guu et al., 2017].

3.2 Intrinsic reward scaling and normalization

Since it is important that the intrinsic rewards at intermediate time steps of a trajectory must be less
than the maximum extrinsic reward that is possible when et = ea, we scale the intrinsic reward to
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Table 1: Hits@N for our model CW vs MINERV A for different training iterations

Hits 100CW 200CW 300CW 400CW 100M 200M 300M 400M

Hits@1 0.037 0.051 0.175 0.177 0.032 0.031 0.066 0.152
Hits@3 0.068 0.118 0.308 0.391 0.078 0.088 0.143 0.257
Hits@5 0.104 0.154 0.369 0.469 0.112 0.129 0.196 0.313
Hits@10 0.186 0.236 0.443 0.577 0.182 0.194 0.292 0.372
Hits@20 0.335 0.385 0.518 0.673 0.330 0.363 0.457 0.482

be between 0 and 1. The rewards are normalized to speed up learning "in the loop" by dividing the
rewards by a running estimate of the standard deviation.

3.3 Combining extrinsic and intrinsic rewards

The extrinsic rewards are added to the normalized intrinsic rewards at all time steps. This would
enforce that Rc,t ∈ [0, 2] for all t. Cumulative discounted reward is calculated by using a single
discount factor for both intrinsic as well as extrinsic rewards.

3.4 Incorporated methods

Several methods involved in training MINERVA [Das et al., 2018] were reused, such as the additive
control variate baseline and entropy regularization term β.

4 Results

Our resulting model was tested on the Kinship dataset, which consists of a family tree of the Alyawarra
tribe. Our testing procedure consisted of entity prediction of the form (e1, r, ?). The most probable
destination entities from our trajectories were ranked using a beam search. The top 50 scoring entities
are retained, based on the output logits of our model. The length of the trajectories were kept as 2.

Our experimental findings reveal that our model shows an uptick in average reward per batch around
the 200th iteration as shown in Figure 1, which suggests that the model has started to explore more
effective paths in the graph early on, leading to better route planning and transfer of knowledge.

Moreover, an increase in the Hits@n metric was observed as shown in Table 1. Considering the
AUC-PR in this case is important as it is a proxy for the diversity of paths that CuriousWalk is able to
find. AUC-PR represents the proportion of triples in the test set that can be found by the model with
at least one path from the head entity to the tail entity. It is formally defined as:

Σ(eq,r,ea)∈Dtest
Cnt(eq, r, ea)/|Dtest|

where Dtest is the number of examples in the test set, and Cnt(eq, r, ea) is an indicator function to
denote whether the model can find a path from h to t. The function value is 1 if at least one path can
be found, otherwise, it is 0. The improvement, offers an insight into the robustness of the model, as
shown in Figure 2.

5 Conclusion

In this study, we have explored the potential for an intrinsic reward structure to mitigate the sparsity
and exploratory issues of MINERVA [Das et al., 2018]. The observed proficiency in the hits metric
is noteworthy because it may signify that the denser reward structure is beneficial for effective
learning. Furthermore, as training goes on the disparity between MINERVA and CuriousWalk implies
a cumulative learning effect, resulting from the timely feedback from the environment. Diverse paths
can enhance robustness of a reasoning model, and signifies adaptability in the case that certain paths
are altered or become unavailable.

There are several limitations of intrinsic rewards to take into consideration for future research. Tuning
the predictor network’s as well as the agent’s own hyperparameters can result in significant time

5



Figure 1: The upsurge in average reward per batch suggests better explorative performance of
CuriousWalk. Note that this measurement does not include intrinsic rewards.

Figure 2: More AUC-PR indicates that in more number of testing examples, CuriousWalk could find
at least one path from the query entity to the answer entity.

and computational overhead, and since the reasoning capabilities of our agent are sensitive to these
hyperparameters, methods to make the search process easier should be investigated. On the other
hand, the limited interpretability of our rewards can result in difficulty balancing exploration and
exploitation. The agent can often prioritize novelty over task-specific goals like path finding.

There is scope for further experimentation with regards to testing the model on bigger datasets in the
future, to understand how well CuriousWalk can generalize. Furthermore, the majority of existing
literature in entity prediction use policy gradient methods to train the reasoner. However, off-policy
methods are known to be more data efficient, especially since the environment is deterministic and
transitions are quick. In this regard, Q-learning techniques with replay buffers may help improve
performance.
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