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ABSTRACT

Stochastic gradient descent with momentum, also known as Stochastic Heavy
Ball method (SHB), is one of the most popular algorithms for solving large-scale
stochastic optimization problems in various machine learning tasks. In practical
scenarios, tuning the step-size and momentum parameters of the method is a pro-
hibitively expensive and time-consuming process. In this work, inspired by the
recent advantages of stochastic Polyak step-size in the performance of stochastic
gradient descent (SGD), we propose and explore new Polyak-type variants suit-
able for the update rule of the SHB method. In particular, using the Iterate Moving
Average (IMA) viewpoint of SHB, we propose and analyze three novel step-size
selections: MomSPSmax, MomDecSPS, and MomAdaSPS. For MomSPSmax, we
provide convergence guarantees for SHB to a neighborhood of the solution for
convex and smooth problems (without assuming interpolation). If interpolation is
also satisfied, then using MomSPSmax, SHB converges to the true solution at a
fast rate matching the deterministic HB. The other two variants, MomDecSPS and
MomAdaSPS, are the first adaptive step-size for SHB that guarantee convergence
to the exact minimizer - without a priori knowledge of the problem parameters
and without assuming interpolation. Our convergence analysis of SHB is tight
and obtains the convergence guarantees of stochastic Polyak step-size for SGD as
a special case. We supplement our analysis with experiments validating our theory
and demonstrating the effectiveness and robustness of our algorithms.

1 INTRODUCTION

We consider the unconstrained finite-sum optimization problem,

min
x∈Rd

[
f(x) =

1

n

n∑
i=1

fi(x)

]
, (1)

where each fi : Rd → R is convex, smooth, and lower bounded by ℓ∗i . Let X∗ be the set of
minimizers of (1). We assume that X∗ ̸= ∅ and we fix x∗ ∈ X∗. This problem is the cornerstone of
machine learning tasks, (Hastie et al., 2009), where x corresponds to the model parameters, fi(x)
represents the loss on the training point i, and the aim is to minimize the average loss f(x) across
training points.

When n is large, stochastic gradient methods are the preferred methods for solving (1) mainly be-
cause of their cheap per iteration cost. One of the most popular stochastic algorithms for solving
such large-scale machine learning optimization problems is stochastic gradient descent (SGD) with
momentum, (Sutskever et al., 2013), a.k.a. stochastic heavy ball method (SHB) given by:

xt+1 = xt − γt∇fSt
(xt) + βt(x

t − xt−1). (SHB)

where St ⊆ [n] a random subset of data-points (mini-batch) with cardinality B sampled indepen-
dently at each iteration t, and ∇fSt

(xt) = 1
B

∑
i∈St

∇fi(x
t) is the mini-batch gradient. Here

γt > 0 is the step-size/learning rate at iteration t while βt ≥ 0 represents the momentum parameter.
When the momentum parameter βt = 0,∀t ≥ 0, then the update rule SHB is equivalent to the
well-studied mini-batch SGD, xt+1 = xt − γt∇fSt(x

t), (Robbins and Monro, 1951), which has
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been efficiently analyzed under different properties of problem (1) and different step-size selections
γt (Nemirovski and Yudin, 1983; Nemirovski et al., 2009; Hardt et al., 2016; Needell et al., 2016;
Nguyen et al., 2018; Gower et al., 2019; 2021). Additionally, when the cardinality of the random
subset St is B = n, then the update rule of SHB is equivalent to the deterministic heavy ball method
(HB) proposed by Polyak (1964), as a way to improve the convergence behavior of deterministic
Gradient Descent (GD).

There is a rich literature on the convergence of SHB and HB in different scenarios. In Polyak (1964),
it was proved that for a specific choice of the step-size γ and the momentum parameter β, the HB
method enjoys an accelerated linear convergence when minimizing strongly convex quadratic func-
tions while more recently, Ghadimi et al. (2015) proved a global sublinear convergence guarantee
for HB for convex and smooth functions. In the stochastic setting, several works focus on conver-
gence guarantees of SHB under constant step-size and momentum parameters (Ma and Yarats, 2019;
Kidambi et al., 2018; Yan et al., 2018; Gitman et al., 2019; Liu et al., 2020). However, in practical
scenarios, these choices suffer from a prohibitively expensive and time-consuming hyper-parameter
tuning process. This has motivated a large body of research on the development of adaptive SHB -
a method that adapts their parameters using information collected during the iterative process. Such
analysis is challenging, and the current adaptive versions of SHB either focus on the full batch set-
ting (deterministic) (Barré et al., 2020; Saab Jr et al., 2022), or assume that an interpolation condition
is satisfied (Wang et al., 2023; Schaipp et al., 2023b).

Previous studies in the fully stochastic (non-interpolated) scenario have predominantly concentrated
on analyzing adaptive versions of SGD, with limited attention given to developing adaptive variants
for the SHB. In this work, we take inspiration from the recently introduced and highly efficient
Polyak-type adaptive step-sizes for SGD and investigate its applicability and extension to SHB.

1.1 MAIN CONTRIBUTIONS

Our main contributions are summarized below.

⋄ Efficient Polyak Step-sizes via IMA viewpoint. We explain and illustrate by experiment (see
Figure 1) why naively using SPSmax of Loizou et al. (2021) as a step-size γt in the update rule of
SHB is not robust, leading to divergence even in simple problems. To resolve this issue, we provide
an alternative way of selecting Polyak-type step-sizes for SHB via the Iterate Moving Average view-
point from Sebbouh et al. (2021). Through our approach, we propose three novel adaptive step-size
selections, namely MomSPSmax, MomDecSPS, MomAdaSPS. Each of the proposed step-sizes de-
pends on the choice of the momentum parameter β adding further stability to SHB and comes with
specific benefits over their constant step-size counterparts or other adaptive variants of SHB.

⋄ MomSPSmax: Convergence of SHB in non-interpolated setting. Our first step-size selection
of SHB is MomSPSmax, which has a similar structure to SPSmax of Loizou et al. (2021) but in-
cludes also (1 − β) in its expression. For this choice, we provide convergence guarantees for SHB
to a neighborhood of the solution for convex and smooth problems. Our analysis provides the
first convergence guarantees of adaptive SHB using Polyak-type step-size. Previous works (Wang
et al., 2023; Schaipp et al., 2023b) on Polyak step-size with momentum have guaranteed only under
the interpolation setting. In addition, as a corollary of our main theoretical results, we show that
MomSPSmax under the interpolation setting and in deterministic scenarios (full batch) converges to
the true solution at a fast rate matching the deterministic HB.

⋄ Convergence of SHB to exact solution via MomDecSPS and MomAdaSPS. Inspired by two
recent Polyak-type step-size selections for SGD, the DecSPS in Orvieto et al. (2022) and AdaSPS
in Jiang and Stich (2023), we propose two new ways for tuning the step-size for SHB. These are
MomDecSPS and MomAdaSPS. Our analysis provides the first O(1/

√
T ) convergence guarantees

to the exact solution in the non-interpolated regime for a Polyak-type adaptive variant of SHB. Our
proposed update rules converge for any choice of momentum parameter β ∈ [0, 1), which makes
them particularly useful in practical scenarios.

⋄ Tight Convergence Guarantees. All of our convergence guarantees are true generalizations of the
theoretical analysis of SGD using SPSmax, DecSPS, and AdaSPS. That is, if β = 0 (no momentum)
in the update rule of SHB, our theorems obtain as a special case the best-known convergence rates
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Step-size Assumptions Adaptive Exact Convergence Rate

Constant (Liu et al., 2020) Knowledge of L ✗ ✗ O( 1
T
+ σ̂2)

IMA (Sebbouh et al., 2021) Knowledge of L ✗ ✓ O( 1
T
+ σ̂2)

ALR-SMAG (Wang et al., 2023) Interpolation ✓ ✗ O( 1
T
+ σ2)

MomSPSmax (Thm 3.2) Restriction on β ✓ ✗ O( 1
T
+ σ2)

MomDecSPS (Thm 3.6) Bounded Iterates ✓ ✓ O( 1√
T
)

MomAdaSPS (Thm 3.7) Bounded Iterates ✓ ✓ O( 1
T
+ σ√

T
)

Table 1: Summary of the considered step-sizes and the corresponding theoretical results. All
the rates are given for convex and smooth functions. The quantity of convergence in our rates
is E[f(xT ) − f(x∗)], where xT = 1

T

∑T
t=0 x

t. Here σ̂2 = E ∥∇fi(x
∗)∥2 < ∞ and σ2 =

E[fi(x∗) − ℓ∗i ] < ∞. The “Exact Convergence” column refers to convergence to the exact so-
lution x∗ with no interpolation assumption.

of Polyak-type step-size for SGD, highlighting the tightness of our analysis. See also Table 1 for a
summary of our main complexity results and a comparison with closely related works.

⋄ Further Convergence Results. As a byproduct of our theoretical analysis, we provide two in-
teresting corollaries: a novel analysis of constant step-size SHB (as a corollary of our Theorem
on MomSPSmax) and the first robust convergence of SHB via our theorem on MomAdaSPS. For a
constant step-size, the Corollary 3.5 of our Theorem 3.2 allows larger step-sizes than the analysis
of SHB in Liu et al. (2020) and provides convergence without assuming the restrictive bounded
variance condition (there exist q > 0 such that E ∥∇fi(x) − ∇f(x)∥2 < q). In addition, via The-
orem 3.7 we provide the first robust convergence of adaptive SHB that guarantees convergence to
the exact solution and automatically adapts to whether our problem is interpolated or not. That is,
if interpolation is assumed, then the rate of SHB with MomAdaSPS is the same as the rate of SHB
with MomSPSmax (or constant step-size), and if no interpolation is assumed, then it matches the
rate of SHB with MomDecSPS. The analysis achieves the best-known rates in both settings.

⋄ Numerical Evaluation. In Section 4, we verify our theoretical results via numerical experiments
on various problems, demonstrating the effectiveness and practicality of our approach.

2 EXPLORING THE INTERPLAY OF SPS AND HEAVY BALL MOMENTUM

In this section, we present the expression of Stochastic Polyak Step-size (SPS) and its different
variants. We illustrate that a naive combination of SPS with momentum is not robust, leading to
divergence in simple problems. We explain how we resolve this issue using the Iterate Moving
Average viewpoint of SHB and propose three adaptive Polyak-type step-sizes for SHB.

2.1 BACKGROUND ON STOCHASTIC POLYAK STEP-SIZE

The deterministic Polyak step-size (PS) was first introduced by Polyak (1987) as an efficient step-
size selection for GD for solving convex optimization problems. It has the following expression:
γt = f(xt)−f(x∗)

∥∇f(xt)∥2 which is obtained by minimizing an upper bound of the quantity ∥xt+1 − x∗∥2
in the analysis of GD. Since its original proposal, the PS has been successfully used in the analysis
of deterministic subgradient methods in different settings with favorable convergence guarantees
(Boyd et al., 2003; Davis et al., 2018; Hazan and Kakade, 2019). PS requires the prior knowledge
of f(x∗), which might look like a strong assumption. However, as shown in Boyd et al. (2003),
this is known in several applications, including finding a point in the intersection of convex sets and
positive semi-definite matrix completion.

Inspired by the convergence of PS in the deterministic setting, Loizou et al. (2021) has effectively
modified the Polyak step-size for the stochastic setting, achieving convergence rates comparable
to those of finetuned SGD. The proposed stochastic Polyak step-size (SPS) has several benefits,
including independence on parameters of the problem (e.g., L-smoothness or µ strong convexity)
and competitive performance in over-parametrized models. More specifically, Loizou et al. (2021)
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proposed the SPSmax given below1:

γt = min

{
fSt(x

t)− ℓ∗St

c∥∇fSt
(xt)∥2

, γb

}
. (SPSmax)

Here, γb > 0 is a bound that restricts SPS from being very large and is essential to ensure conver-
gence to a small neighborhood around the solution and c > 0 is a positive constant that depends on
the function class the objective f belongs to.

As mentioned in Orvieto et al. (2022), the SPSmax comes with strong convergence guarantees and
competitive performance; however, it has one main drawback when used in non-over-parameterized
regimes: It can guarantee convergence only to a neighborhood of the solution. For this reason,
Orvieto et al. (2022) suggests a decreasing variant of the original SPSmax named DecSPS, given by:

γt =
1

ct
min

{
fSt

(xt)− ℓ∗St

∥∇fSt(x
t)∥2

, ct−1γt−1

}
, (DecSPS)

where ct is an increasing sequence of positive real numbers and c−1 := c0 and γ−1 = γb > 0. The
authors proved that SGD with DecSPS and ct =

√
t+ 1, converges with a sublinear rate O(1/

√
T )

for convex and smooth functions with bounded iterates (i.e., D2 := maxt∈[T−1] ∥xt − x∗∥2 < ∞).

More recently, in Jiang and Stich (2023), another decreasing variant of SPS was introduced, named
AdaSPS:

γt = min

{
fSt (x

t)−ℓ∗St

c∥∇fSt (x
t)∥2

1√∑t
s=0 fSs (x

s)−ℓ∗Ss

, γt−1

}
, (AdaSPS)

where γ−1 = +∞ and c > 0. For convex and L-smooth functions with bounded iterates, it can
be shown that SGD with AdaSPS converges to an exact solution with a rate O

(
τ2

T + τσ√
T

)
, where

τ = 2cLD2 + 1
c . The interesting aspect of the convergence of AdaSPS is that it provides a robust

result for SGD, meaning that the method recovers the best bounds for both the interpolated (σ = 0)
and non-interpolated regimes.

2.2 NAIVE SPS IN SHB

All of the above variants of SPS were proposed and analyzed for SGD (SHB with no momentum).
With the increased popularity of momentum in machine learning, one can naturally ask the following
question: Is it possible to combine SPS with momentum? This question was partially answered in
Wang et al. (2023) when a momentum variant of SGD with Polyak-type step-size was proposed
to solve the easier-to-analyze interpolated problems. In this scenario, the method behaves like its
deterministic counterpart. However, several stochastic optimization problems do not satisfy the
interpolation condition. In our work, we focus on this more general scenario.

0 10000 20000 30000 40000 50000
Iterations

10 1

100

f(x
k )

f(x
* )

f(x
0 )

f(x
* )

MomSPSmax
SPSmax + Naive Momentum
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Figure 1: Comparison of MomSPSmax versus SPSmax with
naive momentum for different momentum parameters β on a
logistic regression problem. Left: β = 0.2, Right: β = 0.5

The most straightforward approach is
to directly apply the SPSmax in the
SHB update rule. Let us call this up-
date rule SPSmax with naive momen-
tum. Unfortunately, this approach
does not necessarily lead to conver-
gence for natural choices of momen-
tum parameter β ∈ (0, 1), as shown
in Figure 1.2 In this experiment, even
for simple convex and smooth prob-
lems like a logistic regression with
synthetic data, the naive rule fails to
converge when β gets larger (a typi-
cal choice for momentum parameter
is β = 0.9). This indicates that a

1Originally Loizou et al. (2021) use f∗
St

instead of the lower bound ℓ∗St
. The lower bound is due to Orvieto

et al. (2022), which proves that the more relaxed lower bound can still lead to the same convergence guarantees.
2See also Figure 9 in Appendix for more values of β.
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more careful step-size selection is needed, which may also depend on the momentum parameter.
In Figure 1, we compare the SPSmax with naive momentum with one of our proposed and analyzed
step-size selection MomSPSmax. As seen in Figure 1, when β is small, then both SPSmax with naive
momentum and SHB with MomSPSmax have similar behavior. When β = 0, the two methods have
identical performance as both are reduced to the same method: SGD with SPSmax. However, as
β gets larger, the performance of SPSmax with naive momentum gets worse and less stable, and at
some point, it diverges. On the other hand, in this example, SHB with MomSPSmax converges for
any of the selected β.

2.3 ITERATIVE MOVING AVERAGE: BALANCE BETWEEN SPS AND MOMENTUM

Having explained how naively combining SPSmax with heavy ball momentum can lead to diver-
gence, in this section, we leverage the iterate moving-average (IMA) viewpoint of SHB from Seb-
bouh et al. (2021) to propose SPS-type adaptations that depend on momentum parameter as well for
SHB. As we will see later, this viewpoint provides stability and robustness to the proposed update
rules.

Iterate Moving Average (IMA). Sebbouh et al. (2021) provide the IMA as an alternative way of
expressing the update rule of SHB and explain how the IMA formulation is crucial in comparing
SHB and SGD as it allows to establish connections between the step-sizes of the two methods. The
Iterate Moving Average method is given by the following update rule:

zt+1 = zt − ηt∇fSt
(xt), xt+1 =

λt+1

λt+1 + 1
xt +

1

λt+1 + 1
zt+1,

where z0 = x0, ηt > 0 and λt ≥ 0. As proved in Sebbouh et al. (2021), if for any t ∈ N, holds
1 + λt+1 = λt

βt
and ηt = (1 + λt+1)γt then the xt iterates of the IMA method are equal to the xt

iterates produced by the SHB method. For completeness, we include the proof of this statement in
Appendix C.3.

In our proposed methods, we select the most common setting of constant momentum (βt = β).
Considering the equivalence between IMA and SHB under the correct parameter selection, let us
present the following proposition that will allow us to obtain convergence guarantees for SHB via a
convergence analysis of IMA.

Proposition 2.1. If λt = λ ≥ 0 then assuming that β = λ
1+λ and γt = (1 − β)ηt the xt iterates

of the IMA method are equal to the xt iterates produced by the SHB method.

Using the above proposition, let us provide the following corollary that explains the derivation of
our proposed step-size selections for SHB.

Corollary 2.2. Let the step-size ηt in IMA be one of the previously proposed Polyak step-sizes:
SPSmax, DecSPS or AdaSPS and let λt = λ. Then via Proposition 2.1, the SHB has constant
momentum parameter βt = β and the step-sizes are MomSPSmax, MomDecSPS or MomAdaSPS
respectively.

Three New Adaptive Step-sizes for SHB. Using the IMA viewpoint and Proposition 2.1 and Corol-
lary 2.2 let us present three Polyak-type step-size for SHB.

(i) MomSPSmax. Let us start with the variant associated with the SPSmax. That is, via Corollary 2.2
if we use SPSmax as a step-size for IMA, then this is equivalent to using the following step-size in
the update rule of SHB:

γt = (1− β)min

{
fSt

(xt)− ℓ∗St

c∥∇fSt
(xt)∥2

, γb

}
. (MomSPSmax)

Here, the parameter γb > 0 has the same purpose as in the original SPSmax, and it is a bound that re-
stricts MomSPSmax from being very large and is essential to ensure convergence to a neighborhood
around the solution. It is clear from its expression that MomSPSmax has the same form as SPSmax

but multiplied by a correcting momentum factor 1−β. This follows from Corollary 2.2. In practice,
this small change allows the SHB to be more “stable” for different momentum parameters, as we
show in Figure 1. Using MomSPSmax and a restriction on the momentum parameter β in Section 3,
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we establish O(1/T ) convergence for SHB up to a neighborhood of the solution for convex and
smooth functions.

Our following two proposed step-size selections are variants of the two decreasing variants of Polyak
step-sizes DecSPS and AdaSPS. As such, we can prove SHB’s convergence to the exact solution
instead of a neighborhood. More importantly, using MomDecSPS or MomAdaSPS, we can provide
convergence guarantees for any choice of the momentum coefficients β ∈ [0, 1) making SHB fully
adaptive (no tuning necessary).

(ii) MomDecSPS. Firstly, we propose an adaptation of DecSPS with momentum. We call this step-
size selection MomDecSPS, and it is given by:

γt = min

{
(1− β)[fSt(x

t)− ℓ∗St
]

ct∥∇fSt
(xt)∥2

,
γt−1ct−1

ct

}
, (MomDecSPS)

where γ−1 := γb > 0 is a step-size bound and ct = c
√
t+ 1 for t ≥ 0 with c−1 := c0 = c > 0

be a constant to regulate the step-size. Note that γt is indeed decreasing. This step-size is adaptive
and, in its definition, does not require knowledge of any function properties (e.g., smoothness/strong
convexity constants). In Section 3 we prove that SHB with MomDecSPS and constant momentum
β ∈ [0, 1) converges to exact solution with a rate O(1/

√
T ).

(iii) MomAdaSPS. Similar to the previous two steps, let us propose the following adaptation of
AdaSPS with momentum. We call this MomAdaSPS, and is given by:

γt = min

{
(1−β)[fSt (x

t)−ℓ∗St
]

c∥∇fSt (x
t)∥2

√∑t
s=0 fSs (x

s)−ℓ∗Ss

, γt−1

}
. (MomAdaSPS)

By definition, this is a decreasing step-size (γt ≤ γt−1). In Section 3, we prove that SHB with
MomAdaSPS also converges to the exact solution for any choice of β ∈ [0, 1). More specifically,
we show that MomAdaSPS converges to the exact solution with a rate O

(
1
T + σ√

T

)
. Thus, when we

are in the interpolation regime (i.e., σ2 = 0), the convergence of SHB with MomAdaSPS matches
SHB with MomSPSmax while when the setting does not satisfy interpolation condition, this became
equivalent to the O(1/

√
T ) of MomDecSPS. Following the terminology of Jiang and Stich (2023),

our results are the first robust adaptive step-size selection for SHB, as it can automatically adapt to
the optimization setting (interpolation vs. non-interpolation).

Let us close this section by mentioning two remarks related to the above three step-size selections:

Remark 2.3. The “correcting factor” 1 − β is outside the minimum in the MomSPSmax while
for the decreasing variants MomDecSPS and MomAdaSPS, it only appears in the first term of the
minimum. This follows from Proposition 2.1 and the derivation of Corollary 2.2 and is explained
in detail in Appendix C.3. In Appendix F.3, via experiments, we also test other variants of the
above step-sizes with the correcting factor outside of the minimum. We observe that the other
choices do not have good practical performance.

Remark 2.4. For no momentum, i.e., β = 0, all three proposed step-size choices, MomSPSmax,
MomDecSPS and MomAdaSPS are reduced to SPSmax, DecSPS and AdaSPS and our conver-
gence analysis recovers the convergence guarantees for SGD showing the tightness of our ap-
proach.

3 CONVERGENCE ANALYSIS

In this section, we present the convergence results for SHB with all of the proposed Polyak step-
sizes. For the formal definitions and helpful lemmas, see Appendix C. The proofs can be found in
Appendix D. For all of our results, we make the following assumption:

Assumption 3.1 (Finite optimal objective difference).

σ2 := ESt [fSt(x
∗)− ℓ∗St

] = f(x∗)− ESt
[ℓ∗St

] < ∞

This assumption was first introduced in Loizou et al. (2021) and Orvieto et al. (2022). Note that
σ2 < ∞ when all fi are lower bounded like we have assumed. We say that problem (1) is in-
terpolated if σ2 = 0. If the interpolation condition is satisfied then there exists x∗ ∈ X∗ such

6
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that f(x∗) = fSt
(x∗) = ℓ∗St

for all St ⊆ [n]. Many modern machine learning models satisfy
this condition. Examples include non-parametric regression (Liang and Rakhlin, 2020) and over-
parameterized deep neural networks (Zhang et al., 2021; Ma et al., 2018).

3.1 CONVERGENCE TO A NEIGHBORHOOD OF THE SOLUTION

We start with the analysis of SHB with MomSPSmax.

Theorem 3.2. Assume that each fi is convex and Li-smooth. Then, the iterates of SHB with
MomSPSmax with c = 1 and β ∈

[
0, α

2γb−α

)
where α = min

{
1

2Lmax
, γb

}
and Lmax =

maxi{Li}, converge as

E[f(xT )− f(x∗)] ≤ C1∥x0 − x∗∥2

T
+ C2σ

2,

where xT = 1
T

∑T−1
t=0 xt and the constants C1 = 1−β

αβ+α−2βγb
and C2 = 2γb−αβ−α

αβ+α−2βγb
.

Firstly, let us note that both constants C1 and C2 in Theorem 3.2 are positive since the denominator
of both is positive because β ∈ [0, 1) and the numerator of C2 is positive because γb ≥ α > 0. The
above result shows that MomSPSmax has a sublinear convergence to a neighborhood matching the
best-known rate for SHB in the convex setting, see Liu et al. (2020). Moreover, when β = 0, the
update rule of SHB with MomSPSmax becomes equivalent to SGD with SPSmax (no momentum)
and the result of Theorem 3.2 reduces to convergence guarantees provided in Loizou et al. (2021),
only with a slightly better neighborhood of convergence (here when β = 0 we have C2 = (2γb −
α)/α while in the original it is C2 = 2γb/α).

In addition, note that in Theorem 3.2, there is a restriction in the momentum coefficient. This
stems from the technique used in the proof (which forces C1 and C2 to be positive). However,
this restriction is not vital as in practical scenarios, the method converges even when β is selected
outside the given interval. Moreover, let us highlight that the constants C1 and C2 are increasing
when viewed as functions of β in the given interval (see also Figure 14). This means that our theory
suggests that β = 0 (no momentum) is the best theoretical choice, which is typical in many works
on stochastic methods with momentum (Wang et al., 2023; Loizou and Richtárik, 2020). This is not
ideal but does not undermine the importance of Theorem 3.2, as this is the first result showing the
convergence of SHB with SPS in a non-interpolated setting.

From Theorem 3.2, we can also deduce rates for the deterministic and interpolated regimes.

Corollary 3.3 (Deterministic Heavy Ball Method). Assume that f is convex and L-smooth. Then
HB with β ∈ [0, α/(2γb − α)) and

γt = (1− β)min

{
f(xt)− f(x∗)

∥∇f(xt)∥2
, γb

}
, (MomPSmax)

where α = min
{

1
2L , γb

}
, converges as mint∈[T ]{f(xt)− f(x∗)} ≤ (1−β)∥x0−x∗∥2

(αβ+α−2βγb)T
.

Note that in the setting of Corollary 3.3, we have used f(x∗) instead of a lower bound ℓ∗. This is
in accordance with previous work in the deterministic setting (Polyak, 1987). We highlight that in
Hazan and Kakade (2019) (PS) and Wang et al. (2023) (ALR-MAG), there is no upper bound in the
step-size for the deterministic setting. This is due to the fact that in these works, the step-size is
derived as a minimizer of an upper bound of the quantity ∥xt − x∗∥2. Our step-size MomPSmax is
not a minimizer of such bound when β > 0. Nevertheless, when β = 0 (no momentum), by setting
γb = ∞ we recover the corresponding result in Hazan and Kakade (2019). In our setting, we cannot
set γb = ∞ when β > 0 because the term βγb appears in the denominator of our convergence result.

Corollary 3.4 (Interpolation). Assume interpolation (σ2 = 0) and let all assumptions of The-
orem 3.2 be satisfied. Then SHB with MomSPSmax and β ∈ [0, α/(2γb − α)) where α =

min
{

1
2Lmax

, γb

}
converges as E[f(xT )− f(x∗)] ≤ (1−β)∥x0−x∗∥2

(αβ+α−2βγb)T
, where xT = 1

T

∑T−1
t=0 xt.
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In the closely related works Loizou et al. (2021) (SPSmax) and Wang et al. (2023) (ALR-SMAG),
there is no upper bound in the proposed step-sizes for the interpolated setting. This is because these
works treat the interpolated regime the same as the deterministic regime (the proofs of the results
in these two settings are almost identical). In our analysis, we focus on the fully stochastic setting
(interpolation is only a corollary), and the result of Corollary 3.4 shows a saddle connection between
the momentum parameter and the parameter γb (we cannot select γb = ∞ when momentum is used).
Nevertheless, via our corollary, when β = 0 by setting γb = ∞, we can recover the corresponding
result in Loizou et al. (2021).

Another Corollary of Theorem 3.2 is a novel analysis for SHB with constant step-size.

Corollary 3.5 (Constant Step-size). Let all assumptions of Theorem 3.2 be satisfied. If γb ≤
1

2Lmax
, then SHB with γ ≤ 1−β

2Lmax
and β ∈ [0, 1) converges as E[f(xT )−f(x∗)] ≤ ∥x0−x∗∥2

Tγ +σ2,

where xT = 1
T

∑T−1
t=0 xt.

Note that in Corollary 3.5, there is no restriction that depends on the smoothness parameter in the
momentum parameter β. We allow to have β ∈ [0, 1). A similar result is obtained in Liu et al.
(2020), where the authors establish the convergence rate O

(
f(x0)−f(x∗)

T + Lγσ̂2

1−β

)
for the quantity

1
T

∑T−1
t=0 E[∥∇fSt

(xt)∥2] when γ ≤ (1−β)2

L min

{
1

4−β+β2 ,
1

2
√

2β+2β2

}
. Here σ̂2 is assumed to be

a bound of the variance Et ∥∇fSt(x
t)−∇f(xt)∥2 ≤ σ̂2. In comparison, in our analysis, we provide

the same asymptotic rate O(1/T ) for the common in the convex setting quantity E[f(xT )− f(x∗)].
By comparing the two results, our step-size is larger when β ≥

√
5 − 2 ≈ 0.236. However, in

our result, the neighborhood of convergence is constant and does not depend on the step-size γ or
the momentum coefficient. For a numerical comparison of SHB with the two different constant
step-sizes, see Appendix F.2.

3.2 CONVERGENCE TO THE EXACT SOLUTION

In this section, we provide theoretical results for the adaptive decreasing step-sizes, MomDecSPS
and MomAdaSPS. The main advantage of these decreasing step-sizes is that we can guarantee con-
vergence to the exact solution while keeping the main adaptiveness properties. Due to the nature of
the decreasing step-sizes, there is no restriction in the momentum parameter, as was the case with
Theorem 3.2. For the results of this section, we make the extra assumption of bounded iterates,
i.e., we assume that D2 = maxt∈[T ] ∥xt − x∗∥2 is finite. This is a standard assumption for several
adaptive step-sizes, see: (Reddi et al., 2018; Ward et al., 2020; Orvieto et al., 2022; Jiang and Stich,
2023).

Theorem 3.6. Assume that each fi is convex and Li-smooth. Let xT = 1
T

∑T−1
t=0 xt, α =

min
{

1
2L , γb

}
and D2 = maxt∈[T ] ∥xt − x∗∥2. Then, the iterates of SHB with MomDecSPS

with c = 1 and β ∈ [0, 1) converge as:

E[f(xT )− f(x∗)] ≤ 2β[f(x0)− f(x∗)]

(1− β)T
+

(1 + β)D2

(1− β)α
√
T

+
2σ2

√
T
.

Notice that when there is no momentum, i.e., for β = 0, Theorem 3.6 recovers the original result
of SGD with DecSPS from Orvieto et al. (2022). To our knowledge, the only other result that
guarantees convergence to the exact solution for SHB in the non-interpolated regime appears in
Sebbouh et al. (2021). In particular, Sebbouh et al. (2021) proves that for γt = ηt

1+λt+1
and βt =

λt

1+λt
where ηt = η√

t+1
with 0 ≤ η ≤ 1

4Lmax
and λt =

1
2

∑t−1
i=0

√
t+1
i+1 with λ0 = 0, SHB converges

as E[f(xt) − f(x∗)] ≤ O(log t/
√
t). This result only holds for a specific choice of βt, it needs

knowledge of Lmax, and only guarantees O(log t/
√
t) rate. However, it does not make a bounded

iteration assumption, and it shows convergence of the last iterate. In contrast, our convergence of
SHB with MomDecSPS holds for any choice of β ∈ [0, 1), the step-size is adaptive and does not
depend on Lmax, and it achieves a rate of O(1/

√
k).
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Next, we present the theoretical guarantees for MomAdaSPS.

Theorem 3.7. Assume that each fi is convex and Li-smooth. Then, the iterates of SHB with
MomAdaSPS and β ∈ [0, 1) converge as

E[f(xT )− f(x∗)] ≤ τ2

T
+

τσ√
T
,

where xT = 1
T

∑T−1
t=0 xt, τ =

β
√

f(x0)−f(x∗)

1−β + (1+β)cLD2

2(1−β) + 1
2c and D2 = maxt∈[T ] ∥xt − x∗∥.

As in our previous theorems, when there is no momentum (β = 0), Theorem 3.7 recovers the con-
vergence guarantees of AdaSPS from Jiang and Stich (2023). Let us highlight that our convergence
guarantees of SHB with MomAdaSPS offers the first robust step-size selection for SHB, in the sense
that it can automatically adapt to the optimization setting. More specifically, for no interpolation,
our result has a rate of O(1/

√
T ), which matches the best-known rate for SHB while if we assume

interpolation (σ2 = 0), then we are able to achieve a rate of O(1/T ) which matches the best-known
rate for SHB in the convex setting (see Liu et al. (2020) and Theorem 3.2). Furthermore, under
interpolation, Theorem 3.7 improves the convergence of Corollary 3.4. In particular, when σ2 = 0,
Theorem 3.7 reaches the rate O(1/T ) for any β ∈ [0, 1), while in Corollary 3.4 this is possible only
under tighter restrictions on β.

4 NUMERICAL EXPERIMENTS

In this section, we test our proposed algorithms in deterministic and stochastic convex problems as
well as in training popular deep neural networks (DNNs). Our experiments are designed to highlight
the benefits of our momentum variants over the vanilla (no-momentum) SPS.
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Figure 2: Comparison of deterministic algorithms for least
squares. Left: Relative error, Right: Step-sizes.

Deterministic Setting. For the de-
terministic setting, we focus on the
least squares problem. The loss func-
tion in this case is given by f(x) =
1
2∥Ax − b∥2, where A ∈ Rn×d and
b ∈ Rn. In our experiments, we fol-
low the setting of Wang et al. (2023)
and choose n = d = 1000 while the
matrix A has been generated accord-
ing to Lenard and Minkoff (1984)
such that the condition number of
ATA is 104. We test the following
algorithms: Gradient Descent (GD),
Nesterov’s Accelerated Gradient De-
scent (AGD) (Nesterov, 2018), Gra-
dient Descent with Polyak’s step-size
(Polyak, 1987), Adaptive Heavy Ball (AHB) (Saab Jr et al., 2022), Polyak’s Heavy Ball (HB)
(Polyak, 1964), Accelerated Gradient Method (AGM) (Barré et al., 2020), ALR-MAG (Wang
et al., 2023) and finally our step-size from Corollary 3.3, called (MomPSmax), which guarantees
O(1/T ) rate. For the least squares problem, there is an established theory from Polyak (1964)
that guarantees acceleration of HB with optimal step-size and momentum coefficient given by
β∗ = (

√
L − √

µ)2/(
√
L +

√
µ)2 and γ∗ = (1 +

√
β∗)/L. For ALR-MAG and SHB with

MomPSmax, we have used the optimal momentum β∗ for direct comparison with optimal HB. More-
over, for GD Polyak, ALR-MAG, and MomPSmax, we have used the precomputed f(x∗) (via GD),
and for MomPSmax, we have chosen γb = 100 (for other choices, see Appendix F.4). The results
in Figure 2 show that MomPSmax has performance comparable to AGM and ALR-MAG which are
faster than vanilla Polyak step-size after the initial iterations. Furthermore, to explore the behavior
of the various adaptive step-sizes, we plot the Polyak, the ALR-SMAG, the MomPSmax, and the
optimal HB step-sizes. We can see that the original Polyak step-size oscillates around the optimal
HB step-size while MomPSmax converges from below to the optimal.

Stochastic Setting: Convex Problems. Here, we compare our step-sizes with previous works in
the stochastic setting. As noticed initially for SPSmax (Loizou et al., 2021), the value of the upper
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bound γb that results in good convergence depends on the problem and requires careful parameter
tuning. To alleviate this problem, Loizou et al. (2021) uses a smoothing procedure that prevents
large fluctuations in the step-size across iterations. That is, γt

b = τ b/nγt−1 for each iteration t where
τ = 2, b is the batch-size, and n is the number of examples. We use the same smoothing trick for
γb in the implementation of the proposed methods. Similar smoothing procedures have been used in
Tan et al. (2016); Vaswani et al. (2019b).

We considered multi-class logistic regression applied to commonly used benchmark datasets from
the LIBSVM repository (Chang and Lin, 2011). We separate our experiments between two classes
of step-sizes: non-decreasing step-sizes (which might guarantee convergence to a neighborhood of
the solution) and decreasing step-sizes (which guarantee convergence to the exact solution). For
the first class of step-sizes we test the following algorithms: SGD (Nesterov, 2018), SHB with the
constant step-size and β = 0.9, ADAM as described in Kingma and Ba (2015), the warm-up version
of ALR-SMAG with the hyper-parameters suggested in Wang et al. (2023), the SPSmax, the SPSmax

with naive momentum as described in Section 2.2 and our proposed MomSPSmax. For the Polyak-
based step-sizes such as ALR-SMAG, SPSmax, and MomSPSmax, we select ℓ∗i = 0 and c = 1. For
SHB, ALR-SMAG, MomSPSmax, SPSmax, with naive momentum, we use momentum β = 0.9.
All the convex experiments are run for 100 epochs and for 5 trials. We plot the average of the trials
and the standard deviation. Since there are no standard train/test splits, and due to the small sizes
of the datasets, we present training loss and accuracy curves only. We present the comparison of
these methods in Figure 3. In all experiments, we observe that the performance of our proposed
MomSPSmax significantly outperforms the other methods in both training loss and test accuracy.
For the decreasing variants, we test AdaGrad-Norm (Duchi et al., 2011), SGD with DecSPS, SGD
with AdaSPS, and our proposed SHB with MomDecSPS and SHB with MomAdaSPS. We present
the outcome of this comparison in Figure 4. MomDecSPS and MomAdaSPS outperform their no-
momentum counterparts in both training loss and test accuracy.

0 20 40 60 80 100
Epochs

100

3 × 10 1

4 × 10 1

6 × 10 1

Tr
ai

n 
Lo

ss

SGD
SHB
SPSmax
MomSPSmax
Adam
ALR-SMAG

0 20 40 60 80 100
Epochs

10

20

30

40

50

60

70

80

Tr
ai

n 
Ac

cu
ra

cy
 (%

)

SGD
SHB
SPSmax
MomSPSmax
Adam
SPSmax + Naive Momentum
ALR-SMAG

Figure 3: LibSVM dataset: vowel, Batch size: 52
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Figure 4: LibSVM dataset: letter, Batch size: 1500

MomSPS for DNNs. In our final experiment, we go beyond the convex setting of our conver-
gence guarantees, and we test MomSPSmax on the training of DNNs. We consider non-convex
minimization for multi-class classification using deep network models on the CIFAR 10 and CI-
FAR 100 datasets (Krizhevsky et al., 2009). We use two standard image-classification architectures:
ResNet18 and ResNet34, (He et al., 2016). For space concerns, we report only the ResNet34 exper-
iments in the main paper and relegate the ResNet18 to the Appendix. In these experiments we run
MomSPSmax with c = 0.4. We present the results for CIFAR 10 in Figure 5 and for CIFAR 100
in Figure 6. We observe that MomSPSmax consistently outperforms its no-momentum counterpart
SPSmax and has competitive generalization performance compared to other popular optimizers.
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Figure 5: Resnet 34 on CIFAR 10
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Figure 6: ResNet 34 on CIFAR 100
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Supplementary Material
The Supplementary Material is organized as follows: In Appendix A, we have more details on
related work on adaptive and momentum methods. In Appendix B, we include the main pseudo-
codes for our algorithms. In Appendix C, we give the basic definitions and lemmas as well as
the basic theory of IMA. Appendix D presents the proofs of the theoretical guarantees from the
main paper. In Appendix F, we describe in detail our experimental setup and provide additional
experiments.
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A FURTHER RELATED WORK

Adaptive methods. Two of the first adaptive algorithms are AdaGrad (Duchi et al., 2011) and
RMSProp (Hinton et al., 2012). The very popular algorithm Adam (Kingma and Ba, 2015) was in-
troduced as a momentum extension of RMSProp, and its more recent weight-decay variant AdamW
(Loshchilov and Hutter, 2019) is the de facto optimizer for deep neural networks. Investigating the
convergence guarantees of adaptive methods across various settings continues to be an active area of
research (Vaswani et al., 2020; Ward et al., 2020; Li and Orabona, 2019; Shi et al., 2022; Défossez
et al., 2022; Choudhury et al., 2024b; Defazio and Jelassi, 2022).

More recently, a new line of work for adaptive algorithms has appeared, inspired by Polyak step-
sizes. Some attempts for efficiently generalizing the Polyak step-size from the deterministic setting
to the stochastic were made in Rolinek and Martius (2018); Prazeres and Oberman (2021); Berrada
et al. (2020). Loizou et al. (2021) was the first work proposing SPSmax and providing strong conver-
gence guarantees in different settings, including strongly convex, convex, and non-convex functions.
Further extensions with decreasing variants were proposed in Orvieto et al. (2022); Jiang and Stich
(2023). Many recent works propose SPS-type update rules for solving optimization problems in
different settings. For example, extensions of SPS to proximal setting analyzed in Schaipp et al.
(2023a), SPS variants for mirror descent presented in D’Orazio et al. (2023), and SPS for federated
learning proposed in Mukherjee et al. (2023). There are also strong connections between SPS and
Model-Based approaches (Asi and Duchi, 2019a;b; Chadha et al., 2022). For further results related
to SPS, see Gower et al. (2022); Li et al. (2023); Garrigos et al. (2023) and Abdukhakimov et al.
(2023).

Momentum with constant step-size. Polyak (1964) introduced the concept of momentum for
the Gradient Descent (GD) method. He showed that for strongly convex quadratic problems, the
momentum method provably accelerates GD with optimal momentum coefficient β∗ = (

√
L −√

µ)2/(
√
L +

√
µ)2 and γ∗ = (1 +

√
β∗)2/L where µ is the strong convexity constant and L the

smoothness constant. Ghadimi et al. (2015) proved a global sublinear convergence guarantee for HB
for convex and smooth functions and global linear convergence when the function is also smooth and
strongly convex. Moreover, Nesterov (1983) introduced Nesterov’s Accelerated Gradient Descent
(AGD) method, where he shows acceleration over GD for strongly convex and smooth as well as
convex and smooth objectives. Note that both of these methods require knowledge of both µ and
L. In the stochastic setting, Liu et al. (2020) provides new convergence guarantees for SHB with
constant step-size. In particular, it shows that for both strongly convex and non-convex objectives,
SHB enjoys the same convergence bound as SGD. Sebbouh et al. (2021), among other things, shows
that in the smooth and convex setting SHB converges in expectation at the last iterate with a rate
of O(1/T ) to a neighborhood of the minimum and at a O(log T/

√
T ) rate to the minimum exactly.

For these guarantees, one needs knowledge of the problem parameters (such as the smoothness
constant), and their results hold for a specific selection of the momentum parameter. Momentum has
also been successfully applied in linear systems, see Loizou and Richtárik (2020) where it provides
convergence guarantees of SGD, stochastic Newton, stochastic proximal point, and stochastic dual
subspace ascent with momentum for consistent linear systems.

Adaptive Momentum. In this paragraph, we review the bibliography for adaptive methods with
momentum. Momentum can be either SHB or Nesterov’s acceleration, and in this case, the adaptiv-
ity can be either the step-size or the momentum coefficient. In the deterministic setting, Barré et al.
(2020) proposed the Accelerated Gradient Method (AGM), an adaptive algorithm built upon AGD
that guarantees acceleration over GD. AGM approximates the strong convexity constant µ by the
inverse of the classical Polyak Step-size. However, their algorithm still requires the knowledge of L
(but not µ). Furthermore, Saab Jr et al. (2022) suggests an Adaptive Heavy Ball (AHB) algorithm
where it approximates the constants µ and L iteratively in each step based on the formula of the
optimal constants of HB, but it does not show any acceleration over HB or GD. In the stochastic
setting, Wang et al. (2023) propose an adaptive algorithm for a variant of SHB, named ALR-SMAG.
It shows that under interpolation, ALR-SMAG enjoys a linear convergence rate for semi-strongly
convex and smooth functions. Schaipp et al. (2023b) proposes a new adaptive learning rate that
can be combined with any momentum-based method. Finally, Zeng et al. (2023) proposes adaptive
variants for SHB in linear systems solvers.
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On Technical Assumptions for Convergence. In the literature of stochastic optimization prob-
lems, there are several assumptions on the noise of the stochastic estimators that typically are made
on top of smoothness and convexity to prove the convergence of stochastic optimization algorithms.

For example, many works (Recht et al., 2011; Rakhlin et al., 2012; Shamir and Zhang, 2013; Nguyen
et al., 2018) assume bounded gradients, i.e., that is, there exists a M ∈ R such that E ∥∇fi(x)∥2 ≤
M . While this might look like a natural assumption, in the unconstrained setting, it contradicts
the assumption of strong convexity leading to convergence guarantees that hold for an empty set of
problems (Nguyen et al., 2018; Gower et al., 2019; 2021). A much more relaxed assumption used
in the literature is the growth condition on the stochastic gradients, (Bertsekas and Tsitsiklis, 1996;
Schmidt and Roux, 2013; Vaswani et al., 2019a). It states that there exist constants ρ ∈ R and δ ∈ R
such that E ∥∇fi(x)∥2 ≤ ρ∥∇f(x)∥2+δ. Based on a strong growth condition (δ = 0), Schmidt and
Roux (2013) were the first to establish linear convergence of SGD, with Vaswani et al. (2019a) later
showing that SGD can find a first-order stationary point as efficiently as full gradient descent in non-
convex settings. Similar conditions have also been proved and used in the analysis of decentralized
variants of SGD (Koloskova et al., 2020; Assran et al., 2019). More recently, a line of work that uses
smoothness (via expected smoothness/residual conditions) to provide closed-form expressions for
the values of ρ and δ of growth condition was able to provide tight convergence analysis of several
stochastic algorithms, including SGD (Gower et al., 2019; 2021), variance reduced methods (Khaled
et al., 2023), stochastic algorithms for min-max optimization (Loizou et al., 2021; 2020; Gorbunov
et al., 2022; Choudhury et al., 2024a).

In the convex regime, the original analysis of SGD with SPS of Loizou et al. (2021) was one of the
first papers that did not require any additional assumptions to guarantee convergence for SGD. Fol-
lowing the convergence guarantees of Loizou et al. (2021), we highlight that our proposed analysis
of SHB with Polyak step-size does not require any additional assumptions for guaranteeing conver-
gence. To the best of our knowledge, as mentioned in the main paper, our approach provides the
first analysis of SHB without the restrictive bounded variance and growth conditions.

For proving convergence of SHB, Liu et al. (2020) makes the strong assumption of bounded variance
and assumes knowledge of the smoothness L for tuning the parameters. Another work on theoretical
guarantees for SHB is Sebbouh et al. (2021), where a last iterate convergence is proved for a specific
choice of γt and βt, but also requires knowledge of L and only achieves rate O(log T/

√
T ) for the

decreasing step-size variant. Furthermore, the authors of Wang et al. (2022) provide guarantees for
a Polyak-based adaptive SHB method for the deterministic setting and the stochastic interpolated
regime for convex and strongly convex objectives. Finally, Schaipp et al. (2023b) also assumes a
stochastic convex and interpolated regime for their results.
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B PSEUDO-CODES

In this section, we include the pseudo-codes of the SHB with the proposed stochastic Polyak step-
sizes for a better understanding of the methods and easier comparison with other algorithms.

SHB with MomSPSmax. We start with the pseudo-code for SHB with MomSPSmax. In The-
orem 3.2 we established convergence to a neighborhood for β ∈

[
0, α

2γb−α

)
where α =

min
{

1
2Lmax

, γb

}
and for c = 1. However, in practice, it seems to have convergence even for

different choices of c or even if β is chosen outside of this bound, so we provide the pseudo-code
for a general β ∈ [0, 1) and c. Thus, the user must provide the momentum coefficient β, the upper
bound γb, the constant c, and the lower bounds ℓ∗St

. In practice, the usual choices are β = 0.9,
c = 1, and ℓ∗St

= 0.

Algorithm 1 SHB with MomSPSmax

1: Parameters: β ∈ [0, 1), γb > 0, c > 0, ℓ∗St
lower bounds

2: Initialization: x0 ∈ Rd, x−1 = x0

3: for t = 0, 1, 2, . . . do
4: Choose uniformly at random St ⊆ {1, . . . , n}

5: γt = (1− β)min

{
fSt (x

t)−ℓ∗St

c∥∇fSt (x
t)∥2 , γb

}
6: xt+1 = xt − γt∇fSt

(xt) + β(xt − xt−1)
7: end for

SHB with MomDecSPS. For the decreasing step-sizes, Theorems 3.6 and 3.7 make no assumption
on β ∈ [0, 1). For SHB with MomDecSPS, the user needs to provide the momentum coefficient β,
the upper bound γb, the constant c and the lower bounds ℓSt

, like the previous algorithm. In practice,
the usual choices are c = 1 and ℓ∗St

= 0. Note that when t = 0, the step-size is equal to

γ0 = min

{
(1− β)[fS0

(x0)− ℓ∗S0
]

c∥∇fS0
(x0)∥2

,
γbc

c

}
= (1− β)min

{
fS0

(x0)− ℓ∗S0

c∥∇fS0
(x0)∥2

, γb

}
,

which is equal to MomSPSmax for t = 0.

Algorithm 2 SHB with MomDecSPS

1: Parameters: β ∈ [0, 1), γ−1 = γb > 0, c > 0, c−1 = c > 0, ct = c
√
t+ 1 for t ≥ 0, ℓ∗St

lower
bounds

2: Initialization: x0 ∈ Rd, x−1 = x0

3: for t = 0, 1, 2, . . . do
4: Choose uniformly at random St ⊆ {1, . . . , n}

5: γt = min

{
(1−β)[fSt (x

t)−ℓ∗St
]

ct∥∇fSt (x
t)∥2 , γt−1ct−1

ct

}
6: xt+1 = xt − γt∇fSt

(xt) + β(xt − xt−1)
7: end for

SHB with MomAdaSPS. Finally, for SHB with MomAdaSPS the requirements are less since the
user only needs to provide the momentum coefficient β, the constant c and the lower bounds ℓ∗St

.
Furthermore, according to Jiang and Stich (2023) one can set c = 1√

fS0
(x0)−ℓ∗S0

after randomly

choosing S0 ⊆ [n] in the first iteration. Moreover, the minimum with respect to γt−1 is to ensure
that the step-size is decreasing.
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Algorithm 3 SHB with MomAdaSPS

1: Parameters: β ∈ [0, 1), γ−1 = +∞, c > 0, ℓ∗St
lower bounds

2: Initialization: x0 ∈ Rd, x−1 = x0

3: for t = 0, 1, 2, . . . do
4: Choose uniformly at random St ⊆ {1, . . . , n}

5: γt = min

{
(1−β)[fSt (x

t)−ℓ∗St
]

c∥∇fSt (x
t)∥2

√∑t
s=0 fSs (x

s)−ℓ∗Ss

, γt−1

}
6: xt+1 = xt − γt∇fSt

(xt) + β(xt − xt−1)
7: end for

Note that for all the above algorithms, one needs only lower bounds ℓ∗St
, which can be chosen equal

to ℓ∗St
= 0 in practice. Of course, if the true infima f∗

St
= infx∈Rd fSt

are known, then one should
use them because it will lead to better convergence in terms of the neighborhood. Furthermore,
notice that we start by initializing x−1 = x0, where x0 is the given starting point. This is because
the first step of SHB (i.e. for t = 0) is just an iteration of SGD because we have no previous iterate
x−1, that is x1 = x0 − γ0∇fS0(x

0) + β(x0 − x−1) = x0 − γ0∇fS0(x
0).
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C TECHNICAL PRELIMINARIES

C.1 BASIC DEFINITIONS

In this section, we present some basic definitions we use throughout the paper.

Definition C.1 (Convexity). A differentiable function f : Rd → R is convex if

f(x) ≥ f(y) + ⟨∇f(y), x− y⟩,

for all x, y ∈ Rd.

Definition C.2 (L-smooth). A differentiable function f : Rd → R is L-smooth if there exists a
constant L > 0 such that

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥,

or equivalently

|f(x)− f(y)− ⟨∇f(y), x− y⟩| ≤ L

2
∥x− y∥2

for all x, y ∈ Rd.

C.2 BASIC LEMMAS

Here we have gathered useful lemmas for various Polyak related step-sizes. These lemmas are used
repeatedly in the proofs of the main results.

Lemma C.3 ((Loizou et al., 2021)). Suppose each fi is Li-smooth, then the step-size of SPSmax

satisfies:

α = min

{
1

2cLmax
, γb

}
≤ γt ≤ γb and γ2

t ∥∇fSt
(xt)∥2 ≤ γt[fSt

(xt)− ℓ∗St
], (2)

where Lmax = maxi∈[n]{Li}.

Lemma C.4 (Lemma 1, (Orvieto et al., 2022)). Suppose each fi is Li-smooth, then the step-size
of DecSPS satisfies

min

{
1

2ctLmax
,
c0γb
ct

}
≤ γt ≤

c0γb
ct

and γt−1 ≤ γt and γ2
t ∥∇fSt

(xt)∥2 ≤ γt
ct
[fSt

(xt)− ℓ∗St
],

(3)

where Lmax = maxi∈[n]{Li}.

Lemma C.5 (Lemma 12, (Jiang and Stich, 2023)). For any non-negative sequence a0, . . . , aT ,
the following holds: √√√√ T∑

t=0

at ≤
T∑

t=0

at√∑t
s=0 as

≤ 2

√√√√ T∑
t=0

at. (4)

If a0 ≥ 1, then the following holds:

T∑
t=0

at√∑t
s=0 as

≤ log

(
T∑

t=0

at

)
+ 1. (5)
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Lemma C.6 (Lemma 13, (Jiang and Stich, 2023)). If x2 ≤ a(x+ b) for a ≥ 0 and b ≥ 0, then it
holds that x ≤ a+

√
ab.

Lemma C.7 (Lemma 16, (Jiang and Stich, 2023)). Suppose each fi is Li-smooth, then the step-
size of AdaSPS satisfies

1

2cLmax

1√∑t
s=0 fSs

(xs)− ℓ∗Ss

≤ ηt ≤
fSt

(xt)− ℓ∗St

c∥∇fSt
(xt)∥2

1√∑t
s=0 fSs

(xs)− ℓ∗Ss

, (6)

where Lmax = maxi∈[n]{Li}.

C.3 ITERATE MOVING AVERAGE

As mentioned in the main paper, the iterates of the SHB method are equal to the 2.3 method. The
following proposition is from Sebbouh et al. (2021). We include the proof for completeness.

Proposition C.8 (Proposition 1.6, (Sebbouh et al., 2021)). Let ηt > 0 and λt ≥ 0. Consider the
Iterate Moving Average (IMA) method given by the following update rule:

zt+1 = zt − ηt∇fSt(x
t) (7)

xt+1 =
λt+1

λt+1 + 1
xt +

1

λt+1 + 1
zt+1, (8)

where z0 = x0. If the following equations hold for any t ∈ N

1 + λt+1 =
λt

βt
(9)

ηt = (1 + λt+1)γt, (10)

then the xt iterates of the 2.3 method are equal to the xt iterates produced by the SHB method.

Proof. We will start from the 2.3 update rule and we will prove that its (xt) iterates satisfy the
SHB update rule. Suppose that we have the (zt+1) and (xt+1) iterates as well as the (λt) and (ηt)
sequences. Define the sequences (βt) and (γt) using eqs. (9) and (10). We will show that (xt)
iterates satisfy the SHB update rule. Solving for zt+1 in eq. (8) we get

zt+1 := xt+1 + λt+1(x
t+1 − xt) (11)

Now substituting eqs. (7) and (11) in eq. (8) we have

xt+1 =
λt+1

λt+1 + 1
xt +

1

λt+1 + 1
zt+1

(7)
=

λt+1

λt+1 + 1
xt +

1

λt+1 + 1

(
zt − ηt∇fSt(x

t)
)

(11)
=

λt+1

λt+1 + 1
xt +

1

λt+1 + 1

(
xt + λt(x

t − xt−1)− ηt∇fSt(x
t))
)

= xt − ηt
λt+1 + 1

∇fSt
(xt) +

λt

λ+t+1 + 1
(xt − xt−1)

(9,10)
= xt − γt∇fSt

(xt) + βt(x
t − xt−1),

as wanted.

The above proposition essentially states that momentum is a convex combination of SGD under
a certain transformation. In this paper, we work only with a constant momentum coefficient, i.e.,
βt = β. For this case, we also assume constant λt, and we have Proposition 2.1 and Corollary 2.2.
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Proof of Proposition 2.1. Setting λt = λ in Equation (9) we have

1 + λ =
λ

βt
⇒ βt =

λ

1 + λ
=: β.

Then solving for λ we get λ = β
1−β . Hence

γt =
ηt

1 + λ

=
ηt

1 + β
1−β

= (1− β)ηt

Proof of Corollary 2.2. • Let ηt = SPSmax. Then

γt = (1− β)ηt

= (1− β)min

{
fSt

(xt)− ℓ∗St

c∥∇fSt(x
t)∥2

, ηb

}
= (1− β)min

{
fSt

(xt)− ℓ∗St

c∥∇fSt(x
t)∥2

, γb

}
.

Here γb = ηb.

• Let ηt = DecSPS. Then

γt = (1− β)ηt

= (1− β)min

{
fSt

(xt)− ℓ∗St

ct∥∇fSt(x
t)∥2

,
ηt−1ct−1

ct

}
= min

{
(1− β)[fSt

(xt)− ℓ∗St
]

ct∥∇fSt(x
t)∥2

,
(1− β)ηt−1ct−1

ct

}
= min

{
(1− β)[fSt

(xt)− ℓ∗St
]

ct∥∇fSt
(xt)∥2

,
γt−1ct−1

ct

}
,

since γt−1 = (1− β)ηt−1 from Proposition 2.1.

• Let ηt = AdaSPS. Then

γt = (1− β)ηt

= (1− β)min

 fSt
(xt)− ℓ∗St

c∥∇fSt
(xt)∥2

√∑t
s=0 fSs

(xs)− ℓ∗Ss

, ηt−1


= min

 (1− β)[fSt
(xt)− ℓ∗St

]

c∥∇fSt(x
t)∥2

√∑t
s=0 fSs(x

s)− ℓ∗Ss

, (1− β)ηt−1


= min

 (1− β)[fSt(x
t)− ℓ∗St

]

c∥∇fSt(x
t)∥2

√∑t
s=0 fSs(x

s)− ℓ∗Ss

, γt−1

 .

C.4 CONNECTION OF MOMSPSmax AND SPSmax

In this section, we explore the connection between the MomSPSmax and the SPSmax step-sizes.
In particular, one can view the MomSPSmax step-size as the SPSmax step-size with c = 1/(1 −
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β). Here, we explain why these are two different step-sizes. Recall from Proposition 2.1 and
Corollary 2.2 that our proposed step-sizes for the SHB setting are scaled versions of Polyak step-
sizes for SGD. In particular, let’s assume that

γSPSmax
t = min

{
fSt

(xt)− f∗
St

cSPSmax∥∇fSt(x
t)∥2

, γSPSmax
b

}
and

γMomSPSmax
t = (1− β)min

{
fSt

(xt)− f∗
St

cMomSPSmax∥∇fSt(x
t)∥2

, γMomSPSmax
b

}
so we have γt

SPSmax = γt
MomSPSmax if and only if

1− β

cMomSPSmax
=

1

cSPSmax
and γSPSmax

b = (1− β)γMomSPSmax
b .

Without loss of generalization, we can assume that cMomSPSmax = 1 (this is also what Theo-
rem 3.2 guarantees). In this case we get β = 1 − 1

cSPSmax
. Hence, we can restate Theorem 3.2 as

follows:

Theorem C.9. Assume that each fi is convex and Li-smooth. Then, the iterates of SHB with
SPSmax with c ∈

[
1, 2γb−2α

2γb−α

)
and β = 1 − 1

c where α = min
{

1
2Lmax

, γb

}
and Lmax =

maxi∈[n]{Li}, converge as

E[f(xT )− f(x∗)] ≤ C1∥x0 − x∗∥2

T
+ C2σ

2,

where xT = 1
T

∑T−1
t=0 xt is the Cesaro average and the constants C1 = 1−β

αβ+α−2βγb
and C2 =

2γb−αβ−α
αβ+α−2βγb

.

This means that MomSPSmax can be viewed as a special case of SPSmax. However, note that the
update rules are different since in SHB we have the extra term +β(xt−xt−1) so a different analysis
is needed.

The same line of thought can be applied to other works related to HB. For example, in Ghadimi
et al. (2015), the first global guarantees for HB were established. The authors show that for a convex
and L-smooth function f HB with any β ∈ [0, 1) and 0 < γ < 2(1−β)

L converges with a rate of
O(1/T ). Also, recall that GD for convex and L-smooth function converges for 0 < γ < 2

L with rate
O(1/T ). Hence, we can restate the result of Ghadimi et al. (2015) as follows: Let f be a convex
and L-smooth function. Then HB with γ = c

L , where c ∈ (0, 2), and β = 1− c
2 converges with rate

O(1/T ).

Similarly, for SGD in the convex and smooth setting, we are guaranteed convergence O(1/T ) to a
neighborhood of the solution when γ ≤ 1

L . In Liu et al. (2020), the authors guarantee that SHB

with any β ∈ (0, 1) and γ ≤ (1−β)2

L min

{
1

4−β+β2 ,
1

2
√

2β2+2β

}
converges with rate O(1/T ) to a

neighborhood. This can be restated as follows: SHB with γ = c
L , where c ∈ (0, 1), and β given by

the solution of c = min

{
(1−β)2

4−β+β2 ,
(1−β)2

2
√

2β2+2β

}
, converges with rate O(1/T ) to a neighborhood.
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D PROOFS OF THE MAIN RESULTS

In this section we present the proofs of the main theoretical results presented in the main paper, i.e.,
the convergence analysis of SHB with MomSPSmax, MomDecSPS and MomAdaSPS for convex
and smooth functions fi and f of Problem 1. The idea for all the proofs is that we firstly show the
corresponding result in the 2.3 setting, and then we transfer it to the SHB setting with the help of
Proposition 2.1.

Compared to the analysis of SGD with SPS, the SHB update rule requires taking into consideration
extra terms related to the previous iterate xt−1. This needs new algebraic tricks in order to use
convexity, and after that, one needs to deal with the two quantities f(xt) and f(xt−1) at the same
time. We deal with this using the 2.3 framework, similarly with Sebbouh et al. (2021). However,
we highlight that we finish our proofs with a different approach. More specifically, in the proof of
Theorem G.1 in Sebbouh et al. (2021) the authors choose the momentum coefficients λt in such a
way that the main sum telescopes and the final result only has the expectation of the last iterate. In
our proof, we make no such simplifications, and instead, we use Jensen’s inequality to finish. This
approach allows us to have more freedom in the selection of λt. This is more prominent in the proofs
of the decreasing variants.

Compared to the classical analysis of constant step-size SHB, the use of SPS requires an adaptive
step-size that uses the loss and stochastic gradient estimates at an iterate, resulting in correlations
of the step-size with the gradient, i.e. we might have E[γt∇fi(x

t)] ̸= γtE[∇fi(x
t)]. One of the

technical challenges in the proofs is to carefully analyze the SHB iterates, taking these correlations
into account. Moreover, since we try to be adaptive to the Lipschitz constant, we can not use any
standard descent lemmas (implied by the smoothness and the SHB update) that are used in the clas-
sical analysis of SGD and constant step-size SHB. This makes the convex proof more challenging
than the standard analysis of SHB.

D.1 PROOF OF THEOREM 3.2

First, we state and prove the corresponding theorem for SPSmax in the 2.3 setting.

Theorem D.1. Assume that each fi is convex and Li-smooth. Then, the iterates of 2.3 with

ηt = min

{
fSt

(xt)− ℓ∗St

∥∇fSt(x
t)∥2

, ηb

}
and λt = λ ∈

[
0,

α

2(ηb − α)

)
,

where α = min
{

1
2Lmax

, ηb

}
and Lmax = maxi∈[n]{Li}, converge as

E[f(xT )− f(x∗)] ≤ ∥x0 − x∗∥2

(2αλ+ α− 2ηbλ)T
+

(2ηb + 2ηbλ− 2αλ− α)σ2

2αλ+ α− 2ηbλ
,

where xT = 1
T

∑T−1
t=0 xt and σ2 = E[fi(x∗)− f∗

i ].

Proof. We have

∥zt+1 − x∗∥2 = ∥zt − x∗∥2 − 2ηt⟨∇fSt(x
t), zt − x∗⟩+ η2t ∥∇fSt(x

t)∥2

(11)
== ∥zt − x∗∥2 − 2ηt⟨∇fSt(x

t), xt − x∗⟩ − 2ηtλt⟨∇fSt(x
t), xt − xt−1⟩

+ η2t ∥∇fSt
(xt)∥2

convexity

≤ ∥zt − x∗∥2 − 2ηt[fSt(x
t)− fSt(x

∗)]− 2ηtλt[fSt(x
t)− fSt(x

t−1)]

+ η2t ∥∇fSt
(xt)∥2

(2)

≤ ∥zt − x∗∥2 − 2ηt[fSt
(xt)− fSt

(x∗)]− 2ηtλt[fSt
(xt)− fSt

(xt−1)]

+ ηt[fSt(x
t)− ℓ∗St

]

= ∥zt − x∗∥2 − 2ηt[fSt(x
t)− ℓ∗St

] + 2ηt[fSt(x
∗)− ℓ∗St

]− 2ηtλt[fSt(x
t)− ℓ∗St

]
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+ 2ηtλt[fSt
(xt−1)− ℓ∗St

] + ηt[fSt
(xt)− ℓ∗St

]

= ∥zt − x∗∥2 − 2ηt

(
1 + λt −

1

2

)
[fSt(x

t)− ℓ∗St
] + 2ηtλt[fSt(x

t−1)− ℓ∗St
]

+ 2ηt[fSt(x
∗)− ℓ∗St

]

(2)

≤ ∥zt − x∗∥2 − 2α

(
λt +

1

2

)
[fSt(x

t)− ℓ∗St
] + 2ηbλt[fSt(x

t−1)− ℓ∗St
]

+ 2ηb[fSt(x
∗)− ℓ∗St

]

≤ ∥zt − x∗∥2 − 2α

(
λt +

1

2

)
[fSt(x

t)− fSt(x
∗)]− 2α

(
λt +

1

2

)
[fSt(x

∗)− ℓ∗St
]

+ 2ηbλt[fSt
(xt−1)− fSt

(x∗)] + 2ηbλt[fSt
(x∗)− ℓ∗St

] + 2ηb[fSt
(x∗)− ℓ∗St

].

Now take expectation conditional on xt to get

ESt
∥zt+1 − x∗∥2 ≤ ESt

∥zt − x∗∥2 − 2α

(
λt +

1

2

)
ESt

[fSt
(xt)− fSt

(x∗)]

− 2α

(
λt +

1

2

)
ESt [fSt(x

∗)− ℓ∗St
] + 2ηbλt ESt [fSt(x

t−1)− fSt(x
∗)]

+ 2ηbλt ESt [fSt(x
∗)− ℓ∗St

] + 2ηb ESt [fSt(x
∗)− ℓ∗St

]

= ∥zt − x∗∥2 − 2α

(
λt +

1

2

)
[f(xt)− f(x∗)]− 2α

(
λt +

1

2

)
σ2

+ 2ηbλt[f(x
t−1)− f(x∗)] + 2ηbλtσ

2 + 2ηbσ
2

= ∥zt − x∗∥2 − 2α

(
λt +

1

2

)
[f(xt)− f(x∗)] + 2ηbλt[f(x

t−1)− f(x∗)]

+ 2

(
ηb (1 + λt)− α

(
λt +

1

2

))
σ2. (12)

Note that in eq. (12) the coefficient 2
(
ηb (1 + λt)− α

(
λt +

1
2

))
of σ2 is positive since ηb ≥ α.

Taking expectation again and using the tower property we have

2α

(
λt +

1

2

)
E[f(xt)− f(x∗)]− 2ηbλt E[f(xt−1)− f(x∗)]

≤ E ∥zt − x∗∥2 − E ∥zt+1 − x∗∥2 + 2

(
ηb (1 + λt)− α

(
λt +

1

2

))
σ2. (13)

Summing eq. (13) for t = 0, . . . , T − 1 and telescoping we get

T−1∑
t=0

[
2α

(
λt +

1

2

)
E[f(xt)− f(x∗)]− 2ηbλt E[f(xt−1)− f(x∗)]

]

≤
T−1∑
t=0

[
E ∥zt − x∗∥2 − E ∥zt+1 − x∗∥2

]
+

T−1∑
t=0

2

(
ηb (1 + λt)− α

(
λt +

1

2

))
σ2

= E ∥z0 − x∗∥2 − E ∥zT − x∗∥2 +
T−1∑
t=0

2

(
ηb (1 + λt)− α

(
λt +

1

2

))
σ2

z0=x0

≤ ∥x0 − x∗∥2 +
T−1∑
t=0

2

(
ηb (1 + λt)− α

(
λt +

1

2

))
σ2. (14)

The LHS of eq. (14) can be bounded as follows (using x−1 = x0)

T−1∑
t=0

[
2α

(
λt +

1

2

)
E[f(xt)− f(x∗)]− 2ηbλt E[f(xt−1)− f(x∗)]

]
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=

T−1∑
t=0

2α

(
λt +

1

2

)
E[f(xt)− f(x∗)]−

T−1∑
t=0

2ηbλt E[f(xt−1)− f(x∗)]

=

T−1∑
t=0

2α

(
λt +

1

2

)
E[f(xt)− f(x∗)]−

T−2∑
t=0

2ηbλt+1 E[f(xt)− f(x∗)]

= 2α

(
λT−1 +

1

2

)
E[f(xT−1)− f(x∗)] +

T−2∑
t=0

2α

(
λt +

1

2

)
E[f(xt)− f(x∗)]

−
T−2∑
t=0

2ηbλt+1 E[f(xt)− f(x∗)]

= 2α

(
λT−1 +

1

2

)
E[f(xT−1)− f(x∗)] +

T−2∑
t=0

[
2α

(
λt +

1

2

)
− 2ηbλt+1

]
E[f(xt)− f(x∗)]

≥
[
2α

(
λT−1 +

1

2

)
− 2ηbλT

]
E[f(xT−1)− f(x∗)]

+

T−2∑
t=0

[
2α

(
λt +

1

2

)
− 2ηbλt+1

]
E[f(xt)− f(x∗)]

=

T−1∑
t=0

[
2α

(
λt +

1

2

)
− 2ηbλt+1

]
E[f(xt)− f(x∗)]. (15)

Combining eq. (14) and eq. (15) we have

T−1∑
t=0

[
2α

(
λt +

1

2

)
− 2ηbλt+1

]
E[f(xt)− f(x∗)]

≤ ∥x0 − x∗∥2 +
T−1∑
t=0

2

(
ηb (1 + λt)− α

(
λt +

1

2

))
σ2. (16)

In eq. (16), setting λt = λ,∀t > 0 with 0 ≤ λ < α
2(ηb−α) (in order to ensure that quantity

2α
(
λ+ 1

2

)
− 2ηbλ in the LHS is positive) we get[

2α

(
λ+

1

2

)
− 2ηbλ

] T−1∑
t=0

E[f(xt)− f(x∗)] ≤ ∥x0 − x∗∥2 + 2T

(
ηb (1 + λ)− α

(
λ+

1

2

))
σ2.

(17)

Now dividing eq. (17) by T
[
2α
(
λ+ 1

2

)
− 2ηbλ

]
and using Jensen’s inequality we get

E[f(xT )− f(x∗)] ≤ 1

T

T−1∑
t=0

E[f(xt)− f(x∗)]

≤ ∥x0 − x∗∥2 + T (2ηb + 2ηbλ− 2αλ− α)σ2

(2αλ+ α− 2ηbλ)T

=
∥x0 − x∗∥2

(2αλ+ α− 2ηbλ)T
+

2ηb + 2ηbλ− 2αλ− α

2αλ+ α− 2ηbλ
σ2,

as wanted.

Now the proof of Theorem 3.2 follows immediately from Theorem D.1 setting λ = β
1−β (from

Proposition 2.1) and γb = ηb (from Corollary 2.2). The bound on β = λ
1+λ follows from the bound

on λ and from the fact that the function f(x) = x
1+x is strictly increasing for x ≥ 0.
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D.2 PROOF OF THEOREM 3.6

Here we state and prove the corresponding theorem for DecSPS in the 2.3 setting.

Theorem D.2. Assume that each fi is convex and Li-smooth. Then, the iterates of 2.3 with

ηt =
1

ct
min

{
fSt

(xt)− ℓ∗St

∥∇fSt
(xt)∥2

, ct−1ηt−1

}
and λt ≥ 0,

where (ct) is an increasing sequences with ct ≥ 1, c−1 = c0, η−1 = ηb and (λt) is a decreasing
sequence, converge as

E[f(xT )− f(x∗)] ≤ 2λ1[f(x
0)− f(x∗)]

T
+

cT−1D
2
z

Tα
+

σ2

T

T−1∑
t=0

1

ct
,

where xT = 1
T

∑T−1
t=0 xt, α = min

{
1
2L , ηbc0

}
and D2

z = maxt∈[T ] ∥zt − x∗∥2.

Proof. We have

∥zt+1 − x∗∥2 (7)
= ∥zt − x∗∥2 − 2ηt⟨∇fSt(x

t), zt − x∗⟩+ η2t ∥∇fSt
(xt)∥2.

Rearranging and dividing by ηt > 0 we get

2⟨∇fSt(x
t), zt − x∗⟩ ≤ ∥zt − x∗∥2

ηt
− ∥zt+1 − x∗∥2

ηt
+ ηt∥∇fSt(x

t)∥2.

Summing the above for t = 0, . . . , T − 1 and telescoping we have

2

T−1∑
t=0

⟨∇fSt(x
t), zt − x∗⟩

≤
T−1∑
t=0

[
∥zt − x∗∥2

ηt
− ∥zt+1 − x∗∥2

ηt
+ ηt∥∇fSt

(xt)∥2
]

=

T−1∑
t=0

∥zt − x∗∥2

ηt
−

T−1∑
t=0

∥zt+1 − x∗∥2

ηt
+

T−1∑
t=0

ηt∥∇fSt
(xt)∥2

=
∥z0 − x∗∥2

η0
+

T−1∑
t=1

∥zt − x∗∥2

ηt
−

T−1∑
t=0

∥zt+1 − x∗∥2

ηt
+

T−1∑
t=0

ηt∥∇fSt
(xt)∥2

=
∥z0 − x∗∥2

η0
+

T−2∑
t=0

∥zt+1 − x∗∥2

ηt+1
−

T−1∑
t=0

∥zt+1 − x∗∥2

ηt
+

T−1∑
t=0

ηt∥∇fSt
(xt)∥2

=
∥z0 − x∗∥2

η0
+

T−2∑
t=0

∥zt+1 − x∗∥2

ηt+1
−

T−2∑
t=0

∥zt+1 − x∗∥2

ηt
− ∥zT − x∗∥2

ηT−1
+

T−1∑
t=0

ηt∥∇fSt(x
t)∥2

=
∥z0 − x∗∥2

η0
+

T−2∑
t=0

(
1

ηt+1
− 1

ηt

)
∥zt+1 − x∗∥2 − ∥zT − x∗∥2

ηT−1
+

T−1∑
t=0

ηt∥∇fSt
(xt)∥2

≤

(
1

η0
+

T−2∑
t=0

[
1

ηt+1
− 1

ηt

])
D2

z +

T−1∑
t=0

ηt∥∇fSt
(xt)∥2

=
D2

z

ηT−1
+

T−1∑
t=0

ηt∥∇fSt
(xt)∥2. (18)

Taking expectation in eq. (18) we have

2

T−1∑
t=0

E
[
⟨∇f(xt), zt − x∗⟩

]
≤ E

[
D2

z

ηT−1
+

T−1∑
t=0

ηt∥∇fSt
(xt)∥2

]
. (19)
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Now the LHS of eq. (19) can be bounded as follows

2

T−1∑
t=0

E
[
⟨∇f(xt), zt − x∗⟩

]
(z0=x0)

= 2E
[
⟨∇f(x0), x0 − x∗⟩

]
+ 2

T−1∑
t=1

E
[
⟨∇f(xt), zt − x∗⟩

]
(11)
= 2E

[
⟨∇f(x0), x0 − x∗⟩

]
+

T−1∑
t=1

E
[
2⟨∇f(xt), xt − x∗⟩+ 2λt⟨∇f(xt), xt − xt−1⟩

]
convexity

≥ 2E
[
f(x0)− f(x∗)

]
+

T−1∑
t=1

E
[
2(f(xt)− f(x∗)) + 2λt(f(x

t)− f(xt−1))
]

= 2E
[
f(x0)− f(x∗)

]
+

T−1∑
t=1

[
2(1 + λt)E[f(xt)− f(x∗)]− 2λt E[f(xt−1)− f(x∗)]

]
= 2E

[
f(x0)− f(x∗)

]
+

T−1∑
t=1

2(1 + λt)E[f(xt)− f(x∗)]−
T−1∑
t=1

2λt E[f(xt−1)− f(x∗)]

= 2E
[
f(x0)− f(x∗)

]
+

T−1∑
t=1

2(1 + λt)E[f(xt)− f(x∗)]−
T−2∑
t=0

2λt+1 E[f(xt)− f(x∗)]

= 2E
[
f(x0)− f(x∗)

]
+ 2

T−1∑
t=1

E[f(xt)− f(x∗)] +

T−1∑
t=1

2λt E[f(xt)− f(x∗)]

−
T−2∑
t=1

2λt+1 E[f(xt)− f(x∗)]

= 2E
[
f(x0)− f(x∗)

]
+ 2

T−1∑
t=1

E[f(xt)− f(x∗)] + 2λT−1 E[f(xT−1)− f(x∗)]

+

T−2∑
t=1

2λt E[f(xt)− f(x∗)]−
T−2∑
t=1

2λt+1 E[f(xt)− f(x∗)]

= 2

T−1∑
t=0

E[f(xt)− f(x∗)] + 2λT−1 E[f(xT−1)− f(x∗)]

+ 2

T−2∑
t=1

(λt − λt+1)E[f(xt)− f(x∗)]− 2λ1 E[f(x0)− f(x∗)]

≥ 2

T−1∑
t=0

E[f(xt)− f(x∗)]− 2λ1[f(x
0)− f(x∗)], (20)

using the fact that (λt) is decreasing and the fact that E[f(xt) − f(x∗)] ≥ 0. Combining eq. (19)
and eq. (20) we have

2

T−1∑
t=0

E[f(xt)− f(x∗)]− 2λ1[f(x
0)− f(x∗)] ≤ E

[
D2

z

ηT−1
+

T−1∑
t=0

E ηt∥∇fSt
(xt)∥2

]
. (21)

Now for the RHS of eq. (21) we have

D2
z

ηT−1
+

T−1∑
t=0

ηt∥∇fSt
(xt)∥2

(3)

≤ D2
z

ηT−1
+

T−1∑
t=0

1

ct
[fSt

(xt)− ℓ∗St
]

=
D2

z

ηT−1
+

T−1∑
t=0

1

ct
[fSt(x

t)− fSt(x
∗)] +

T−1∑
t=0

1

ct
[fSt(x

∗)− ℓ∗St
]
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≤ cT−1D
2
z

α
+

T−1∑
t=0

1

ct
[fSt

(xt)− fSt
(x∗)] +

T−1∑
t=0

1

ct
[fSt

(x∗)− ℓ∗St
],

(22)

where the last inequality follows from the fact that ηt is decreasing and ηt ≥ α
ct

with α =

min{ 1
2Lmax

, ηbc0}, from Lemma C.4. Thus, combining eq. (21) and eq. (22) we have

2

T−1∑
t=0

E[f(xt)− f(x∗)]− 2λ1[f(x
0)− f(x∗)] ≤ cT−1D

2
z

α
+

T−1∑
t=0

1

ct
E[f(xt)− f(x∗)] +

T−1∑
t=0

σ2

ct
.

(23)

Rearranging eq. (23) we get

T−1∑
t=0

(
2− 1

ct

)
E[f(xt)− f(x∗)] ≤ 2λ1[f(x

0)− f(x∗)] +
cT−1D

2
z

α
+ σ2

T−1∑
t=0

1

ct
(24)

and using the fact that 2− 1
ct

≥ 1 > 0 eq. (24) reduces to

T−1∑
t=0

E[f(xt)− f(x∗)] ≤ 2λ1[f(x
0)− f(x∗)] +

cT−1D
2
z

α
+ σ2

T−1∑
t=0

1

ct
(25)

Dividing eq. (25) by T and using Jensen’s inequality we get

E[f(xT )− f(x∗)] ≤ 1

T

T−1∑
t=0

E[f(xt)− f(x∗)]

≤ 2λ1[f(x
0)− f(x∗)]

T
+

cT−1D
2
z

Tα
+

σ2

T

T−1∑
t=0

1

ct
,

as wanted.

If σ2 > 0 like in the standard SGD analysis under decreasing step-sizes, the choice ct =
√
t+ 1

leads to the asymptotic rate O(1/
√
t).

Corollary D.3. Under the setting of Theorem D.2, for ct =
√
t+ 1 (c−1 = c0) we have

E[f(xT )− f(x∗)] ≤ 2λ1[f(x
0)− f(x∗)]

T
+

D2
z

α
√
T

+
2σ2

√
T
.

Proof. It follows from the well known inequality

T−1∑
t=0

1√
t+ 1

≤ 2
√
T .

Now the proof of Theorem 3.6 follows immediately from Corollary D.3 setting λt = λ = β
1−β

(from Proposition 2.1). Moreover we have

∥zt − x∗∥2 (11)
== ∥(1 + λ)xt − λxt−1 − x∗∥2

≤ (1 + λ)∥xt − x∗∥2 + λ∥xt−1 − x∗∥2

≤ (1 + 2λ)max
t

∥xt − x∗∥2, (26)

thus D2
z ≤ (1 + 2λ)maxt ∥xt − x∗∥2 = 1+β

1−βD
2, where D2 = maxt∈[T ] ∥xt − x∗∥.
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D.3 PROOF OF THEOREM 3.7

Here we state and prove the corresponding theorem for AdaSPS in the 2.3 setting.

Theorem D.4. Assume that each fi is convex and Li-smooth. Then, the iterates of 2.3 with

ηt = min

 fSt(x
t)− ℓ∗St

c∥∇fSt
(xt)∥2

1√∑t
s=0 fSs(x

s)− ℓ∗Ss

, ηt−1

 and λt ≥ 0,

where η−1 = +∞, c > 0 and (λt) a decreasing sequence, converge as

E[f(xT )− f(x∗)] ≤ τ2

T
+

τσ√
T
,

where xT = 1
T

∑T−1
t=0 xt, τ =

(
λ1

√
f(x0)− f(x∗) +

cLD2
z

2 + 1
2c

)
and D2

z = maxt ∥zt − x∗∥.

Proof. Using Equation (21) from the proof of Theorem 3.6, we have

2

T−1∑
t=0

E[f(xt)− f(x∗)]− 2λ1[f(x
0)− f(x∗)] ≤ E

[
D2

z

ηT−1
+

T−1∑
t=0

E ηt∥∇fSt
(xt)∥2

]
. (27)

By Lemma C.7 we have

D2
z

ηT−1
≤ cLD2

z

√√√√T−1∑
s=0

fSs
(xs)− ℓ∗Ss

, (28)

and by Lemma C.5 we have

T−1∑
t=0

ηt∥∇fSt(x
t)∥2 ≤

T−1∑
t=0

fSt
(xt)− ℓ∗St

2c
√∑t

s=0 fSs
(xs)− ℓ∗Ss

≤ 1

c

√√√√T−1∑
s=0

fSs(x
s)− ℓ∗Ss

. (29)

Now combining Equations (27) to (29) and using Jensen’s inequality we get

2

T−1∑
t=0

E[f(xt)− f(x∗)]− 2λ1[f(x
0)− f(x∗)]

≤ E

cLD2
z

√√√√T−1∑
s=0

fSs
(xs)− ℓ∗Ss

+
1

c

√√√√T−1∑
s=0

fSs
(xs)− ℓ∗Ss


=

(
cLD2

z +
1

c

)
E


√√√√T−1∑

s=0

fSs
(xs)− ℓ∗Ss


=

(
cLD2

z +
1

c

)
E


√√√√T−1∑

s=0

(fSs(x
s)− fSs(x

∗) + fSs(x
∗)− ℓ∗Ss

)


≤
(
cLD2

z +
1

c

)√√√√T−1∑
s=0

E[f(xs)− f(x∗)] + σ2. (30)

Rearranging eq. (30) we have

2

T−1∑
t=0

E[f(xt)− f(x∗)] ≤ 2λ1[f(x
0)− f(x∗)] +

(
cLD2

z +
1

c

)√√√√T−1∑
s=0

E[f(xs)− f(x∗)] + σ2.

(31)
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Now let us choose cq =
√
f(x0)− f(x∗). Then

2λ1[f(x
0)− f(x∗)] = 2λ1cq

√
f(x0)− f(x∗)

≤ 2λ1cq

√√√√T−1∑
s=0

E[f(xs)− f(x∗)] + σ2, (32)

Combining eq. (31) and eq. (32) we get

T−1∑
t=0

E[f(xt)− f(x∗)] ≤
(
λ1cq +

cLD2
z

2
+

1

2c

)√√√√T−1∑
s=0

E[f(xs)− f(x∗)] + σ2. (33)

Squaring both sides of eq. (33) we have(
T−1∑
t=0

E[f(xt)− f(x∗)]

)2

≤ τ2

(
T−1∑
t=0

E[f(xt)− f(x∗)] + Tσ2

)
, (34)

where τ =
(
λ1cq +

cLD2
z

2 + 1
2c

)
. Now we use Lemma C.6 in eq. (33) to get

T−1∑
t=0

E[f(xt)− f(x∗)] ≤ τ2 + τσ
√
T . (35)

Finally by Jensen’s inequality and eq. (35) we have

E[f(xT )− f(x∗)] ≤ τ2

T
+

τσ√
T
,

as wanted.

Now the proof of Theorem 3.7 follows immediately from Theorem D.4 setting λ = β
1−β (from

Proposition 2.1). Moreover, using eq. (26) we have D2
z ≤ 1+β

1−βD
2.
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E BEYOND THE BOUNDED ITERATES ASSUMPTION

The two main theorems on the convergence of MomDecSPS/MomAdaSPS require the bounded
iterates assumption. As mentioned in the main paper, this is a standard assumption for several
adaptive step-sizes, see: (Reddi et al., 2018; Ward et al., 2020; Orvieto et al., 2022; Jiang and Stich,
2023). However, one can artificially remove this assumption by adding a projection step in the
update rule of IMA onto a compact and convex subset D ⊆ Rd as described in this section.

Consider the constrained finite-sum optimization problem,

min
x∈D

[
f(x) =

1

n

n∑
i=1

fi(x)

]
, (36)

where each fi : Rd → R is convex, smooth, and lower bounded by ℓ∗i and D ⊆ Rd is a compact and
convex subset. Let X∗

D ⊆ D be the set of minimizers of (36). We assume that X∗
D ̸= ∅ and we fix

x∗ ∈ X∗
D.

The new update rule of IMA, takes the following form (Projected IMA):

zt+1 = projD
[
zt − ηt∇fSt

(xt)
]

(37)

xt+1 =
λt+1

λt+1 + 1
xt +

1

λt+1 + 1
zt+1, (38)

with x0 = z0 ∈ D, where projD(x) ∈ argmind∈D ∥d − x∥2. Note that the projection step is
only needed for the update of zt+1 because xt+1 is already a convex combination of elements in the
convex set D, namely zt+1 and xt by induction. We highlight the fact that Projected IMA is not
necessarily equivalent to Projected SHB. Now the proofs of Theorems D.2 and D.4 will go through
using the non-expansiveness of the projection operator, as explained in the following lemma:

Lemma E.1 (Non-expansiveness). For all x, y ∈ Rd it holds

∥projD(x)− projD(y)∥ ≤ ∥x− y∥

Proof. See Example 8.14 and Lemma 8.16 in Garrigos and Gower (2023).

Now we have:

Theorem E.2 (Pojected IMA version of Theorem D.2). Assume that each fi is convex and Li-
smooth. Then, the iterates of Projected IMA with

ηt =
1

ct
min

{
fSt(x

t)− ℓ∗St

∥∇fSt
(xt)∥2

, ct−1ηt−1

}
and λt ≥ 0,

where (ct) is an increasing sequences with ct ≥ 1, c−1 = c0, η−1 = ηb and (λt) is a decreasing
sequence, converge as

E[f(xT )− f(x∗)] ≤ 2λ1[f(x
0)− f(x∗)]

T
+

cT−1D
2

Tα
+

σ2

T

T−1∑
t=0

1

ct
,

where xT = 1
T

∑T−1
t=0 xt, α = min

{
1
2L , ηbc0

}
and D = diam D.

Proof. We have

∥zt+1 − x∗∥2 = ∥projD(z
t − ηt∇fSt(x

t))− projD(x
∗)∥

Lemma E.1
≤ ∥zt − ηt∇fSt(x

t)− x∗∥
= ∥zt − x∗∥2 − 2ηt⟨∇fSt

(xt), zt − x∗⟩+ η2t ∥∇fSt
(xt)∥2.

Now we continue exactly like the rest of the proof of Theorem D.2.
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Theorem E.3 (Pojected IMA version of Theorem D.4). Assume that each fi is convex and Li-
smooth. Then, the iterates of Projected IMA with

ηt = min

 fSt
(xt)− ℓ∗St

c∥∇fSt
(xt)∥2

1√∑t
s=0 fSs

(xs)− ℓ∗Ss

, ηt−1

 and λt ≥ 0,

where η−1 = +∞, c > 0 and (λt) a decreasing sequence, converge as

E[f(xT )− f(x∗)] ≤ τ2

T
+

τσ√
T
,

where xT = 1
T

∑T−1
t=0 xt, τ =

(
λ1

√
f(x0)− f(x∗) + cLD2

2 + 1
2c

)
and D = diam D.

Proof. Same as above.
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F ADDITIONAL EXPERIMENTS

F.1 EXTRA DETERMINISTIC EXPERIMENT

Here we have included an extra experiment in the deterministic setting, this one for logistic regres-
sion. We have performed a grid search to find the best β for MomPSmax since no optimal choices for
β are known for the general convex case. We use the same β for HB and ALR-MAG for direct com-
parison. For the step-size of HB we used γ = 2(1− β)/L as recomended in Ghadimi et al. (2015).
The results are presented in Figure 7. In this problem we observe that our step-size (MomPSmax) is
the fastest, having similar performace with ALR-MAG and GD Polyak. For the deterministic setting
we have used a 12 core AMD Ryzen 5 5600H CPU to run the experiments.
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Figure 7: Comparison of various deterministic algorithms for the logistic regression problem on
synthetic data.

F.2 STOCHASTIC HEAVY BALL WITH CONSTANT STEP-SIZE

As we saw in Corollary 3.5, when γb ≤ 1
2Lmax

then we have new theoretical guarantees for SHB
with the constant step-size γ = 1−β

2Lmax
. The most recent analysis of constant SHB is from Liu et al.

(2020) with step-size γ = (1−β)2

L min

{
1

4−β+β2 ,
1

2
√

2β+2β2

}
. As mentioned in the main text our

step-size is larger when β ≥
√
5 − 2 ≈ 0.236. In Figure 8 we provide a numerical comparison

of these results for logistic regression with synthetic data. We observe that SHB with the Liu et al.
(2020) step-size has faster convergence for the first iterations but it reaches a plateau much earlier.
Moreover, note that as β → 1 both step-sizes have similar performance.

F.3 OTHER CHOICES

In this paper, we have provided convergence guarantees for SHB update rule xt+1 =
xt − γt∇fSt

(xt) + β(xt − xt−1) with the MomSPSmax step-size given by γt = (1 −

β)min

{
fSt (x

t)−ℓ∗St

c∥∇fSt (x
t)∥2 , γb

}
. However, as discussed in the main paper a more natural step-size would

be to choose the well known SPSmax on the SHB rule. We call this new update rule SPSmax with
naive momentum. Here we numerically compare these two updates. As we see in Figure 9, when
β is “small” and close to 0 then both SPSmax with naive momentum and MomSPSmax are close
in performance. Of course, when β = 0 they are both equal to standard SPSmax. However, as
β gets larger the performance of SPSmax with naive momentum gets worse and less stable and at
some point it diverges. For β ≥ 0.7 there is no SPSmax with naive momentum, since it cannot be
numerically computed.
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(c) β = 0.3
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(d) β = 0.4
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(e) β = 0.5
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(f) β = 0.6
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(g) β = 0.7
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(h) β = 0.8
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Figure 8: Comparison of SHB with constant step-size. (Liu et al., 2020) vs Corollary 3.5 for various
momentum coefficients β on logistic regression with synthetic data.
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(c) β = 0.2
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(d) β = 0.3

0 10000 20000 30000 40000 50000
Iterations

10 1

100

f(x
k )

f(x
* )

f(x
0 )

f(x
* )

MomSPSmax
SPSmax + Naive Momentum

(e) β = 0.4
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(f) β = 0.5
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(g) β = 0.6
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Figure 9: Comparison of MomSPSmax versus SPSmax with naive momentum for various momentum
coefficients β on logistic regression with synthetic data.

Furthermore, recall that our decreasing variants MomDecSPS and MomAdaSPS are respectively
given by

γt = min

{
(1− β)[fSt

(xt)− ℓ∗St
]

c
√
t+ 1∥∇fSt

(xt)∥2
,
γt−1

√
t√

t+ 1

}
, (MomDecSPS)

γt = min

 (1− β)[fSt(x
t)− ℓ∗St

]

c∥∇fSt(x
t)∥2

√∑t
s=0 fSs(x

s)− ℓ∗Ss

, γt−1

 . (MomAdaSPS)
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The above step-sizes are theoretically inspired by IMA, as explained in Appendix C.3, but again a
natural question is what happens if we take the “correcting factor” 1− β outside the minimum. We
call these step-sizes Alternative MomDecSPS and Alternative MomAdaSPS and are given by

γt = (1− β)min

{
fSt

(xt)− ℓ∗St

c
√
t+ 1∥∇fSt

(xt)∥2
,
γt−1

√
t√

t+ 1

}
, (Alt MomDecSPS)

γt = (1− β)min

 fSt(x
t)− ℓ∗St

c∥∇fSt(x
t)∥2

√∑t
s=0 fSs(x

s)− ℓ∗Ss

, γt−1

 . (Alt MomAdaSPS)

In Figure 10 and Figure 11 we see that when β = 0 we have similiar performances, however when
β > 0 then our proposed step-sizes are significantly better. A possible reason is that for both Alt
MomDecSPS and Alt MomadaSPS it holds γt ≤ (1 − β)γt−1 for all t. Thus inductively we get
γt ≤ (1 − β)tγ0. So when β > 0, (1 − β)t → 0 as t → ∞ which means that the step-size is too
small and it barely updates xt.
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(c) β = 0.6
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Figure 10: Comparison of MomDecSPS versus Alternative MomDecSPS for various momentum
coefficients β on logistic regression with synthetic data.

0 10000 20000 30000 40000 50000
Iterations

10 2

10 1

100

f(x
k )

f(x
* )

f(x
0 )

f(x
* )

MomAdaSPS
Alt MomAdaSPS

(a) β = 0.0

0 10000 20000 30000 40000 50000
Iterations

100

5 × 10 1

6 × 10 1

7 × 10 1

8 × 10 1

9 × 10 1

f(x
k )

f(x
* )

f(x
0 )

f(x
* )

MomAdaSPS
Alt MomAdaSPS

(b) β = 0.3
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Figure 11: Comparison of MomAdaSPS versus Alternative MomAdaSPS for various momentum
coefficients β on logistic regression with synthetic data.

F.4 IS γb NEEDED?

Recall the definition of MomPSmax, γt = (1− β)min
{

f(xt)−f(x∗)
∥∇f(xt)∥2 , γb

}
. The more natural choice

would be without the upper bound γb. Moreover, as in Appendix F.3, we can have the naive version
of both of the above step-sizes, i.e. with no correcting factor 1− β. We compare the following step-
sizes on both the least squares problem, in Figure 12, and logistic regression problem, in Figure 13,
in the deterministic setting on synthetic data. The method is SHB with β = 0.97 for the least squares
and β = 0.3 for the logistic regression.

γt = (1− β)
f(xt)− f(x∗)

∥∇f(xt)∥2
(MomPS)

γt =
f(xt)− f(x∗)

∥∇f(xt)∥2
(Alt MomPS)

γt = (1− β)min

{
f(xt)− f(x∗)

∥∇f(xt)∥2
, γb

}
(MomPSmax)
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γt = min

{
f(xt)− f(x∗)

∥∇f(xt)∥2
, γb

}
. (Alt MomPSmax)

We see that if γb is chosen large enough, all these step-sizes have similar performance. However,
we highlight the fact that convergence guarantees are known only for MomPSmax.
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(c) γb = 1
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Figure 12: Comparison of various upper bounds for MomPSmax and other alternatives on least
squares with synthetic data.
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Figure 13: Comparison of various upper bounds for MomPSmax and other alternatives on logistic
regression with synthetic data.

F.5 PLOTS FOR C1 AND C2

Below it a plot of the constants C1 and C2 as functions of β with γb = 2 and α = 1 (recall γb ≥ α)
from Theorem 3.2. Both functions are hyperbolas and the vertical line is the constant β = α

2γb−α .

We see that in the interval β ∈
[
0, α

2γb−α

)
both functions are increasing.

Figure 14: Plots for the constants C1 and C2 as functions of β. Here we have chosen γb = 2 and
α = 1.
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F.6 MORE CONVEX EXPERIMENTS AND PARAMETER SETTINGS

In this section, we list the parameters, architectures and hardware that we used for the deep learning
experiments. The information is collected in Table 2. We also include some extra experiments in
Figures 15 to 18.

Hyper-parameter Value

Architecture Logistic Regression
GPUs 1x NVIDIA GeForce RTX 3050
Batch-size See caption of each plot
Epochs 100
Trials 5
Weight Decay 0.0

Table 2: Logistic regression experiment
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Figure 15: LibSVM dataset: vehicle, Batch size: 16
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Figure 16: LibSVM dataset: letter, Batch size: 256
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Figure 17: LibSVM dataset: vehicle, Batch size: 85
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Figure 18: LibSVM dataset: glass, Batch size: 32

F.7 MORE DEEP LEARNING EXPERIMENTS AND PARAMETER SETTINGS

In this section, we list the parameters, architectures and hardware that we used for the deep learning
experiments. The information is collected in Table 3. We also include some extra experiments in
Figures 19 and 20. For ALR-SMAG we use c = 0.1 in the DL experiments.

Hyper-parameter Value

Architecture ResNet 10/34 (He et al., 2016)
GPUs 1x Nvidia RTX 6000 Ada Generation
Batch-size 256
Epochs 100
Trials 5
Weight Decay 0.0

Table 3: CIFAR10 experiment
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Figure 19: Resnet 18 on CIFAR 10
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Figure 20: Resnet 18 on CIFAR 100
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