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Abstract001

With the development of large language mod-002
els, their ability to follow simple instructions003
has significantly improved. However, adhering004
to complex instructions remains a major chal-005
lenge. Current approaches to generating com-006
plex instructions are often irrelevant to the cur-007
rent instruction requirements or suffer from lim-008
ited scalability and diversity. Moreover, meth-009
ods such as back-translation, while effective010
for simple instruction generation, fail to lever-011
age the rich knowledge and formatting in hu-012
man written documents. In this paper, we pro-013
pose a novel Automatic Iterative Refinement014
(AIR) framework to generate complex instruc-015
tions with constraints, which not only better016
reflects the requirements of real scenarios but017
also significantly enhances LLMs’ ability to fol-018
low complex instructions. The AIR framework019
consists of two stages: 1) Generate an initial020
instruction from a document; 2) Iteratively re-021
fine instructions with LLM-as-judge guidance022
by comparing the model’s output with the doc-023
ument to incorporate valuable constraints. Fi-024
nally, we construct the AIR-10K dataset with025
10K complex instructions and demonstrate that026
instructions generated with our approach sig-027
nificantly improve the model’s ability to follow028
complex instructions, outperforming existing029
methods for instruction generation1.030

1 Introduction031

Recent advancements in Large Language Models032

(LLMs) have shown impressive performance across033

a wide range of tasks (Zhao et al., 2023; Li et al.,034

2024a; He et al., 2024b). Driven by vast amounts035

of data and efficient training, most current LLMs036

are capable of effectively following user instruc-037

tions and aligning to a certain extent with human038

preferences (Ouyang et al., 2022; Li et al., 2024b;039

Huang et al., 2025). However, despite these suc-040

cesses, they still face significant challenges when041

1Codes and data are available anonymously at https:
//anonymous.4open.science/r/AIR-0833.

Help me to write an advertisement line for laptop.
Initial Instruction

Power up your productivity and 
unleash creativity with our 
cutting-edge laptop—where 
performance meets portability!

make the line with 
around 10 words.

C1

Unleash your potential with 
speed, style, and innovation.

Savior: Unleash the power of 
innovation in your hands.

Savior: Unleash epic gaming 
performance with cutting-edge 
power and immersive visuals

refer to the name of 
the laptop as savior.

C2

C3
emphasize its gaming 
performance.

C3

Help me to write an advertisement line for laptop, 
Complex Instruction

with aroundC1

10 words, the name is savior,C2 stress gaming performance. C3

Figure 1: Illustration of how humans iteratively refine
instructions to be more complex.

it comes to following complex instructions (Jiang 042

et al., 2023; Wen et al., 2024). 043

Existing datasets of complex instructions pri- 044

marily originate from two sources: 1) Curated 045

data from open-source datasets or human annota- 046

tions (Zhou et al., 2024a; Zhang et al., 2024), which 047

are resource-intensive and lack scalability, and 048

2) Transforming simple instructions into complex 049

ones automatically using proprietary LLMs (Xu 050

et al., 2023; Sun et al., 2024). While the automatic 051

transformation improves scalability, the generated 052

constraints are often recombinations of few-shot 053

examples, resulting in limited diversity. Moreover, 054

these constraints may have low relevance to the 055

target output, failing to reflect real-world scenarios. 056

Recently, back-translation, which involves trans- 057

lating text from the target side back into the 058

source side, has been proposed to generate scal- 059

able and diverse instructions from human-written 060

corpora (Sennrich, 2015; Hoang et al., 2018; Zheng 061

et al., 2024a; Li et al., 2023). However, these meth- 062

ods typically focus on generating simple instruc- 063
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tions and have not fully explored the rich knowl-064

edge contained in the human corpus.065

In this paper, we propose an Automatic Iter-066

ative Refinement (AIR) framework for generat-067

ing high-quality complex instructions. Specifically,068

our approach is based on two key observations.069

First, human-written documents contain massive070

human preferences that can be converted into spe-071

cific constraints, such as formatting conventions072

in legal documents. Second, humans often refine073

complex instructions iteratively based on feedback074

from model outputs. As illustrated in Figure 1,075

simple instructions are progressively adjusted and076

enriched to better align with human preferences.077

This iterative process plays a critical role in craft-078

ing effective complex instructions.079

Therefore, our AIR framework incorporates080

document-based knowledge and LLM-as-judge to081

iteratively construct complex instructions. The082

framework consists of two key steps: 1) Initial083

Instruction Generation, where the model gener-084

ates initial instructions based on the document con-085

tent; 2) Iterative Instruction Refinement, where086

instructions are iteratively refined with LLM-as-087

judge guidance by comparing model outputs with088

the document, to identify and incorporate valuable089

constraints. This process enables the framework to090

generate more challenging instructions that align091

more closely with real-world scenarios.092

In summary, our contributions are as follows:093

• To better align with real-world scenarios, we094

propose the AIR framework, which iteratively095

refines complex instructions with LLM-as-judge096

guidance by comparing with the document.097

• We introduce a novel instruction dataset, AIR-098

10K, generated using our framework. Experi-099

mental results demonstrate that our fine-tuned100

model significantly outperforms existing meth-101

ods on instruction-following benchmarks.102

• We provide a comprehensive experimental anal-103

ysis to evaluate the individual components of our104

framework, validating the contribution of each105

step to the overall improvement.106

2 Related Work107

2.1 Instruction Generation108

Instruction tuning is essential for aligning Large109

Language Models (LLMs) with user inten-110

tions (Ouyang et al., 2022; Cao et al., 2023). Ini-111

tially, this involved collecting and cleaning exist-112

ing data, such as open-source NLP datasets (Wang113

et al., 2023; Ding et al., 2023). With the importance 114

of instruction quality recognized, manual annota- 115

tion methods emerged (Wang et al., 2023; Zhou 116

et al., 2024a). As larger datasets became neces- 117

sary, approaches like Self-Instruct (Wang et al., 118

2022) used models to generate high-quality instruc- 119

tions (Guo et al., 2024). However, complex instruc- 120

tions are rare, leading to strategies for synthesizing 121

them by extending simpler ones (Xu et al., 2023; 122

Sun et al., 2024; He et al., 2024a). Nevertheless, 123

existing methods struggle with scalability and di- 124

versity. 125

2.2 Back Translation 126

Back-translation, a process of translating text from 127

the target language back into the source language, 128

is mainly used for data augmentation in tasks like 129

machine translation (Sennrich, 2015; Hoang et al., 130

2018). Li et al. (2023) first applied this to large- 131

scale instruction generation using unlabeled data, 132

with Suri (Pham et al., 2024) and Kun (Zheng et al., 133

2024a) extending it to long-form and Chinese in- 134

structions, respectively. Nguyen et al. (2024) en- 135

hanced this method by adding quality assessment 136

to filter and revise data. Building on this, we further 137

investigated methods to generate high-quality com- 138

plex instruction datasets using back-translation. 139

3 Approach 140

Our approach mainly consists of two steps: 1) Ini- 141

tial Instruction Generation; 2) Iterative Instruction 142

Refinement, as shown in Figure 2. In this section, 143

we will introduce the two steps in detail. 144

3.1 Initial Instruction Generation (IIG) 145

Document Collection. Traditional instruction 146

generation methods such as Self-Instruct (Wang 147

et al., 2022) often suffer from limited diversity, 148

as the generated instructions are generally re- 149

combinations of the provided few-shot examples. 150

Inspired by Li et al. (2023), we generate initial 151

instructions using back translation based on human- 152

written documents. 153

To further enhance the diversity of the gener- 154

ated instructions, we implement a density-based 155

sampling mechanism for documents, as shown 156

in Algorithm 1. Specifically, we convert docu- 157

ments into vector representations using Sentence- 158

Transformers1, and perform sampling to maximize 159

the density of samples in the representation space. 160

1sentence-transformers/all-MiniLM-L6-v2.
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Document Collection

Step1: Initial Instruction Generation (IIG) Step2: Iterative Instruction Refinement (IIR) 

Instruction Back-translation 

score 5

Dolma

D2: It's not a serious piece of kit, but you can 
have some serious fun with this little camera...

D3: This little beast isn't trying to compete with 
pro cameras, but boy, does it deliver...

D1: When I was young, I told myself stories. Or 
rather, I lived in the stories I told myself…

D2: It's not a serious 
piece of kit, but  ...

D1: When I was young, 
I told  myself …

I2: Write a casual review 
of a waterproof camera.

I1: Write a personal essay 
about your relationship 
with daydreaming.

score 3

Refined D2: I was initially skeptical about the Canon D10, 
thinking it was just a novelty, but after watching a review ...

 

Model Answer
Refined D

Model 
Answer

Check ConstraintsIdentify Constraints

I: Write a casual review of a water-proof 
camera. 

C1: Please state the conclusion first.

C2: Key features should be highlighted.

C3: The review should be concise, avoiding 
excessive details.

I: Write a casual review of a water-proof 
camera. 

C2: Key features should be highlighted.

Instruction Set

Deduplication and Rewriting

Instruction: Please write a casual 
review of a waterproof camera, 
citing data as much as possible and 
highlighting the key features.

Response: I recently got my hands 
on the GoPro HERO11 Black, a 
waterproof camera that 's been 
making waves  (pun intended) in 
the adventure. 

Generate Response

 
Instruction: Please write a casual 
review of a waterproof camera, 
citing data as much as possible and 
highlighting the key features.

Instruction 
Set

Figure 2: AIR: Automatic Iterative Refinement Framework.

Algorithm 1 Density-based Sampling

Input: Instruction Dataset D with m samples,
number of samples to select n.

Output: Selected Dataset D′ with n samples.
1: Derive the embeddings for each sample in D.
2: Randomly sample one data point x from D.
3: Delete x from D, add x to D′.
4: for i = 1,2, ...,n−1 do
5: Calculate the cosine similarity score be-

tween x and each sample from D.
6: Select the least similar sample x′ from D.
7: Let x = x′.
8: Delete x from D, add x to D′.
9: end for

In this way, we effectively eliminate redundant161

documents, enhancing the diversity of instructions.162

Moreover, this approach ensures that the knowl-163

edge introduced during instruction fine-tuning is164

evenly distributed across various domains. This165

not only prevents the model from overfitting to a166

specific domain but also mitigates the risk of catas-167

trophic forgetting of fundamental capabilities2.168

Moreover, to further ensure the quality of the169

document collection, we filter out documents based170

on the following criteria: 1) Length: Documents171

with fewer than 50 words or exceeding 2,048 words172

are removed. 2) Symbol-to-text ratio: Documents173

where the proportion of symbols exceeds that of174

2The effectiveness of this density-based sampling approach
is demonstrated in Appendix A.1.

textual content are excluded. 3) Redundancy: Doc- 175

uments containing repetitive paragraphs or exces- 176

sive symbol repetitions are eliminated. 177

Instruction Back-translation Based on the sam- 178

pled documents, we employ the back-translation 179

method to construct initial instructions. Specifi- 180

cally, we utilize a guidance model to predict an 181

instruction which can be accurately answered by (a 182

portion of) the document3. This enables the gener- 183

ation of new instructions without relying on few- 184

shot examples or pre-designed rules. Moreover, we 185

can further ensure the diversity of the generated 186

instructions by diversifying the documents. 187

However, although constructed from documents, 188

instructions do not always align well with them in 189

two key respects (Nguyen et al., 2024). First, the 190

document is unstructured and does not follow the 191

AI-assistant format. Second, it may contain content 192

irrelevant to the instruction. Therefore, we intro- 193

duce an additional refinement step to transform the 194

document into response format and remove irrele- 195

vant content. 196

To further ensure the quality of the instructions, 197

we introduce a scoring step to filter out low-quality 198

data. Each instruction is assigned a score on a scale 199

of 1 to 5 by the guidance model, with each point 200

corresponding to a specific aspect. Only instruc- 201

tions with a score greater than (or equal to) 4 are 202

retained for the next step4. 203

3Detailed prompt templates are presented in Appendix B.2.
4Instruction score criteria are presented in Appendix B.3.
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Algorithm 2 Iterative Instruction Refinement
Input: Guidance model M, current model m, re-

fined document R, initial instruction I0.
Output: Constraint Sets Cn and C′

n.
1: for i = 1,2, ...,n do
2: Use m to generate a response Ai for the pre-

vious instruction Ii−1.
3: Leverage M as the judge, compare Ai with

R to identify a new constraint ci.
4: Add ci to Cn.
5: Add ci to Ii−1 to form a new instruction Ii.
6: Use m to generate a response A′

i for Ii.
7: Leverage M as the judge, check whether A′

i
satisfies constraint ci. If not, add ci to C′

n.
8: end for

3.2 Iterative Instruction Refinement (IIR)204

To enhance a model’s ability to follow complex in-205

structions, it is crucial to construct complex instruc-206

tion data that incorporates multiple constraints. Pre-207

vious methods typically start with simple instruc-208

tions and generate complex ones through rewriting209

or recombination (Xu et al., 2023). However, the210

constraints generated in this way often do not meet211

actual needs or lack diversity.212

An effective sample for complex instruction fine-213

tuning should adhere to two key principles:214

1. Whether the model’s response originally mis-215

aligns with the constraint before it is added;216

2. Whether the model’s response still misaligns217

with the constraint after it is added.218

These constraints highlight the model’s weak-219

nesses in handling complex instructions and require220

further improvement. Conversely, if a constraint221

does not meet these principles, it indicates that the222

constraint falls within the model’s current capabili-223

ties and does not require additional learning.224

Therefore, we introduce constraint generation225

using LLM-as-judge guidance (Zheng et al., 2023),226

which mimics the human process of iteratively re-227

fining prompts to form complex instructions5. As228

shown in Algorithm 2, during the process of itera-229

tion, we obtain the constraints that the model fails230

to satisfy, which require further fine-tuning.231

Throughout this process, as the number of con-232

straints increases, the model’s response also im-233

proves, making the identification of new constraints234

5The analysis of potential biases in the LLM-as-Judge
approach are presented in Appendix A.2.
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(b) Distribution of constraint types in iteration 1 and 5

Figure 3: Data statistics of AIR-10K.

more challenging. To uncover constraints that bet- 235

ter reflect human preferences, we use the refined 236

document as the reference answer for the judgment 237

process. Human-written documents inherently con- 238

tain vast amounts of knowledge and formatting 239

conventions that reflect human preferences. There- 240

fore, the derived constraints will also align more 241

closely with human preferences. 242

Finally, the constraint set is merged into a new 243

instruction. Note that two constraint sets are de- 244

rived: the first set Cn satisfies Principle 1, while 245

the second set C′
n, which includes an additional 246

checking step, satisfies both Principle 1 and 2. 247

While we leverage the refined document as the 248

reference for the judgment process, it should not 249

be used as the target for fine-tuning as in Nguyen 250

et al. (2024), as the document is not refined with 251

the constraints presented explicitly. Therefore, we 252

leverage the guidance model to re-generate the re- 253

sponse based on the combined instruction6. 254

3.3 Data Statistics of AIR-10K 255

With our proposed framework, we constructed 256

a high-quality complex instruction dataset, AIR- 257

10K, based on openly available documents. We 258

present the real-life scenario-specific domain distri- 259

bution of AIR-10K in Figure 3(a). As can be seen, 260

our dataset encompasses nearly 20 different do- 261

mains in total, demonstrating a high degree of bal- 262

ance across diverse fields. Furthermore, we present 263

the distribution of constraint types during iteration 264

6A detailed example illustrating the complete pipeline is
provided in Appendix A.6.
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Figure 4: Length distribution of AIR-10K.

1 and 5 in Figure 3(b). It is evident that in iteration265

1, Inclusion and Document Structure constraints266

dominate. However, after four rounds of constraint267

additions, by iteration 5, the proportions of each268

constraint type become more uniform7.269

We also analyze the length distributions of both270

instructions and responses. As shown in Figure271

4(a) and 4(b), our instructions are of substantial272

information for capturing complex tasks.273

4 Experiments274

4.1 Set-up275

Data. Following Nguyen et al. (2024), we utilize276

a subset of Dolma v1.7 (Soldaini et al., 2024) as277

the document source, which is derived from a col-278

lection of web pages and has undergone rigorous279

quality and content filtering to ensure data quality.280

Models. We apply our method to two mod-281

els, Llama-3-8B and Qwen2.5-7B, and we apply282

preliminary supervised fine-tuning for both mod-283

els. The preliminary fine-tuning process is con-284

ducted on two general instruction datasets, namely285

ultrachat-200k (Ding et al., 2023) and tulu-330k286

(Lambert et al., 2024), respectively. For the guid-287

ance model to construct the data, we rely on a larger288

model with the same group to ensure data quality,289

namely Qwen-2.5-72B-Instruct for Qwen-2.5-7B,290

and Llama-3-70B-Instruct for Llama-3-8B. We set291

the maximum number of iterations to 5.292

Evaluation. We mainly conduct evaluations on293

two complex instruction-following benchmarks,294

CFBench (Zhang et al., 2024) and Follow-295

Bench (Jiang et al., 2023), where instructions con-296

7The constraint type definition and complete distributions
across all iterations are detailed in Appendix A.7.

sist of multiple constraints. We also conduct eval- 297

uations on a general instruction benchmark of Al- 298

pacaEval2 (Dubois et al., 2024). Note that all 299

benchmarks require GPT-4 for judgment, and we 300

use GPT-4o-0806 8 as the evaluator for all of them. 301

We also conduct evaluations on fundamental ca- 302

pability benchmarks, including math, code, and 303

knowledge tasks, and the results are presented in 304

Appendix A.4 due to space limitations. 305

Baselines. We mainly compare our method with 306

four groups of methods as follows: 307

1. Human-crafted instruction data: This in- 308

cludes ShareGPT9, which is a collection of real 309

human-AI conversations. 310

2. Automatically crafted general instruction 311

data: This includes Self-Instruct (Wang et al., 312

2022), which leverages few-shot examples to 313

self-generate simple instruction samples. 314

3. Automatically rewritten complex instruction 315

data: This includes Evol-Instruct (Xu et al., 316

2023), ISHEEP (Liang et al., 2024), Muffin 317

(Lou et al., 2023) and Conifer (Sun et al., 2024), 318

which initiate with simple instructions and pro- 319

gressively construct more complex ones through 320

rewriting or recombination. 321

4. Automatically back-translated complex in- 322

struction data: This includes Suri (Pham et al., 323

2024) and Crab (Qi et al., 2024), which cu- 324

rate the complex instructions and constraints 325

by back-translating the pre-existing response. 326

These methods are the closest to our work. 327

We also compare with the original back- 328

translation and back-and-forth translation (Cao 329

et al., 2023; Nguyen et al., 2024), where IIR is 330

skipped and initial instructions are directly used. 331

For all constructed datasets, we sample 10k 332

instruction-response pairs for supervised fine- 333

tuning under the same hyper-parameters10. 334

Note that, due to space limitations, some results 335

and analysis are presented in Appendix A. 336

4.2 Main Results 337

As shown in Tables 1 and 2, our proposed method 338

achieves the best performance on both complex and 339

general instruction-following benchmarks, demon- 340

strating its effectiveness. In contrast, automatically 341

8platform.openai.com/docs/models/gp#gpt-4o
9huggingface.co/datasets/anon8231489123/

ShareGPT_Vicuna_unfiltered
10Detailed hyper-parameters are presented in Appendix B.1.
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Fine-tuned on Llama-3-8B-UltraChat

Method
CF-Bench FollowBench AlpacaEval2

CSR ISR PSR HSR SSR LC. Len
Baseline 0.51 0.15 0.22 41.04 57.39 8.86 1,017

back-translation 0.40-0.11 0.11-0.04 0.15-0.07 21.19-19.85 33.92-23.47 0.96-7.90 2,966
back-and-forth 0.58+0.07 0.20+0.05 0.27+0.05 44.65+3.61 61.58+4.19 10.06+1.20 1,440

ShareGPT 0.62+0.11 0.22+0.07 0.32+0.10 40.99-0.05 58.59+1.20 8.36-0.50 1,052

Self-Instruct 0.34-0.17 0.08-0.07 0.10-0.12 12.33-28.71 26.92-30.47 2.76-6.10 384

Evol-Instruct 0.57+0.06 0.22+0.07 0.28+0.06 43.58+2.54 59.21+1.82 7.15-1.71 903
MUFFIN 0.50-0.01 0.16+0.01 0.22+0.00 30.88-10.16 48.48-8.91 4.51-4.35 791
Conifer 0.57+0.06 0.22+0.07 0.28+0.06 47.06+6.02 61.32+3.93 12.81+3.95 1,084

I-SHEEP 0.53+0.02 0.17+0.02 0.23+0.01 34.26-6.78 50.28-7.11 5.41-3.45 838

Suri 0.26-0.25 0.05-0.10 0.07-0.15 3.19-37.85 3.83-53.56 0.60-8.26 29
Crab 0.56+0.05 0.18+0.03 0.25+0.03 39.92-1.12 56.83-0.56 9.05+0.19 1,192

AIR 0.61+0.10 0.24+0.09 0.31+0.09 50.69+9.65 63.89+6.50 21.00+12.14 1,813
Fine-tuned on Qwen-2.5-7B-UltraChat

Method
CF-Bench FollowBench AlpacaEval2

CSR ISR PSR HSR SSR LC. Len
Baseline 0.68 0.29 0.40 47.71 64.79 10.87 836

back-translation 0.42-0.26 0.14-0.15 0.18-0.22 21.62-26.09 34.86-29.93 1.79-9.08 3,266
back-and-forth 0.63-0.05 0.24-0.05 0.34-0.06 45.33-2.38 60.39-4.40 12.59+1.72 1,480

ShareGPT 0.69+0.01 0.32+0.03 0.41+0.01 47.67-0.04 64.46-0.33 10.75-0.12 1,028

Self-Instruct 0.39-0.29 0.10-0.19 0.14-0.26 20.10-27.61 35.47-29.32 2.47-8.40 557

Evol-Instruct 0.67-0.01 0.30+0.01 0.40+0.00 46.67-1.04 63.98-0.81 8.81-2.06 964
MUFFIN 0.61-0.07 0.26-0.03 0.34-0.06 45.27-2.44 62.45-2.34 8.44-2.43 880
Conifer 0.70+0.02 0.34+0.05 0.44+0.04 51.65+3.94 65.72+0.93 19.39+8.52 1,024

I-SHEEP 0.63-0.05 0.25-0.04 0.36-0.04 41.96-5.75 59.48-5.31 6.43-4.44 996

Suri 0.31-0.37 0.07-0.22 0.10-0.30 4.55-43.16 4.85-59.94 0.94-9.93 239
Crab 0.62-0.06 0.24-0.05 0.32-0.08 41.48-6.23 59.57-5.22 9.68-1.19 1,102

AIR 0.76+0.08 0.41+0.12 0.51+0.11 59.07+11.36 71.35+6.56 32.43+21.56 1,779

Table 1: Experiment results on Llama-3-8B and Qwen-2.5-7B, with both models fine-tuned with ultrachat-200k
(Ding et al., 2023). Llama-3-70B-Instruct and Qwen-2.5-72B-Instruct are used as the guidance models respectively.

Fine-tuned on Llama-3-8B-Tulu

Method
CF-Bench AlpacaEval2

CSR ISR PSR LC. Len

Baseline 0.50 0.15 0.20 5.20 995

back-trans 0.27 0.07 0.08 1.09 2,263
back&forth 0.47 0.14 0.19 9.04 1,337

ShareGPT 0.61 0.21 0.29 9.00 1,080

Self-Instruct 0.30 0.07 0.09 2.63 378

Evol-Instruct 0.58 0.19 0.27 18.09 991
MUFFIN 0.46 0.15 0.18 5.21 760
Conifer 0.61 0.24 0.32 7.15 903

I-SHEEP 0.49 0.16 0.19 3.11 931

Suri 0.25 0.05 0.06 0.44 151
Crab 0.56 0.19 0.27 8.55 1,221

AIR 0.68 0.28 0.38 22.00 2,097

Table 2: Experiment results on Llama-3-8B, fine-tuned
with tulu-330k (Lambert et al., 2024), with Llama-3-
70B-Instruct as the guidance model.

crafted general instruction data significantly under-342

perform, highlighting the importance of multiple343

constraints in effective instruction fine-tuning. Au-344

tomatic rewritten instructions also underperform, 345

as their constructed constraints do not align with 346

real-world practice. Additionally, automatically 347

back-translated instructions underperform as well. 348

Despite the constraints being derived from docu- 349

ments, the documents (even after refinement) suffer 350

from misalignment and should not be directly used 351

as the target for fine-tuning. 352

4.3 Data Quality Evaluation 353

To evaluate our dataset’s quality, we employed the 354

Deita scorer (Liu et al., 2024), which utilizes an 355

LLM to assess the complexity score for instruc- 356

tions and the quality score for both instructions and 357

responses. As shown in Figure 5, our approach sig- 358

nificantly outperforms human crafted instructions, 359

automatically crafted general instructions, and au- 360

tomatically rewritten complex instructions in terms 361

of both complexity and quality scores. Notably, 362

our method shows marginal improvements over au- 363

tomatic back-translation approaches like Suri and 364
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Figure 6: Variation of quality indicators across iterations.
Init represents initial instructions generated by IIG.

Crab, despite their use of high-quality seed datasets365

(e.g., Alpaca GPT4 for Crab) and advanced models366

(e.g., GPT-4-turbo for Suri). These results validate367

the effectiveness of our data generation strategy.368

To investigate the effect of iterative refinement,369

we analyze the variation of average unique trigrams370

and token lengths across iterations in Figure 6(a).371

The results demonstrate consistent increases in both372

instruction length and unique trigrams, indicating373

that newly added constraints are diverse rather than374

mere repetition. Furthermore, Figure 6(b) displays375

the evolution of complexity and quality scores376

throughout the iterations, showing steady improve-377

ment of data quality as the iterations progress.378

Method FollowBench AlpacaEval2
HSR SSR LC. Len

Results on Llama-3-8B-UltraChat

Baseline 41.04 57.39 8.86 1,017

w/o judge 47.15 62.62 19.07 1,706
judge w/o doc 51.24 63.81 20.00 1,717
judge w/ doc 52.34 64.09 19.74 1,408

w/ check 50.69 63.89 21.00 1,813

Results on Llama-3-8B-Tulu

Baseline 34.91 51.76 5.20 995

w/o judge 47.59 63.60 18.32 2,067
judge w/o doc 50.62 63.69 17.02 2,842
judge w/ doc 54.16 67.52 20.45 1,639

w/ check 51.35 66.09 21.09 2,049

Table 3: Experiment results on Llama-3-8B models with
constraints from different judgment strategies.

4.4 Judgment Strategy for Better Constraint 379

In this section, we investigate the optimal judg- 380

ment strategy for constraint generation. When hu- 381

mans adjust prompts based on the output, they typi- 382

cally have a pre-expected response as the reference 383

in mind, and constraints are issued to guide the 384

response closer to the reference. Therefore, we 385

compare three judgment settings: 1) No judgment, 386

directly curate constraints; 2) Judge without doc- 387

ument as the reference. Instead, use the guidance 388

models’ response as the reference; 3) Judge with 389

the refined document as the reference. 390

As shown in Table 3, the judgment process is 391

essential for uncovering valuable constraints to im- 392

prove the complex instruction following ability. 393

LLM-judge can curate constraints that reflect the 394

insufficiency of the model which requires further 395

tuning. Moreover, using the document as a refer- 396

ence is also essential due to the limited judgment 397

ability of the model, and human-written references 398

aid in more targeted constraint construction. 399

On the other hand, the additional checking step 400

does not improve complex instruction-following 401

ability, as the checking step would result in fewer 402

constraints. However, we observe improved perfor- 403

mance on general-instruction following, indicating 404

there exists a trade-off between general and com- 405

plex instruction following abilities. 406

4.5 Influence of Iterative Judge 407

In this section, we investigate the effectiveness of 408

our iterative judging approach by examining model 409

performance across different iterations. As shown 410
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Iteration FollowBench AlpacaEval2 Token Numbers
HSR SSR LC. Len Input Output

1 49.75 64.78 21.63 1,994 1,882 1,869
2 53.82 67.55 21.01 1,829 3,351 2,562
3 54.46 67.54 20.69 1,722 4,844 3,275
4 53.97 67.09 22.50 1,672 6,361 4,008
5 53.30 67.91 20.78 1,599 7,902 4,761

Table 4: Experiment results and computational costs for
Llama-3-8B-Tulu models across multiple iterations.

Method FollowBench AlpacaEval2 Uni-TrigramsHSR SSR LC. Len

1-shot 50.17 63.82 18.49 1,566 41.72
5-iteration 53.30 67.91 20.78 1,599 67.45

Table 5: Comparative analysis between 1-shot and 5-
iteration generation for Llama-3-8B-Tulu.

in Table 4, we evaluate models trained on data411

from different iterations and compute the average412

number of input and output tokens to quantify the413

computational cost associated with each iteration.414

Specifically, we observe consistent improve-415

ments on FollowBench and AlpacaEval2 through416

the first two iterations. This suggests that the it-417

erative judging process effectively identifies and418

incorporates increasingly sophisticated constraints419

that are valuable for complex instruction following.420

However, improvements tend to plateau after the421

third iteration. This could be attributed to the fact422

that the most critical and fundamental constraints423

have already been discovered in earlier iterations.424

Moreover, as shown in Figure 6, data quality425

improves steadily across iterations. Despite the426

increased computational costs reflected in Table 4,427

these iterations generate more valuable constraints428

that directly enhance model performance.429

We also experimented with a 1-shot approach430

that generates multiple constraints simultaneously.431

As shown in Table 5, this approach is less effective432

because it lacks a gradual process of uncovering433

more challenging constraints with higher diversity434

(measured by unique trigrams).435

4.6 Influence of Data Quantity436

In this section, we investigate the impact of data437

quantity on AIR’s performance. We present the438

results of models trained with varying amounts of439

data in Figure 7. As shown, performance on both440

general and complex instruction tasks improves441

with increasing data quantity. On the other hand,442

the model can achieve superior performance with443

only 1k training samples, and the performance444

gains become marginal as more data is added.445

Therefore, in practical applications, the optimal446
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Figure 7: The variation of performance on FollowBench
and AlpacaEval2 with the variation of data number.

Guid. Model FollowBench AlpacaEval2
HSR SSR LC. Len

Baseline 47.71 64.79 10.87 836

14B 57.72 70.59 29.13 1,501
32B 60.06 71.97 26.39 1,309
72B 59.07 71.35 32.43 1,779

Table 6: Experiment results on Qwen-2.5-7B-UltraChat
fine-tuned with different guidance model size.

amount of fine-tuning data can be determined based 447

on available computational resources. 448

4.7 Influence of Guidance Model Size 449

In Table 6, we investigate the impact of guidance 450

model size on AIR’s performance. We performed 451

experiments with Qwen-2.5-7B-UltraChat as the 452

base model, while varying the guidance model size 453

from 14B to 72B parameters. As shown, all guid- 454

ance models with different sizes significantly im- 455

prove instruction-following ability compared to the 456

baseline, while larger models generally provide 457

greater improvement. On the other hand, even the 458

14B guidance model demonstrates remarkable im- 459

provement. This scalability across different model 460

sizes highlights the robustness and efficiency of our 461

proposed approach. 462

5 Conclusion 463

This paper introduces the Automatic Iterative Re- 464

finement (AIR) framework, a novel approach for 465

generating complex instructions that better align 466

with real-world scenarios. We also construct a com- 467

plex instruction dataset, AIR-10K, to facilitate the 468

application of complex instruction following. 469

While previous methods for complex instruction 470

following often introduce constraints without clear 471

justification, it is crucial to understand what authen- 472

tic complex instruction entails. In the future, we 473

will conduct further research on the effectiveness 474

and efficiency of complex instruction data. 475
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Limitations476

Our work has several limitations. 1) Although477

our evaluation includes multiple established bench-478

marks and metrics, including human evaluation479

could further improve its credibility. Due to time480

and resource limitations, we have to leave this as481

future work. 2) Despite meticulous preprocess-482

ing, the Dolma dataset remains relatively noisy.483

Incorporating more high-quality documents (for484

example, judicial documents made public) could485

provide more knowledge and formality to support486

constraint construction. 3) The iterative nature of487

our framework requires multiple rounds of model488

inference, resulting in higher computational de-489

mands. While our ablation studies demonstrate490

effectiveness even with smaller guidance models491

and fewer samples, the computational cost remains492

a challenge for researchers with limited resources.493

Ethical Considerations494

Our data construction framework primarily lever-495

ages proprietary models such as Llama-3-70B-496

Instruct, which have undergone extensive prefer-497

ence optimization to minimize the likelihood of498

generating instructions that raise ethical concerns.499

However, large-scale web corpora—our primary500

data sources—are uncensored and may contain501

harmful or toxic content. To address this, we rec-502

ommend implementing more rigorous and metic-503

ulous filtering mechanisms to proactively identify504

and remove such instances if possible.505

While the AIR framework mainly aims to en-506

hance models’ ability to follow complex instruc-507

tions, it is important to note that some user con-508

straints may conflict with system constraints set509

by developers. For example, users may request510

the generation of harmful or toxic content. Al-511

though our study does not specifically investigate512

conflicting constraints, there is a potential risk that513

the pipeline could prioritize user requests over514

developer-defined safeguards.515
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A Additional Experimental Results and Analysis786

A.1 Influence of Sampling Strategy787

As explained in Section 3.1, we conducted density-based sampling to ensure the diversity of instruction788

data. To verify the effectiveness of our approach in enhancing diversity and improving fine-tuning results,789

we conducted experiments using three different sampling methods for selecting 1K samples:790

1. Random 1K: Randomly selecting 1K samples.791

2. Density 1K: Selecting 1K samples using our proposed density-based sampling method.792

3. InsTag (Lu et al., 2023) 1K: Using GPT-4 to label each instruction with semantic and complexity tags,793

then selecting instructions to ensure diverse representation.794

As shown in Table 7, our density-based method significantly outperforms random selection on both795

complex and general instruction-following benchmarks. On the other hand, despite InsTag’s expensive796

tagging process, it underperforms compared to our approach. Moreover, we also calculated the average797

unique trigrams in instructions sampled by different methods, finding that our method could select samples798

with higher unique trigrams, indicating better diversity.799

Method FollowBench AlpacaEval2 Unique
HSR SSR LC. Len Trigrams

Baseline 41.04 57.39 8.86 1,017 -

Random 1K 41.71 57.66 12.26 1,313 45.13
Density 1K 45.85 60.21 17.15 1,611 66.81
InsTag 1K 44.11 59.89 13.03 1,251 58.09

Table 7: Experiment results on Llama-3-8B-UltraChat fine-tuned on different sampling methods.

A.2 Analysis of LLM-as-Judge Bias800

Previous studies such as Chen et al. (2024); Ye et al. (2024) have revealed that biases in LLM-as-Judge801

approaches can significantly influence judgment outcomes. Therefore, this section conducts an analysis of802

the potential impact of LLM-as-Judge bias during the constraint generation process.803

For this purpose, we analyzed the top three constraints with the highest proportions identified during804

each iteration, along with their respective distribution percentages. As shown in the Table 8, as the805

iteration progresses, the variety of constraint types becomes increasingly diverse, including a wide range806

of constraint types such as content constraints, tone constraints, and emotional constraints, indicating that807

the LLM-as-Judge’s bias did not lead to an overabundance of specific format-related constraints.808

Iterations Primary Constraint Secondary Constraint Tertiary Constraint

1 Inclusion (35%) Document Structure (23%) Tone and Style (12%)
2 Inclusion (27%) Document Structure (23%) Target Audience (15%)
3 Document Structure (20%) Target Audience (19%) Inclusion (18%)
4 Target Audience (18%) Tone and Style (16%) Document Structure (15%)
5 Target Audience (15%) Tone and Style (15%) Domain - Specific Format (14%)

Table 8: Distributions of top three constraints across iterations in the iterative constraint construction process.

While LLM-as-Judge approaches may exhibit certain biases in response selection or scoring tasks809

(e.g., favoring longer or more formatted answers regardless of instruction adherence), our implementation810

mitigates these concerns, as we mainly rely on LLM-as-Judge specifically to identify missing constraints811

from current responses with reference documents as ground truth, rather than for response selection or812

scoring. This targeted application substantially reduces the impact of potential biases.813

Furthermore, as demonstrated in Section 4.7, experiments with smaller models as LLM-as-Judge814

resulted in only minimal performance degradation. This finding underscores the robustness of our815

methodology: even with less capable judge models, we can still construct effective constraints that816

enhance complex instruction-following capabilities.817

12



A.3 Robustness to Document Quality 818

As discussed in Section 3.2, our framework primarily utilizes documents to extract constraints rather than 819

as direct fine-tuning targets. During fine-tuning, we use outputs from the guidance model as targets, which 820

insulates the process from document quality issues. Moreover, we implemented multiple safeguards in 821

our data production pipeline, which provides inherent robustness against document noise. 822

To empirically validate our method’s robustness to document quality, we conducted an additional 823

experiment comparing two document sets: (1) a "low-quality" subset comprising the 1,000 lowest-scoring 824

documents from AIR-10k (evaluated by GPT-4 across helpfulness, completeness, and harmlessness 825

dimensions), and (2) a randomly sampled set of 1,000 documents from the same corpus. 826

Table 9 presents the performance comparison of Llama-3-8B-UltraChat models fine-tuned on instruc- 827

tions derived from these two document sets. The results demonstrate negligible performance differences 828

across all evaluation benchmarks. This empirical evidence confirms that our method maintains consistent 829

performance regardless of input document quality, validating its robustness. 830

Additionally, we provide the number of samples at each stage of the iterative process. As shown in 831

Table 10, despite starting with a large number of initial documents, only 15% of them are retained for 832

iterative instruction refinement. Furthermore, nearly 50% of the documents are filtered out during the 833

iterations, leaving only the highest-quality samples for final training. This demonstrates how our carefully 834

designed strategies effectively maintain sample quality across multiple iterations. 835

Data CFBench FollowBench AlpacaEval2
CSR ISR PSR HSR SSR LC. Len

random 1k 0.61 0.23 0.33 45.85 60.21 17.15 1,611
low-quality 1k 0.60 0.22 0.30 44.00 59.83 16.10 1,685

Table 9: Comparison of model performance when fine-tuned on instructions from different document sets.

Stage Sample Number

Rule-based Filtering 300k
Density-based Sampling 60k

Instruction Scoring 20k
Iteration 1 17.3k
Iteration 2 15.2k
Iteration 3 13.7k
Iteration 4 12.7k
Iteration 5 11.9k

Table 10: Progressive reduction in sample size through filtering stages and five iterations.

A.4 Impact on Fundamental Capabilities 836

Previous methods have shown LLMs may suffer from capability degradation during alignment (Ouyang 837

et al., 2022). To evaluate this concern, we tested our AIR method on MMLU (Hendrycks et al., 2021), 838

CommonsenseQA (CQA) (Talmor et al., 2019), Natural Questions (NQ) (Kwiatkowski et al., 2019), 839

HumanEval (Chen et al., 2021), and GSM8K (Cobbe et al., 2021). In Table 11, our method does not have 840

a negative impact on fundamental capabilities. For Qwen-2.5-7B-UltraChat and Llama-3-8B-Tulu, our 841

method even improves the average performance by 1.19 and 0.44 points, respectively. This indicates that 842

instructions constructed from documents with evenly sampled distributions also exhibit even distribution, 843

which would not lead to catastrophic forgetting of fundamental capabilities. 844

A.5 Comparison with Related Iterative Refinement Paradigms 845

This section presents a comprehensive comparison between our proposed AIR method and existing 846

iterative refinement paradigms. While prior work has explored iterative refinement in various contexts, 847

13



Method MMLU CQA NQ HumanEval GSM8K AVG

Results on Llama-3-8B-UltraChat

Baseline 64.00 72.97 29.61 30.49 57.47 50.90

AIR 61.64 73.63 30.54 29.88 54.59 50.05

Results on Qwen-2.5-7B-UltraChat

Baseline 73.64 82.39 25.68 52.20 81.65 63.11

AIR 73.35 82.56 25.76 55.49 84.38 64.30

Results on Llama-3-8B-Tulu

Baseline 65.43 79.44 32.22 50.61 64.14 58.36

AIR 64.95 79.92 34.62 50.85 63.70 58.80

Table 11: Experiment results on fundamental capabilities.

Method CFBench FollowBench AlpacaEval2
CSR ISR PSR HSR SSR LC. Len

Results on Llama-3-8B-UltraChat

Self-Refine 0.58 0.22 0.30 46.82 61.62 18.91 1,706

AIR 0.61 0.24 0.31 50.69 63.89 21.00 1,813

Results on Qwen-2.5-7B-UltraChat

Self-Refine 0.71 0.38 0.48 54.99 67.33 28.27 2,093

AIR 0.76 0.41 0.51 59.07 71.35 32.43 1,779

Table 12: Performance comparison between AIR and Self-Refine methods.

our approach differs fundamentally in both objective and methodology. Existing methods typically focus848

on improving response quality through multiple iterations in specific domains such as code generation849

(Madaan et al., 2023; Bi et al., 2024), tool retrieval (Xu et al., 2024), and task planning (Zhou et al.,850

2024b), where the refined output serves as the final result. In contrast, our work targets instruction851

construction, where the refined instructions are utilized to enhance the model’s capability in following852

complex instructions. Additionally, these tasks often include external feedback (e.g., code executor),853

while we primarily rely on LLM-as-Judge as feedback during iteration.854

To validate the effectiveness of our approach, we conducted external experiments comparing AIR with855

the Self-Refine baseline across multiple benchmarks, as shown in Table 12. The results demonstrate that856

AIR consistently outperforms Self-Refine across all evaluation metrics on both models, indicating the857

superiority of our proposed iterative refinement strategy.858

A.6 Case Study for Complete Pipeline859

This section presents a detailed end-to-end demonstration of our pipeline in Figure 9. The case study860

provides a thorough walkthrough of each stage in our instruction generation and refinement process.861

A.7 Constraint Type Taxonomy and Distribution Analysis862

This section provides a detailed classification of constraint types, as defined in Table 13. Additionally, we863

present a comprehensive analysis of constraint type distribution patterns observed across five iterative864

refinement rounds, as visualized in Figure 8.865
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Figure 8: Distribution of constraint types across all iterations.

Constraint Type Description

Data Format
The generated content should conform to specific data structure
formats, such as JSON, Markdown, Table, CSV, etc.

Document Structure

The generated content should follow specific document organization
patterns, including Numbered lists (1, 2, 3 or I, II, III), Bullet points
(•, -, *), Custom templates with predefined sections, Tables, Headers,
etc.

Domain-Specific Format Content must follow strict format rules for different industries

Inclusion
Identify and list the specific elements or information that should be
included in the generated content

Exclusion
Identify and list the specific elements or information that should not
be included in the generated content

Citation
The generated content should include citations to sources, providing
reliable sources and literature support; follow specific citation for-
mats or reference styles

Prior Condition
When a specific intention is met, a particular process should be
followed to perform an operation or output specific content

Target Audience
The generated content should target a specific audience, which affects
the terminology used, the level of detail provided, and the complexity
of the content

Tone and Style
The generated content should adopt a specific tone and style, such as
formal, polite, academic, concise, literary, romantic, or sci-fi

Emotion
The generated content should express a specific emotion or mood,
such as ensuring the content is positive, inspiring, or empathetic

Linguistic Characteristics
Use specific linguistic features, such as metaphors, personification,
and other rhetorical devices

Multilingual
The generated content should be written in a specific language, such
as English, Mandarin, or Spanish

Table 13: Types of Constraints Used in Dataset Generation.
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Document
When do looted artefacts become legitimate cultural property? There is a dividing line between what counts as 
looted artefacts & what counts as legitimate cultural property, assimilated deeply into the cultural fabric of its 
new homeland. Unfortunately, nobody can agree at what point this dividing line occurs …

Document Refine
The complexities of cultural property restitution are 
multifaceted, and determining the legitimacy of looted 
artefacts is a contentious issue …

Instruction
Explore the complexities of cultural property restitution and the challenges of determining the legitimacy of looted artefacts.

Model Response
Cultural property restitution refers 
to the process of returning cultural 
artefacts that have been looted or 
stolen from …

Score: 4 

Constraint Iter1
Tone and Style Constraint: Adopt a critical and analytical tone, 
incorporating nuanced perspectives and historical context to 
explore the complexities of cultural property restitution.

Model Response Iter1
Cultural property restitution is a 
complex and contentious issue that 
has been debated for years …

Constraint Iter2
Document Structure Constraint: Each paragraph should start 
with a topic sentence that sets the tone for the rest of the paragraph, 
followed by supporting evidence and analysis.

Model Response Iter2
Cultural property restitution is a complex and contentious issue that 
has been debated for years. The question of who has the right to 
possess cultural artefacts that have been looted or stolen from their 
rightful owners is a matter of great importance …

Constraint Iter5
Citation Constraint: Support historical claims with evidence 
from reputable sources, such as academic journals or established 
historical records.

Model Response Iter5
Cultural property restitution is a complex and contentious issue that 
has been debated for centuries. The question of who has the right to 
possess …

Merge Instruction
Explore the complexities of cultural property 
restitution and the challenges of determining the 
legitimacy of looted artefacts …

Final Output
The restitution of cultural property is a 
labyrinthine issue, fraught with complexities that 
rival the most intricate of archaeological 
excavations …

…

Merge Instruction w/check
Explore the complexities of cultural property 
restitution and the challenges of determining the 
legitimacy of looted artefacts …

Final Output
Cultural property restitution refers to the process 
of returning cultural artifacts, artworks, and other 
items of cultural significance to their countries of 
origin or rightful owners …

Figure 9: End-to-End Pipeline Implementation Example.
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B Implementation Details 866

B.1 Model Training Hyper-parameters 867

This section details our model training configuration based on the LlamaFactory (Zheng et al., 2024b) 868

framework. We employed Supervised Fine-Tuning (SFT) with hype-rparameters as outlined in Table 14. 869

Configuration Llama-3-8B Qwen-2.5-7B
max length 4096 4096
learning rate 1e-5 1e-5
scheduler cosine decay cosine decay
training epochs 3 3
batch size 64 64
flash-attn fa2 fa2
numerical precision bf16 bf16
ZeRO optimizer stage 2 stage 2

Table 14: Hyper-parameters for Supervised Fine-Tuning.

B.2 Prompt Templates 870

This section presents the prompts used in our data generation pipeline. For Initial Instruction Generation, 871

the prompts serve different purposes from initial instruction generation through back-translation (Figure 872

10) to document refining (Figure 11) and instruction scoring (Figure 13). For Iterative Instruction 873

Refinement, the prompts serve different purposes from constraint generation (Figure 12), constraint 874

verification (Figure 14), and finally combines all elements into refined instructions (Figure 15). 875

B.3 Instruction Score Criteria 876

This section presents the detailed score criteria of the instruction quality through representative examples. 877

As illustrated in Figure 16, we provide a diverse set of instructions spanning the entire quality spectrum 878

(scores 1-5). Each score category is exemplified by five carefully selected cases, where score 1 represents 879

basic quality and score 5 demonstrates exceptional quality. 880

Please generate a single instruction that would lead to the given text as a response. 

- The instruction should not be a question. Instead, it should be a more general task.

- The instruction should not cover all details of the response. Instead, it should be concise and 

   only focus on the main aspect.

Please generate your instruction based on the text.

Text: {document}

Instruction: 

Figure 10: Prompt for generating initial instructions through back-translation.
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You are a professional editor. Given an instruction and an original response, your task is to 
improve the response while ensuring it aligns well with the instruction.

The improvement should focus on:
- Better alignment with the instruction
-   Enhanced clarity and coherence
- Aligns with AI assistant response style
- Maintaining the core message while improving expression.

Now, this is your task. Please directly present your modifications, without using ANY headings 
or prefixes.

Instruction: {instruction}
Original Response: {document}
Enhanced Response:

Figure 11: Prompt for refining document content.

Based on the provided instruction, I obtained Output1 and Output2 from two different models. 
Please analyze both outputs carefully to identify the MOST CRITICAL constraint type that 
Output2 needs to improve to match Output1's quality.

Available Constraint Types:
{constraints_type}

Task Requirements:
1. [Analysis] Compare Output1 and Output2 to identify differences
2. [Selection] Choose the SINGLE most critical constraint type where Output2 shows the 
biggest gap
3. [Constraint] Create ONE specific constraint that:
- Addresses ONLY the selected constraint type
- Exists in Output1 but is missing in Output2
- Is written in a clear and concise sentence (10-20 words)
- Avoids references to "Output1" or "Output2"
4. If no significant differences match the available types, specify "None"

Required Response Format:
**Analysis**: [Brief analysis]
**Selected Type**: [Single most critical type]
**Constraint**: [ONE specific constraint]

Context:
#Instruction#
{instruction}

#Output1#
{document_refine}

#Output2#
{model_response}

#Your Response#

Figure 12: Prompt for generating constraints based on judge.

18



Review the user's instruction using the additive 5-point scoring system described below. Points 
are accumulated based on the satisfaction of each criterion:

Award 1 point for containing a basic question or task.
Add 1 point if the instruction can be addressed using the language model's existing knowledge 
base without requiring external resources or current event information.
Add 1 point if the instruction does NOT require analyzing specific texts, documents, or specific 
person's perspective.
Add 1 point if the instruction effectively communicates both the core question and key 
preferences, demonstrating clear intent while being self-contained.
Add 1 point if the instruction pertains to general topics or advice that are widely applicable and 
within the common knowledge base, rather than requiring specialized or niche information 
about specific individuals or events.

After examining the instruction:
- Briefly justify your total score, up to 100 words.
- Conclude with the score using the format: "Score: <total points>/5"

Example 1:
Instruction: What was the impact of Gary Gilmour's career and his life in the years following his 
cricketing career?
Answer: The instruction poses a basic question about Gary Gilmour's impact after his 
cricketing career (1 point). It can be answered using the language model's existing knowledge 
(1 point). It doesn't require analyzing specific texts, documents, or a specific person's 
perspective (1 point). The question is clear, self-contained, and demonstrates clear intent (1 
point). However, since it involves information about a specific individual, which requires 
specialized or niche knowledge, the last point is not awarded.
Score: 4/5

Example 2:
Instruction: What's the most helpful advice you have for students who are awaiting their 
college admission decision?
Answer: The instruction asks for the most helpful advice for students awaiting their college 
admission decisions, which is a basic question (1 point). It can be answered using the 
language model's existing knowledge (1 point). It does not require analyzing specific texts, 
documents, or a specific person's perspective (1 point). The question is clear, self-contained, 
and demonstrates clear intent (1 point). It pertains to a general topic that is widely applicable 
and within the common knowledge base (1 point).
Score: 5/5

…

This is your task:
Instruction: {instruction}
Answer:

Figure 13: Prompt for scoring initial instructions.
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I want you to act as a quality evaluator. You need to evaluate the model answer by combining 
[User Instructions], [Model Answer], and [Evaluation Criteria] and score with 0-3.

Specifically, [Model Answer] is the response to [User Instructions], and [Evaluation Criteria] 
defines the points that the model answer should satisfy and needs to be evaluated. You need 
to strictly score the [Model Answer] according to each evaluation point in [Evaluation Criteria].

Scoring Rules:
- Score 0: Does not meet the evaluation criteria
- Score 1: Meets the evaluation criteria with acceptable response
- Score 2: Meets the evaluation criteria with high quality and comprehensive response
- Score 3: Meets the evaluation criteria with exceptional and flawless response

Output format: 1. Strictly output one line at a time according to the order of evaluation points in 
[Evaluation Criteria], with lines separated by "\n\n";
                        2. Each line first outputs the corresponding content in [Evaluation Criteria], then 
uses "\t" to separate, and outputs the corresponding score (0-3) after it;
                        3. Please output your evaluation directly without any other content;
                        4. Note that if a criteria states like "do not include X", the score should be 0 if 
the answer includes X.

[User Instructions]: {instruction}

[Model Answer]: {model_response}

[Evaluation Criteria]: {constraints}

[Your Evaluation]: 

Figure 14: Prompt for verifying model responses against constraints.

You are a skilled writing specialist who excels at blending different elements into cohesive, 
natural-sounding instructions.

Fusion guidelines:
- Consolidates overlapping constraints and resolves any conflicts
- Craft a cohesive instruction that naturally integrates ALL appropriate constraints
- AVOID expanding constraints

{few_shot}

Now it's your turn. Please merge the following input and constraints, do not output anything 
else, including response to the merged instruction:

[Original Input]
{instruction}

[Original Constraints]
{constraints}

[Merged Instruction]

Figure 15: Prompt for combining instructions with constraints.
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Instruction
Conduct an in-depth interview with a standout college basketball player about their career.
Write a weekly community newsletter for a small town, covering local news, and opinions.
Write a personal account of a company-wide cost reduction.
Write a scene where Amato meets with Raith to discuss a new.
Write a profile article about a local church and its leadership.

Score: 1 

Instruction
Conduct an in-depth interview with a professional chef about their career path.
Write a review of a recent episode of the TV show Shameless.
Review and compare alternative Instagram growth services to Hyper Vote.
Provide a progress update on the Pensions Dashboards Programme.
Write a personal tribute to a Nigerian politician who has made a positive impression on you.

Score: 2 

Instruction
Draft a court opinion for the appeal of a grand theft conviction.
Write a feature article about the Pac-12's dominance in college athletics.
Create an informed consent document for a research study.
Write a film review of Top Gun: Maverick.
Write a critical analysis of the movie Prometheus, exploring its themes.

Score: 3 

Instruction
Compile a comprehensive guide to natural remedies for treating yeast infections in women.
Write a spiritual reflection on the limitations of human capacity.
Write a comprehensive guide about how doctors inform patients about cancer diagnosis.
Write a sports article about a football team's creative adjustments due to injuries.
Write a comprehensive guide for international students on pursuing MBA program in the UK.

Score: 4 

Instruction
Write a comprehensive guide to understanding the different types of real estate.
Develop a guide for starting a meditation habit.
Write a guide on securing valuables and property at home.
Develop a guide on leveraging social media stories for business growth.
Write an article about the mental health benefits of owning a pet.

Score: 5 

Figure 16: Examples of instructions at different score levels (1-5), where each score level is illustrated with five
representative cases. Score 1 represents the lowest quality while score 5 represents the highest quality.
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