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ABSTRACT

This paper investigates the use of transformer architectures to approximate the
mean-field dynamics of interacting particle systems exhibiting collective behavior.
Such systems are fundamental in modeling phenomena across physics, biology,
and engineering, including gas dynamics, opinion formation, biological networks,
and swarm robotics. The key characteristic of these systems is that the particles are
indistinguishable, leading to permutation-equivariant dynamics. We demonstrate
that transformers, which inherently possess permutation equivariance, are well-
suited for approximating these dynamics. Specifically, we prove that if a finite-
dimensional transformer can effectively approximate the finite-dimensional vector
field governing the particle system, then the expected output of this transformer
provides a good approximation for the infinite-dimensional mean-field vector field.
Leveraging this result, we establish theoretical bounds on the distance between the
true mean-field dynamics and those obtained using the transformer. We validate
our theoretical findings through numerical simulations on the Cucker-Smale model
for flocking, and the mean-field system for training two-layer neural networks.

1 INTRODUCTION

The identification of dynamical system models for physical processes is a fundamental application
of machine learning (ML). Of particular interest are systems of particles exhibiting collective be-
haviors—such as swarming, flocking, opinion dynamics, and consensus—are of significant interest.
These systems involve a large number of particles or agents that follow identical dynamics, which are
independent of the particles’ identities and are permutation-equivariant. Examples include biological
entities (Lopez et al., 2012), robots (Elamvazhuthi & Berman, 2019), traffic flow (Piccoli et al.,
2009; Siri et al., 2021), and parameters in two-layer neural networks (Mei et al., 2019). A common
approach to simplifying the analysis of such systems is to consider the continuum limit as the number
of particles n → ∞, resulting in mean-field models rooted in statistical physics. Instead of specifying
the dynamics of each agent, the particles are modeled using probability measures. This paper learns
the mean-field dynamics of particles via particle trajectories using transformers.

There have been several works on learning mean-field dynamics using machine learning. For example,
recent works have utilized classical approaches. Pham & Warin (2023) constructed two different
types of neural network based function approximators for mean-field mappings and proved their
approximation capabilities. The works Feng et al. (2021); Lu et al. (2019) present a kernel-based
method for identifying dynamics of interacting particle systems Miller et al. (2023) employed kernel-
based methods. The work Messenger & Bortz (2022) presents a weak form of the SINDy algorithm
Brunton et al. (2016) for identifying mean-field dynamics of interacting particle systems.

This paper explores the use of transformers to approximate the dynamical systems governing the
collective behavior of interacting particles with permutation-equivariant dynamics. We define a new
transformer architecture for mean-field or measure-dependent vector fields by taking the expectation
of a finite-dimensional transformer with respect to a product measure, which we refer to as the
expected transformer. This approach differs from recent works Vuckovic et al. (2020); Geshkovski
et al. (2023); Furuya et al. (2024a); Adu & Gharesifard (2024) that express transformers as maps on
the space of probability measures by defining a continuous version of attention.

Encoding permutation equivariance into the function class or model used for identifying such
systems is potentially advantageous due to the benefits of the inductive bias in learning. This raises
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the question of which classes of functions guarantee approximation and learning benefits while
possessing permutation equivariance. Transformers Vaswani et al. (2017), which have achieved
state-of-the-art performance in many learning applications involving sequence-to-sequence mappings,
are one such model class.

In this work, we analyze the approximation capabilities of the expected transformer and establish
rates of approximation of the expected transformer as a function of the approximation error achieved
by the finite-dimensional transformer and the sequence length used. Using this approximation result,
we demonstrate that the solution of the continuity equation—which describes the mean-field behavior
of interacting particle systems—can be approximated by approximating the vector fields using the
expected transformer model. We validate our theoretical findings through numerical simulations and
comparisons with established benchmarks, specifically on the Cucker-Smale model for swarming,
and the mean-field system for training two-layer neural networks.

To summarize, our main contributions are as follows:

1. We define a continuum version of the transformer as an expectation of finite-dimensional trans-
formers (see Equation 7). This is distinct from prior work such as Geshkovski et al. (2023) that
define neural networks on infinite dimensional spaces directly. Instead, we lift a finite-dimensional
model into infinite-dimensional space.

2. We establish approximation rates of measure-valued maps by this expected transformer (see
Theorem 3).

3. We show that the solution of the continuity equation can be approximated by approximating the
vector fields using the expected transformer (see Theorem 4).

Other related work Universal approximation of functions by neural networks has a long history.
One of the prominent earlier results Hornik et al. (1989) proved that continuous functions can be
well approximated by using neural networks of bounded depth but arbitrary width. For the standard
activation functions, the complementary result for bounded width but arbitrary depth has also been
shown in Telgarsky (2016); Yarotsky (2018). For bounded width and depth, Maiorov & Pinkus (1999)
provided such a result for special activation functions. Recent results such as Kidger & Lyons (2020);
Shen et al. (2022) have investigated bounded width and depth for more standard network architectures.
The capabilities of bounded width but arbitrary depth residual networks for approximating solutions
of the continuity equation, such as those arising in normalizing flows, has been studied in Ruiz-Balet
& Zuazua (2023); Elamvazhuthi et al. (2022).

Significant work has been done using ML to approximate solutions to differential equations, par-
ticularly solutions to partial differential equations (PDEs). Specifically, Physics Informed Neural
Networks (PINN) were introduced by Raissi et al. (2019) as a method for solving PDEs using neural
networks. PINNs have been successfully used in Cai et al. (2021); Weinan & Yu (2017); Bhatnagar
et al. (2019). The idea here is to use the differential equation as the loss function for the neural
network. Other works have also investigated the problem of approximating the solution operator
to PDEs on a mesh (Guo et al., 2016; Zhu & Zabaras, 2018; Adler & Öktem, 2017; Bhatnagar
et al., 2019). Building on this, (Kovachki et al., 2021; Li et al., 2020a;b) developed neural operators
defined on infinite-dimensional spaces to solve PDES, and Furuya et al. (2024b) provide universal
approximation results. Additionally, Li et al. (2023) provide quantitative results for approximating
eigenfunctions of the Laplace equation on manifolds.

2 NOTATION

In this section, we present the notation used throughout the paper. Let Rd denote the d-dimensional
Euclidean space, and let Z+ denote the set of positive integers. The diameter of a subset A ⊂ Rd

is defined as diam(A) := sup{∥x− y∥ : x, y ∈ A} and the closed ball of radius r > 0 centered at
z ∈ Rd is denoted by Br(z).

We denote by P(Rd) the set of all Borel probability measures on Rd. The subset of probability
measures with finite p-th moments is denoted by

Pp(Rd) :=

{
ν ∈ P(Rd) : Mp(µ) :=

(∫
Rd

∥x∥p dµ(x)
)1/p

< ∞

}
.
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We denote by Pc(Rd) the set of probability measures with compact support. The set of empirical
measures formed by finite sums of n Dirac-delta measures is denoted by

Dn(Rd) :=

{
ν ∈ P(Rd) : ν =

1

n

n∑
i=1

δxi
, xi ∈ Rd

}
.

For ν ∈ P(Rd), the n-fold product measure on (Rd)n is denoted by ν⊗n := ν × · · · × ν︸ ︷︷ ︸
n times

. The

support of a measure ν ∈ P(Rd), denoted by supp(ν), is the smallest closed set S ⊂ Rd such that
µ(Rd \ S) = 0. The qth moment of a measure ν is denoted by Mq(ν). Given a measurable map
X : Rd → Rd and a measure µ ∈ P(Rd), the pushforward measure X#µ ∈ P(Rd) is defined by

(X#µ)(A) := µ
(
X−1(A)

)
for every Borel measurable set A ⊂ Rd.

Boldface letters, such as z, denote elements in Rn×d, representing collections of n vectors in Rd.
For a vector y ∈ Rd, the i-th component is denoted by (y)i. We denote by Lp(Rd, µ) the space of
measurable functions f : Rd → R such that

∥f∥Lp(µ) :=

(∫
Rd

|f(x)|p dµ(x)
)1/p

< ∞.

The space of essentially bounded measurable functions is denoted by L∞(Rd, µ), with the essential
supremum norm

∥f∥L∞(µ) := ess sup
x∈Rd

|f(x)|.

A function f : (Rd)n → (Rd)n is permutation equivariant if for any permutation σ ∈ Sn, where Sn

is the symmetric group on n elements, and for any x = (x1, . . . , xn) ∈ (Rd)n, we have

f(xσ(1), . . . , xσ(n)) =
(
fσ(1)(x), . . . , fσ(n)(x)

)
,

where fi(x) denotes the i-th component of the output. We denote by Ck(Rd) the space of k-times
continuously differentiable functions on Rd. The space of continuous functions with compact support
is denoted by Cc(Rd).

3 PROBLEM FORMULATION

Let Ω ⊂ Rd. Consider a vector field F : Ω × P(Ω) → Rd. The following equation describes the
general mean-field behavior of interacting particles evolving on Ω,

dz

dt
= F(z, µ), z(0) = z0 ∼ µ0, (1)

where z ∈ Ω denotes the state of a particle, µ ∈ P(Ω) is the distribution of the particles at time t,
and µ0 is the initial distribution. The inter-particle interactions are modeled through µ; specifically,
the dynamics of each particle are influenced by the distribution of all particles.

Corresponding to Equation 1, the continuity equation describes the evolution of the distribution µ:
∂µ

∂t
+∇z · (F(z, µ)µ) = 0, µ(0) = µ0. (2)

For a finite final time τ > 0, we denote by µF : [0, τ ] → P(Ω) the solution of the continuity
Equation 2 over the time interval [0, τ ]. In this paper, we propose to use transformers to approximate
the maps in Equation 1 and Equation 2.

3.1 LIFTING TRANSFORMERS TO THE SPACE OF MEASURES

Traditionally, transformers are defined on sequences of vectors in Rd. However, the map we wish to
approximate, F , is defined on Ω×P(Ω). Therefore, we lift the standard transformer to operate on
Ω×P(Ω) via an expectation operation. Before we do this, we briefly review the standard transformer
architecture; the following definitions are adapted from Alberti et al. (2023). The core component of
the transformer is the multi-head self-attention mechanism.

3
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Definition 1 (Multi-Headed Self-Attention). Let X ∈ Rn×d be a matrix whose rows are n data
points in Rd. Let WQ,WK ,WV ∈ Rd×d be learnable weight matrices. Define the query, key, and
value matrices by

Q = XWQ, K = XWK , V = XWV .

Let softmax denote the softmax function applied row-wise to a matrix. The self-attention head
function AttHead : Rn×d → Rn×d is defined as

AttHead(X) := softmax

(
QK⊤
√
d

)
V. (3)

Let h ∈ Z+ be the number of attention heads. Let AttHead1, . . . ,AttHeadh be attention heads
with their own weight matrices, and let W0 ∈ Rhd×d be a learnable weight matrix. The multi-head
self-attention layer Att : Rn×d → Rn×d is defined as

Att(X) := [AttHead1(X), AttHead2(X), . . . , AttHeadh(X)]W0, (4)

where [·] denotes concatenation along the feature dimension.
Definition 2 (Transformer Network). A transformer block Block : Rn×d → Rn×d is defined as

Block(X) := X + FC (X +Att(X)) , (5)

where FC are feed-forward layers (position-wise fully connected layers), and ReLU is the rectified
linear unit activation function. The addition operations represent residual connections. Let L ∈ Z+,
and let Block1, . . . ,BlockL be transformer blocks. A transformer network T : Rn×d → Rn×k is
defined as a composition of transformer blocks followed by an output network:

T (X) := FCout (BlockL ◦BlockL−1 ◦ · · · ◦ Block1(X)) , (6)

where FCout : Rn×d → Rn×k is a fully connected neural network applied position-wise.

Next, we introduce the expected transformer Tn, which allows us to lift any transformer T : Ωn+1 →
R(n+1)×d to a model Tn : Ω× P(Ω) → Rd.
Definition 3 (Expected Transformer). Given a transformer T : Ωn+1 → Rn+1×d and a prescribed
sequence length n, define the expected transformer Tn : Ω× P(Ω) → Rd by

Tn(x, µ) := Ez∼µ⊗n [(T ([x; z]))1] , (7)

=

∫
Ωn

(T ([x; z1, . . . , zn]))1 dµ(z1) · · · dµ(zn),

where [x; z] denotes the concatenation of x and z = (z1, . . . , zn) to form an input sequence of length
n+ 1, and (T ([x; z]))1 denotes the first output vector.
Remark 1 (Computing Tn(x, µ)). Given a finite dimensional transformer T , Tn can be approximated
empirically. In particular, let the data tensor be of size B × n× d, where B is the batch size, and
the sequence size n× d are sampled from µ⊗n. Then, given a point, x, we add it to each sequence,
process the whole batch at once, and compute the mean. In this manner, inference with the expected
transformer is straightforward.

Some prior works Geshkovski et al. (2023); Furuya et al. (2024a) have defined transformers T̂ :
Ω× P(Ω) → Rd through a continuous version of self-attention Γ. For x ∈ Ω and µ ∈ P(Ω), Γ is
defined as

Γ(x, µ) := x+
1

Z(x, µ)

∫
Ω

Att ([x; y]) dµ(y), (8)

where Z(x, µ) is a normalization factor. Then the transformer T̂ in Geshkovski et al. (2023); Furuya
et al. (2024a) is defined as

T̂ (x, µ) := FCξL ◦ΓθL ◦ · · · ◦ FCξ1 ◦Γθ1(x), (9)

where Γθj and FCξj are attention and feed-forward layers with parameters θj and ξj , respectively.
When µ is an empirical measure (a sum of Dirac deltas), this formulation reduces to the standard
transformer definition 6. However, due to the nested expectations, computing, or even approximating,
T̂ (x, µ) is not straightforward.
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Goals Our objectives are twofold. First, in Theorem 3, we show that, given a vector field F as
in Equation 1, we can approximate it by the expected transformer Tn as defined in Equation 7 in a
suitable sense. Second, we wish to approximate the solution of the continuity equation 2. Towards
this goal, we define an approximate continuity equation using Tn:

∂µ

∂t
+∇z · (Tn(z, µ)µ) = 0, µ(0) = µ0. (10)

Let µF (t) be the solution to Equation 2, and let µTn(t) be the solution to Equation 10. In Theorem 4,
we will prove that µTn(t) approximates µF (t) in a suitable sense.

3.2 UNIVERSAL APPROXIMATION OF TRANSFORMERS

At the heart of our argument is the approximation result for finite dimensional transformers can be
lifted to approximation results for the expected transformer. Universal approximation of functions on
Rd×n by transformers was first proved in Yun et al. (2020). The approximation was proved under the
Lp(Rd×n) norm. The recent work by Alberti et al. (2023), stated below, improves this prior result by
proving approximation under the uniform norm.
Theorem 1 (Universal Approximation by Transformer Alberti et al. (2023)). Let f : Rd×n → Rd×n

be a permutation equivariant function, for each ε < 0, there exists a transformer T such that,

sup
X∈Rd×n

∥f(X)− T (X)∥∞ < ε.

The concurrent work Furuya et al. (2024a) proves the following approximation result for continuous
maps F by the continuum version of the transformer T̂ (equation 9).
Theorem 2. Let Ω ⊂ Rd be a compact set and F ∗ : Ω× P(Rd) → Rd be continuous, where P(Rd)
is endowed with the weak* topology. Then for all ε > 0, there exist l and parameters (θj , ξj)lj=1
such that

∥T̂ (µ, x)− F ∗(µ, x)∥ ≤ ε, ∀(µ, x) ∈ Ω ⊂ P(Rd)

where the parameters θj , ξj depend linearly on the dimension d.

4 THEORETICAL RESULTS

To state the result, we require some assumptions on the map F . One key assumption we make is that
F is Lipschitz continuous with respect to its second argument, the probability measure. To formalize
this, we require a metric on the space of probability measures P(Ω). A commonly used metric is the
p-Wasserstein distance.
Definition 4 (p-Wasserstein Distance). Given two probability measures µ, ν ∈ Pp(Ω) on a metric
space (Ω, d), where d is the metric on Ω, the p-Wasserstein distance between µ and ν is defined as

Wp(µ, ν) :=

(
inf

γ∈Π(µ,ν)

∫
Ω×Ω

d(x, y)p, dγ(x, y)

)1/p

, (11)

where Π(µ, ν) denotes the set of all couplings (transport plans) γ on Ω× Ω with marginals µ and ν.

When Ω is compact, the p-Wasserstein distance metrizes the weak convergence of probability
measures ( Theorem 6.9 in Villani (2008)). That is, if µn ∈ Pp(Ω) is a sequence of measures such
that µn → µ weakly if and only if

Wp(µn, µ) → 0.

Additionally, since Ω is compact, convergence in Wp implies convergence in Wq , for all q < p.

We now state the main assumptions required for our analysis.
Assumption 1 (Regularity and Growth Conditions). Assume that the vector field F : Ω×Pp(Ω) →
Rd satisfies the following conditions:

a) (Lipschitz Continuity) There exists a constant L such that for all x, y ∈ Ω and µ, ν ∈ Pp(Ω),

∥F(x, µ)−F(y, ν)∥L∞ ≤ L (∥x− y∥L∞ +Wp(µ, ν)) ,

5
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b) (Linear Growth) There exists a constant M > 0 such that for all x ∈ Ω and µ ∈ Pp(Ω),

∥F(x, µ)∥L1
≤ M (1 + ∥x∥L1

+M1(µ)) ,

where M1(µ) :=
∫
Ω
|y|dµ(y) is the first moment of µ.

c) (Smoothness) For each µ ∈ Pp(Ω), the function x 7→ F(x, µ) is continuously differentiable on
Ω; that is, F(·, µ) ∈ C1(Ω).

Remark 2. Note that Assumption 1a) implies Assumption 1b).

These assumptions are standard in the analysis of mean-field models and are satisfied by many
classical systems, such as the Cucker-Smale flocking model (Cucker & Smale, 2007). Theorem 2
of Piccoli et al. (2015) shows that the model satisfies the conditions of Assumption 1. In Section 5,
we provide numerical simulations based on this model. To establish our approximation results for
functions H : Ω× P(Ω) → Rd, we define the following norm.
Definition 5. Given a function H : Ω× P(Ω) → Rd, we define its norm by

∥H∥ := supx ∈ Ω sup
µ∈P(Ω)

∥H(x, µ)∥L∞ . (12)

4.1 APPROXIMATING THE VECTOR FIELD F

We begin by considering the finite-dimensional approximation of the model (equation 1) via a particle-
level system defined on Ω. Specifically, let the state of each particle i ∈ {1, . . . , n} be represented
by zi ∈ Ω. We assume that each zi is independently sampled from the distribution µ ∈ P(Ω). Let
z = (z1, . . . , zn) ∈ Ωn denote the collection of particle states. The empirical distribution of the
n-particle system is then given by

νnz :=
1

n

n∑
i=1

δzi ∈ Dn(Ω). (13)

The particle-level dynamics on Rd according to the map defined in equation 1 can be written as

żi = F(zi, ν
n
z ). (14)

Note that the collection of random variables (zi) is permutation equivariant because the joint distribu-
tion of (zi) is invariant under any permutation of the indices. To approximate the vector field F , we
define, for a fixed n, the finite-dimensional map Fn : Ωn → Rd×n as

Fn(z) := [F(z1, ν
n
z ) . . . F(zn, ν

n
z )] (15)

We now state our main result regarding the universal approximation of the mean-field vector field F
by the expected transformer Tn.
Theorem 3 (Universal Approximation). Let ε > 0. Let Ω ⊂ Rd be a compact set containing 0. Let
F : Ω× P(Ω) → Rd satisfy Assumption 1a) for a given p. Suppose that there exists a transformer
network T : Ωn+1 → R(n+1)×d such that

sup
z1,...,zn+1∈Ω

∥T (z1, . . . , zn+1)− Fn+1(z1, . . . , zn+1)∥∞ ≤ ε. (16)

Then, for any q > p there exists a constant C(p, q, d), depending only on p, q, and d, such that for all
n ≥ 1, the corresponding continuum version Tn : Ω× P(Ω) → Rd (equation 7) satisfies

∥Tn −F∥ ≤ ε+ CL diam(Ω)p

 1

n
q−p
q

+


n−1/2 p > d/2, q ̸= 2p

n−1/2 log(n+ 1) p = d/2, q ̸= 2p

n−p/d p < d/2, q ̸= d/(d− p)

 .

Proof Sketch. The main steps of the proof are as follows. For a given measure µ ∈ P(Ω), consider
its empirical approximation νnz , where z = (z1, . . . , zn) are i.i.d. samples from µ. First, using
Assumption 1a), we show that for any x ∈ Ω, the difference ∥F(x, µ)−F(x, νnz )∥ can be bounded
in terms of Wp(µ, ν

n
z ). We then bound the distance between µ and νnz by using Theorem 1 from

Fournier & Guillin (2015).
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Second, we define the finite-dimensional map Fn+1(x, z) as Equation 15, and using the Lipschitz
continuity of F , show that the first component (Fn+1(x, z))1 approximates F(x, νnz) well.

Third, since the transformer T approximates Fn+1 uniformly within ε, we conclude that Tn(x, µ),
which is defined as the expected value of (T (x, z))1 over z ∼ µ⊗n, approximates F(x, µ) within the
stated bound.

In Theorem 3, we have shown that finite-dimensional transformers can approximate maps on infinite-
dimensional spaces under the uniform norm (Equation 12). In particular, we see that the approximation
depends on two quantities. First, the approximation depends on how well the finite dimensional
transformer T approximates our finite dimensional map Fn, which itself is an approximation of F .
This corresponds to the ε term in the bound. In particular, any universal approximation rates for
transformers instantly lifts to expect transformer.

Second it depends on the convergence rates of Wp(µ, ν
n
z ). We obtain these rates from Theorem 1 of

Fournier & Guillin (2015), which depend on n, p, q, and d. Fournier & Guillin (2015) showed that
these rates are tight. Furthermore, we see that the stronger regularity the map F has, i.e., the larger
the value of p, the easier it is to approximate. The best rates are obtained for p =

⌊
d
2 + 1

⌋
. Thus,

if we better approximate Fn or use longer sequences, we obtain an improved approximation of the
vector-field F .

Comparison with Result From Furuya et al. (2024a): To compare with Theorem 2, we state the
following corollary to Theorem 3.
Corollary 1. Let ε > 0 and n ≥ 1. Let Ω ⊂ Rd be a compact set containing 0. Let F : Ω×P(Ω) →
Rd satisfy Assumption 1a) for a given p. Then there exists a transformer T with depth Θ(1), one
attention layer with width Θ(d) such that the expected transformer Tn satisfies

∥Tn −F∥ ≤ ε+ CL diam(Ω)p

 1

n
q−p
q

+


n−1/2 p > d/2, q ̸= 2p

n−1/2 log(n+ 1) p = d/2, q ̸= 2p

n−p/d p < d/2, q ̸= d/(d− p)

 .

Proof. We use Theorem 4.3 from Alberti et al. (2023) to construct the transformer T that satisfies the
assumptions for Theorem 3.

While Corollary 1 and Theorem 2 are about two different models, they share notable similarities
while exhibiting key differences. Both results feature Θ(d) width for the attention layers, independent
of ε and n, and neither provides bounds for the width of feedforward layers. However, our work
establishes a bound on network depth, which Furuya et al. (2024a) does not. Moreover, we note
that providing a bound on the feedforward network, in our case, is straightforward, owing to recent
developments that provide bounds on both width and depth Augustine (2024). Lastly, we note that
Furuya et al. (2024a) impose weaker assumptions for the map F .

4.2 APPROXIMATING THE MEAN FIELD DYNAMICS

In this section, we build upon our previous approximation results to show that solutions of the
continuity equation 2 can be approximated by approximating the vector field F using a transformer
Tn. To formalize this, we first introduce an appropriate notion of a solution to the continuity equation.
Definition 6. A measure-valued function µ ∈ C([0, τ ];Pp(Rd)) is called a Lagrangian solution of
the continuity equation 2 if there exists X : [0, τ ]× Rd → Rd, referred to as the flow map, satisfying

X(t, x) = x+

∫ t

0

F(X(s, x), µ(s))ds (17)

for all x ∈ Rd and µ(t) = X(t, ·)#µ0 for all t ∈ [0, τ ].

Under Assumption 1a), it is known that there is a unique Lagrangian solution corresponding to 2. See
Proposition 4.8 in Cavagnari et al. (2022). However, a transformer might not be globally Lipschitz as
required in Assumption 1a). Hence, the transformer continuity equation 10 may not have a unique
Lagrangian solution. For this reason we also need the following assumption.

7
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Assumption 2. The vector field Tn is such that there exists a unique Lagrangian solution µTn ∈
C([0, τ ];Pp(Rd)) to the continuity equation

∂µ

∂t
+∇z · (Tn(z, µ)µ) = 0, (18)

with initial condition µ(0) = µ0.

We are now ready to state our main theorem regarding the approximation of mean-field dynamics
using transformers.
Theorem 4 (Mean Field Dynamics Approximation Using Transformers). Let δ > 0 and n ≥ 1.
Suppose F satisfies Assumption 1 for some p and Assumption 2 for µ0 ∈ Pc(Rd). If suppµ0 ⊆ BR(0)
for some R > 0, and K ∈ R is such that K > (R + 2M τe3(Mτ)). Tn satisfies for all z ∈ B̄K(0)
and µ ∈ P(B̄K(0))

∥Tn(x, µ)−F(z, µ)∥L∞ < δ

Then we have that
Wp(µ

F (t), µTn(t)) < δ · 2pt exp(2pL t) (19)

where µF and µTn are the solutions to equation 2 and equation 10, respectively, and the constants
are independent of µ0 ∈ P(BR(0)).

Theorem 4 shows that if Tn approximates F well then we can use Tn to simulate the dynamics
equation 2 over any time interval. We observe that the error bound 19 grows exponentially. Therefore,
small approximation error for the vector field implies small approximation error for the solution of
the continuity equation only for small time horizons. However, we note that bound also depends on
the regularity of F , namely p and L. Therefore, the more regular the vector-field F , i.e., larger p and
smaller L, the better the bound 19.

We can combine Theorem 3 and Theorem 4 to obtain the following corollary.
Corollary 2. Suppose F satisfies Assumption 1 for some p and Assumption 2 for µ0 ∈ Pc(Rd). If
suppµ0 ⊆ BR(0) for some R > 0, and K ∈ R is such that K > (R+ 2M τe3(Mτ)). Then, for all
ε > 0 small enough and n ∈ Z+ large enough, there exists a transformer network T : Rd×(n+1) →
Rd×(n+1), with its corresponding continuum version Tn : Rd × P(Rd) → Rd such that

Wp(µ
F (t), µTn(t)) < 2p(ε+ δ(n,K))t exp(2pL t)

where

δ(n,K) = L (2K)p

 1

n
q−p
q

+


n−1/2 p > d/2, q ̸= 2p

n−1/2 log(n+ 1) p = d/2, q ̸= 2p

n−p/d p < d/2, q ̸= d/(d− p)

 .

5 NUMERICAL SIMULATIONS

While Corollary 1 establishes the existence of a transformer network that approximates the vector field,
it does not provide a method for determining the model weights. This section presents experiments
where we train transformers to approximate the finite-dimensional vector fields and then use them
to simulate solutions. To proceed, suppose that we have N training data points that correspond to
input-output pairs {(νnz )(j), (Fn(z))

(j)}j=1,...,N . We train the transformer T on this data using the
mean squared loss. We will consider two examples of mean-field systems. The first is a synthetic
example where we construct the data from the Cucker-Smale (Cucker & Smale, 2007). The second is
the mean-field dynamics of training two-layer neural networks (Mei et al., 2019).

Cucker-Smale The first example we consider is the well-studied 2-dimensional Cucker-Smale
equation that models consensus of a N -agent system Cucker & Smale (2007). In the equation below,
x ∈ R2 and v ∈ R2 denote the position and velocity of each agent, respectively. Hence, in this setup,
d = 4. The vector field F : R4 × P(R4) → R4 is given by

F(x, v, µ) =

[
v

−
∫
R4 ϕ(∥x− y∥)(v − u)dµ(y, u)

]
, ϕ(r) =

H

(s2 + r2)b
.

8
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Figure 1: Figure comparing training a two-layer neural network using gradient descent to update the
weights and using a transformer to update the weights. The solid line is the median value over 100
trials, while the shaded region is the interquartile range (25th-75th percentile). Left: evolution of the
training error during training. Center: evolution of the test error during training. Right: difference
between the parameters learned by gradient descent and the transformer.

Here, ϕ, a non-negative function, is the interaction potential that determines the inter-agent interaction,
and H, s, b are parameters (here set to 1). We also consider the particle version of the system.

dxi

dt
= vi, 0 ≤ i ≤ N (20)

dvi
dt

=
1

N

N∑
j=1

ϕ(∥xi − xj∥)(vj − vi) (21)

To generate the data, we compute the trajectory for 500 different initial conditions. Each initial
condition (x

(j)
0 , v

(j)
0 ) is chosen uniformly at random from Ω = [0, 1] × [0, 1]. For each initial

condition, we generate solution trajectories for N = 20 agents over a time horizon [0, 100] using
SciPy’s solve_ivp using the BDF method. Hence, for each initial condition, we get Tj time steps
t
(j)
1 , . . . , t

(j)
Tj

and for each time step, the method gives us the position and velocities at those time

points. Hence, we use a transformer to approximate the
[
x
v

]
7→

[
ẋ
v̇

]
. We need to compute v̇ for each

training point. We could have used the true equation to simulate v̇, but to align better with real-world
scenarios, we compute v̇ using the centered difference method, ignoring the points at the boundary.
This gives a total of 16834 data points.

Training 2-Layer Neural Network Consider a two-layer network f(x) =
∑N

i=1 aiσ(x
Twi). Let

θi = (ai, wi) be the parameters. In this model, we consider each θi as a particle, and its distribution
evolves as we train the model. Mei et al. (2019) showed that the following continuity equation can
model the dynamics in the N → ∞ limit.

µ̇ = 2ξ(t)∇θ · (µ∇θΨ(θ, ρ)),

where ξ(t) depends on the learning rate schedule and

Φ(θ) = (a,w), µ) := −Ex,y

[
yaσ(xTw)

]
+

∫
Ex,y

[
aâσ(xTw)σ(xT ŵ)

]
dµ(â, ŵ).

Here, the vector field we wish to approximate by the transformer is F(θ, µ) = 2ξ(t)∇θΨ(θ, µ). To
generate data, we fix a two-layer teacher network with sigmoid activation and use isotropic Gaussian
inputs. We set N = 100 and use an input dimension of 10. Since the sigmoid is 1-Lipschitz, the
above equations satisfy our assumptions.

5.1 RESULTS

Transformer Dynamics
True Dynamics

0

3

Ti
m

e

Figure 3: Figure showing the trajectories of ten
particles computed using the true CS model and
the transformer.

Figure 1 illustrates the training and test loss as
we train the model. The blue line represents

9
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Figure 2: Figure comparing the true dynamics of the Cucker-Smaler versus those obtained from
a transformer. The solid line is the median value over 100 trials, while the shaded region is the
interquartile range (25th-75th percentile).

the model trained using SGD, while the orange
line corresponds to the model trained with the
transformer. Note that the transformer model
does not compute any gradients. We trained
models with one hundred different random ini-
tializations. The solid lines indicate the me-
dian, and the shaded regions represent the in-
terquartile range. The transformer-trained mod-
els exhibit favorable training and test loss perfor-
mance. The rightmost plot in Figure 1 shows the
Frobenius norm of the difference between the pa-
rameters learned using SGD and the transformer.
The figure demonstrates that the maximum norm
of the difference is at most 5× 10−5, even after
500 iterations.

Next, we simulate the Cucker-Smale flocking dynamics. Each particle is represented by a point in two-
dimensional space. Figure 3 shows the evolution of ten particles using the Cucker-Smale equations
equation 20-equation 21 along with the transformer approximation. Notably, the transformer tracks
the true solution quite well. Figure 2 plots the L2 distance between the positions coordinates x, y
and velocities u, v. The figure indicates that the error is generally quite small (< 10−4), although it
increases over time. This increase appears to be linear for the position coordinates, while the error in
the velocity seems to plateau and even decrease slightly. Additionally, the initial interquartile range is
small, but it grows over time.

6 CONCLUSION

In conclusion, this paper demonstrated the efficacy of transformer architectures in approximating
the mean-field dynamics of interacting particle systems. We showed that finite-dimensional trans-
former models can be lifted to approximate the infinite-dimensional mean-field dynamics. Through
theoretical results on approximations of the vector field and solution to the continuity equation, as
well as numerical simulations, we established that transformers can be powerful tools for modeling
and learning the collective behavior of particle systems. In the future, we would like to investigate if
transformers can be used to for mean-field control.
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A PROOF OF THEOREM 3

Theorem 3 (Universal Approximation). Let ε > 0. Let Ω ⊂ Rd be a compact set containing 0. Let
F : Ω× P(Ω) → Rd satisfy Assumption 1a) for a given p. Suppose that there exists a transformer
network T : Ωn+1 → R(n+1)×d such that

sup
z1,...,zn+1∈Ω

∥T (z1, . . . , zn+1)− Fn+1(z1, . . . , zn+1)∥∞ ≤ ε. (16)

Then, for any q > p there exists a constant C(p, q, d), depending only on p, q, and d, such that for all
n ≥ 1, the corresponding continuum version Tn : Ω× P(Ω) → Rd (equation 7) satisfies

∥Tn −F∥ ≤ ε+ CL diam(Ω)p

 1

n
q−p
q

+


n−1/2 p > d/2, q ̸= 2p

n−1/2 log(n+ 1) p = d/2, q ̸= 2p

n−p/d p < d/2, q ̸= d/(d− p)

 .

Proof.

∥F − Tn∥ =sup
µ

sup
x

∥∥∥∥F(x, µ)−
∫
Ωn

(T (x, z))1 dµ
⊗n(z)

∥∥∥∥
∞

≤ sup
µ

sup
x

∫
Ωn

∥F(x, µ)− (T (x, z))1∥∞ dµ⊗n(z)

= sup
µ

sup
x

∫
Ωn

∥F(x, µ)−F(x, νnz ) + F(x, νnz )− (T (x, z))1∥∞ dµ⊗n(z)

≤ sup
µ

sup
x

∫
Ωn

∥F(x, µ)−F(x, νnz )∥∞ dµ⊗n(z)

+ sup
µ

sup
x

∫
Ωn

∥F(x, νnz )− (T (x, z))1∥∞ dµ⊗n(z) (∗)

The second inequality follows from the standard triangle inequality. The first integral on the RHS can
be bounded from above as,

sup
µ

sup
x

∫
Ωn

∥F(x, µ)−F(x, νnz )∥∞ dµ⊗n(z)

≤ sup
µ

∫
Ωn

sup
x

∥F(x, µ)−F(x, νnz )∥∞ dµ⊗n(z)

= sup
µ

∫
Ωn

L ∥µ− νnz ∥Wp
dµ⊗n(z)

=L sup
µ

Ez∼µ⊗n [Wp (µ, ν
n
z )] (∗∗)

We let Mq(µ) be the q-moment of µ i.e. Mq(µ) :=
∫
Ω
|x|qdµ(x) and

G(n) =


n−1/2 p > d/2, q ̸= 2p

n−1/2 log(n+ 1) p = d/2, q ̸= 2p

n−p/d p < d/2, q ̸= d/(d− p)

.

Then as per Theorem 1 of Fournier & Guillin (2015), there exists a constant C(p, q, d) (a function of
p, q, d) such that, Ez∼µ⊗n from (∗∗) can be bounded from above by CM

p/q
q (µ)G(n). We obtain:

sup
µ

sup
x

∫
Ωn

∥F(x, µ)−F(x, νnz )∥∞ dµ⊗n(z) ≤ L sup
µ

CMp/q
q (µ)G(n)

≤ LC diam(Ω)pG(n), (22)

where we have used the fact that µ is a probability measure on Ω.
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Next, we obtain an upper bound for the second integral in (∗).

sup
µ

sup
x

∫
Ωn

∥F(x, νnz )− (T (x, z))1∥∞ dµ⊗n(z)

≤ sup
µ

∫
Ωn

sup
x

∥F(x, νnz )− (Fn+1(x, z1, . . . , zn))1∥∞ dµ⊗n(z)

+ sup
µ

∫
Ωn

sup
x

∥(Fn+1(x, z1, . . . , zn))1 − (T (x, z))1∥∞ dµ⊗n(z)

Consider the first term in the expression above

sup
µ

∫
Ωn

sup
x

∥F(x, νnz )− (Fn+1(x, z1, . . . , zn))1∥∞ dµ⊗n(z)

= sup
µ

∫
Ωn

sup
x

∥∥∥F(x, νnz )−F
(
x, νn+1

(x,z)

)∥∥∥
∞

dµ⊗n(z)

≤ sup
µ

∫
Ωn

L
∥∥∥νnz − νn+1

(x,z)

∥∥∥
Wp

dµ⊗n(z)

≤ sup
µ

∫
Ωn

L
2

n+ 1
dµ⊗n(z)

= L
2

n+ 1
(23)

Since we have assumed 16, we have

sup
µ

∫
Ωn

sup
x

∥(Fn+1(x, z1, . . . , zn))1 − (T (x, z))1∥∞ dµ⊗n(z) ≤ ε (24)

Putting together 22, 23, and 24, we get that

∥Tn −F∥ ≤ LC diam(Ω)pG(n) + L
2

n+ 1
+ ε.

B PROOF OF THEOREM 4

Proposition 1. Suppose there exists a Lagrangian solution µ ∈ C([0, τ ];P(Rd)) of equation 2.
Additionally, suppose that F satisfies Assumption 1. Then the solution satisfies,

supp µ(t) ⊆ BCt(0) (25)

for all t ∈ [0, τ ], where Ct = (R+ 2M t)e3M t.

Proof. By definition of the Lagrangian solution,

∥X(t, x)∥L1
≤ ∥x∥L1

+

∫ t

0

∥F(X(s, x), µ(s))∥L1
ds (26)

≤ ∥x∥L1
+

∫ t

0

M (1 + ∥X(s, x)∥L1
+M1(µ(s)))ds (27)

Integrating both sides of 27 with respect to µ0 we get,

M1(µ(t)) ≤ M1(µ0) + M

∫ t

0

(1 + 2M1(µ(s)))ds

Combining this with 27 itself we get,

∥X(t, x)∥L1 +M1(µ(t)) ≤ M1(µ0) + M

∫ t

0

(2 + ∥X(s, x)∥L1 + 3M1(µ(s)))ds

15
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Using Gronwall’s lemma, this implies

∥X(t, x)∥L1
+M1(µ(t)) ≤ (M1(µ0) + 2M t))e3M t

≤ (R+ 2M t)e3M t

Theorem 4 (Mean Field Dynamics Approximation Using Transformers). Let δ > 0 and n ≥ 1.
Suppose F satisfies Assumption 1 for some p and Assumption 2 for µ0 ∈ Pc(Rd). If suppµ0 ⊆ BR(0)
for some R > 0, and K ∈ R is such that K > (R + 2M τe3(Mτ)). Tn satisfies for all z ∈ B̄K(0)
and µ ∈ P(B̄K(0))

∥Tn(x, µ)−F(z, µ)∥L∞ < δ

Then we have that
Wp(µ

F (t), µTn(t)) < δ · 2pt exp(2pL t) (19)
where µF and µTn are the solutions to equation 2 and equation 10, respectively, and the constants
are independent of µ0 ∈ P(BR(0)).

Proof. Let X,Y be the flow maps associated with with respect the vector fields F and Tn, respectively.
From the definition of Lagrangian solutions we know that,

X(t, x) = x+

∫ t

0

F(X(s, x), µF (s))ds

Y (t, x) = x+

∫ t

0

Tn(Y (s, x)), µTn(s))ds

for all t ∈ [0, τ ]. From this we get

∥Y (t, x)−X(t, x)∥pp =

∥∥∥∥∫ t

0

Tn(Y (s, x), µTn(s))ds−
∫ t

0

F(X(s, x), µF (s))ds

∥∥∥∥p
p

≤ 2p−1

∥∥∥∥∫ t

0

Tn(Y (s, x), µTn(s))ds−
∫ t

0

F(Y (s, x), µF (s))ds

∥∥∥∥p
p

+ 2p−1

∥∥∥∥∫ t

0

F(Y (s, x), µF (s))ds−
∫ t

0

F(X(s, x), µF (s))ds

∥∥∥∥p
p

≤ 2p−1

∥∥∥∥∫ t

0

Tn(Y (s, x), µTn(s))ds−
∫ t

0

F(Y (s, x), µTn(s))ds

∥∥∥∥p
p

+ 2p−1

∥∥∥∥∫ t

0

F(Y (s, x), µTn(s))ds−
∫ t

0

F(Y (s, x), µF (s))ds

∥∥∥∥p
p

+ 2p−1

∥∥∥∥∫ t

0

F(Y (s, x), µF (s))ds−
∫ t

0

F(X(s, x), µF (s))ds

∥∥∥∥p
p

The first inequality follows from Young’s inequality. Since, K > (R + 2M τe3(Mτ)), for
ε > 0 small enough, and n large enough we can conclude that, K > (R + 2(M + ε +
δ(n,K))τe3((M+ε+δ(n,K))τ)). We can approximate F using Tn on BK(0). Using the uniform
norm approximation, we can conclude that

∥Tn(x, µ)∥L1
≤ (M + ε+ δ(n,K))(1 + ∥x∥L1

+M1(µ))

for all x ∈ Rd and µ ∈ P(BK(0)). From this we get,

suppµTn(s) ⊆ BK(0)

by Proposition 1.

21−p∥Y (t, x)−X(t, x)∥pp ≤
∫ t

0

ε+ δ(n,K)ds

+

∫ t

0

LWp
p (µ

F (s), µTn(s))ds+

∫ t

0

L ∥Y (s, x)−X(s, x)∥L1
ds.

16
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Taking expectation with respect to the initial condition we obtain,

21−p

∫
Rd

∥|Y (t, x)−X(t, x)∥ppdµ0(x) ≤ (ε+ δ(n,K))t+

∫ t

0

LW1(µ
F (s), µTn(s))ds

+

∫
Rd

∫ t

0

L ∥Y (s, x)−X(s, x)∥pds dµ0(x)

Using the fact that

Wp(µ
F (t), µTn(t)) ≤

∫
Rd

∥x−X(t, Y −1(t, x))∥ppd(Y (t, ·)#µ0)(x)

=

∫
Rd

∥Y (t, x)−X(t, x)∥ppdµ0(x),

we can conclude that

2−p

∫
Rd

∥Y (t, x)−X(t, x)∥ppdµ0(x) + 2−pWp
p (µ

F (t), µTn(t)) ≤ (ε+ δ(n,K))t

+

∫ t

0

LWp
p (µ

F (s), µTn(s))ds+

∫
Rd

∫ t

0

L |Y (s, x)−X(s, x)|ds dµ0(x).

This implies that

2−p

∫
Rd

∥Y (t, x)−X(t, x)∥ppdµ0(x) + 2−pWp
p (µ

F (t), µTn(t)) ≤ (ε+ δ(n,K))t

+ L

∫ t

0

Wp
p (µ

F (s), µTn(s))ds+ L

∫
Rd

∫ t

0

|Y (s, x)−X(s, x)|ds dµ0(x)

Now, applying Gronwall’s inequality, we get,∫
Rd

∥Y (t, x)−X(t, x)∥ppdµ0(x) +Wp
p (µ

F (t), µTn(t)) ≤ 2p(ε+ δ(n,K))t exp(2L t)

This implies that

Wp
p (µ

F (t), µTn(t)) ≤ 2p(ε+ δ(n,K))t exp(2L t)
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