Published in Transactions on Machine Learning Research (02/2026)

Nondeterministic Polynomial-time Problem Challenge:
An Ever-Scaling Reasoning Benchmark for LLMs

Chang Yang'*, Ruiyu Wang?*, Junzhe Jiang', Qi Jiang®, Qinggang Zhang', Yanchen Deng?*,
Shuxin Li*, Shuyue Hu®, Bo Li', Florian T. Pokorny?, Xiao Huang!, Xinrun Wang®?

Y The Hong Kong Polytechnic University, *KTH Royal Institute of Technology, *Carnegie Mellon University,
4 Nanyang Technological University, ° Shanghai Artificial Intelligence Laboratory, S Singapore Management University

chang.yang@connect.polyu.hk, ruiyuw@kth.se, xrwang@smu.edu.sg

Reviewed on OpenReview: https: //openreview. net/ forum? id=Xb6d51GLb2

Abstract

Reasoning is the fundamental capability of large language models (LLMs). Due to the rapid
progress of LLMs, there are two main issues of current benchmarks: i) these benchmarks can
be crushed in a short time (less than 1 year), and ii) these benchmarks may be easily hacked.
To handle these issues, we propose the ever-scalingness for building the benchmarks which
are scaling over complexity against crushing, instance against hacking and exploitation,
oversight for easy verification, and coverage for real-world relevance. This paper presents
Nondeterministic Polynomial-time Problem Challenge (NPPC), an ever-scaling reasoning
benchmark for LLMs. Specifically, the NPPC has three main modules: i) npgym, which
provides a unified interface of 25 well-known NP-complete problems and can generate any
number of instances with any levels of complexities, ii) npsolver, which provides a unified
interface to evaluate the problem instances with both online and offline models via APIs and
local deployments, respectively, and iii) npeval, which provides the comprehensive and ready-
to-use tools to analyze the performances of LLMs over different problems, the number of
tokens, the reasoning errors and the solution errors. Extensive experiments over widely-used
LLMs demonstrate: i) NPPC can successfully decrease the performances of advanced LLMs
to below 10%, demonstrating that NPPC is not crushed by current models, ii) DeepSeek-R1,
Claude-3.7-Sonnet, and 0l /03-mini are the most powerful LLMs, where DeepSeek-R1 can
outperform Claude-3.7-Sonnet and 0l/03-mini in most NP-complete problems considered,
and iii) the numbers of tokens in the advanced LLMs, e.g., Claude-3.7-Sonnet and DeepSeek-
R1, are observed first to increase and then decrease when the problem instances become
more and more difficult. Through continuously scaling analysis, NPPC can provide critical
insights into the limits of LLMs’ reasoning capabilities, exposing fundamental limitations
and suggesting future directions for further improvements.

1 Introduction

The remarkable successes of Large Language Models (LLMs) (Achiam et al., 2023) have catalyzed the
fundamental shift of artificial intelligence. Recent breakthroughs on reasoning (Guo et al., 2025) enable LLMs
to complete complex tasks, e.g., math proof, code generation and computer use, which require the capabilities
of understanding, generation and long-term planning. Various benchmarks, e.g., GPQA (Rein et al., 2024),
AIME, SWE-bench (Jimenez et al., 2024) and ARC-AGI (Chollet, 2019), are proposed to evaluate these
advanced reasoning capabilities, where most benchmarks are curated and verified by human researchers with
a finite number of questions. These benchmarks guide the directions for advancing LLM capabilities.

*Equal contribution
fCorresponding author

https://openreview.net/forum?id=Xb6d5lGLb2

Published in Transactions on Machine Learning Research (02/2026)

Current benchmarks face two fundamental challenges that 100
limit their effectiveness for LLM evaluation. First, current
benchmarks can be crushed in a short time: GSM8K (Cobbe * -/?
et al., 2021) performance increased from approximately 35% 60 //
to 95% within three years, while SWE-bench (Jimenez et al.,
2024) scores improved from 7.0% to 64.6% in merely eight 40

Performance

months, as illustrated in Figure 1. This rapid saturation sug- ol T e

gests that these benchmarks quickly lose their discriminative T e Human List Bxam

power as models advance. Second, current benchmarks can 0 7053 3034 3035
be easily hacked or exploited. Static benchmarks are suscep-

tible to data contamination and memorization issues, leading Figure 1: Crush of benchmarks

to overfitting rather than genuine capability assessment (Wu

et al., 2025; Xu et al., 2024). While live benchmarks such as LiveCodeBench (Jain et al., 2025) address
contamination by continuously introducing new problems, they require substantial ongoing human curation
efforts. Similarly, human evaluation platforms like ChatbotArena (Chiang et al., 2024) incur significant costs
(approximately $3,000 per evaluation) and remain vulnerable to strategic manipulation where MixEval (Ni
et al., 2024) can achieve comparable correlation with human judgment at under $1 per evaluation. These
limitations represent significant obstacles for reliable evaluation of the rapidly evolved LLMs.

To address these issues, we propose the ever-scalingness with

four desiderat.a for a benchmark (as shown in Figure 2): i) scal%'ng Complexity Instances
over complexity — the benchmark can generate the problems with

continually increasing complexities to avoid the crushing of the @
benchmarks. This ensures that as LLMs improve, the benchmark) Ever-

remains challenging by providing harder problems that push the
boundaries of current capabilities for long-term differentiation. ii)
scaling over instance — the benchmark can generate an infinite
number of instances to avoid the exploitation and overfitting.
This prevents LLMs from memorizing specific problem instances
during training and ensures that the evaluation truly measures the
reasoning capabilities of LLMs. iii) scaling over oversight — the
benchmark can verify the correctness of the solutions efficiently
for the problems with any complexity. This is crucial because as problem complexity increases, manual
verification becomes impractical or impossible. Automated and reliable verification enables evaluation
at scale and ensures that harder problems can be verified efficiently, making the benchmark practically
sustainable. iv) scaling over coverage — the benchmark should comprehensively cover problem types that
are highly relevant to real-world applications, rather than focusing on puzzles. or rare edge cases. This
ensures that performance improvements on the benchmark translate to practical value, measuring capabilities
that matter for downstream tasks and real-world deployment rather than narrow, specialized skills. These
four desiderata for ever-scalingness ensure continuous differentiation among LLMs over extended periods,
identifying fundamental limitations for further improvement.

Scalingness

Coverage

Figure 2: Desiderate of ever-scalingness

To construct the ever-scaling benchmark, we focus on nondeterministic polynomial-time (NP) problems whose
solutions can be verified in polynomial time (Cormen et al., 2022). Specifically, we target on NP-complete
(NPC) problems, i.e., the most computationally challenging problems in the NP class, for three key reasons.
First, NPC problem instances can be systematically generated across arbitrary difficulty levels through
controlled parameters, e.g., numbers of variables, enabling precise scaling of both complexity and instance.
Second, NPC problems are intrinsically “difficult to solve, easy to verify”, i.e., no polynomial-time
algorithms have been discovered for solving NPC problems, making them computationally intractable even
with specialized tools, while their solutions remain efficiently verifiable. Problems in the P complexity class can
be solved in polynomial time. When LLMs are equipped with code execution capabilities, they can generate
and execute algorithms to solve these problems directly. Therefore, such benchmarks become susceptible to
trivial solutions through computational tools rather than genuine reasoning. Conversely, NP-hard problems,
particularly those lacking polynomial-time verification procedures, present the challenge for verifying the
solutions for large-scale problem instances. Third, NPC problems demonstrate broad applicability, including

Published in Transactions on Machine Learning Research (02/2026)

diverse real-world scenarios (e.g., routing (Toth & Vigo, 2002) and protein folding (Crescenzi et al., 1998))
and various puzzles, e.g., Sudoku (Seely et al., 2025). The theoretical foundation for using NPC problems as
a comprehensive evaluation framework stems from the fundamental property that any NP problem can be
reduced to an NPC problem in polynomial time, establishing NPC problems as a theoretically grounded,
universal framework for computational problem-solving assessment. Therefore, NPC problems are the
foundation problems of all computational problems and LLMs are the foundation models for wide range tasks,
thus leading to our ever-scaling nondeterministic polynomial-time problem challenge (NPPC) (Figure 4(a)).

Specifically, NPPC has three main modules: i) npgym, which provides a unified interface of 25 well-known
NPC problems and can generate any number of instances with any levels of complexities, which implies
the ever-scalingness of NPPC, ii) npsolver, which provides a unified interface to evaluate the problem
instances with both online and offline models via APIs and local deployments, respectively, to facilitate users
to evaluate their own models and iii) npeval, which provides comprehensive and ready-to-use tools to analyze
the performances of LLMs over different problems, the number of tokens, the “aha moments”, the reasoning
errors and the solution errors, which can provide in-depth analysis of the LLLMs and the insights to further
improve the LLMs’ reasoning capabilities. Extensive experiments over widely-used LLMs, i.e., GPT-40-mini,
GPT-4o0, Claude-3.7-Sonnet, DeepSeek-V3, DeepSeek-R1, and OpenAl ol-mini, demonstrate: i) NPPC
can successfully decrease the performances of advanced LLMs to below 10%, demonstrating that NPPC is
not crushed by current LLMs, ii) DeepSeek-R1, Claude-3.7-Sonnet, and 0l/03-mini are the most powerful
LLMs, where DeepSeek-R1 can outperform Claude-3.7-Sonnet and ol-mini in most NP-complete problems
considered, and iii) the numbers of tokens in the advanced LLMs, e.g.. Claude-3.7-Sonnet and DeepSeek-R1,
are observed to first increase and then decrease when the problem instances become more and more difficult.
We also analyze the typical reasoning errors in the LLMs, which provide the insights of the fundamental
limitations of current LLMs and suggest the potential directions for further improvement. To the best of our
knowledge, NPPC is the first ever-scaling benchmark for reliable and rigorous evaluation of the reasoning
limits of LLMs, according to the four desiderata defined previously.

2 Related Work

Traditional benchmarks are typically curated by hu-
man with static datasets. Abstraction and Reasoning
Corpus (ARC-AGI)-1 (Chollet, 2019) is designed to

Table 1: Comparison of different reasoning benchmarks
according to the ever-scalingness.

be “easy for humans, hard for AI”, which is formed & N

by human-curated 800 puzzle-like tasks, designed &Q\@* & égf A&q&?
as grid-based visual reasoning problems. o3 at high ¢ o ¢
compute scored 87% on ARC-AGI-1 (OpenAl, 2025), NPHardEval (Fan et al., 2024) X X v X
which roughly crushes the ARC-AGI-1 benchmarks R(ds(,Iﬁ;brz;(;f?s%i;&:iu f?i‘f 202 ‘)/()/(j)/(
and leads to the emergence of the ARC-AGI-2 bench- sudoku-Bench (Seely et al, 2095) | X VY X
mark. This pattern exemplifies a fundamental chal- ARC-AGL1 & 2 (Chollet, 2019) X l x x
lenge with traditional benchmarks for LLMs, includ- NPPC {this work) | v v v v

ing MMLU (Hendrycks et al., 2021), GPQA (Rein

et al., 2024), GSM8K (Cobbe et al., 2021), and SWE-bench (Jimenez et al., 2024), where static benchmarks
are systematically solved within relatively short periods (as shown in Figure 1). Therefore, researchers have
to continuously either develop new benchmarks, e.g., MMLU-Pro (Wang et al., 2024b) and SuperGPQA (Du
et al., 2025), or regularly update with new datasets and problems, e.g., LiveCodeBench (Jain et al., 2025) and
SWE-bench-Live (Zhang et al., 2025). However, these remedies rely on extensive human efforts to maintain
their relevance and difficulty and cannot fully address the crushing issue of benchmarks.

Several recent benchmarks consider either NP(C) problems, e.g., 3SAT (Balachandran et al., 2025; Hazra
et al., 2024; Parashar et al., 2025), or partially the ever-scalingness (Fan et al., 2024; Stojanovski et al., 2025)
(displayed in Table 1). NPHardEval (Fan et al., 2024) considers 3 problems from P, NPC and NP-hard classes
and use these class to evaluate the LLMs. We note that the problems in P class can be solved by augmenting
the LLMs with tools, e.g., code running, and the NP-hard problems cannot be verified efficiently, therefore,
NPHardEval cannot scale over the scalable oversight. Only 3 NPC problems are considered, i.e., Knapsack,
Traveling salesman problem (TSP) and graph coloring, and the instances of each problem in NPHardEval are

Published in Transactions on Machine Learning Research (02/2026)

finite and only regularly updated, which cannot scale over the instance and complexity. ZebraLogic (Lin
et al., 2025) considers one logic puzzle, i.e., Zebra puzzle, to test the reasoning capabilities of LMs when the
problems’ complexities increase. However, the reasoning capability on specific puzzles does not necessarily
transfer to other problems, which violates the scaling of the coverage. Sudoku-Bench (Seely et al., 2025)
focuses on one specific Sudoku game with 2765 procedurally generated instances with various difficulty levels.
Reasoning Gym (Stojanovski et al., 2025) is an ongoing project which collects the procedural generators
and algorithmic verifiers for infinite training data with adjustable complexity. Though with some NP(C)
problems, e.g., Zebra puzzles and Sudoku, the reasoning gym does not specifically focus on NPC problems
and cannot meet the desiderata of ever-scalingness. Several recent work leverages NP(C) problems as the
training environments to improve the general reasoning capabilities of LLMs (Zeng et al., 2025; Li et al., 2025;
Liu et al., 2025a), which demonstrates the advantages of NP(C) problems in terms of controllable difficulty
and efficient solution verification. These existing efforts highlight the need for a systematic approach for
training and benchmarking LLMs grounded in the complexity theory. This motivates the formulation of
ever-scalingness and the development of NPPC.

3 Preliminaries

P and NP Problems. The problems in P class are decision problems
that can be solved in polynomial time by a deterministic Turing machine,
which implies there exists an algorithm that can find a solution in time
proportional to a polynomial function, e.g., O(n*), of the input size n.
Examples include sorting, shortest path problems, and determining if a
number is prime. The problems in NP class are decision problems that can
be solved in polynomial time by nondeterministic Turing machine, where
a proposed solution can be easily verified, though finding that solution
might require more time (as displayed in Definition 1). All P problems are
also in NP, but the reverse remains an open question, known as “P vs. NP
problem”. NP problems form the cornerstone of computational complexity
theory, for which solution verification is tractable (polynomial time) even
though solution discovery may be intractable (potentially exponential
time), i.e., “difficult to solve, easy to verify”. Many real-world optimization
problems can be formulated as NP problems, such as equilibrium finding in
game theory, portfolio management, network design and machine learning.

NP-hard

Figure 3: Complexity classes

Definition 1 (NP Problems). The complexity class NP consists of all decision problems € such that for any
“yes” instance I of 2, there exists a certificate o of polynomial length in |I| where a deterministic Turing
machine can verify in polynomial time that c¢ is a valid certificate for I.

NP-complete (NPC) Problems. Formally, a problem € is an NPC problem if i) the problem is in NP,
and ii) any NP problems can be transformed to problem € in polynomial time. This reducibility property
establishes NPC problems as the “hardest” problems in NP class. The Cook-Levin theorem established SAT
as the first proven NPC problem (Cook, 2023; Karp, 2009), while 3SAT is the special case of SAT and is
also an NPC problem. Subsequent NPC problems typically proven via reduction chains back to 3SAT or
other established NPC problems. The most well-known NPC problems include vertex cover problem, clique
problem, traveling salesman proble (TSP), Hamiltonian path/cycle problem, etc. NPC problems play the
most important roles in answering the “P vs. NP problem?”, i.e., if any NPC problem were shown to have a
polynomial-time algorithm, then P = NP. However, despite decades of research, no polynomial-time algorithms
for any NPC problem is discovered, which implies that NPC problems are computationally intractable by
current methods. While NP-hard problems represent a broader class that includes optimization variants and
potentially harder problems, they are less suitable for benchmarks because their solutions cannot be verified
in polynomial time, which fundamentally limits the scaling of complexity and oversight of the benchmarks.

Reasoning in LLMs. The reasoning ability of LLMs refers to the model’s capacity to tackle complex
problems, e.g., mathematical proof, code generation through multi-step thinking and context understanding.
Recently, specialized reasoning models have been proposed. OpenAl-ol is an LLM trained with reinforcement
learning (RL), which enables the model to perform complex reasoning, including logical thinking and problem

Published in Transactions on Machine Learning Research (02/2026)

(a) () npgym _ .
Foundation Foundation configs {true, false}
Models Problems performance
verifier Accuracy vs.
generator Difficulty

B —
‘ Token number

instance —— solution vs. Difficulty
parsing 2.Typical reasoning

template Failures

prompt /D,
\./ template "* vf &@ leaderboard
\ J o J

npsolver npeval

\
J

1.Problem-specific
errors

Figure 4: Overview of NPPC. (a) NPPC represents the intersection of foundation models and foundation
problems. (b) The three main components of NPPC: npgym (problem generation), npsolver (solution
generation), and npeval (evaluation). (c) Workflow diagram: npgym configuring generators and verifiers,
npsolver using LLMs to generate solutions, and npeval measuring performance metrics.

solving, via chain-of-thought (CoT). ol thinks before it answers and can significantly outperform GPT-40 on
reasoning-heavy tasks with high data efficiency. DeepSeek-R1 (Guo et al., 2025) is an enhanced reasoning
model designed to improve LLMs’ reasoning performance that incorporates multi-stage training and cold-start
data before the large-scale RL. DeepSeek-R1 demonstrates remarkable reasoning capabilities, and achieves
comparable performance to OpenAl-ol across various reasoning tasks, e.g., mathematical problems, code
generation, and scientific reasoning. Additionally, there are open-sourced medium-sized LLMs with strong
reasoning capabilities, e.g., DeepSeek-R1-32B, a distilled version of DeepSeek-R1, and QwQ-32B.

4 Nondeterministic Polynomial-time Problem Challenge

We introduce Nondeterministic Polynomial Problem Challenge (NPPC), an ever-scaling reasoning benchmark
for LLMs. There are three main components in NPPC (as displayed in Figure 4(b)): i) npgym, which provides
a unified interface of 25 well-known NPC problems and can generate any number of instances and verify the
solution with any levels of complexities, ii) npsolver, which provides a unified interface to evaluate the problem
instances with both online and offline models via APIs and local deployments, respectively, to facilitate the
users to evaluate their own models and iii) npeval, which provides the comprehensive and ready-to-use tools
to analyze the performances of LLMs over problems, the number of tokens, the “aha moments”, the reasoning
and solution errors, providing the in-depth analysis of the LLMs’ reasoning capabilities.

4.1 Problem Suite: npgym

Interaction Protocol. Typically, NPC problems are the decision problems where given the instance I,
the answer is “Yes” or “No”. However, the LLMs may take a random guess without reasoning for the true
solution (Fan et al., 2024). Therefore, we consider a more challenging setting: given the instance I, the LLM
needs to generate the solution s for the instance. This setting will enforce the LLMs to reason for the correct
solutions and the NPPC needs to provide the certificate o to verify the solutions generated by the LLMs.
npgym provides a unified interface of NPC problems to interact with LLMs. The interaction between npgym
and the LLM is displayed in Figure 4(c). npgym generates the instance I with the given configuration, and
the LLM receives the instance and generate the solution s, then the solution is verified by npgym with the
output {true, false}. The representation of problem instances is designed to be concise and complementary
to include all necessary information for the LLMs to reason for the solution.

Published in Transactions on Machine Learning Research (02/2026)

Core Problems and Extension. There are 25 typical NPC problems implemented in npgym. Among all
NPC problems, 12 typically NPC problems are selected as the core problems, chosen for their fundamental
importance and broad real-world applications across domains such as logistics and routing (TSP, Hamiltonian
Cycle), network optimization (Vertex Cover, Graph 3-Colourability), resource allocation (Bin Packing, 3-
Dimensional Matching), automated reasoning (3SAT), computational biology (Shortest Common Superstring),
and mathematical optimization (Quadratic Diophantine Equations, Minimum Sum of Squares). The other 13
problems are categorized as the extension problems, covering specialized applications in social networks,
facility location, cryptography, and data mining. A full list of the 25 problems is displayed in Table 2.

Table 2: Core Problems and Extension.

3-Satisfiability (3SAT), Vertex Cover, 3-Dimensional Matching (3DM), Travelling
Salesman (TSP), Hamiltonian Cycle, Graph 3-Colourability (3-COL), Bin Packing,
Maximum Leaf Spanning Tree, Quadratic Diophantine Equations (QDE), Minimum
Sum of Squares, Shortest Common Superstring, Bandwidth

Core

Clique, Independent Set, Dominating Set, Set Splitting, Set Packing, Exact Cover
Extension | by 3-Sets (X3C), Minimum Cover, Partition, Subset Sum, Hitting String, Quadratic
Congruences, Betweenness, Clustering

Generation and Verification. Specifically, for each problem, npgym implements two functions:

e generate_instance(-): given the configurations, this function will generate the problem instances. Taking
the 3SAT as an example, the configurations include the number of variables and the number of clauses.
The generated instances are guaranteed to have at least one solution and not necessarily to have a unique
solution, which is ensured by the generation process.

e verify_solution(-): given the solution and the problem instance, this function will verify whether the
solution is correct or not. Additional to the correctness, this function also returns the error reasons. Taking
the TSP as an example, the errors include i) the solution is not a tour, ii) the tour length exceeds the
target length. The full list of the errors is displayed in Table 7.

Difficulty Levels. NPC problems exhibit distinct combinatorial structures and computational characteristics.
npgym implements the difficulty levels (Cobbe et al., 2020; Fan et al., 2024) establish a standardized metric
for quantifying the computational complexity. Specifically, the difficult levels are determined with a two-stage
approach: First, the parameters for NPC problems are manually configured based on problem-specific insights
(e.g., graph size, constraint density) by human experts. Second, to facilitate intuitive visualization and
meaningful benchmarking comparisons, we empirically calibrate the difficulty scale using LLM performance
data. This calibration serves purely as a post-hoc validation step to ensure the difficulty progression is
interpretable for benchmark users, which does not influence problem generation or introduce circular reasoning
into the evaluation methodology. The calibration confirms that higher difficulty levels (as determined by
theoretical complexity) correspond to lower LLM success rates, providing an intuitive scale where level 1
problems achieve >90% success and level 10 problems achieve <10% success.The comprehensive justification
of this approach is in Appendix A.6. Appendix C.1 includes full specifications of difficulty levels.

Is There a Unified Principle for Difficulty Levels of NPC Problems? Establishing a unified
principle for determining difficulty levels across all NPC problems is fundamentally challenging due to inherent
differences from both theoretical and practical perspectives. From the problem perspective, the structural
heterogeneity of NPC problems prevents the establishment of a universal difficulty metric. While all NPC
problems are polynomially reducible to each other in theory, they exhibit vastly different characteristics
in practice. These differences include: i) representation complexity, i.e., problems vary in how constraints
and variables are encoded (graph structures vs. logical formulas vs. numerical constraints), ii) Search
space topology, i.e., some problems have smooth difficulty landscapes while others contain sharp complexity
transitions. This heterogeneity means that uniform metrics—such as simple parameter counts or constraint
numbers—fail to capture the true computational difficulty that emerges during actual problem-solving. From
the LLM perspective, LLMs demonstrate highly variable performance across different NPC problems, and
the problem instances generated should not be too easy or too difficult, which may fail to differentiate the
capabilities of LLMs. Additionally, there exists no established theoretical framework for determining the

Published in Transactions on Machine Learning Research (02/2026)

upper bounds of problem difficulty that LLMs can effectively handle, making difficulty calibration necessarily
empirical and problem-specific, which justifies our two-stage approach to determine the difficulty levels.

Ever-scalingness of npgym. npgym fulfills the four desiderata of ever-scalingness. Specifically, npgym can
generate enormous problem instances with arbitrary difficulty levels, enabling scaling over complexity and
instance to continuously differentiate the LLMs while avoiding hacking, e.g., memorization. The scalability is
fundamentally grounded in the mathematical properties of NPC problems: for any fixed instance size n, the
solution space grows exponentially. Solution verification in npgym is computationally efficient, guaranteed
by the inherent properties of NP problems where candidate solutions can be verified in polynomial time.
npgym supports extensible coverage through a simple interface requiring only two core functions and difficulty
specifications for adding new NP(C) problems and no specialized tool is required, enabling the benchmark to
expand across diverse computational domains while maintaining consistency in evaluation methodology.

4.2 Solver Suite: npsolver

Prompt Template. The prompt template for |pppc_template = "n»

LLMs is designed to be simple without any problem-
specific knowledge and consistent across all problems.
Therefore, the prompt template (displayed above)
includes: i) problem description, which provides the
concise definition of the NPC problem, including
the problem name, the input and the question to be
solved, ii) the context examples, where each example
is formed by the instance and its corresponding so-
lution, demonstrating the input and output patterns
to help LLMs to generate the solution, iii) the target
instance to solve, and iv) the general instruction
about the solution format, where the solution is re-
quired to be in the JSON format for easy extracting
and analyzing. We note that the structural output
in JSON format may bring difficulties for LLMs to
generate the correct solution, especially for offline
models (analyzed in the experiments). More details
are displayed in Appendix D.

Completion with LLMs.

<problem_name> Problem Description:
<problem_description>

Examples:

<in_context_examples>

Problem to Solve:

Problem: <problem_to_solve>

Instruction:

Now please solve the above problem. Reason
step by step and present your answer in
the "solution" field in the following
json format:

json

{"solution":
[

I

||___|| }

example_and_solution = """Problem: <
example_problem>

{"solution": <example_solution>}
nnn

Figure 5: Prompt Template of NPPC

To streamline response extraction across various LLMs, we present npsolver, a

solver suite that provides a unified interface for both online (API-based) and offline (locally deployed) models.
npsolver includes: i) prompt generation, which constructs problem-specific prompts dynamically using the
designed prompt templates, ii) LLM completion, that handles response generation via either online APIs
supported through LiteLLM (BerriAl, 2023), or offline models via vLLM (Kwon et al., 2023); iii) solution
extraction, which applies regular expressions to parse JSON-formatted responses, ensuring a consistent
validation pipeline across all models; iv) error reporting, that standardizes error messages. Through the
unified interface, npsolver enables both online and offline models to share a common workflow for completion.

4.3 Evaluation Suite: npeval

Comprehensive LLM evaluation across all problems and difficulty levels is computationally expensive due to
the randomness in instance generation and LLM responses'. While existing benchmarks evaluate LLMs on
fixed datasets (e.g., 200 instances across 5 difficulty levels in (Lin et al., 2025)), difficulty-specific performance
assessment is required, thus leading to the development of npeval (as displayed in Figure 4(c)). Inspired by
rliable (Agarwal et al., 2021), npeval aggregates performance across multiple independent seeds (typically 3)
for each difficulty level, generating 30 instances per seed—the minimum sample size for statistical analysis.
This sampling strategy enables statistically sound performance aggregation while controlling instance-specific
variance within budget constraints. mpeval provides four performance measures following rliable, i.e., inter-

1Randomizing responses, i.e., non-zero temperature, is used for better performance (Guo et al., 2025).

Published in Transactions on Machine Learning Research (02/2026)

—— QwQ-32B —— GPT-40-mini Claude-3.7-Sonnet DeepSeek-V3-2503 ol-mini
DeepSeek-R1-32B —— GPT-40 DeepSeek-V3 —— DeepSeek-R1 03-mini
3SAT Vertex Cover Superstring QDE
1.0 = = e
0.8 N) Q \ \\
@ AN
0.6 \ I\ \
3 0.4 \k \ \
<0.2 N\
~ \60 =4 \\\

0.0) —
123456789101 234567891012345678910 123456782910
3DM TSP Hamiltonian Cycle Bin Packing
1.0
>0.8
[}
©0.6

3

324\ \

0.0 \ = \

12345678910 123456789101234567891012345¢67 82910
3-COL Min Sum Square Bandwidth Max Leaf Span Tree

|

j

1.0

>0.8))
£0.6 %

> \\\} \

00.4 BEN NN

<02 \ \ \ S ‘\: S ¢
0.0 \\ —_— \Lf—\g < —a \\ =

Figure 6: Performance over difficulty levels measured by 1QM

/
/)
P 4

i
¥
4§
7
/)
VA

quantile mean (IQM), mean, median, and optimality gap, which employ stratified bootstrap confidence
intervals (SBCIs) with stratified sampling for aggregate performance estimation, a method suitable for small
sample sizes and more robust than standard deviations. We note that IQM trims extreme values and computes
the interquartile mean across runs and tasks to smooth out the randomness in responses, which highlights
the consistency of the performance and complements metrics like mean/median to avoid outlier skew. The
framework analyzes both prompt and completion tokens across problems and difficulty levels, as well as
the number “aha moments” in reasoning processes in (Guo et al., 2025). Additionally, it categorizes errors
into solution errors (detected by npgym’s verification) and reasoning errors (flaws in the LLM’s internal
problem-solving process). More details can be found in Appendix C.3.

5 Results

We conduct comprehensive experiments to evaluate the reasoning capabilities of state-of-the-art LLMs
across the NPPC benchmark. Our evaluation encompasses 10 representative models, including two offline
medium-sized reasoning models (QwQ-32B and DeepSeek-R1-32B), four online advanced non-reasoning
models (GPT-40-mini, GPT-40, Claude-3.7-Sonnet, and two versions of DeepSeek-V3), and four online
reasoning-specialized models (DeepSeek-R1, ol-mini, and 03-mini). For each problem, we generate instances
across 10 difficulty levels, with each level designed to progressively challenge model capabilities through
increased problem complexity. Following our rigorous sampling strategy, we evaluate each model on 90
instances per difficulty level (30 instances across 3 independent seeds) to ensure statistical reliability.

5.1 Analysis of Performance

The performance of considered LLMs over difficulty levels is displayed in Figure 6, where all models exhibit
a decline in accuracy as difficulty levels increase across all 12 NPC problems. Take 3SAT as an example,
all online models except for DeepSeek-R1 drop from > 80% accuracy to close to 0% at the last level, and
DeepSeek-R1 shows the slowest decline but still falls to < 15% accuracy. All models collapse to around
or even below 10% accuracy at extreme difficulty confirms that NPPC is not crushed against the SoTA
LLMs and can discriminate their capabilities. One exception is Claude-3.7-Sonnet on Superstring problem,

Published in Transactions on Machine Learning Research (02/2026)

Superstring

Vertex Cover
-

Distribution

= |
12345678910

8= |
12345678910

-
123456780910 123456780910

Hamiltonian Cycle Bin Packing Min Sum Square Bandwidth

Distribution

C L]
12345678910

I QwQ-32B N GPT-40-mini @ Claude-3.7-Sonnet DeepSeek-V3-2503 ol-mini
[DeepSeek-R1-32B m GPT-40 DeepSeek-V3 [DeepSeek-R1 03-mini

Figure 7: Ranks of models over problems, where the x-axis represents the rank, ranging from 1 to 10, as we
evaluate 10 models, and the y-axis shows the distribution of different LLMs across the ranks.

where the accuracy is still above 50% even for the level 10, while other models are all decreased into less
than 20%, which demonstrates the superiority of Claude-3.7-Sonnet to deal with long contexts, where the
prompts at level 10 is more than 50K2. All models perform similarly on the Bandwidth problem, which may
be mainly due to the fact that none of the models are familiar with this specific problem. Both 03-mini and
DeepSeek-V3-2503 demonstrate superior performance to their predecessor models, ol-mini and DeepSeek-V3,
respectively, validating continually improvements in both non-reasoning and reasoning LLMs.

IQM Mean Median Optimality Gap

03-mini I I I I
ol-mini I I 1 I
DeepSeek-R1 I I moi
DeepSeek-V3-2503 I I I I
DeepSeek-V3 | I I I
Claude-3.7-Sonnet I 1 m 1
GPT-40 | I] I
GPT-40-mini
DeepSeek-R1-32B | | | |
QwQ-32B 1] [| 1

0.2 04 0.6 0.15 0.30 0.45 0.600.00 0.25 0.50 0.75 0.45 0.60 0.75

Figure 8: Performance interval over all problems across all levels

The ranks of models over problems are shown in Figure 7, which measures the models’ performances across
different levels of a specific problem. We observe that DeepSeek-R1 and 03-mini demonstrate statistical
dominance in achievement of first-rank positions among reasoning-specialized architectures and Claude-3.7-
Sonnet is the best non-reasoning model compared with the two versions of DeepSeek-v3 and GPT-40, even
better than ol-mini. Figure 8 visualizes the performance interval of different LLMs over all problems across
all difficulty levels, where all four aggregate metrics are employed to measure LLMs’ performance. We observe
that DeepSeek-R1 achieves superior performance with the highest IQM, mean, medium values and the lowest
optimality gap, followed by 03-mini and Claude-3.7-Sonnet, while GPT-40-mini performs in an opposite way.

Takeaways

e NPPC can successfully decrease the performances of advanced LLMs to < 10%

e DeepSeek-R1, 03-mini and Claude are the strongest LLMs across all considered NPC problems
e The ranks of different LLMs depend on the specific NPC problems

2We do not continually increase the difficulty of this problem as all other models are worse than 10%.

Published in Transactions on Machine Learning Research (02/2026)

QwQ-32B DeepSeek-R1-32B GPT-40-mini GPT-40 Claude-3.7-Sonnet
c Il/x--"——"—-'—H KRR 2000 2000 3000
5] b4
% 5000 50001 . . ¢ % B 2000
g H P g 1000 | 1000{j gk
1S I)TV " 1000
° NIERRRRNRNR '
12345678910 12345678910 12345678910 12345678910 12345678910
DeepSeek-V3 DeepSeek -V3-2503 DeepSeek-R1 0l-mini 03-mini
4000 ! X X X X X X X X 4000 20000 3
c I s &
5 i §| 20000 10000
a 10000 :
£ 2000 i 2000 ./I’H'L:\._H__
S
o EE ﬁ 8 (JLESEEE ol
12345678910 12345678910 12345678910 12345678910 12345678910

Figure 9: The number of tokens of different models on 3SAT. The correct and incorrect solutions are
represented as blue and red points, respectively, and the line are the average values over all instances.

5.2 Analysis of Used Tokens

Figure 9 displays the token utilization across models on 3SAT. Offline models (QwQ-32B, DeepSeek-R1-32B)
rapidly approach maximum token limits and incorrect solutions (red) usually take more tokens than correct
solutions (blue). Among online models, DeepSeek-R1 demonstrates highest consumption (10,000-20,000
tokens) for successful solutions, while o-series models exhibit significant variance, with outliers exceeding
40,000 tokens at higher complexity levels. DeepSeek-R1 and 03-mini show steeper token scaling compared to
ol-mini and Claude-3.7-Sonnet, indicating advanced reasoning models leverage increased token allocation for
complex problem-solving. GPT-4o variants maintain relatively efficient token utilization (<2,000) across all
complexities. This quantifies the computational efficiency-performance tradeoff between specialized reasoning
architectures and general-purpose models. Similar phenomenon are also observed in the analysis of the aha
moments (instances of insight during reasoning, marked by phrases like “wait”) in the reasoning contents
of DeepSeek-R12. Due to the limited space, full results of tokens over all problems and the analysis of aha
moment are displayed in Appendices I and J, respectively.

Takeaways
¢ Reasoning models can solve more difficult problems by scaling up the number of tokens used
e The number of tokens used first increase then decrease, indicating the failure of LLM reasoning

5.3 Analysis of Solution Errors
QwQ-32B DeepSeek-R1-32B GPT-40-mini GPT-40 Claude-3.7-Sonnet

1 1 [
12345678910 12345678910 12345678910 12345678910 12345678910
DeepSeek-V3 DeepSeek-V3-2503 DeepSeek-R1 ol-mini 03-mini

r | JulII! A

12345678910 12345678910

100

50

100

5

o

1234567380910 12345678910

1232456780910

[JSON ERROR | VERIFICATION ERROR [3SAT ERROR 1 [3SAT ERROR 2

Figure 10: The number of errors of different models on 3SAT

The solution errors of 3SAT is displayed in Figure 10. The results show that the distribution of these
errors varies across models and difficulty levels. As the difficulty increases, the frequency of certain error
types tends to increase as well. For QwQ-32B, JSON ERROR dominate across all levels, which is mainly
due to the reasoning process is not finished when the context reaches the limits (7500 Tokens). For other
models (such as GPT-40, Claude-3.7-Sonnet, and DeepSeek-R1), problem-specific errors (3SAT ERROR 1

3The reasoning contents of 01/03-mini are not available for analysis.

10

Published in Transactions on Machine Learning Research (02/2026)

and 2) become more prevalent at higher difficulty levels. Interestingly, we observe that some models (e.g.,
DeepSeek-R1-32B, DeepSeek-V3, GPT-40 and ol-mini) exhibit increasing JSON error at higher difficulty
levels, similar to how humans might lose track of formatting instructions during lengthy reasoning processes
on challenging problems. DeepSeek and GPT models show a more balanced distribution of error types. The
o-series models demonstrate relatively better performance at intermediate difficulties but still encounter
increasing problem-specific errors at the highest complexity levels. This error analysis provides valuable
insights into not just whether models fail, but specifically how they fail when tackling increasingly complex
NPC problems, which could inform future improvements to reasoning capabilities in LLMs.

Takeaways
o Offline models, e.g., QwQ-32B, and DeepSeek-V3 series models suffer the format errors
e The problem-specific solution errors provide the feedback for further improving the LLMs

5.4 Analysis of Reasoning Failure Cases

Table 3: Examples of Failure Cases for Deepseek-R1.

Failure Reason 1: Cascading Assumptions and Placeholder/Guess

... At this point, I’'m not sure. Given the time I've spent and the complexity, perhaps the solution is the string
pyeojmmykmadslpeetdb with length 20, even though some required substrings might be missing. But according to the
problem statement, there is a solution. So I’ll have to take a guess. ... But given the time I’ve spent and the need
to provide an answer, I'll make an educated guess. ...

Failure Reason 2: Manual Computation Errors and Complexity Avoidance

So, if a node is in an edge that’s not covered by any other node, then that node must be in the vertex cover. But
checking that for each edge would be time-consuming. Let’s look for edges that have a unique node. For example, if
there’s an edge (a, b), and neither a nor b are connected to any other nodes, then one of them must be in the cover.
But in a graph of 40 nodes, this is unlikely. So probably most nodes have multiple edges.

Failure Reason 3: Reliance on Prompt Examples

... Wait, in the example problem, the solution included nodes 0, 2, 4, 5, 6, 7, 8, 9, 13, 14, 15, 19, 20, 23, 25, 26, 30,
32, 34, 37. So maybe similar patterns here. But the new problem’s edges are different. ... Alternatively, perhaps
the solution is similar to the example. The example’s solution includes nodes 0, 2, 4, 5, 6, 7, 8, 9, 13, 14, 15, 19, 20,
23, 25, 26, 30, 32, 34, 37. Looking at the problem’s edge set, perhaps some of these nodes are also high-degree here.
Let’s see. ... Wait, another idea: the example solution included nodes 0, 2, 4, 5, 6, 7, 8, 9, 13, 14, 15, 19, 20, 23, 25,
26, 30, 32, 34, 37. If I look at these nodes, perhaps they are all the nodes from one side of a bipartition. ...

Failure Reason 4: Reasoning Repetition

... For example, node 8 appears in edges like (8,18), (8,35), (8,21), (8,30), (8,39), etc. Maybe node 8 is a hub. ...
In the problem to solve, node 8 is involved in many edges, as per the edges provided. So including 8 in the cover
would cover a lot of edges. ... For example, node 8 appears in a lot of edges. Including node 8 would cover many
edges. ... For example, many edges involve node 8. So including node 8 is a must.

For Deepseek-R1, the reasoning content of the failure cases shows several reasons that lead to wrong answers.
i) cascading assumptions and placeholder/guess: DeepSeek-R1 begins with a high-level approach but quickly
resorts to making assumptions to derive answers without logical deduction and considering all the conditions,
and finally returns a placeholder or an educated guess; ii) manual computation errors and complexity avoidance:
DeepSeek-R1 uses inefficient manual calculations (prone to errors) instead of programming, skips complex
steps even the reasoning is correct, and resorts to guesses to avoid effort; iii) reliance on prompt examples:
DeepSeek-R1 relies heavily on the example solution, making it waste time and get distracted by verifying
and editing the solution instead of solving the problem directly; iv) reasoning repetition: DeepSeek-R1 gets
stuck repeating the same logic without making further progress, wasting time and tokens. We list some
typical examples of failure cases of DeepSeek-R1 in Table 3, and more examples are shown in Table 22 in
Appendix L. Failure cases of Claude-3.7-Sonnet typically exhibit more concise reasoning, as it often outlines
a high-level step-by-step approach but omits detailed calculations and rigorous verification, and it relies on
approximate calculations to derive a final answer, incorrectly asserting that the result has been validated.
More examples are shown in Tables 23 and 24 in Appendix L.

5.5 Cost of Evaluations

According to the cost analysis in Table 4, we observe significant cost variations across different models
when evaluated on the same benchmark tasks. With approximately 31 million prompt tokens processed,

11

Published in Transactions on Machine Learning Research (02/2026)

the total cost ranges from $10.31 for GPT-40-mini to $522.48 for 03-mini, representing more than a 50-fold
difference. Notably, reasoning-enhanced models (ol-mini, 03-mini, and DeepSeek-R1) exhibit substantially
higher completion token consumption due to the generation of extensive intermediate reasoning tokens. For
instance, 03-mini generates 110 million completion tokens, 11.7 times more than GPT-40-mini, directly
contributing to its elevated operational cost. In contrast, GPT-40-mini demonstrates the best cost-effectiveness
through its efficient token generation strategy, while Claude-3.7-Sonnet, despite moderate completion tokens
(11.2 million), incurs a total cost of $269.19 due to its higher pricing ($15/MTok for completion). The
DeepSeek series models show competitive pricing under the RMB pricing structure, with DeepSeek-V3
requiring only 192.41 RMB (approximately $27). It is worth noting that compared with static benchmarks,
e.g., ZebraLogic (Lin et al., 2025), evaluating on NPPC is inherently more costly due to its ever-scalingness and
the rigorous evaluation protocol. These cost metrics provide crucial economic considerations for researchers
in large-scale evaluations where model inference and pricing strategies directly impact project feasibility.

Table 4: Cost for online models

Model Prompt ‘ Completion Cost
GPT-40-mini 30964144 ($0.15/MTok) 9442548 ($0.6/MTok) $10.31
GPT-40 30963606 ($2.5/MTok) 7786156 ($10/MTok) $155.27
Claude-3.7-Sonnet 33799101 ($3/MTok) 11186272 ($15/MTok) $269.19
DeepSeek-V3 31490957 (2RMB/MTok) | 16178388 (SRMB/MTok) 192.41RMB
DeepSeek-V3-2503 | 31490957 (2RMB/MTok) | 31808451 (SRMB/MTok) | 317.45RMB
DeepSeek-R1 31512557 (4ARMB/MTok) | 95936418 (16RMB/MTok) | 1661.03RMB
ol-mini 31360984 ($1.1/MTok) 35161551 ($4.4/MTok) $189.21
03-mini 31199884 ($1.1/MTok) 110944621 ($4.4/MTok) $522.48

6 Limitations and Future Work

Multimodal NP Problems. The first limitation of this work is only text-based NPC problems are
considered. Extending NPPC to the multimodal domains represents a promising direction. Games like
StarCraft II, Minesweeper, Pokemon and Super Mario Bros (Aloupis et al., 2015), could form the foundation
of a multimodal version of NPPC. However, extending NPC problems to the multimodal domain presents
significant challenges that require careful consideration and novel approaches. Two primary obstacles emerge
in this endeavor: first, not all NPC problems are inherently suitable for multimodal representation, as
demonstrated by problems like 3SAT which are fundamentally symbolic and lack natural visual components;
second, maintaining the scalable difficulty characteristics essential to NPC problems becomes complex when
incorporating images or videos that may exceed the input context windows of multimodal language models.

AT Agent with Tool Use. The second limitation of this work is that we do not consider tool use by LLMs
when solving NPC problems. LLMs equipped with tool-using capabilities are typically referred to as Al
agents (Wang et al., 2024a). Despite this limitation, the benchmark has significant potential to contribute to
AT agent development by naturally encouraging tool use as problem difficulty scales. As problems become more
complex, LLMs will increasingly need external tools to manage computational demands. This creates a natural
progression toward agent capabilities, where models learn to decompose problems and leverage appropriate
tools. Notably, we already observe code generation in models attempting difficult NPPC problems, which can
be viewed as a form of tool creation, since these generated codes can be reused for future problem-solving.

Unstoppable RL vs. Ever-Scaling NP Problems. The rapid progress in LLM reasoning capabilities
through reinforcement learning (RL) presents an interesting dynamic when considered alongside ever-scaling
NPC problems. Recent work (Liu et al., 2025a;b) demonstrate that the reasoning data generated by NPC
problems can improve the general reasoning capabilities of LLMs. As models like DeepSeek-R1 and OpenAl
0l/03-mini demonstrate significant reasoning improvements through RL techniques, NPPC provides a
counterbalance by offering problems that can continuously scale in difficulty. This creates an adversarial
paradigm: RL improves model reasoning and NPPC scales to maintain challenging (Zeng et al., 2025).

12

Published in Transactions on Machine Learning Research (02/2026)

7 Conclusion

We propose Nondeterministic Polynomial Problem challenge (NPPC), an ever-scaling benchmark
that is designed to evolve alongside LLM advancements. NPPC comprises three core components: i) npgym:
a unified framework for generating customizable problem instances across 25 NPC problems with adjustable
complexity levels; ii) npsolver: a flexible evaluation interface supporting both online APIs and offline local
deployments; iii) npeval: a comprehensive toolkit for the systematic evaluation of LLMs across different
problems; including the solution validity, reasoning errors, token efficiency. Our extensive experiments with
state-of-the-art LLMs demonstrate that: i) NPPC successfully reduces all models’ performance to below 10%
at extreme difficulties, confirming its uncrushable nature, ii) DeepSeek-R1, Claude-3.7-Sonnet, and ol-mini
emerge as the most powerful LLMs, with DeepSeek-R1 outperforming others in 7/12 problems, iii) Models
exhibit distinct failure patterns, including cascading assumptions, manual computation errors, and reasoning
repetition. To the best of our knowledge, NPPC is the first ever-scaling reasoning benchmark for reliable
and rigorous evaluation of the reasoning limits of LLMs and suggesting the further improvements.

Acknowledgments

This work was partially supported by the Singapore Ministry of Education (MOE) Academic Research Fund
(AcRF) Tier 1 grant (Proposal ID: 23-SIS-SMU-037). The work described in this paper was partially supported
by a grant from the Innovation and Technology Commission of the Hong Kong Special Administrative Region,
China (Project No. GHP/391/22). This work was also partially supported by the Wallenberg AI, Autonomous
Systems and Software Program funded by the Knut and Alice Wallenberg Foundation. The computations
were enabled by the supercomputing resource Berzelius provided by the National Supercomputer Centre
at Linkoping University and the Knut and Alice Wallenberg Foundation, Sweden. Any opinions, findings,
and conclusions or recommendations expressed in this publications are those of the author(s) and do not
necessarily reflect the views of the funding agencies.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo
Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 technical report. arXiv
preprint arXiv:2305.0877/4, 2023.

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, and Marc G Bellemare. Deep
reinforcement learning at the edge of the statistical precipice. In NeurIPS, pp. 2930429320, 2021.

Greg Aloupis, Erik D Demaine, Alan Guo, and Giovanni Viglietta. Classic Nintendo games are (computation-
ally) hard. Theoretical Computer Science, 586:135-160, 2015.

Vidhisha Balachandran, Jingya Chen, Lingjiao Chen, Shivam Garg, Neel Joshi, Yash Lara, John Langford,
Besmira Nushi, Vibhav Vineet, Yue Wu, and Safoora Yousefi. Inference-time scaling for complex tasks:
Where we stand and what lies ahead. arXiv preprint arXiv:2504.00294, 2025.

BerriAl. Litellm. https://github.com/BerriAI/litellm, 2023.

Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li, Dacheng Li,
Banghua Zhu, Hao Zhang, Michael Jordan, Joseph E Gonzalez, et al. Chatbot arena: An open platform
for evaluating llms by human preference. In ICML, 2024.

Frangois Chollet. On the measure of intelligence. arXiv preprint arXiv:1911.01547, 2019.

Karl Cobbe, Chris Hesse, Jacob Hilton, and John Schulman. Leveraging procedural generation to benchmark
reinforcement learning. In ICML, pp. 2048-2056, 2020.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve math word
problems. arXiv preprint arXiv:2110.14168, 2021.

13

https://github.com/BerriAI/litellm

Published in Transactions on Machine Learning Research (02/2026)

Stephen A Cook. The complexity of theorem-proving procedures. In Logic, automata, and computational
complezity: The works of Stephen A. Cook, pp. 143-152. ACM, 2023.

Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to Algorithms.
MIT press, 2022.

Pierluigi Crescenzi, Deborah Goldman, Christos Papadimitriou, Antonio Piccolboni, and Mihalis Yannakakis.
On the complexity of protein folding. In Proceedings of the thirtieth annual ACM symposium on Theory of
computing, pp. H97-603, 1998.

Leonardo De Moura and Nikolaj Bjgrner. Z3: An efficient SMT solver. In International conference on Tools
and Algorithms for the Construction and Analysis of Systems, pp. 337-340. Springer, 2008.

Xinrun Du, Yifan Yao, Kaijing Ma, Bingli Wang, Tianyu Zheng, King Zhu, Minghao Liu, Yiming Liang,
Xiaolong Jin, Zhenlin Wei, et al. SuperGPQA: Scaling LLM evaluation across 285 graduate disciplines.
arXiv preprint arXiw:2502.14759, 2025.

B Efron. Bootstrap methods: Another look at the jackknife. The Annals of Statistics, pp. 1-26, 1979.

Bradley Efron. Better bootstrap confidence intervals. Journal of the American statistical Association, 82
(397):171-185, 1987.

Lizhou Fan, Wenyue Hua, Lingyao Li, Haoyang Ling, and Yongfeng Zhang. NPHardEval: Dynamic benchmark
on reasoning ability of large language models via complexity classes. In ACL, pp. 4092-4114, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Peiyi Wang, Qihao Zhu, Runxin Xu, Ruoyu Zhang,
Shirong Ma, Xiao Bi, et al. DeepSeek-R1 incentivizes reasoning in LLMs through reinforcement learning.
Nature, 645(8081):633-638, 2025.

Rishi Hazra, Gabriele Venturato, Pedro Zuidberg Dos Martires, and Luc De Raedt. Can large language
models reason? a characterization via 3-SAT. arXiv preprint arXiv:2408.07215, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
Measuring massive multitask language understanding. In ICLR, 2021.

Robert V Hogg, Elliot A Tanis, and Dale L. Zimmerman. Probability and Statistical Inference, volume 993.
Macmillan New York, 1977.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando Solar-
Lezama, Koushik Sen, and Ion Stoica. LiveCodeBench: Holistic and contamination free evaluation of large
language models for code. In ICLR, 2025. URL https://openreview.net/forum?id=chfJJYC3iL.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. SWE-bench: Can language models resolve real-world github issues? In ICLR, 2024.

Richard M Karp. Reducibility among combinatorial problems. In 50 Years of Integer Programming 1958-2008:
from the Early Years to the State-of-the-Art, pp. 219-241. Springer, 2009.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gonzalez, Hao
Zhang, and Ion Stoica. Efficient memory management for large language model serving with pagedattention.
In Proceedings of the 29th Symposium on Operating Systems Principles, pp. 611-626, 2023.

Xiaozhe Li, Xinyu Fang, Shengyuan Ding, Linyang Li, Haodong Duan, Qingwen Liu, and Kai Chen. NP-
Engine: Empowering optimization reasoning in large language models with verifiable synthetic NP problems.
arXiv preprint arXiw:2510.16476, 2025.

Bill Yuchen Lin, Ronan Le Bras, Kyle Richardson, Ashish Sabharwal, Radha Poovendran, Peter Clark, and
Yejin Choi. ZebraLogic: On the scaling limits of LLMs for logical reasoning. arXiv preprint arXiv:2502.01100,
2025.

14

https://openreview.net/forum?id=chfJJYC3iL

Published in Transactions on Machine Learning Research (02/2026)

Huanyu Liu, Jia Li, Hao Zhu, Kechi Zhang, Yihong Dong, and Ge Li. SATURN: SAT-based reinforcement
learning to unleash language model reasoning. arXiv preprint arXiv:2505.16368, 2025a.

Junteng Liu, Yuanxiang Fan, Zhuo Jiang, Han Ding, Yongyi Hu, Chi Zhang, Yiqi Shi, Shitong Weng, Aili
Chen, Shiqgi Chen, et al. SynLogic: Synthesizing verifiable reasoning data at scale for learning logical
reasoning and beyond. arXiv preprint arXiv:2505.19641, 2025b.

Jinjie Ni, Fuzhao Xue, Xiang Yue, Yuntian Deng, Mahir Shah, Kabir Jain, Graham Neubig, and Yang You.
MixEval: Deriving wisdom of the crowd from LLM benchmark mixtures. In NeurIPS, 2024.

OpenAl. OpenAl 03 and o4-mini system card, 2025. URL https://openai.com/index/
03-04-mini-system-card/.

Shubham Parashar, Blake Olson, Sambhav Khurana, Eric Li, Hongyi Ling, James Caverlee, and Shuiwang Ji.
Inference-time computations for LLM reasoning and planning: A benchmark and insights. arXiv preprint
arXiv:2502.12521, 2025.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani, Julian
Michael, and Samuel R Bowman. GPQA: A graduate-level google-proof Q&A benchmark. In COLM, 2024.

Jeffrey Seely, Yuki Imajuku, Tianyu Zhao, Edoardo Cetin, and Llion Jones. Sudoku-Bench. https://github.
com/SakanaAI/Sudoku-Bench, 2025.

Zafir Stojanovski, Oliver Stanley, Joe Sharratt, Richard Jones, Abdulhakeem Adefioye, Jean Kaddour, and
Andreas Kopf. REASONING GYM: Reasoning environments for reinforcement learning with verifiable
rewards. arXiv preprint arXiv:2505.24760, 2025.

Paolo Toth and Daniele Vigo. The Vehicle Routing Problem. STAM, 2002.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and Anima
Anandkumar. Voyager: An open-ended embodied agent with large language models. Transactions on
Machine Learning Research, 2024a. ISSN 2835-8856.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming Ren,
Aaran Arulraj, Xuan He, Ziyan Jiang, Tianle Li, Max Ku, Kai Wang, Alex Zhuang, Rongqi Fan, Xiang
Yue, and Wenhu Chen. MMLU-Pro: A more robust and challenging multi-task language understanding
benchmark. In NeurIPS Datasets and Benchmarks Track, 2024b.

Mingqi Wu, Zhihao Zhang, Qiaole Dong, Zhiheng Xi, Jun Zhao, Senjie Jin, Xiaoran Fan, Yuhao Zhou, Yanwei
Fu, Qin Liu, et al. Reasoning or memorization? unreliable results of reinforcement learning due to data
contamination. arXiv preprint arXiv:2507.10532, 2025.

Cheng Xu, Shuhao Guan, Derek Greene, M Kechadi, et al. Benchmark data contamination of large language
models: A survey. arXiv preprint arXiv:2406.04244, 2024.

Zhiyuan Zeng, Hamish Ivison, Yiping Wang, Lifan Yuan, Shuyue Stella Li, Zhuorui Ye, Siting Li, Jacqueline
He, Runlong Zhou, Tong Chen, et al. RLVE: Scaling up reinforcement learning for language models with
adaptive verifiable environments. arXiv preprint arXiv:2511.07317, 2025.

Linghao Zhang, Shilin He, Chaoyun Zhang, Yu Kang, Bowen Li, Chengxing Xie, Junhao Wang, Maoquan
Wang, Yufan Huang, Shengyu Fu, et al. SWE-bench goes live! arXiv preprint arXiv:2505.23419, 2025.

15

https://openai.com/index/o3-o4-mini-system-card/
https://openai.com/index/o3-o4-mini-system-card/
https://github.com/SakanaAI/Sudoku-Bench
https://github.com/SakanaAI/Sudoku-Bench

Published in Transactions on Machine Learning Research (02/2026)

Appendix
Contents

1 Introduction
2 Related Work
3 Preliminaries

4 Nondeterministic Polynomial-time Problem Challenge
4.1 Problem Suite: mpgymo e
4.2 Solver Suite: mpsolver L e

4.3 Evaluation Suite: npeval

5 Results
5.1 Analysis of Performance L
5.2 Analysis of Used Tokens e
5.3 Analysis of Solution Errors
5.4 Analysis of Reasoning Failure Cases

5.5 Cost of Evaluations
6 Limitations and Future Work
7 Conclusion

A Frequently Asked Questions (FAQs)
A.1 Why Ever-Scaling and the Four Desiderata?
A.2 Why Focusing on NP (Specifically NPC) Problems?
A.3 Why Not Considering More Complex Test-time Scaling?
A.4 Why Not Focusing on 3SAT Only? e
A5 Can Tool Use Crush NPPC?00 e
A.6 Determining the Difficulty Levels o
A.7 Selection of Models L
A.8 Code and Leaderboard L
A9 Correlation of Performance between NPPC and Other Benchmarks

A.10 Broader Impact Statement
B Computational Complexity: P, NP, NP-complete and NP-hard

C Modules in NPPC

16

10
10
11
11

12

13

18
18
18
19
19
19
20
21
21
21
22

23

24

Published in Transactions on Machine Learning Research (02/2026)

K

L

C.1 Problem Suite: npgym e e e e
C.2 Solver Suite: mpsolver e e

C.3 Evaluation Suite: mpeval e

Prompts and Responses

List of NP-complete Problems

Hyperparameters

Full Results over Problems

Performance over Problems

Tokens

Aha Moments

Solution Errors

Analysis of Reasoning Failure Cases

M Thorough Error Analysis of QwQ-32B

17

35

37

40

41

45

49

54

55

59

62

Published in Transactions on Machine Learning Research (02/2026)

A Frequently Asked Questions (FAQs)

A.1 Why Ever-Scaling and the Four Desiderata?

Why Ever-Scaling? LLMs are advancing at an unprecedented pace, making existing benchmarks obsolete
quickly and posing a significant challenge for maintaining reliable evaluation. An ever-scaling benchmark
can evolve alongside LLMs, i.e., adapting dynamically to match the development of LLMs. The ever-scaling
benchmark can address two core limitations in traditional benchmarks: i) short lifespan, where traditional
benchmarks are easily crushed as LLMs rapidly improve, losing their ability to distinguish between models; ii)
limited exploitability, where models can hack the answers in static benchmarks through overfitting or finding
shortcuts to answers without genuine reasoning.

Why the Four Desiderate are Important? The four desiderata include:

¢ Scaling over complexity. The benchmark can generate problems with continually increasing difficulty,
e.g., larger input sizes, stricter constraints, etc. This property can prevent the benchmark from being
solved to prevent obsolescence, and mirror the real-world problems, e.g., logistics and chip design, which
grow in complexity as systems scale. The scaling over complexity implies if the LLMs solve the generated
problem instances of the current difficulty level, the benchmarks can generate more difficult problem
instances until the reasoning limits of them.

¢ Scaling over the instance. The benchmark can generate infinite unique instances, even at the same
complexity level. This property makes it impossible for LLMs to memorize the answers or simply overfit
to patterns in static training data, and it forces LLMs to reason about the underlying logic to ensure the
fairness of evaluation. To mitigate memorization effects, researchers can randomly sample novel problem
instances during evaluation to obtain reliable performance metrics.

¢ Scaling over oversight. The benchmark provides an automated and cost-effective evaluation without
any human intervention, i.e., the solutions can be verified efficiently even for arbitrarily complex problems.
This property is critical for large-scale benchmarking as human evaluation is impractical for massive or
highly complex benchmarks, therefore, automated verification is necessary for evaluating at scale.

e Scaling over coverage. This property enables the benchmark to prioritize problems with broad
applicability, thereby reflecting real-world utility and challenges. Consequently, advances demonstrated on
the benchmark serve as reliable indicators of progress on practical, real-world tasks.

A.2 Why Focusing on NP (Specifically NPC) Problems?

Why not P or NP-hard Problems? Problems in the P complexity class can be solved in polynomial time.
When LLMs are equipped with code execution capabilities, they can generate and execute algorithms to
solve these problems directly. Consequently, such benchmarks become susceptible to trivial solutions through
computational tools rather than genuine reasoning. Conversely, NP-hard problems, particularly those lacking
polynomial-time verification procedures, present scalability challenges: as problem instances grow extremely
large, efficient solution verification becomes intractable, potentially compromising the benchmark’s ability to
scale over complexity and oversight.

Why NPC Problems? NPC problems are the “hardest” problems in NP class and any other NP problems
can be reduced to NPC problems in polynomial time. The absence of known polynomial-time algorithms
for NPC problems ensures that current benchmarks measuring performance on these problems cannot be
trivially dominated through tool using. Furthermore, the polynomial-time verifiability of solutions enables
efficient assessment of solutions generated by LLMs or Al agents even for large-scale problem instances.

Real-World Relevance of Large-Scale NPC Problems. The ability to effectively solve large-scale NPC
problems holds profound implications across numerous critical domains in modern society. In logistics and
supply chain management, vehicle routing problems for major delivery companies like Amazon or FedEx
involve optimizing routes for tens of thousands of vehicles across millions of delivery locations daily, while
global supply chain optimization can encompass networks with hundreds of thousands of nodes. Computational
biology relies heavily on solving NPC problems where protein folding prediction may explore conformational
spaces with 10'°° or more possible states, and genome assembly for complex organisms processes billions

18

Published in Transactions on Machine Learning Research (02/2026)

of DNA fragments. In telecommunications and computer networks, resource allocation and network design
problems routinely involve graphs with millions of nodes and edges, where even moderate-sized instances
with thousands of variables become computationally prohibitive. Therefore, developing and evaluating
methods capable of tackling NPC problems at truly large scales is not merely an academic exercise but a
practical necessity with enormous economic and societal stakes. This makes NPPC particularly valuable as a
benchmark: by providing an ever-scaling framework that can generate arbitrarily large NP-complete problem
instances, NPPC enables rigorous evaluation of whether AI systems can bridge the critical gap between
solving toy problems and addressing the massive-scale combinatorial challenges in real-world applications.

A.3 Why Not Considering More Complex Test-time Scaling?

The Majority Voting, Best of IV, and even tools, e.g., domain-specific solvers, can further improve the
performance of models (Parashar et al., 2025; Lin et al., 2025). However, these approaches either necessitate
multiple forward passes through the language model or incorporate auxiliary components such as reward
models or external tools to augment the reasoning process. Our primary objective is to investigate the
reasoning capabilities of LLMs and these complex test-time scaling would be beyond the scope of this paper.
We will tackle this in the future work.

A.4 Why Not Focusing on 3SAT Only?

3SAT is a classic NPC problem with theoretical completeness, which provides a theoretically rigorous
foundation for benchmarking. As an NPC problem, although all NP problems can be reduced to 3SAT, solely
relying on reduction to 3SAT is impractical and reasoning benchmarks demand broader diversity:

¢ Reduction overhead: The reduction process may incur significant computational overhead. Additional
variables and constraints are often introduced when reducing non-trivial NP problems to a specific NP-
complete problem, e.g., reducing Traveling Salesman Problem (TSP) to 3SAT requires mapping the
structure of the original problem into a Boolean logic expression through an encoding mechanism, which
introduces an exponential number of variables and clauses, significantly increasing the computational
complexity and leading to hidden costs.

e Loss of characteristics: Each specific NP problem has domain-specific information, e.g., structure and
characteristics. For example, Traveling Salesman Problem (TSP) has graph structures, Bin Packing has
combinatorial optimization characteristics, and Graph 3-Colourability (3-COL) has adjacency charac-
teristics. Therefore, reducing NP problems to 3SAT and only considering 3SAT will cause the loss of
problem specificity, e.g., structural semantics, which could be used to design more efficient heuristics or
approximation algorithms.

e Lack of robustness: NP problems form the foundation of numerous real-world scenarios, which often
exhibit various conditions that cannot be adequately represented solely through 3SAT. As a reasoning
benchmark, NPPC should encompass a variety of problem sizes and structures rather than concentrating
exclusively on 3SAT to effectively evaluate the capabilities and scalability of LLMs. Therefore, a diverse
set of complex NP problems that can closely mimic real-world challenges should be considered.

A.5 Can Tool Use Crush NPPC?

Tool use represents a significant advancement in LLM capabilities for tackling NPC problems in the NPPC
benchmark, yet fundamental computational barriers remain. When equipped with external tools such as
code interpreters, symbolic solvers, or verification systems, LLMs would demonstrate substantially improved
performance on NPPC tasks by offloading computationally intensive operations and leveraging specialized
algorithms. For instance, tools enable models to execute exhaustive search procedures more reliably, verify
candidate solutions programmatically, and utilize domain-specific heuristics that would be difficult to
implement through pure text generation. However, despite these enhancements, tool-augmented LLMs
still cannot fully solve NPC problems in the general case. The core limitation stems from the inherent
computational complexity: while tools can accelerate specific subroutines or handle particular problem
instances more efficiently, they do not fundamentally alter the exponential worst-case complexity of NPC
problems and we do not have the tools which can solve the NPC problems in polynomial time. Moreover,

19

Published in Transactions on Machine Learning Research (02/2026)

the effectiveness of tool use depends critically on the model’s ability to decompose problems correctly,
formulate appropriate tool calls, and reason about the results. These capabilities remain imperfect even
in state-of-the-art systems. Thus, while tool integration marks a meaningful step toward more capable
problem-solving systems, NPPC would still serve a meaningful benchmark for tool-augmented LLMs.

A.6 Determining the Difficulty Levels

How to Determine the Difficulty Levels? For NPPC, we address this challenge through a two-stage
method: we begin with manual configuration of problem parameters based on established computational
complexity theory and domain expertise and then the human-configured difficulty levels are further calibrated
through systematic empirical testing with state-of-the-art LLMs. Specifically,

1. Human-defined difficulty parameters: We start with interpretable problem parameters. For SAT, this
means specifying (num_ variables, num_ clauses) such as (3, 5), (4, 5), or (100, 100). While we can
confidently say (100, 100) is harder than (5, 5), distinguishing between similar configurations like (5, 4)
versus (4, 5) is non-trivial.

2. LLM-based calibration: We use model performance for two specific purposes: i) Fine-grained ordering:
Sorting problems of similar complexity for clearer visualization (e.g., Figure 5), particularly when human
intuition cannot definitively rank them. ii) Range validation: Ensuring difficulty levels fall within a
meaningful range, i.e., avoiding settings where all models achieve 100% (too easy) or 0% (too hard)
accuracy, as neither scenario effectively benchmarks capabilities.

We want to note that this is not circular reasoning. We are not using LLM performance to define what
makes problems hard; rather, we use it as a practical tool for (1) ordering problems within human-defined
difficulty ranges and (2) validating that our chosen parameter ranges enable effective differentiation between
models. This two-stage approach ensures that problems’ difficulty levels are both theoretically grounded and
practically meaningful for evaluating LLM capabilities.

Are the Generated Instances Truly Difficult for LLMs? Yes, our validation process confirms this
through multiple measures: i) we observe consistent performance degradation across difficulty levels, indicating
that our instances successfully challenge LLM capabilities, ii) different difficulty levels produce distinct failure
modes, suggesting that instances test different aspects of reasoning ability, and iii) the difficulty progression
holds across multiple LLM architectures, indicating robustness beyond specific model biases. Although our
approach is conceptually simple, it can trully generate difficult instances.

Why not Focusing on Hardest Instances? Our goal is to evaluate general reasoning capabilities rather
than exploit specific failure modes. By providing a graduated difficulty spectrum, we can assess reasoning
development by tracking how LLM performance scales with problem complexity, identify capability boundaries
to determine where different reasoning strategies break down, and support practical applications by focusing
on difficulties relevant to real-world scenarios.

Why not Using Traditional Tools, e.g., Z3 (De Moura & Bjgrner, 2008)? The difficulty experienced
by traditional symbolic solvers does not necessarily translate to difficulty for LLMs due to fundamental
differences in problem-solving approaches. First, traditional solvers use systematic search and logical inference,
while LLMSs rely on pattern recognition and learned heuristics. Second, problems that are hard for symbolic
methods due to search space explosion may be tractable for LLMs through pattern matching, and vice versa,
therefore, the relationship between problem size and difficulty differs dramatically between symbolic and
neural approaches. Third, traditional tools fail due to computational resource constraints, while LLMs fail
due to reasoning limitations or training data gaps. Therefore, LLM-specific calibration is essential to create
benchmarks that meaningfully assess the unique capabilities and limitations of LLMs. In examining 25 NPC
problems across multiple domains, we observe that problem-specific tools, while potentially effective within
their narrow scope, lack the generalizability required for comprehensive evaluation. Therefore, we do not rely
on traditional computational tools as the primary metric for establishing problem difficulty levels in LLM
evaluation frameworks.

20

Published in Transactions on Machine Learning Research (02/2026)

A.7 Selection of Models

Due to the limited budget, we can only select the representative models for the evaluation. Specifically, we
choose the two representative offline medium-sized reasoning models, i.e., QwQ-32B and DeepSeek-R1-32B,
and online advanced non-reasoning models, i.e., GPT-40-mini, GPT-40, Claude-3.7-Sonnet, DeepSeek-V3,
DeepSeek-V3-2503, and online reasoning models, i.e., DeepSeek-R1, ol-mini, and 03-mini. For the more
recent models, e.g., 03, 04-mini, Gemini 2.5 Pro, Qwen 3, Llama 4, Claude-4, and GPT-5, we will add them
in the next update of our benchmark.

A.8 Code and Leaderboard

We provide the screenshot of the leaderboard in Figure 11. The code and leaderboard can be accessed at
https://github.com/SMU-DIGA/nppc.

Y Leaderboard

| [Model Filter:
Search:
Type to search. Open-Source?
)
Select Columns to Display: Reasoning?
Date @ Open-source @ Reasoning True | Falscj

Model; ~ Rank] Average! Date] 3SAT{ VertexCover] Superstring QDE{ 3DM{ TSP{ Hamiltonian Cycle{ Bin Packing] 3.
DeepSeck= 0.62 077 065 0.61 06 076 065 063 0.63 0
03-mini 2 0.51 0.59 0.5 0.5 0.63 0.52 035 055 0.43 0.
Claude- o

37-Somet 3 0.49 0.39 0.55 0.79 034 0.35 0.66 043 0.3 0.
DeepSeek-

Ehan ¢ 0.43 0.5 0.5 0.49 0.4 0.26 056 033 037 0.
ol-mini 5 034 045 0.44 023 022 041 039 03 027 0.
DeepSeck- g 033 027 043 037 025 012 045 019 021 0
QwQ-32B 7 0.3 0.26 0.34 0.27 0.17 0.42 025 038 0.22 0.
GPT-40 8 0.24 0.22 0.33 02 012 011 032 0.16 0.18 0.
DeepSeek-

R1328 9 0.17 0.2 0.32 0.13 016 014 02 0.14 0.03 0.
S,;P,;I;AO_ 10 0.14 0.14 0.22 0.05 0.08 0.05 015 012 0.04 0.

Figure 11: Screenshot of NPPC leaderboard

A.9 Correlation of Performance between NPPC and Other Benchmarks

Model ‘ NPPC ‘ MMLU ‘ GPQA Diamond ‘ LMArena
DeepSeek-R1 0.62 90.8 71.5 1396
03-mini 0.51 84.9 70.6 1348
Claude-3.7-Sonnet 0.49 86.1 68.0 1371
DeepSeek-V3-2503 0.43 88.5 68.4 1392
ol-mini 0.34 85.2 60.0 1336
DeepSeek-V3 0.33 88.5 59.1 1358
QwQ-32B 0.3 - 59.5 1334
GPT-40 0.24 85.7 49.0 1335
DeepSeek-R1-32B 0.17 87.4 62.1 -
GPT-40-mini 0.14 82.0 - 1317

Table 5: Model performance over benchmarks.

21

https://github.com/SMU-DIGA/nppc

Published in Transactions on Machine Learning Research (02/2026)

NPPC vs MMLU NPPC vs GPQA_Diamond NPPC vs LMArena
Pearson r=0.553, Spearman p=0.368 Pearson r=0.798, Spearman p=0.800 Pearson r=0.821, Spearman p=0.833
epSeek-R1 EepSeek-R1
[) . ZaDpepseek-R1)
90 70 apiatld 13901 ® Pad
// //
- g ® o 1380 -
(] [} P [e o -,
© 881 _-- v g5 ° 5 1370 o
5 ° e T R g -
o - s w 7’
@ - o [] - o 13601 ® ’
- - P

2 - . £ o . e .
KD 8- k: 0P 8 13504 - o3.mini
H _- Y o3.mini g, - < e °
H -) < e Z 1340 -~

84 551 - o 0®

[} 1330 e
-
a2 Ocpmm,m 50 ° 13204 dﬁ”‘u—m\m
0.2 03 0.4 05 0.6 0.2 0.3 0.4 0.5 0.6 0.2 0.3 0.4 0.5 0.6
NPPC Score NPPC Score NPPC Score

Figure 12: Correlation between NPPC and established benchmarks.

To validate the effectiveness of NPPC as a reasoning bench-
mark, we analyze its correlation with three widely-used eval-
uation metrics: MMLU (Hendrycks et al., 2021), GPQA
Diamond (Rein et al., 2024), and LMArena (Chiang et al.,
2024). We compute both Pearson correlation coefficient (for
linear relationships) and Spearman rank correlation coeffi-
cient (for monotonic relationships) across the 10 considered
representative models. As shown in Figure 12, NPPC demon-
strates strong positive correlations with both GPQA Dia-
mond (Pearson’s r = 0.798, p = 0.010; Spearman’s p = 0.800,
p = 0.010) and LMArena (r = 0.821, p = 0.007; p = 0.833,
p = 0.005), both statistically significant at the p < 0.05 level.
The correlation with MMLU shows a positive trend but does
not reach statistical significance (r = 0.553, p = 0.123), likely
reflecting MMLU’s broader emphasis on factual knowledge
alongside reasoning capabilities. These results provide sev-
eral important validations. First, the strong correlation wi

Correlation Matrix (Pearson)

NPPC

1.00
I0,75

-0.50

MMLU

-0.25

-0.00

--0.25

GPQA_Diamond

- -0.50
IO.75
-1.00

Figure 13: Correlation matrix of benchmarks.

LMArena

g g
NPPC MMLU GPQA_Diamond LMArena

th GPQA Diamond, a graduate-level science

reasoning benchmark, confirms that NPPC effectively captures complex reasoning abilities required for

advanced problem-solving. Second, the strong correlation wit
tion platform, demonstrates that NPPC performance aligns

h LMArena, a human preference-based evalua-
well with practical model utility in real-world

applications. The correlation matrix in Figure 13 provides a comprehensive view of these relationships.

A.10 Broader Impact Statement

NPPC provides a scalable framework grounded in complexity theory for tracking progress in computational
reasoning, which can inform development of Al systems for scientific computing, optimization, and algorithm
design. The NPPC benchmark may also raise several important considerations:

e« Computational and Environmental Costs. The ever-scaling nature of NPPC requires substantial
computational resources, particularly as problem difficulty increases. Large-scale evaluations may result in
significant energy consumption and carbon emissions. Future work should explore methods to maintain
rigor while reducing computational costs through efficient subset selection or adaptive evaluation protocols.

¢ Risk of Overfitting to Synthetic Tasks. Models coul
corresponding improvements in real-world reasoning. This

d be specifically optimized for NPPC without
could lead to overfitting to benchmark-specific

patterns or exploitation of artifacts rather than genuine algorithmic understanding. NPPC should be
viewed as one component of comprehensive evaluation, not a singular optimization target. We
discourage training practices that narrowly target NPPC performance at the expense of general capability
development, real-world robustness, or safety considerations.

¢ Scope and Interpretation of Results. High NPPC performance demonstrates proficiency in structured
computational reasoning but should not be interpreted as evidence of general intelligence or real-world
reliability. We call on researchers to interpret results within proper context and avoid overstating capabilities

based on benchmark performance alone.

22

Published in Transactions on Machine Learning Research (02/2026)

B Computational Complexity: P, NP, NP-complete and NP-hard

NP-hard

Figure 14: The relation between P, NP and NP-complete

P. The class P consists of decision problems that can be solved by a deterministic Turing machine in
polynomial time. In practical terms, these are problems for which efficient algorithms exist. The time required
to solve these problems grows polynomially with the input size (n), such as O(n), O(n?), or O(n?). Examples
include sorting, searching in a sorted array, and determining if a number is prime.

NP. NP contains all decision problems for which a solution can be verified in polynomial time. Every problem
in P is also in NP, but NP may contain problems that are not in P. The key characteristic is that if someone
gives you a potential solution, you can quickly check whether it’s correct, even if finding that solution might be
difficult. Examples include the Boolean satisfiability problem and the Traveling Salesman decision problem.

NP-complete (NPC). NP-complete problems are the “hardest” problems in NP. A problem is NP-complete
if: i) It belongs to NP, ii) Every other problem in NP can be reduced to it in polynomial time. This means
that if an efficient (polynomial-time) algorithm were found for any NP-complete problem, it could be used to
solve all problems in NP efficiently. The first proven NP-complete problem was the Boolean satisfiability
problem (SAT). Other examples include the Traveling Salesman Problem, Graph Coloring, and the Knapsack
Problem. The question of whether P=NP (whether every problem with efficiently verifiable solutions also has
efficiently computable solutions) remains one of the most important open questions in computer science.

NP-hard Problems. A problem is NP-hard if every problem in NP can be reduced to it in polynomial
time, but unlike NPC problems, NP-hard problems need not be in NP themselves (i.e., they need not be
decision problems or have efficiently verifiable solutions). This makes NP-hard a broader class that includes
optimization versions of NPC problems (e.g., finding the minimum vertex cover rather than deciding if one of
size k exists), as well as problems strictly harder than NP (e.g., certain problems in PSPACE or EXPTIME).
In practice, many real-world applications involve NP-hard optimization problems where the goal is to find
optimal or near-optimal solutions rather than simply verify their existence.

23

Published in Transactions on Machine Learning Research (02/2026)

C Modules in NPPC

C.1 Problem Suite: npgym

Interface. We introduce npgym, a problem suite containing 25 NPC problems with a unified gym-style
interface for instance generation and solution verification. Fach environment is defined by a problem name
and its corresponding hyperparameters, enabling the generation of unlimited problem instances and example
solutions. Difficulty can be scaled by adjusting these parameters. npgym also supports automatic verification
of solutions produced by large language models (LLMs). New problems can be added easily by implementing
two core functions and providing a problem description for prompt generation.

def

O

def

class NPEnv:

__init__(self,

self .problem_name = problem_name

self.level = le
self . _generate_
_get_instance_g
np_gym_folder =

problem_path =

generate_instan
verify_solution

return generate

problem_name, level):
vel
instance, self._verify_solution = self._get_instance_generator
enerator (self):
"./npgym/npc"
PROBLEMQPATH[self.problem_name]

ce = importlib.import_module(problem_path).generate_instance
= importlib.import_module(problem_path).verify_solution

_instance, verify_solution

24

Published in Transactions on Machine Learning Research (02/2026)

Variables to Scale. Table 6 lists the variables to scale for each of the 25 NP-complete problems.

Table 6: NPC problems in NPPC and the variables to scale

Type ‘ Problems ‘ Variables to scale
3SAT num__ variables, num_ clauses
Vertex Cover num_ nodes, cover_ size
3DM n
TSP num__cities, target_ length
Hamiltonian Cycle num__nodes, directed

Core 3-COL num_ nodes, num__edges
Bin Packing num__items, bin_ capacity, num__bins
Max Leaf Span Tree num_ nodes, target_ leaves
QDE low, high
Min Sum of Squares num__elements, k
Superstring n, k
Bandwidth num_ nodes, bandwidth
Clique num_ nodes, clique_ size
Independent Set num_ nodes, ind_set_ size
Dominating Set num_ nodes, k, edge_ prob
Set Splitting num__elements, num_ subsets
Set Packing num__elements, num__subsets, num__disjoint__sets
X3C num__elements, num__subsets

Extension | Minimum Cover num__elements, num__ sets, k

Partition n, max_ value
Subset Sum num__elements, max_ value
Hitting String n, m
Quadratic Congruences | min_ value, max_ value
Betweenness num__element, num_ triples
Clustering num__elements, b

25

Published in Transactions on Machine Learning Research (02/2026)

Difficulty Levels. We define and release problem-specific difficulty levels for each of the 25 core problems
included in our benchmark. Each problem includes approximately 10 levels of increasing complexity,
determined primarily by theoretical factors such as search space size and validated through empirical testing
using DeepSeek-R1 and GPT-40. npgym allows seamless extension to higher difficulty levels as more powerful
models become available.

{
"3-Satisfiability (3-SAT)": {
1: {"num_variables": 5, "num_clauses": 5%},
2: {"num_variables": 15, "num_clauses": 15},
3: {"num_variables": 20, "num_clauses": 20},
4: {"num_variables": 25, "num_clauses": 25},
5: {"num_variables": 30, "num_clauses": 30},
6: {"num_variables": 40, "num_clauses": 40},
7: {"num_variables": 50, "num_clauses": 50},
8: {"num_variables": 60, "num_clauses": 60},
9: {"num_variables": 70, "num_clauses": 70},
10: {"num_variables": 80, "num_clauses": 80},
i}
"Vertex Cover": {
1: {"num_nodes": 4, "cover_size": 2},
2: {"num_nodes": 8, "cover_size": 3},
3: {"num_nodes": 12, "cover_size": 4},
4: {"num_nodes": 16, "cover_size": 5},
5: {"num_nodes": 20, "cover_size": 10},
6: {"num_nodes": 24, "cover_size": 12},
7: {"num_nodes": 28, "cover_size": 14},
8: {"num_nodes": 32, "cover_size": 16},
9: {"num_nodes": 36, "cover_size": 18},
10: {"num_nodes": 40, "cover_size": 20},
i
"Clique": {
1: {"num_nodes": 4, "clique_size": 2},
2: {"num_nodes": 8, "clique_size": 4},
3: {"num_nodes": 12, "clique_size": 6},
4: {"num_nodes": 14, "clique_size": T},
5: {"num_nodes": 16, "clique_size": 8},
6: {"num_nodes": 18, "clique_size": 9},
7: {"num_nodes": 20, "clique_size": 10},
8: {"num_nodes": 22, "clique_size": 11},
9: {"num_nodes": 24, "clique_size": 12},
10: {"num_nodes": 26, "clique_size": 13},
11: {"num_nodes": 28, "clique_size": 14},
12: {"num_nodes": 30, "clique_size": 15},
13: {"num_nodes": 40, "clique_size": 20},
}’
"Independent Set": {
1: {"num_nodes": 4, "ind_set_size": 2},
2: {"num_nodes": 8, "ind_set_size": 4},
3: {"num_nodes": 12, "ind_set_size": 6},
4: {"num_nodes": 16, "ind_set_size": 8},
5: {"num_nodes": 20, "ind_set_size": 10},
6: {"num_nodes": 24, "ind_set_size": 12},
7: {"num_nodes": 26, "ind_set_size": 13},
8: {"num_nodes": 28, "ind_set_size": 14},
9: {"num_nodes": 30, "ind_set_size": 15},
10: {"num_nodes": 32, "ind_set_size": 16},
11: {"num_nodes": 34, "ind_set_size": 17},
12: {"num_nodes": 36, "ind_set_size": 18},
13: {"num_nodes": 48, "ind_set_size": 24},
i
"Partition": {
1: "n": 2, "max_value": 1},
2: {"n": 4, "max_value": 40},
3: {"n": 10, "max_value": 100},
4: {"n": 20, "max_value": 200},
5: {"n": 30, "max_value": 300},

26

Published in Transactions on Machine Learning Research (02/2026)

27

6: {"n": 40, "max_value": 400},
7: {"n": 50, "max_value": 500},
8: {"n": 55, "max_value": 550},
9: {"n": 60, "max_value": 600},
10: {"n": 65, "max_value": 650},
11: {"n": 70, "max_value": 700},
12: {"n": 75, "max_value": 750},
13: {"n": 80, "max_value": 800},
Yo
"Subset Sum": {
1: {"num_elements": 5, "max_value": 100},
2: {"num_elements": 10, "max_value": 100},
3: {"num_elements": 20, "max_value": 200},
4: {"num_elements": 40, "max_value": 400},
5: {"num_elements": 80, "max_value": 800},
6: {"num_elements": 100, "max_value": 1000},
7: {"num_elements": 120, "max_value": 1200},
8: {"num_elements": 160, "max_value": 1000},
9: {"num_elements": 160, "max_value": 1600},
10: {"num_elements": 200, "max_value": 2000},
11: {"num_elements": 200, "max_value": 1000},
12: {"num_elements": 400, "max_value": 2000},
13: {"num_elements": 600, "max_value": 2000},
Lg
"Set Packing": {
1: {"num_elements": 10, "num_subsets": 10, "num_disjoint_sets": 2},
2: {"num_elements": 40, "num_subsets": 40, "num_disjoint_sets": 8},
3: {"num_elements" 100, "num_subsets" 200, "num_disjoint_sets": 50},
4: {"num_elements": 100, "num_subsets": 400, "num_disjoint_sets": 30},
5: {"num_elements" 100, "num_subsets" 500, "num_disjoint_sets": 30},
6: {"num_elements": 100, "num_subsets": 600, "num_disjoint_sets": 30},
7: {"num_elements" 100, "num_subsets": 800, "num_disjoint_sets": 30},
8: {"num_elements": 100, "num_subsets": 1000, "num_disjoint_sets": 30},
9: {"num_elements": 200, "num_subsets": 400, "num_disjoint_sets": 60},
10: {"num_elements" 200, "num_subsets": 800, "num_disjoint_sets": 60},
11: {"num_elements": 400, "num_subsets": 1000, "num_disjoint_sets":
To
"Set Splitting": {
1: {"num_elements": 5, "num_subsets": 5},
2: {"num_elements": 10, "num_subsets": 10},
3: {"num_elements": 10, "num_subsets": 50},
4: {"num_elements": 10, "num_subsets": 100},
5: {"num_elements": 10, "num_subsets": 200},
6: {"num_elements": 100, "num_subsets": 100},
7: {"num_elements": 100, "num_subsets": 200},
8: {"num_elements": 10, "num_subsets": 500},
9: {"num_elements": 10, "num_subsets": 1000},
10: {"num_elements": 15, "num_subsets": 500},
11: {"num_elements": 20, "num_subsets": 500},
}’
"Shortest Common Superstring": {
1: {"n" 10, "k": 5},
2: {"n" 20, "k": 10},
3: {"n": 40, "k": 20},
4: {"n" 80, "k": 40},
Bg Lm0 100, "k": 50},
6: {"n" 100, "k": 100},
7: {"n" 100, "k": 200},
8: {"n": 200, "k": 200},
9: {"n" 300, "k": 400},
10: {"n": 300, "k": 600},
Yo
"Quadratic Diophantine Equations": {
1: {"low": 1, "high": 50},
2: {"low": 1, "high": 100},
3: {"low": 1, "high": 500},
4: {"low": 1, "high": 1000},
5: {"low": 1, "high": 5000},

200},

Published in Transactions on Machine Learning Research (02/2026)

28

6: {"low": 1, "high": 10000},
7: {"low": 1, "high": 50000},
8: {"low": 1, "high": 80000},
9: {"low": 1, "high": 100000},
10: {"low": 1, "high": 200000},
},
"Quadratic Congruences": {
1: {"min_value": 1, "max_value": 100},
2: {"min_value": 1, "max_value": 1000},
3: {"min_value": 1, "max_value": 10000},
4: {"min_value": 1, "max_value": 50000},
5: {"min_value": 1, "max_value": 100000},
6: {"min_value": 1, "max_value": 300000},
7: {"min_value": 1, "max_value": 500000},
8: {"min_value": 1, "max_value": 800000},
9: {"min_value": 1, "max_value": 1000000},
10: {"min_value": 1, "max_value": 3000000},
}’
"3-Dimensional Matching (3DM)": {
1: {"n": 4},
2: {"n": 8},
3: {"n" 12},
4: {"n": 15},
5: {"n" 20},
6: {"n": 25},
7: {"n": 30},
8: {"n": 40},
9: {"n": 50},
10: {"n": 60},
P
"Travelling Salesman (TSP)": {
1: {"num_cities": 5, "target_length": 100},
2: {"num_cities": 8, "target_length": 100},
3: {"num_cities": 10, "target_length": 100},
4: {"num_cities": 12, "target_length": 100},
5: {"num_cities": 15, "target_length": 100},
6: {"num_cities": 17, "target_length": 200},
7: {"num_cities": 20, "target_length": 200},
8: {"num_cities": 25, "target_length": 200},
9: {"num_cities": 30, "target_length": 200},
10: {"num_cities": 40, "target_length": 300},
P
"Dominating Set": {
1: {"num_nodes": 10, "k": 5, "edge_prob": 0.3},
2: {"num_nodes": 15, "k": 5, "edge_prob": 0.3},
3: {"num_nodes": 30, "k": 15, "edge_prob": 0.3},
4: {"num_nodes": 50, "k": 20, "edge_prob": 0.3},
5: {"num_nodes": 70, "k": 20, "edge_prob": 0.3},
6: {"num_nodes": 100, "k": 20, "edge_prob": 0.3},
7: {"num_nodes": 70, "k": 20, "edge_prob": 0.2},
8: {"num_nodes": 80, "k": 20, "edge_prob": 0.2},
9: {"num_nodes": 100, "k": 20, "edge_prob": 0.2},
10: {"num_nodes": 150, "k": 20, "edge_prob": 0.2},
11: {"num_nodes": 160, "k": 15, "edge_prob": 0.2},
12: {"num_nodes": 180, "k": 15, "edge_prob": 0.2},
g
"Hitting String": {
1: {"n": 5, "m": 10},
2: {llnll. 5’ Ilm". 20}’
3: {"n": 10, "m": 20},
4: {"a": 10, "m": 30},
5: {"n": 10, "m": 40},
6: {"n": 10, "m": 45},
7: {"a": 10, "m": 50},
8: {"n": 10, "m": 55},
9: {llnll. 10’ ||m|| 60}’
10: {"n": 10, "m": 70},
},

Published in Transactions on Machine Learning Research (02/2026)

29

"Hamiltonian Cycle": {
1: {"num_nodes": 5, "directed": False},
2: {"num_nodes": 8, "directed": Falsel,
3: {"num_nodes": 10, "directed": Falsel},
4: {"num_nodes": 12, "directed": Falsel,
5: {"num_nodes": 16, "directed": False},
6: {"num_nodes": 18, "directed": Falsel},
7: {"num_nodes": 20, "directed": Falsel},
8: {"num_nodes": 22, "directed": Falsel},
9: {"num_nodes": 25, "directed": Falsel},
10: {"num_nodes": 30, "directed": Falsel},
i
"Bin Packing": {
1: {"num_items": 10, "bin_capacity": 20, "num_bins":
2: {"num_items": 20, "bin_capacity": 30, "num_bins":
3: {"num_items": 30, "bin_capacity": 30, "num_bins":
4: {"num_items": 40, "bin_capacity": 30, "num_bins":
5: {"num_items": 50, "bin_capacity": 50, "num_bins":
6: {"num_items": 60, "bin_capacity": 50, "num_bins":
7: {"num_items": 70, "bin_capacity": 50, "num_bins":
8: {"num_items": 80, "bin_capacity": 50, "num_bins":
9: {"num_items": 80, "bin_capacity": 30, "num_bins":
10: {"num_items": 100, "bin_capacity": 50, "num_bins":
Lg
"Exact Cover by 3-Sets (X3C)": {
1: {"num_elements": 3, "num_subsets": 61},
2: {"num_elements": 4, "num_subsets": 8},
3: {"num_elements": 5, "num_subsets": 10},
4: {"num_elements": 7, "num_subsets": 14},
5: {"num_elements": 8, "num_subsets": 16},
6: {"num_elements": 10, "num_subsets": 20},
7: {"num_elements": 15, "num_subsets": 30},
8: {"num_elements": 20, "num_subsets": 40},
9: {"num_elements": 25, "num_subsets": 50},
10: {"num_elements": 30, "num_subsets": 60},
}’
"Minimum Cover": {
1: {"num_elements": 5, "num_sets": 10, "k": 3},
2: {"num_elements": 10, "num_sets": 20, "k": 5},
3: {"num_elements": 10, "num_sets": 30, "k": 5},
4: {"num_elements": 15, "num_sets": 20, "k": 8},
5: {"num_elements": 15, "num_sets": 30, "k": 10},
6: {"num_elements": 20, "num_sets": 40, "k": 10},
7: {"num_elements": 25, "num_sets": 50, "k": 10},
8: {"num_elements": 30, "num_sets": 60, "k": 10},
9: {"num_elements": 35, "num_sets": 70, "k": 10},
10: {"num_elements": 40, "num_sets": 80, "k": 10},
11: {"num_elements": 45, "num_sets": 90, "k": 10},
12: {"num_elements": 50, "num_sets": 100, "k": 10},
13: {"num_elements": 55, "num_sets": 110, "k": 10},
14: {"num_elements": 60, "num_sets": 120, "k": 10},
15: {"num_elements": 65, "num_sets": 130, "k": 10},
16: {"num_elements": 70, "num_sets": 140, "k": 10},
Lg
"Graph 3-Colourability (3-COL)": {
1: {"num_nodes": 5, "num_edges": 8},
2: {"num_nodes": 8, "num_edges": 12},
3: {"num_nodes": 10, "num_edges": 20},
4: {"num_nodes": 15, "num_edges": 25},
5: {"num_nodes": 15, "num_edges": 30},
6: {"num_nodes": 15, "num_edges": 40},
7: {"num_nodes": 20, "num_edges": 40},
8: {"num_nodes": 20, "num_edges": 45},
9: {"num_nodes": 30, "num_edges": 60},
10: {"num_nodes": 30, "num_edges": 80},
}’
"Clustering": {
1: {"num_elements": 6, "b": 10},

3},
3},
3},
3},
5},
5},
5},
5},
10},
10},

Published in Transactions on Machine Learning Research (02/2026)

2: {"num_elements": 10, "b": 10},
3: {"num_elements": 15, "b": 10},
4: {"num_elements": 18, "b": 10},
5: {"num_elements": 20, "b": 10},
6: {"num_elements": 30, "b": 10},
7: {"num_elements": 40, "b": 10},
8: {"num_elements": 50, "b": 10},
9: {"num_elements": 60, "b": 10},
10: {"num_elements": 70, "b": 10},
i
"Betweenness": {
1: {"num_element": 3, "num_triples": 1},
2: {"num_element": 4, "num_triples": 2},
3: {"num_element": 5, "num_triples": 3},
4: {"num_element": 6, "num_triples": 4},
5: {"num_element": 7, "num_triples": 5},
6: {"num_element": 8, "num_triples": 6},
}’
"Minimum Sum of Squares": {
1: {"num_elements": 10, "k": 5},
2: {"num_elements": 50, "k": 8%},
3: {"num_elements": 100, "k": 8%},
4: {"num_elements": 100, "k": 5},
5: {"num_elements": 100, "k": 4},
6: {"num_elements": 100, "k": 3},
7: {"num_elements": 200, "k": 10},
8: {"num_elements": 200, "k": 4},
9: {"num_elements": 200, "k": 3},
10: {"num_elements": 300, "k": 3},
P

"Bandwidth": {

1: {"num_nodes": 3, "bandwidth": 2},
2: {"num_nodes": 4, "bandwidth": 2},
3: {"num_nodes": 5, "bandwidth": 3},
4: {"num_nodes": 6, "bandwidth": 3},
5: {"num_nodes": 5, "bandwidth": 2},
6: {"num_nodes": 7, "bandwidth": 3},
7: {"num_nodes": 6, "bandwidth": 2},
8: {"num_nodes": 8, "bandwidth": 3},
9: {"num_nodes": 7, "bandwidth": 2},
10: {"num_nodes": 8, "bandwidth": 2},
P
"Maximum Leaf Spanning Tree": {
1: {"num_nodes": 5, "target_leaves": 2},
2: {"num_nodes": 10, "target_leaves": 5},
3: {"num_nodes": 20, "target_leaves": 10},
4: {"num_nodes": 30, "target_leaves": 20},
5: {"num_nodes": 40, "target_leaves": 30},
6: {"num_nodes": 60, "target_leaves": 50},
7: {"num_nodes": 70, "target_leaves": 60},
8: {"num_nodes": 80, "target_leaves": 65},
9: {"num_nodes": 90, "target_leaves": 75},
10: {"num_nodes": 100, "target_leaves": 80},
Lg

30

Published in Transactions on Machine Learning Research (02/2026)

Solution Errors. There are two fundamental error categories: problem-independent errors and problem-
dependent errors. Problem-independent errors are general errors that arise from external factors unrelated
to the problem’s intrinsic characteristics and all problems have these types of errors. Problem-independent
errors include JSON ERROR (JSON not found or JSON parsing errors), and VERIFICATION ERROR
(output format mismatches or structural validation failures). Problem-dependent errors originate from the
problem’s inherent complexity, which are defined based on problem specificity. A comprehensive illustration

of the errors is displayed in Table 7.

31

Published in Transactions on Machine Learning Research (02/2026)

Table 7: A comprehensive illustration of errors.

Problem Error Type ‘ Description
JSON ERROR JSON not found.
VERIFICATION ERROR Wrong output format.
3GAT ERROR 1 The solution length mismatches the number of variables.
ERROR 2 Some clauses are not satisfied.
ERROR 1 Wrong solution format.
ERROR 2 The cover is empty.
Vertex Cover ERROR 3 Invalid vertex index, i.e., above the max or below the min.
ERROR 4 The cover size exceeds the limit.
ERROR 5 Some edges are not covered.
ERROR 1 Not all triples in the matching are in the original set.
3DM ERROR 2 The size of matching is wrong
ERROR 3 The elements in the matching are not mutually exclusive.
ERROR 1 Tour length mismatches number of cities.
TSP ERROR 2 Invalid city index, i.e., above the max or below the min.
ERROR 3 There exists cities not be visited exactly once.
ERROR 4 Tour length exceeds target length.
ERROR 1 Path length is wrong.
ERROR 2 Path does not return to start.
Hamiltonian Cycle ERROR 3 Not all vertices visited exactly once.
ERROR 4 There exists invalid vertex in path.
ERROR 5 There exists invalid edges in path.
3-COL ERROR 1 ‘ The two nodes of an edge have the same color
ERROR 1 Solution length mismatches the number of items.
Bin Packing ERROR 2 Invalid bin index.
ERROR 3 The total size exceeds bin capacity.
ERROR 1 Solution length mismatches the number of vertices.
ERROR 2 There exists invalid edges in solution.
Max Leaf Span Tree ERROR 3 The solution does not have exactly one root.
ERROR 4 The solution doesn’t span all vertices.
ERROR 5 The number of leaves in the solution is less than target.
ERROR 1 Solution length mismatches the number of integers.
QDE ERROR 2 There exists non-positive values in the solution.
ERROR 3 The equation does not hold.
ERROR 1 Solution length mismatches the number of elements.
Min Sum Square ERROR 2 The number of subsets exceeds the set limit.
ERROR 3 The sum exceeds the limit J.
ERROR 1 Wrong solution format.
Superstring ERROR 2 The solution length exceeds the limit.
ERROR 3 Some string is not the substring of the solution.
ERROR 1 Layout length mismatches the number of vertices.
Bandwidth ERROR 2 Layout is not a permutation of vertices.
ERROR 3 There exists edge exceeds the bandwidth limit.

32

Published in Transactions on Machine Learning Research (02/2026)

C.2 Solver Suite: npsolver

We introduce npsolver, a solver suite that provides a unified interface for both online (API-based) and
offline (local) models. The unified interface includes: i) Prompt Generation, which constructs problem-
specific prompts dynamically using the designed prompt templates shown in Appendix D, including problem
descriptions, in-context examples, and target problems; ii) LLM Completion, which invokes either online or
offline LLMs to generate responses from the constructed prompts; iii) Solution Extraction, which designs
regular expressions to parse JSON outputs from the LLMs’ responses, ensuring all online and offline LLMs
Use the same JSON validation pipeline; iv) Error Reporting, which standardizes error messages. Through the
unified interface, npsolver enables both online and offline models to share a common workflow. Through this
unified pipeline, npsolver enables consistent evaluation and analysis for both online and offline models. For
each problem, difficulty level, and model, npsolver stores detailed records—including the problem instance,
example solutions, full LLM responses, extracted solutions, input/output token counts, error messages,
solution correctness, and reasons for failure—in a pickle file to facilitate failure case analysis. The list of
models integrated in npsolver is shown in Table 8.

Table 8: Online and offline models considered in this paper via npsolver.

Type ‘ Models ‘ Version ‘ Provider
GPT-40-mini gpt-40-mini-2024-07-18 OpenAl
GPT-40 gpt-40-2024-08-06 OpenAl
ol-mini 01-mini-2024-09-12 OpenAl
Online 03-mini 03-mini-2025-01-31 OpenAl
DeepSeek-V3 deepseek-v3-241226 Huoshan
DeepSeek-V3-2503 deepseek-v3-250324 Huoshan
DeepSeek-R1 deepseek-r1-250120 Huoshan
Claude-3.7-Sonnet claude-3-7-sonnet-20250219 Anthropic
Offline QwQ-32B Qwen/QwQ-32B N/A
DeepSeek-R1-32B | deepseek-ai/DeepSeek-R1-Distill-Qwen-32B N/A

Online. The online state-of-the-art LLMs, e.g., 01/03-mini and DeepSeek-v3/R1, can be accessed through
APIs without local computational overhead. However, these online models have dependency on network
stability and API costs with token usage. mpsolver supports multiple providers, e.g., OpenAl, through
modular APIT clients. We implement efficient batch processing with LiteLLM, which minimizes the latency
during parallel problem-solving.

Offline. Open-weight LLMs, e.g., QwQ-32B and Deepseek-R1-32B, can be accessed by deploying them locally.
This allows for GPU-accelerated, high-throughput inference while avoiding API-related costs. Offline models
are deployed using vLLM, with hyperparameters—such as temperature and maximum token length—manually
configured according to their official technical documentation.

33

Published in Transactions on Machine Learning Research (02/2026)

C.3 Evaluation Suite: npeval

npeval employs a statistically rigorous sampling strategy. For each difficulty, the aggregated performance over
3 different independent seeds, with 30 samples generated per seed, aligning with the minimum sample size for
reliable statistical analysis (Hogg et al., 1977), are considered. This sampling design, i.e., sampling 90 instances
total per difficulty level for each problem, balances budget constraints while mitigating instance-specific
variance.

Evaluation Metrics. rliable (Agarwal et al., 2021) is an open-source Python library designed to enable
statistically robust evaluation of reinforcement learning and machine learning benchmarks. Inspired by rliable,
npeval provides the following 4 evaluation aggregate metrics:

e Mean: Mean is a standard evaluation metric that treats each score equally and calculates the overall mean
across runs and tasks.

« Interquartile Mean (IQM): IQM trims extreme values and computes the interquartile mean across runs
and tasks to smooth out the randomness in responses. IQM highlights the consistency of the performance
and complements metrics like mean/median to avoid outlier skew.

e Median: Median represents the middle value of the scores by calculating the median of the average scores
per task across all runs, which is unaffected by extreme values.

o Optimality Gap (OG): OG measures the average shortfall of scores below a predefined threshold v, where
all scores above v are clipped to 7, so as to quantify and penalize the underperformance, making it less
susceptible to outliers compared to mean scores.

To quantify uncertainty in aggregate metrics, e.g. IQM, npeval employs stratified bootstrap confidence
intervals (SBCIs) (Efron, 1979; 1987) for the performance interval estimation. SBCIs use stratified resampling
within predefined strata, e.g., difficulty levels, to preserve the hierarchical structure of the evaluation data,
reduce bias, and provide statistically sound interval estimates.

Comprehensive Analysis. Based on evaluation metrics, npeval provides a comprehensive analysis of the
LLMs’ performance over the problems and difficulty levels, including the full results for each problem, each
model and each level (Appendix G), the performance over different problems (Appendix H), the analysis of
both prompt and completion tokens of LLMs (Appendix I), the analysis of the number of “aha moments”
during the DeepSeek-R1 reasoning (Guo et al., 2025) (Appendix J), an illustration of errors over problems
(Table 7) with detailed error analysis (Appendix K), considering both the solution errors, i.e., the errors
returned by npgym, and the reasoning errors, i.e., the errors produced in the internal reasoning process of
LLMs, which enables the identification of the failure cases (Appendix L).

34

Published in Transactions on Machine Learning Research (02/2026)

D Prompts and Responses

Prompts. In this section, we carefully design the prompt template of NPPC for LLMs to be simple,
general, and consistent across different problems. The prompt template includes:

¢ Problem description: where a concise definition of the NPC problem is provided, including the problem
name, the input, and the question to be solved.

o Examples: where one or multiple in context examples, defined as problem-solution pairs, are listed,
demonstrating the expected solutions, i.e., answer correctness and format, for specific instances. These
examples guide LLMs to generate the responses with the required format.

e Problem to solve: a target instance that requires LLMs to generate the solution.

e Instruction: which provides a directive to output answers in JSON format.

nppc_template = """
<problem_name> Problem Description:
<problem_description>

Examples:
<in_context_examples >

Problem to Solve:
Problem: <problem_to_solve>

Instruction:

Now please solve the above problem. Reason step by step and present your answer in the
"solution" field in the following json format:

€¢“json

{"solution": "___" }

¢«

example_and_solution = """Problem: <example_problem>
{"solution": <example_solution>}

35

Published in Transactions on Machine Learning Research (02/2026)

Responses. We extract the answers from the LLMs’ responses and the code is displayed below:

def extract_solution_from_response(response):
find the json code
match = re.findall(r"‘‘‘json\n(.*?)\n‘‘‘", response, re.DOTALL)

if not match:

match = re.findall(r"json\s*({["{}]*})", response, re.DOTALL)
if not match:

match = re.findall(r"\{["{}]1*\}", response, re.DOTALL)

if match:
json_str = match[-1]
try:
remove the single line comment
json_str = re.sub(r"//.*$", "", json_str, flags=re.MULTILINE)
remove the multiple line comment
json_str = re.sub(r"/*[\s\S]*?*/", "" json_str)
data = json.loads(json_str)
answer = data["solution"]
return answer, None
except (json.JSONDecodeError, KeyError, SyntaxError) as e:
print (f"Error parsing JSON or answer field: {el}")
return None, f"Error parsing JSON or answer field: {el}"
else:
print ("No JSON found in the text.")
return None, "JSON Error: No JSON found in the text."

This extraction function employs a robust, multi-stage pattern matching approach to handle various response
formats. Specifically, this function progressively relaxes format requirements through three regex patterns:

o First tries to find content between triple quotes with “json” marker,
o If that fails, looks for “json” followed by content in curly braces,
o If both fail, simply looks for any content between curly braces.

This flexible parsing template effectively handles format variations produced by different models. For instance,
it accommodates models like QwQ-32B that frequently omit format prefixes or deviate from strict formatting
instructions. By tolerating minor format violations, this approach ensures that evaluation focuses primarily
on models’ reasoning capabilities rather than their adherence to output formatting conventions. Only when
all three attempts fail, the JSON error is raised, indicating a genuine failure to produce a feasible solution.

36

Published in Transactions on Machine Learning Research (02/2026)

E List of NP-complete Problems

Problem 1. o Name: 3-Satisfiability (3SAT)
o Input: A set of m clauses {C1,Cq,...,Cp} - over a set of n Boolean valued variables X,, =
{z1,%2,..., T}, such that each clause depends on exactly three distinct variables from X,,. A clause

being a Boolean expression of the form y; A y; Ay where each y is of the form x or -z (i.e. negation
of z) with x being some variable in X,,. For example if n = 4 and m = 3, a possible instance
could be the (set of) Boolean expressions: C7 = (21 A (mz2) A (—23)), C2 = (22 A 23 A (—24)),
C3 = ((ﬁl‘l) AN x3 A\ l’4).

e Question: Can each variable z; of X,, be assigned a Boolean value «; € {true, false} in such a way
that every clause evaluates to the Boolean result true under the assignment (x; := «;,7 € {1,...,n})?

Problem 2. o Name: Graph 3-Colourability (3-COL)
o Input: An n-node undirected graph G = (V, E') with node set V' and edge set E.

o Question: Can each node of G = (V, E) be assigned exactly one of three colours - Red, Blue, Green
- in such a way that no two nodes which are joined by an edge, are assigned the same colour?

Problem 3. e Name: Clique

o Input: An n-node undirected graph G = (V| E) with node set V and edge set F; a positive integer
k with k < n.

e Question: Does G contain a k-clique, i.e. a subset W of the nodes V such that W has size k and
for each distinct pair of nodes u,v in W, {u,v} is an edge of G?

Problem 4. ¢ Name: Vertex Cover

e Input: An n-node undirected graph G = (V, E) with node set V and edge set F; a positive integer
k with k£ <n.

o Question: Is there a subset W of V having size at most k and such that for every edge {u,v} in F
at least one of w and v belongs to W?

Problem 5. e Name: Quadratic Diophantine Equations
e Input: Positive integers a, b, and c.

o Question: Are there two positive integers z and y such that (axx xx) + (b*y) = ¢?

Problem 6. e Name: Shortest Common Superstring
o Input: A finite set R = {r1,r2,...,7rm} of strings (sequences of symbols); positive integer k.

e Question: Is there a string w of length at most k such that every string in R is a substring of w,
i.e., for each r in R, w can be decomposed as w = worw; where wy, wy are (possibly empty) strings?

Problem 7. e Name: Bandwidth
e Input: n-node undirected graph G = (V, E); positive integer k < n.

e Question: Is there a linear ordering of V with bandwidth at most k, i.e., a one-to-one function
f:V —=4{0,1,2,...,n — 1} such that for all edges u,v in G, |f(u) — f(v)| < k?

Problem 8. e Name: Maximum Leaf Spanning Tree
o Input: n-node undirected graph G = (V, E); positive integer k < n.

e Question: Does G have a spanning tree in which at least k£ nodes have degree 17

Problem 9. e« Name: Independent Set

o Input: n-node undirected graph G = (V, E); positive integer k < n.

37

Published in Transactions on Machine Learning Research (02/2026)

e Question: Does G have an independent set of size at least k, i.e., a subset W of at least k nodes
from V such that no pair of nodes in W is joined by an edge in E?

Problem 10. e« Name: Hamiltonian Cycle
o Input: n-node graph G = (V, E).

e Question: Is there a cycle in G that visits every node in V exactly once and returns to the starting
node, and thus contains exactly n edge

Problem 11. o Name: Travelling Salesman
o Imput: A set C of n cities {c1,...,¢,}; a positive integer distance d(i,j) for each pair of cities
(¢iycj),i < j,i,j € {1,...,n}; a positive integer B representing the maximum allowed travel distance.

o Question: Is there an ordering (r (1), 7(2), ..., m(n)) of the n cities such that the total travel distance,
calculated as the sum of d(7 (i), 7(i + 1)) for i =1 to n — 1, plus d(w(n), (1)), is at most B?

Problem 12. e« Name: Dominating Set
o Input: An undirected graph G(V, E) with n nodes; a positive integer k where k < n.

e Question: Does G contain a dominating set of size at most k, i.e. a subset W of V' containing at
most k nodes such that every node u in V' — W (i.e. in V but not in W) has at least one neighbor w
in W where u,w is an edge in E?

Problem 13. o Name: 3-Dimensional Matching (3DM)

e Input: 3 disjoint sets X, Y, and Z, each containing exactly n elements; a set M of m triples
{(24,9i,2) : 1 <i<m} such that z; isin X, y; in Y, and z; in Z, i.e. M is a subset of X x Y x Z.

o Question: Does M contain a matching, i.e., is there a subset @ of M such that |Q| = n and for all
distinct pairs of triples (u,v,w) and (z,y, z) in @ it holds that u # = and v # y and w # 2?
Problem 14. e Name: Set Splitting

e Input: A finite set S; A collection C4,...,C,, of subsets of S.

e Question: Can S be partitioned into two disjoint subsets - S1 and S2 - such that for each set C; it
holds that C; is not a subset of S; and C; is not a subset of S57

Problem 15. e« Name: Set Packing
o Input: A collection C' = (C4,...,Cy,) of finite sets; a positive integer k < m.

¢ Question: Are there k sets - D1, ..., Dy - from the collection C such that for all 1 <i < j <k, D;
and D; have no common elements?
Problem 16. o Name: Exact Cover by 3-Sets (X3C)

e Input: A finite set X containing exactly 3n elements; a collection C' of subsets of X each of which
contains exactly 3 elements.

e Question: Does C contain an exact cover for X, i.e., a sub-collection of 3-element sets D =
(D1,...,D,,) such that each element of X occurs in exactly one subset in D?

Problem 17. e« Name: Minimum Cover
o Input: A finite set S; A collection C' = (C1,...,C,,) of subsets of S; a positive integer k < m.

e Question: Does C contain a cover for S comprising at most k subsets, i.e., a collection D =
(D1,...,Dy), where t < k, each D; is a set in C, and such that every element in S belongs to at least
one set in D?

Problem 18. o Name: Partition

38

Published in Transactions on Machine Learning Research (02/2026)

o Input: Finite set A; for each element a in A a positive integer size s(a).

e Question: Can A be partitioned into 2 disjoint sets A; and As in a such a way that ZaeAl s(a) =
Ea€A2 s(a)7

Problem 19. e Name: Subset Sum
o Input: Finite set A; for each element a € A a positive integer size s(a); a positive integer K.

¢ Question: Is there a subset B of A such that) _ps(a) = K7

Problem 20. e Name: Minimum Sum of Squares

o Input: A set A of n elements; for each element a € A a positive integer size s(a); positive integers
k <mnand J.

e Question: Can A be partitioned into k disjoint sets A1, ..., A such that Zle(za:EAi s(x))? <= J?
Problem 21. e Name: Bin Packing

o Input: A finite set U of m items; for each item w in U a positive integer size s(u); positive integers
B (bin capacity) and k, where k < m.

e Question: Can U be partitioned into k disjoint sets Uy, ..., Uy such that the total size of the items
in each subset U; (for 1 <14 < k) does not exceed B?

Problem 22. e Name: Hitting String
o Input: Finite set S = {s1,..., s} each s; being a string of n symbols over {0, 1, }.

e Question: Is there a binary string * = x122 ...z, of length n such that for each s; € §, s; and
agree in at least one position?

Problem 23. o Name: Quadratic Congruences
e Input: Positive integers a, b, and c.

« Question: Is there a positive integer whose value is less than ¢ and is such that 2 mod b == a,
i.e., the remainder when 2 is divided by b is equal to a?

Problem 24. ¢ Name: Betweenness
o Input: A finite set A of size n; a set C' of ordered triples, (a,b, ¢), of distinct elements from A.

o Question: Is there a one-to-one function, f: A — {0,1,2,...,n — 1} such that for each triple (a, b, c)
in C' it holds that either f(a) < f(b) < f(c) or f(c) < f(b) < f(a)?

Problem 25. e Name: Clustering

o Input: Finite set X; for each pair of elements z and y in X, a positive integer distance d(z,y);
positive integer B.

e Question: Is there a partition of X into 3 disjoint sets - X7, Xo, X3 - with which: for each set
X;,i € {1,2,3}, for all pairs z and y in X;, it holds that d(z,y) < B?

39

Published in Transactions on Machine Learning Research (02/2026)

F Hyperparameters

The hyperparameters used for benchmarking are listed in Table 9. For both offline and online-deployed
models, accuracy is averaged over three seeds and 30 trials per difficulty level per task. Each model is allowed
up to three attempts to mitigate the impact of API connection issues. For offline models, we follow the
recommended sampling parameters from the technical reports of Deepseek-R1-32B and QwQ-32B for vLLM
deployment.

Table 9: Hyperparameters

Type ‘ Hyperparameter Value
seeds 42, 53, 64
n_shots 1
Basic n_trials 30
batch_size 10
max__ tries 3
temperature 0.6
. top_p 0.95
Offfine Model max__tokens 7500
gpu__memory__utilization 0.8

40

Published in Transactions on Machine Learning Research (02/2026)

G Full Results over Problems

In this section, we present the full results over problems, as displayed in Figure 6. For each element in the
table zf, x is the value of IQM and a and b are the upper and lower values of the CI, respectively.

Table 10: 3SAT

|1 2 3 4 5 6 7 8 9 10

QwQ-32B 0.945:99 1.001-89 0.560-89 0.119-43 0.003:09 0.008:83 0.008-99 0.009-39 0.009-08 0.009:99
DeepSeek-R1-32B |0.83090 052070 0.32037 0.19927 0.13923 0.02093 0.0099 0.0099% 0.009:%9 0.000-09
GPT-4o-mini [0.849:87 0.270:35 0.178:37 0.08)-43 0.028:33 0.009:5% 0.008-35 0.003:93 0.008:35 0.003:59
GPT-4o0 0.948-97 0.519-37 0.435-47 0.225:37 0.099:37 0.013:93 0.013:53 0.003-99 0.003-38 0.003-39
Claude-3.7-Sonnet | 1.001-39 0.899:23 0.629:87 0.549-89 0.360-4% 0.199:2%7 0.149:23 0.089:5% 0.033-95 0.029-93
DeepSeek-V3 [0.94097 0.78090 0.38040 0.34043 0.21927 0.06910 0.01993 0.009°90 0.009:90 0.000-09
DeepSeek-V3-2503 | 1.001-99 0.985:99 0.899-27 0.68)-89 0.537:63 0.38933 0.289-33 0.120-23 0.083-3% 0.039:93
DeepSeek-R1 1.00339 1.003-39 0.994:99 0.985:99 0.975:99 0.919-97 0.833:23 0.649:87 0.235-27 0.130-15
ol-mini 0.920:33 0.918-27 0.925-97 0.819-57 0.679:55 0.209-37 0.035-93 0.009-39 0.003:99 0.009:99
03-mini 0.939:97 0.829-87 0.720-83 0.773:83 0.829:83 0.718-Z7 0.609-79 0.309:33 0.13917 0.128:83

Table 11: Vertex Cover

1 2 3 4 5 6 7 8 9 10

QwQ-32B 1.001:05 0.998:99 0.933-95 0.509-5% 0.008:35 0.008:90 0.008:99 0.003:53 0.003:55 0.009:59
DeepSeek-R1-32B |0.915:39 0.929-93 0.819:87 0.528:¢% 0.033-35 0.029:33 0.009:99 0.008-99 0.009-39 0.009-39
GPT-do-mini | 094500 0.67950 0.37043 018023 0.000-90 0.00999 0.00090 0.000-99 0.000:09 0.000-00
GPT-40 0.964:99 0.889-29 0.783-87 0.609:92 0.019:93 0.033:97 0.003-95 0.009:99 0.009-99 0.009-99
Claude-3.7-Sonnet | 1.003:39 0.974:99 0.975:99 0.908-99 0.530:57 0.379:47 0.379:39 0.260-39 0.149-17 0.049:97
DeepSeek-V3 0.928:29 0.975:99 0.969-97 0.899-23 0.343:33 0.14920 0.069-:59 0.033-35 0.033:97 0.019:93
DeepSeek-V3-2503 | 1.001-99 1.001-89 1.003-99 0.879:29 0.28343 0.379:39 0.279:33 0.099:82 0.099:39 0.019:93
DeepSeek-R1 | 1.001:99 1.001:99 1.00+-99 1.001-39 0.913:97 0.779:87 0.419-37 0.183-29 0.133:2% 0.06939
ol-mini 0.7497% 0.779-89 0.783-83 0.913:93 0.58579 0.319:32 0.13%-17 0.133:27 0.08342 0.029-97
o3mini | 0.82090 0.89093 089093 0.80090 0.50070 0.52037 0.19027 0.13023 0.110-17 0.070-10

Table 12: Superstring

1 2 3 4 5 6 7 8 9 10

QwQ-32B [1.00199 0.92097 0.28983 0.1992% 0.17923 0.060:43 0.080:33 0.01993 0.00993 0.002:99
DeepSeek-R1-32B | 0.583-79 0.243-19 0.169:23 0.128:22 0.103:37 0.033:93 0.029:93 0.008:99 0.003-39 0.003-99
GPT-4o-mini |0.323:57 0.085:43 0.029:92 0.013-:93 0.003:99 0.019:93 0.008:99 0.013-33 0.003-99 0.009:99
GPT-4o 0.81983 047957 0.11047 0.10007 0.060:0 0.16927 0.060.10 0.12013 0.079:0 0.03007
Claude-3.7-Sonnet | 0.995:9% 0.974-99 0.7895:29 0.519-37 0.680-%5 0.749:89 0.77989 0.889-23 0.820-99 0.749-59
DeepSeek-V3 | 0.80083 0.52067 0.49033 046053 0.44053 0.40037 0.24097 0.22027 0.080-10 (.020:03
DeepSeek-V3-2503 |0.99190 0.89993 0.78083 0.619°6T 0.530%0 0.37040 0.21928 0.17917 0.26027 0.13017
DeepSeek-R1 | 1.001:39 0.995:99 0.948-57 0.819-29 0.803-33 0.619:7% 0.379:39 0.319:33 0.119-47 0.13917
ol-mini 0.919:37 0.599:7% 0.485-33 0.209-23 0.109:32 0.033:97 0.019:-93 0.009-39 0.003:99 0.009:99
03-mini 1.00339 1.003-39 0.985:99 0.898:22 0.745-77 0.319:3% 0.049:9% 0.018:92 0.009-39 0.009-39

41

Published in Transactions on Machine Learning Research (02/2026)

Table 13: QDE
|1 2 3 4 5 6 7 8 9 10
QwQ-32B | 0.72590 0.56050 0.19927 0.16923 0.03093 0.00929 0.00399 0.008:99 0.009:29 0.0030
DeepSeek-R1-32B | 0.849-22 0.629-70 0.119:33 0.085:42 0.003:93 0.003:55 0.003-99 0.003-99 0.003-98 0.003-99
GPT-4o-mini |0.499:33 0.235:27 0.039-57 0.003-99 0.003-09 0.009:85 0.008-53 0.009-99 0.003-99 0.009:99
GPT-40 0.679:59 0.438-37 0.085:3% 0.033:93 0.013:93 0.008:83 0.009-99 0.009-99 0.003:99 0.009:99
Claude-3.7-Sonnet | 0.964:3% 0.973:97 0.785:82 0.599-¢7 0.109:82 0.003:99 0.009:95 0.008-99 0.003:39 0.009-39
DeepSeek-V3 0.979:37 0.899:23 0.385-3% 0.199:39 0.049:9% 0.028:93 0.009-99 0.009-39 0.003:99 0.009:99
DeepSeek-V3-2503 | 1.001:99 1.001-89 0.685-29 0.649-72 0.309:37 0.179:29 0.085:53 0.013-93 0.083:33 0.009:99
DeepSeek-R1 1.00339 1.001:39 1.001:99 0.975:99 0.825-29 0.68)-%3 0.279:33 0.179:2% 0.095-52 0.033-95
ol-mini 0.579:79 0.599:5% 0.449-$3 0.460-59 0.119:37 0.033:97 0.009-99 0.009-39 0.003:99 0.009:59
03-mini 0.949:37 0.995:99 0.943-97 0.964-99 0.819:87 0.669-7% 0.309-35 0.279:39 0.279:39 0.139-17
Table 14: 3DM
|1 2 3 4 5 6 7 8 9 10
QwQ-32B 1.001:98 0.985-99 0.933-97 0.945-97 0.335-82 0.069-39 0.008:53 0.009:59 0.003:93 0.003-99
DeepSeek-R1-32B | 0.875:9% 0.420-37 0.099:33 0.008:99 0.009-99 0.013:33 0.003:95 0.008:99 0.003:99 0.009-39
GPT-4o-mini |0.433:37 0.099:42 0.028:53 0.003-99 0.003-99 0.009:85 0.008-59 0.003-99 0.003-99 0.009:99
GPT-40 0.649:83 0.249-37 0.135-29 0.109-42 0.023:95 0.008:83 0.009-99 0.009-39 0.003-99 0.009:99
Claude-3.7-Sonnet | 0.960-95 0.843-29 0.769:89 0.599-79 0.213-33 0.099-39 0.079:39 0.008:99 0.003-99 0.009-39
DeepSeek-V3 |0.749:83 0.329:37 0.089:52 0.033:39 0.003-99 0.009:99 0.008-99 0.003-39 0.003-99 0.009:99
DeepSeek-V3-2503 | 0.949:97 0.769-87 0.495-99 0.319:47 0.079:39 0.033:97 0.015:93 0.003-39 0.003:99 0.009:99
DeepSeek-R1 1.00%:88 1.00339 0.983:9% 0.974:99 0.939:97 0.919-27 0.919-97 0.578:?5 0.279:37 0.029:93
ol-mini |0.87093 0.89090 081057 0.770:53 038047 026027 0.11020 0.0100% 000900 0.000-00
03-mini 0.639:59 0.869-22 0.720-77 0.713-89 0.579:89 0.569:79 0.383-33 0.309:37 0.23933 0.209-22
Table 15: TSP
|1 2 3 4 5 6 7 8 9 10
QwQ-32B 0.619:89 0.418:3% 0.425-33 0.560-%9 0.260:39 0.199:27 0.025-97 0.009-99 0.003:09 0.009:99
DeepSeek-R1-32B | 0.880-2% 0.620-73 0.309:33 0.138:2 0.023-33 0.013:33 0.009:95 0.008:99 0.003:39 0.009-39
GPT-4o-mini |0.933:95 0.349:32 0.128:22 0.073:39 0.003:99 0.009:89 0.008-59 0.003-99 0.003-99 0.009:99
GPT-do |0.97997 0.76030 0.50067 040047 0.22033 0.1602 008010 0.020.07 0.00000 000000
Claude-3.7-Sonnet | 1.003-39 0.983-39 0.909:23 0.839-29 0.860-20 0.809:33 0.54979 0.519-22 0.083:39 0.069-49
DeepSeek-V3 0.98599 0.908:99 0.749-83 0.620-77 0.499:57 0.499%3 0.17593 0.079:83 0.029:93 0.009:99
DeepSeek-V3-2503 | 1.001:99 0.948-57 0.964-9% 0.833-87 0.709:27 0.669:19 0.399-37 0.108:18 0.019:93 0.019:93
DeepSeek-R1 | 1.001:39 0.99(1):8? 0.979:97 0.99(1)38? 0.879-87 ().788;?? 0.62812; 0.248:38 0.039:39 0.009:99
ol-mini 0.849:29 0.899-:2% 0.679-%7 0.570:93 0.349:47 0.379:33 0.185:3% 0.013-93 0.003:99 0.009:59
03-mini 0.799:87 0.629:57 0.539-¢2 0.283-33 0.319:37 0.30947 0.309:37 0.199-2% 0.129:47 0.079:43

42

Published in Transactions on Machine Learning Research (02/2026)

Table 16: Hamiltonian Cycle

|1 2 3 4 5 6 7 8 9 10

QwQ-32B 0.945:39 0.875-22 0.809-23 0.62557 0.3333% 0.163:25 0.033:35 0.003-99 0.003-38 0.003-39
DeepSeek-R1-32B |0.695-72 0.369:32 0.2459-49 0.099:43 0.009:93 0.013:53 0.023:93 0.003-99 0.003-98 0.003-99
GPT-40-mini |0.70-22 0.269-19 0.098:3% 0.083:53 0.019:53 0.003:93 0.013:53 0.003-99 0.003-95 0.003-99
GPT-40 0.735-13 0.399-33 0.229-27 0.125:22 0.099:33 0.013:93 0.063-35 0.003-99 0.003-98 0.003-99
Claude-3.7-Sonnet | 0.993:9% 0.809:29 0.749:82 0.649-77 0.320:39 0.233:37 0.278:3% 0.160-27 0.103-19 0.029:97
DeepSeek-V3 |0.833:29 0.449:33 0.149-20 0.160-17 0.099-37 0.069:9% 0.069:59 0.069-30 0.019:93 0.019:93
DeepSeek-V3-2503 | 0.995:99 0.828-99 0.519-23 0.38):33 0.165:37 0.149-37 0.099:3% 0.103-47 0.069:9% 0.038-57
DeepSeek-R1 1.00399 1.003:39 0.973:99 0.918:27 0.760-23 0.649-73 0.499:3% 0.369:3% 0.175:23 0.049:89
ol-mini 0.720:89 0.718:57 0.549-89 0.409-47 0.199:23 0.23399 0.125-17 0.083:89 0.049:95 0.009:99
03-mini 0.820:83 0.849:99 0.719-7% 0.719-83 0.630:73 0.599:57 0.449-39 0.320-33 0.209:33 0.229:33

Table 17: Bin Packing

|1 2 3 4 5 6 7 8 9 10

QwQ-32B 0.889-23 0.839-87 0.463-37 0.085:23 0.009:53 0.003:9% 0.003-55 0.003-99 0.003-38 0.003-39
DeepSeek-R1-32B | 0.260-32 0.033-95 0.019:93 0.038-57 0.009-39 0.003-39 0.003:95 0.008:99 0.003:39 0.009-39
GPT-do-mini | 0.30933 0.03993 0.049.20 0.03%29 0,009 0.00099 0.009-99 0.0099 0.00999 0.000-99
GPT-40 0.839:29 0.448-39 0.345-37 0.183-29 0.049:39 0.028:93 0.009-99 0.009-39 0.003-99 0.009:99
Claude-3.7-Sonnet | 0.985:9% 0.893:23 0.583:79 0.399-3% 0.075-35 0.013:93 0.019:93 0.038:57 0.013-33 0.009-39
DeepSeek-V3 |0.660:53 0.46939 0.449-39 0.373-39 0.069-33 0.049:97 0.028-9% 0.003-99 0.013:93 0.009:99
DeepSeek-V3-2503 | 1.001-99 0.879:9% 0.745-82 0.620-7 0.183:27 0.18323 0.099:53 0.029-95 0.029:93 0.009:99
DeepSeek-R1 1.00339 1.003:39 1.001-99 0.985:99 0.809-29 0.649-7% 0.493:53 0.299:3% 0.069:39 0.033-95
ol-mini 0.670:39 0.583:9% 0.520-37 0.33%:3% 0.319:39 0.19923 0.075:89 0.009-99 0.029-97 0.019:93
03-mini 0.720:83 0.679-89 0.620-57 0.48)-37 0.419:47 0.29942 0.24947 0.173:25 0.429:47 0.289-33

Table 18: 3-COL

|1 2 3 4 5 6 7 8 9 10

QwQ-32B | 096500 0.91098 0.78057 0.56067 0.34043 0.10022 0.01993 0.019:93 0.00929 0.0000
DeepSeek-R1-32B |0.499-37 0.513-55 0.039:97 0.018:93 0.009-39 0.009-39 0.009:99 0.008:99 0.003:39 0.009-39
GPT-4o-mini |0.403:39 0.179:23 0.008:59 0.003-99 0.003-99 0.009:85 0.008-59 0.003-99 0.003-99 0.009:99
GPT-40 0.609:%3 0.398:3% 0.039-39 0.019:33 0.013:93 0.008:83 0.009-99 0.009-39 0.003:99 0.009:99
Claude-3.7-Sonnet | 0.769-87 0.709-53 0.229:33 0.179-39 0.095:82 0.043:9% 0.019:93 0.008-99 0.009:39 0.009-39
DeepSeek-V3 0.679:59 0.609:%% 0.139-29 0.120-17 0.033:97 0.029:97 0.025-97 0.009-39 0.003-99 0.009:99
DeepSeek-V3-2503 | 0.809-87 0.909:9% 0.485-33 0.649-72 0.329:37 0.163:29 0.169:22 0.099-29 0.029:93 0.009:99
DeepSeek-R1 |0.995:99 1.001:99 0.974:99 0.975-97 0.883:93 0.720:27 0.728-89 0.519-7 0.220:27 0.049:9%
ol-mini 0.619:79 0.769-87 0.579-79 0.629:87 0.379:43 0.27939 0.343-3% 0.179:23 0.039:97 0.028-57
03-mini 0.98599 0.919:22 0.964-99 0.843-87 0.789:87 0.729-89 0.713-89 0.613:59 0.519:33 0.299-39

43

Published in Transactions on Machine Learning Research (02/2026)

Table 19: Min Sum Square

|1 2 3 4 5 6 7 8 9 10
QwQ-32B 0.779:89 0.008:99 0.008-99 0.009:35 0.003:59 0.008:85 0.009-99 0.019-93 0.003-08 0.009:99
DeepSeek-R1-32B | 0.235-13 0.008-99 0.043:57 0.079:89 0.063:33 0.043-33 0.023-97 0.063-19 0.013-93 0.069-37
GPT-4o-mini |0.749:39 0.62577 0.039:57 0.073:39 0.083-39 0.033:97 0.038-57 0.029-95 0.029:93 0.049:33
GPT-4o 0.949:37 0.829-87 0.460-33 0.560-89 0.449:53 0.483:33 0.049-97 0.019-93 0.019:93 0.019:93
Claude-3.7-Sonnet | 0.98100 0.84093 .830:90 73080 (79057 (64070 59063 0.67072 0.620-67 0.140-20
DeepSeek-V3 0.870:33 0.909:25 0.849-20 0.58)-83 0.58):83 0.483:37 0.079:89 0.179-22 0.079:35 0.029:93
DeepSeek-V3-2503 | 1.001-99 0.483:37 0.718-Z7 0.599-83 0.620:87 0.619:70 0.229-23 0.299-3% 0.029:93 0.009:99
DeepSeek-R1 1.00339 0.883-99 0.649:73 0.469-3% 0.479-33 0.399:43 0.13917 0.138-17 0.075:83 0.029:93
ol-mini 0.620:57 0.708-89 0.279-39 0.183:27 0.149:23 0.109:42 0.035:89 0.069-95 0.029:97 0.019:93
03-mini 0.699:89 0.389-47 0.389-47 0.399:39 0.520:%9 0.309:37 0.449-39 0.249-35 0.033:97 0.18923

Table 20: Bandwidth

|1 2 3 4 5 6 7 8 9 10
QwQ-32B 0.964:39 0.918-53 0.905:99 0.845:9% 0.760-87 0.663-57 0.633:87 0.303-49 0.203-39 0.069-97
DeepSeek-R1-32B | 0.935:39 0.833-57 0.879:23 0.678:83 0.545:-79 0.499-57 0.387:49 0.118:42 0.145-17 0.033-95
GPT-4o-mini | 1.001:39 0.945:95 0.948-57 0.840-87 0.783-59 0.470:30 0.469-47 0.209-22 0.149:23 0.039:07
GPT-do |1.00100 0.96100 0.97000 0.94100 78057 062067 0.600-67 0.22030 0.10032 0.02003
Claude-3.7-Sonnet | 1.003:39 0.963-99 0.965:99 0.879-29 0.783-87 0.66)-53 0.629:57 0.289-32 0.113:82 0.029:93
DeepSeek-V3 1.003-39 0.983:9% 0.994:99 0.938:97 0.749-29 0.630-75 0.569:83 0.349:30 0.235-32 0.033-95
DeepSeek-V3-2503 | 1.001:99 0.918:92 0.899-29 0.620-87 0.58):%3 0.578:99 0.433-39 0.333:39 0.179:29 0.049-57
DeepSeek-R1 1.00339 0.909-93 0.934:99 0.889:22 0.833-29 0.680-77 0.599:67 0.349-32 0.243-39 0.079-49
ol-mini 0.749:85 0.749-82 0.843-87 0.820-87 0.82987 0.689-%9 0.599-83 0.333:37 0.249:33 0.069-9%
03-mini 0.809:83 0.889-22 0.820-92 0.903-93 0.729:89 0.589:79 0.520-23 0.209:23 0.179:29 0.089:39

Table 21: Max Leaf Span Tree

|1 2 3 4 5 6 7 8 9 10
QwQ-32B 0.735:82 0.939-37 0.285-39 0.069-95 0.003:09 0.008:93 0.009-99 0.009-39 0.003:09 0.009:99
DeepSeek-R1-32B | 0.209-39 0.249-3%7 0.183:2%7 0.008-99 0.003-99 0.003-39 0.009:95 0.008:99 0.009-39 0.009-39
GPT-4o-mini |0.269:33 0.195:42 0.019:53 0.003-99 0.003-99 0.009:89 0.008-59 0.003-99 0.003-99 0.009:99
GPT-do |0.49937 0.53080 0.29037 024980 0.080-10 0.00090 000000 0.000-90 0.00000 000000
Claude-3.7-Sonnet | 1.003-39 0.994-99 0.969:9%7 0.829-22 0.713-82 0.599-83 0.125:22 0.008-99 0.003:39 0.009-39
DeepSeek-V3 0.799:83 0.889-:2% 0.899-23 0.699-59 0.56:59 0.269:33 0.2759-43 0.099-85 0.029:93 0.019:93
DeepSeek-V3-2503 | 0.909:27 0.869:29 0.769-82 0.399-43 0.18339 0.22927 0.289:33 0.179:29 0.079:33 0.029:93
DeepSeek-R1 0.979:37 0.995:99 0.885-29 0.630-7% 0.399:43 0.18323 0.219:23 0.013:93 0.019:93 0.009:59
ol-mini 0.70073 0.53083 0.57987 0.17920 0.02005 0.02005 0.000.90 000099 0.019.93 0.000:00
03-mini 0.779:83 0.689:%3 0.669-8% 0.660-79 0.429:39 0.269-27 0.199-22 0.163:33 0.119:3% 0.099-5%

44

Published in Transactions on Machine Learning Research (02/2026)

H Performance over Problems

In this section, we present the performance of LLMs on each problem across different levels.

03-mini

ol-mini
DeepSeek-R1
DeepSeek-V3-2503
DeepSeek-V3
Claude-3.7-Sonnet
GPT-40
GPT-40-mini
DeepSeek-R1-32B
QwQ-32B

03-mini

ol-mini
DeepSeek-R1
DeepSeek-V3-2503
DeepSeek-V3
Claude-3.7-Sonnet
GPT-40
GPT-40-mini
DeepSeek-R1-32B
QwQ-32B

03-mini

ol-mini
DeepSeek-R1
DeepSeek-V3-2503
DeepSeek-V3
Claude-3.7-Sonnet
GPT-40
GPT-40-mini
DeepSeek-R1-32B
QwQ-32B

1QM Mean Median Optimality Gap

0.25 0.50 0.75 02 04 06 0800 03 06 09 04 06 0.8

Figure 15: 3SAT

QM Mean Median Optimality Gap
I I I I
| | | |
I I I I
I I I I
I I I I
I I I I
I I I I
L m m
I I I I
| | |] | []
0.2 04 0.6 0.30 0.45 0.60 0.00 0.25 0.50 0.75 0.45 0.60 0.75
Figure 16: Vertex Cover
QM Mean Median Optimality Gap
I I I I
I I I I
I I I I
I I I I
I I I I
I I I I
I I I I
| L I L
I I I I
|| L]] L}
0.25 0.50 0.75 0.25 0.50 0.750.00 0.25 0.50 0.75 0.25 0.50 0.75 1.00

Figure 17: Superstring

45

Published in Transactions on Machine Learning Research (02/2026)

03-mini
ol-mini
DeepSeek-R1
DeepSeek-V3-2503
DeepSeek-V3
Claude-3.7-Sonnet
GPT-40 |
GPT-40-mini |
DeepSeek-R1-32B- |
QwQ-32B

IQM

Mean Median

Optimality Gap

03-mini

ol-mini

DeepSeek-R1

DeepSeek-V3-2503
DeepSeek-V3- |

Claude-3.7-Sonnet
GPT-40 1|
GPT-40-mini- |
DeepSeek-R1-32B |

QwQ-32B

0.2

0.4

0.6

0.2 0.4

Figure 18: QDE

Median
I I

0.6 0.00 0.25 0.50 0.75

0.4 0.6 0.8

Optimality Gap

0.00 0.25 0.50 0.75

03-mini

ol-mini
DeepSeek-R1
DeepSeek-V3-2503
DeepSeek-V3
Claude-3.7-Sonnet
GPT-40

GPT-40-mini- Il

DeepSeek-R1-32B 1

QwQ-32B

0.2 04 0.6 0.80.0 0.3 0.6 0.9

Figure 19: 3DM

0.4 06 0.8

Optimality Gap
I

03-mini
ol-mini
DeepSeek-R1
DeepSeek-V3-2503
DeepSeek-V3
Claude-3.7-Sonnet
GPT-40
GPT-40-mini 1
DeepSeek-R1-32B |
QwQ-32B

0.50

QM

0.750.15 0.30 0.45 0.60 0.00 0.25 0.50 0.75

Figure 20: TSP

Mean

0.45 0.60 0.75

Optimality Gap

0.2 04 0.6 0.15 0.30 0.45 0.60 0.00 0.25 0.50 0.75 0.45 0.60 0.75 0.90

Figure 21: Hamiltonian Cycle

46

Published in Transactions on Machine Learning Research (02/2026)

QM Mean Median Optimality Gap

03-mini I I 1 I
ol-mini I I I I
DeepSeek-R1 I I I I
DeepSeek-V3-2503 | I I I
DeepSeek-V3 I I I I
Claude-3.7-Sonnet I I I I
GPT-40 I I I I
GPT-40-mini
DeepSeek-R1-32B
QwQ-32B 1 [| |

0.0 0.2 04 0.6 0.2 0.4 0.6 0.00 0.25 050 0.75 04 0.6 0.8 1.0

Figure 22: Bin Packing

1QM Mean Median Optimality Gap

03-mini I I I I
ol-mini 1 1 1 1
DeepSeek-R1 I I I I
DeepSeek-V3-2503 | I I |
DeepSeek-V3- | I I I
Claude-3.7-Sonnet 1 I I I
GPT-40- | I I I
GPT-40-mini- |] |
DeepSeek-R1-32B | I [I
QwQ-32B n u []

0.00 0.25 0.50 0.75 0.2 04 06 0.00 0.25 0.50 0.75 04 06 0.8

Figure 23: 3-COL

1QM Mean Median Optimality Gap

03-mini I I 1 I
ol-mini 1 I 1 I
DeepSeek-R1 I I I I
DeepSeek-V3-2503 I I I I
DeepSeek-V3 I I I I
Claude-3.7-Sonnet I I I I
GPT-40 I I I I
GPT-40-mini- 1 [| [] m
DeepSeek-R1-32B- 1| I I
QwQ-32B | | | I

00 02 04 06 0.2 04 0.6 00 02 04 06 04 06 0.8

Figure 24: Min Sum Square

1QM Mean Median Optimality Gap

03-mini I I I I
ol-mini I I I |
DeepSeek-R1 I I I I
DeepSeek-V3-2503 I I I I
DeepSeek-V3 I I I I
Claude-3.7-Sonnet I I I I
GPT-40 I I I I
GPT-40-mini
DeepSeek-R1-32B |
QwQ-32B ® m | m

0.0 0.2 0.4 0.6 0.15 030 0.45 00 0.2 04 0.6 0.60 0.75 0.90

Figure 25: Max Leaf Span Tree

47

Published in Transactions on Machine Learning Research (02/2026)

IQM Mean Median Optimality Gap
03-mini I I I
ol-mini I
DeepSeek-R1 I
DeepSeek-V3-2503 I
DeepSeek-V3 I
Claude-3.7-Sonnet I
GPT-40 |
GPT-40-mini |
DeepSeek-R1-32B I
QwQ-32B]]]]

0.48 0.56 0.64 0.72 0.50 0.55 0.60 0.65 05 06 07 0.8 035 040 0.45 0.50

Figure 26: Bandwidth

48

Published in Transactions on Machine Learning Research (02/2026)

I Tokens

In this section, we present the results of the prompt and completion tokens used in LLMs.

3000
o
£2000
o
£ 1000

v
o
S]
=]

Completion

2000

1000

Prompt

N B
o (=3
S S
=] =]

Completion

2000

10000

20000

10000

QwQ-32B 3000 DeepSeek-R1-32B GPT-40-mini GPT-40 Claude-3.7-Sonnet
correct correct 2000 correct 2000 correct 2000 correct
wrong 2000 wrong wrong wrong wrong
1000 1000 1000 1000
'} 7 * ¥ § X ¥ ¥ X X ¥ 2000 2000 3000
50001 ¢ oools L 2000
[1 g ¢
H i/}+___/ 1000 H—H l 1000 H i g
NLERNNE NS SRRl d
12345678910 123456738910 12345678910 12345678910 12345678910
DeepSeek-V3 DeepSeek-V3-2503 DeepSeek-R1 ol-mini 03-mini
correct 2000 correct 2000 correct 2000 correct 2000 correct
wrong wrong wrong wrong wrong
1000 1000 1000 1000
% X % %] 4000 20000 W

12345678910

Figure 27: 3SAT

0 S
123456782910

012345678910

N
(=3
S
=]

Completion
N
o
o
o

QwQ-32B DeepSeek-R1-32B GPT-40-mini GPT-40 Claude-3.7-Sonnet
correct 5000 correct 4000 correct 4000 correct 4000 correct
wrong wrong wrong wrong wrong
2500 2000 2000 2000
0
2000 2000
5000 2000 P
x X % 1000 ¥
— oo I’H—'_h‘l—rn o HH e i
0 L 0
12345678910 123456782910 123456780910 12345678910 12345678910
DeepSeek-V3 DeepSeek-V3-2503 DeepSeek-R1 ol-mini 03-mini
correct 4000 correct 4000 correct 4000 correct 4000 correct
wrong wrong wrong wrong wrong
2000 2000 2000 2000
0 0 0
1 T 7 7] 4000 20000 40000
50000
8 I 2000 10000 20000 ‘ P2
T 1 !
0 0 L] 0
12345678910 123456782910 123456780910 12345678910 123456780910

Figure 28: Vertex Cover

49

Published in Transactions on Machine Learning Research (02/2026)

QwQ-32B DeepSeek-R1-32B GPT-40-mini GPT-40 Claude-3.7-Sonnet
50000 correct 50000 correct correct correct correct
‘é wrong wrong 40000 wrong 40000 wrong 50000 wrong
g 25000 25000 20000 20000 25000
0 0 0 0 0
c ¥ X X X
s 5000 3000 3000
g 5000 5000 2000 2000 .
2500 % i ‘
g ¥ [¥ 1000 . 1000 P'_i_._H,H/H
© 0 0 L] s————— i 1
12345678910 1234567180910 123456718910 12345678910 12345678910
DeepSeek-V3 DeepSeek-V3-2503 DeepSeek-R1 ol-mini 03-mini
50000 correct 50000 correct 50000 correct correct correct
‘g— wrong wrong wrong 40000 wrong 40000 wrong
5 25000 25000 25000 20000 20000
o
0 0 0 0 0
£ 4000 =] 40007 T T 7" =1 20000 10000
= ‘
ézooo 5 20001 - 10000 5000 20000 ;
M ¥ H ¥ R 4
S o TR ! " 0 1 J 0 0
12345678910 1234567182910 123456718910 12345678910 12345678910
Figure 29: Superstring
QwQ-32B DeepSeek-R1-32B GPT-40-mini GPT-40 _ Claude-3.7-Sonnet
., 200 correct 200 correct 170 correct 170 correct correct
5_180 wrong % wrong wrong wrong 190 wrong
E 180 160 160
160 160 180
< I 2000 4000
2 5000 2000
g i 1000 ' { 1000 1 2000 SRR ;
g0} LR Niaanaansas) HHH
12345678910 123456782910 123456780910 12345678910 12345678910
DeepSeek-V3 DeepSeek-V3-2503 DeepSeek-R1 ol-mini 03-mini
160 correct 160 correct correct correct correct
E— wrong wrong 160 wrong 180 wrong 165 wrong
<] 160
& 150 150 150 1701 g— 155{ g—o
5 4000 X e e X 4000 40000
‘g H H 20000
= § 8 . 10000 %
22000 i_i/(-\/\/\ 2000 10000 i 20000 |
8 'EEREN 0 0 o f
12 456780910 123456782910 123456780910 12345678910 123456780910
Figure 30: QDE
QwQ-32B DeepSeek-R1-32B GPT-40-mini GPT-40 Claude-3.7-Sonnet
6000 6000 e 4000 4000 4000
- correct correct correct correct correct
2-4000 wrong 4000 wrong wrong wrong wrong
2000 2000
22000 2000 2000
s ® o o ® X 3000 4000
§ 20000 5000 2000 (gt 2000
Q g ! i 2000
i
012345678910 012345678910 123456718910 12345678910 12345678910
DeepSeek-V3 DeepSeek-V3-2503 DeepSeek-R1 ol-mini 03-mini
4000 4000 4000 4000 4000
- correct correct correct correct correct
s wrong wrong wrong wrong wrong
© 2000 2000 2000 2000 2000
o
20000
4000 20000 40000
10000 10000 20000
2000
0

123456780910 12345678910

Figure 31: 3DM

50

12345678910

Published in Transactions on Machine Learning Research (02/2026)

QwQ-32B DeepSeek-R1-32B GPT-40-mini GPT-40 Claude-3.7-Sonnet
- correct correct 40000 correct 40000 correct 40000 correct
‘E"SOOOO wrong 50000 wrong wrong wrong wrong
<] 20000 20000 20000
a
0 0 0 0 0
s XX X 4000
& 5000 5000 10000 10000 B
g TR 5000 - 5000 2000 H’I‘H_H—'\h
o x
S o 0 [HE. L e e e e e 00—tttk
12345678910 1234567182910 12345678910 12345678910 12345678910
DeepSeek-V3 DeepSeek-V3-2503 DeepSeek-R1 ol-mini 03-mini
., 40000 correct 40000 correct 40000 correct 40000 correct 40000 correct
E— wrong wrong wrong wrong wrong
S 20000 20000 20000 20000 20000
o
0 0 0 0 0
5 4000 o0 X X X1 4000 15000
%2000 10000 20000 foono
€ - T | 2000 | j¥ 20000
S (IR > 50001 st
0 0
12345678910 1234567180910 123456718910 12345678910 12345678910
Figure 32: TSP
QwQ-32B DeepSeek-R1-32B GPT-40-mini GPT-40 Claude-3.7-Sonnet
- correct correct 4000 correct 4000 correct 4000 correct
‘E:.4000 wrong 4000 wrong wrong wrong wrong
S 5000 L 2000 2000 2000 2000
a
57500 3000 4000
8 5000 5000 2000 2000
a LN 2000
§ 2500 vt | 1000, 'R 1000 §
S AT HHHECTTT
123456780910 123456782910 123456780910 12345678910 12345678910
DeepSeek-V3 DeepSeek-V3-2503 DeepSeek-R1 ol-mini 03-mini
., 4000 correct 4000 correct 4000 correct 4000 correct 4000 correct
E- wrong wrong wrong wrong wrong
S 2000 2000 2000 2000 2000
a
< 4000 XX X X X X X % X| 4000 ¥ 20000 20000
-% - 8 50000
2 : ¥ (] ! H ¥
g2000f § ————| 2000 g 10000 10000 NN 25000 -
S IR AR . i ,
12345678910 123456782910 123456780910 12345678910 12345678910
Figure 33: Hamiltonian Cycle
QwQ-32B DeepSeek-R1-32B GPT-40-mini GPT-40 Claude-3.7-Sonnet
correct correct correct correct correct
E_IOOO wrong 1000 wrong 1000 wrong 1000 wrong 1000 wrong
o
£ 500 500 500 500 500
c x XX XXX 3000
o2
© 20000 5000 2000 5000 20001
[-X § % 8
§ ' HAHHHH HHHHHHH
1000
S . I_I,m—n—n—n—»A . TR 1000] .
12345678910 1234567382910 12345678910 12345678910 12345678910
DeepSeek-V3 DeepSeek-V3-2503 DeepSeek-R1 ol-mini 03-mini
+— 1000 correct 1000 correct 1000 correct 1000 correct 1000 correct
E wrong wrong wrong wrong wrong
o
& 500 500 500 500 500
S 4000 o o X F 1 4000 20000
2 x H
[B
22000 A ¥ 5 10000 10000 20000 s
§ “wnlusguzooo 8
- - - 0
12345678910 123456718910 123456780910 12345678910 012345678910

Figure 34: Bin Packing

o1

Published in Transactions on Machine Learning Research (02/2026)

1500
1000
500

Prompt

500

N U~
o
o
=)

Completion
w
o
o

1000

Prompt

500

N B
o (=3
o o
=] =]

- A
i X

X

x|

X

X

X

X

X X

Completion

- 3000
o
£2000
I
£ 1000

7500

on

Completi
N w
w o
o o
o o

3000

a
g 2000

9]
& 1000

N B
o o
IS] o
=] =]

Completion

N B
o o
o S]
=] =]

Completion

QwQ-32B DeepSeek-R1-32B GPT-40-mini GPT-40 1500 Claude-3.7-Sonnet
correct 1500 correct correct correct correct
wrong wrong wrong wrong wrong
1000 1000 1000 1000
500 500 500 500
1500 3000
5000 1500 []
1000 8
X x § i 1000 i
0 i 500] 500]]
123456780910 123456782910 123456780910 12345678910 12345678910
DeepSeek-V3 DeepSeek-V3-2503 DeepSeek-R1 ol-mini 03-mini

correct

correct

aERERRE

2000

10000
5000

25000

correct correct correct
wrong 1000 wrong 1000 wrong 1000 wrong 1000 wrong
500 500 500 500
4000 15000 X
- - M

0 L]
12345678910

0
12345678910

12345678910 123456780910
Figure 35: 3-COL
QwQ-32B DeepSeek-R1-32B 3000 GPT-40-mini 3000 GPT-40 3000 Claude-3.7-Sonnet
correct 3000 correct correct correct correct
wrong 2000 wrong 2000 wrong 2000 wrong 2000 wrong
1000 1000 1000 1000
V % XXX XX XX 3000 4000
2000
| 5000 ¢ ¥ 2000 § 88
R ¢] 2000 § i
i Ilui!l!l1°°°|’|’!!Qi§5h;31000 "] '
123456780910 012345678910 123456780910 12345678910 12345678910
DeepSeek-V3 3000 DeepSeek-V3-2503 3000 DeepSeek-R1 3000 ol-mini 3000 03-mini
correct correct correct correct correct
wrong 2000 wrong 2000 wrong 2000 wrong 2000 wrong
1000 1000 1000 1000
X ¥ X ¥ X X X X 40001, ¥ L : X X 40000
] 15000 20000
i 17| 10000 20000 i
20001 * - 10000 8§ § §
| I 5000 i [L] ' I
0 L
123456782910 123456780910 12345678910 12345678910
Figure 36: Min Sum Square
QwQ-32B DeepSeek-R1-32B GPT-40-mini GPT-40 Claude-3.7-Sonnet
correct j| 4000 correct 3000 correct 3000 correct 3000 correct
wrong 1 wrong) wrong 1 wrong) wrong
2000 2000 2000 2000
1000 1000 1000
TETE T 2000 3000
5000 1000 7 il 2000
‘ 1000 i !
o LT NN f%| 500 { i| 1000 |
12345678910 123456782910 12345678910 12345678910 12345678910
DeepSeek-V3 DeepSeek-V3-2503 DeepSeek-R1 ol-mini 03-mini
correct 3000 correct 3000 correct 3000 correct 3000 correct
e 2000 ek 2000 o 1 2000 - 2000 o
1000 1000 1000 1000
4000 15000 7500 50000
5000
10000 s &t
: 2000 5000 2500 i 25000 W

12345678910

Figure 37: Max Leaf Span Tree

12345678910

52

12345678910

0
12345678910

Published in Transactions on Machine Learning Research (02/2026)

QwQ-32B DeepSeek-R1-32B GPT-40-mini GPT-40 Claude-3.7-Sonnet
350 350 350 350
- correct correct correct correct 350 correct
§-300 wrong 300 wrong 300 wrong 300 wrong wrong
& 250 250 300
250 250
T i i 1500 3000
5000 1000 '\'_H_H\'/’_h 10001 . £] 2000
. 1000 1
b 0 H—H—l/hH—l/‘ 500 500 W FH—'—H"M
12345678910 123456782910 123456780910 12345678910 12345678910
350 DeepSeek-V3 350 DeepSeek-V3-2503 350 DeepSeek-R1 ol-mini 350 03-mini
- correct correct correct 350 correct correct
5-300 wrong 300 wrong 300 wrong wrong 300 wrong
s 300
[N
250 250 250
250 250
10000
4000 40000
10000 e .
2000 i ‘ 1| 0% ~ . {4 20000
! ! L} o
0 0
123456780910 123456782910 123456780910 12345678910 123456780910

Figure 38: Bandwidth

53

Published in Transactions on Machine Learning Research (02/2026)

J Aha Moments

This section investigates the phenomenon of “aha moments”, sudden bursts of insight that shift reasoning
strategies, happened in DeepSeek-R1, which are usually marked by linguistic cues, e.g., “Wait, wait. That’s
an aha moment I can flag here”. The “aha moments” occur when models abruptly recognize the flawed logic,
which align with the creative restructuring of human cognition for self-correction. Figure 39 display the
number of "aha moments" in DeepSeek-R1 across different NPC problems, where the blue and the red dots
represent correct and wrong outputs respectively.

3SAT Vertex Cover Superstring QDE

80
60
40 BV SRR : §

20 H_,i_l.—-l-—-'—ll—-.—i-—‘ i i__l‘i H-—'-—I‘ i l l‘ l/!/l\H\l\i\'\H i o ' g
012345678910123456789‘101234567891012345678910
3DM TSP Hamiltonian Cycle Bin Packing

12345678910 12345678910 12345678910 12345678910
3-COL Min Sum Square Bandwidth Max Leaf Span Tree
60

012345678910 12345678910 12345678910 1234561782910

80
60
40
20

0

80

Figure 39: Number of aha moments in DeepSeek-R1

54

Published in Transactions on Machine Learning Research (02/2026)

K Solution Errors

This section visualize the solution errors of different LLMs on the 12 core NPC problems, revealing variations
in error distribution across models and difficulty levels. For each problem, each color corresponds to a specific
error type as listed in Table 7.

QwQ-32B DeepSeek-R1-32B GPT-40-mini GPT-40 Claude-3.7-Sonnet

100

[

12345678910 12345678910 12345678910 12345678910 12345678910
100 DeepSeek-V3 DeepSeek-V3-2503 DeepSeek-R1 ol-mini 03-mini

ol Gl 4

1 1 — | 1
12345678910 123456780910 12345678910

L |
678910 12345678910

I JSON ERROR [VERIFICATION ERROR W 3SAT ERROR 1 [3SAT ERROR 2

Figure 40: 3SAT

100 QwQ-32B DeepSeek-R1-32B GPT-40-mini GPT-40 Claude-3.7-Sonnet

Ll — s 1
12345678910 12345678910 12345678910 12345678910 12345678910
DeepSeek-V3 DeepSeek-V3-2503 DeepSeek-R1 ol-mini 03-mini

100
R
a _-Illlll mas JOCEZE ||, _oHHEERE
12345678910 12345678910 12345678910 12345678910 12345678910
I JSON ERROR W VERTEX COVER ERROR 1 [VERTEX COVER ERROR 4 [0 VERTEX COVER ERROR 5
[VERIFICATION ERROR I VERTEX COVER ERROR 2
Figure 41: Vertex Cover
100 QwQ-32B DeepSeek-R1-32B GPT-40-mini GPT-40 Claude-3.7-Sonnet
| |
50
ol EdERES Bl | | .Il =l
12345678910 12345678910 12345678910 12345678910 12345678910
100 DeepSeek-V3 DeepSeek-V3-2503 DeepSeek-R1 ol-mini 03-mini
50 IIII
12345678910 12345678910 12345678910 12345678910 12345678910

W JSON ERROR [VERIFICATION ERROR W@ SUPERSTRING ERROR 2 @@ SUPERSTRING ERROR 3

Figure 42: Superstring

95

Published in Transactions on Machine Learning Research (02/2026)

Claude-3.7-Sonnet

100 QwQ-32B DeepSeek-R1-32B GPT-40-mini

I LI

012345678910 12345678910 12345678910 12345678910 12345678910
100 DeepSeek-V3 DeepSeek-V3-2503 DeepSeek-R1 ol-mini 03-mini
) III I I
0 «HINER e
12345678910 12345678910 12345678910 12345678910 12345678910
I JSON ERROR I QDE ERROR 1 [QDE ERROR 2 [QDE ERROR 3
[0 VERIFICATION ERROR
Figure 43: QDE
100 QwQ-32B DeepSeek-R1-32B GPT-40-mini Claude-3.7-Sonnet
— e m—— !
J—-——=.-.-—-L
0'12?75678910 12345678910 12345678910 12345678910 12345678910
100 DeepSeek-V3 DeepSeek-V3-2503 DeepSeek-R1 ol-mini 03-mini
50 I II
0 ! ———=!_ L]
12345678910 12345678910 12345678910 12345678910 12345678910
I JSON ERROR [3DM ERROR 1 [3DM ERROR 2 [3DM ERROR 3
[VERIFICATION ERROR
Figure 44: 3DM
100 QwQ-32B DeepSeek-R1-32B GPT-40-mini GPT-40 Claude-3.7-Sonnet
’] i |IIIIIIII |
012345678910 12345678910 12345678910 12345678910 12345678910
100 DeepSeek-V3 DeepSeek-V3-2503 DeepSeek-R1 ol-mini 03-mini
I I Il
50]
| il I
: - |

1 == 1 L S e e e e e BN O |
12345678910 12345678910 12345678910 12345678910 12345678910

= JSON ERROR [TSP ERROR 1 [0 TSP ERROR 3 [TSP ERROR 4
[0 VERIFICATION ERROR @@ TSP ERROR 2

Figure 45: TSP

56

Published in Transactions on Machine Learning Research (02/2026)

QwQ-32B DeepSeek-R1-32B GPT-40-mini GPT-40 Claude-3.7-Sonnet

Hnn Ilii J_.v.-iii-iii L5 -

12345678910 12345678910 12345678910 123456780910 1 45678910
DeepSeek-V3 DeepSeek-V3-2503 DeepSeek-R1 ol-mini 03-mini

100

50 L

100

b

= o |
012345678910 12345678910 12345678910 12345678910 12345678910
I JSON ERROR I HAM CYCLE ERROR 1 % HAM CYCLE ERROR 3 HAM CYCLE ERROR 5
[VERIFICATION ERROR W HAM CYCLE ERROR 2 mmm HAM CYCLE ERROR 4
Figure 46: Hamiltonian Cycle
100 QwQ-32B DeepSeek-R1-32B GPT-40-mini GPT-40 Claude-3.7-Sonnet

il il
Wl

E

123456780910 12345678910

12345678910
DeepSeek—V3 DeepSeek-V3-2503 DeepSeek-R1 ol-mini 03-mini

12345678910 12345678910

100
i 0 |
il |
50 mal II ap IIII
012345(578910 12345678910 12345678910 12345678910 12345678910
I JSON ERROR I BIN PACKING ERROR 1 [BIN PACKING ERROR 2 [BIN PACKING ERROR 3
[VERIFICATION ERROR
Figure 47: Bin Packing
100 QwQ-32B DeepSeek-R1-32B GPT-40-mini GPT-40 Claude-3.7-Sonnet
50 [
=1
0'12345678910 12345678910 12345678910 12345678910 12345678910
100 DeepSeek-V3 DeepSeek-V3-2503 DeepSeek-R1 ol-mini 03-mini
-l l
0 == 1 --- on__HN .
12345678910 12345678910 12345678910 12345678910 12345678910

N JSON ERROR [0 VERIFICATION ERROR @@ 3-COL ERROR 1

Figure 48: 3-COL

57

Published in Transactions on Machine Learning Research (02/2026)

QwQ-32B DeepSeek-R1-32B GPT-40-mini Claude-3.7-Sonnet

100

50

12345678910 12345678910 12345678910 12345678910
DeepSeek-V3 DeepSeek-V3-2503 DeepSeek-R1 ol-mini 03-mini

S il

123456780910 12345678910

100

12345678910 12345678910

12345678910

N JSON ERROR [MIN SUM SQ ERROR 1 [MIN SUM SQ ERROR 2 [MIN SUM SQ ERROR 3
[0 VERIFICATION ERROR

Figure 49: Min Sum Square

100 QwQ-32B DeepSeek-R1-32B GPT-40-mini Claude-3.7-Sonnet
- -..---
" 1 ||| !

|- [| | — &
345678910 12345678910 12345678910 12345678910 12345678910

DeepSeek-V3 DeepSeek-V3-2503 DeepSeek-R1 ol-mini 03-mini

100

50 I

illll

]
012345678910 12345678910 12345678910 12345678910 12345678910
I JSON ERROR [MLST ERROR 1 [0 MLST ERROR 3 MLST ERROR 5
[VERIFICATION ERROR [MLST ERROR 2 [MLST ERROR 4
Figure 50: Max Leaf Span Tree
100 QwQ-32B DeepSeek-R1-32B GPT-40-mini Claude-3.7-Sonnet
0 =-!II L -.
12345678910 12345678910 12345678910 123456780910 12345678910
100 DeepSeek-V3 DeepSeek-V3-2503 DeepSeek-R1 ol-mini 03-mini
. i il il Il
o . -__--==—!_I__. - I

12345?78910 12345678910 12345678910 12345678910 12345678910

[JSON ERROR [BANDWIDTH ERROR 1 [BANDWIDTH ERROR 2 [BANDWIDTH ERROR 3
[VERIFICATION ERROR

Figure 51: Bandwidth

o8

Published in Transactions on Machine Learning Research (02/2026)

L Analysis of Reasoning Failure Cases

DeepSeek-R1. Taking Deepseek-R1 as an example, the reasoning content of its failure cases shows several
patterns that lead to wrong answers. The concrete examples of failure cases for DeepSeek-R1 are shown in
Table 22. Specifically, the typical reasoning failure cases include:

o Cascading assumptions and placeholder/guess: Generally, DeepSeek-R1 adopts the trail-and-error approach
to find the answer. Although it may give the high-level approach in the beginning, after the first answer is
not correct, it will start making assumptions to derive an answer without logical deduction. The following
verification may not consider all the given conditions; thus, the verification and the answer are wrong. If
it has already made multiple assumptions and verifications without deriving the correct answer, it will
return a placeholder or an educated guess.

e Manual computations errors and complexity avoidance: DeepSeek-R1 makes manual computations that
are time-consuming and token-consuming instead of using programming, such as manually counting the
length and sum of an array by listing the elements one by one. There are also computation errors that the
counting, summation, or sorting results are wrong. In addition, although it already gives the right method,
it avoids computation due to complexity and starts making assumptions to simplify the reasoning, which
may lead to the incorrect solutions.

e Reliance on prompt examples: There are examples with the same requirement in the prompt, and
DeepSeek-R1 analyzes and generates the answer heavily relying on the example solution, which can be a
distraction that DeepSeek-R1 wastes time verifying and editing the example solution.

o Reasoning repetition: The same assumption, logic, or example can be repeated multiple times without
making further progress in solving the problem, which is a waste of time and tokens.

99

Published in Transactions on Machine Learning Research (02/2026)

Table 22: Detailed Analysis with Examples of Failure Cases for DeepSeek-R1.

Detailed Failure Reason

‘ Reasoning Content

cascading assumptions

... Alternatively, perhaps the solution includes nodes 8, 2, 3, 6, 7, 9, 10, 12, 13,
14, 18, 19, 20, 22, 24, 25, 30, 34, 35, 37. Let’s count these. That’s 20 nodes. ...
Maybe the solution is to select nodes 0, 2, 3, 5, 6, 7, 8, 9, 10, 12, 13, 14, 18, 19,
20, 22, 24, 25, 30, 34, 35, 37. Wait, but that’s more than 20. Need to pick 20.
... Wait, perhaps the solution includes nodes 2, 3, 6, 7, 8, 9, 10, 12, 13, 14, 18,
19, 20, 22, 24, 25, 30, 34, 35, 37. Let’s check: ...

placeholder/guess

... At this point, I'm not sure. Given the time I've spent and the complexity,
perhaps the solution is the string pyeojmmykmadslpeetdb with length 20, even
though some required substrings might be missing. But according to the problem
statement, there is a solution. So I’ll have to take a guess. ... But given the
time I've spent and the need to provide an answer, I’ll make an educated guess...

manual computation errors

Now, let’s count the number of elements. Each comma separates elements. So
between each number there’s a comma. Let’s count commas. But maybe it’s
easier to split by each element. Let’s do that step by step. Start from the first
element: 1. 1; 2. 14; 3. 1; 4. 1; 5. 5; ... So there are 80 items.

complexity avoidance

So, if a node is in an edge that’s not covered by any other node, then that
node must be in the vertex cover. But checking that for each edge would be
time-consuming. Let’s look for edges that have a unique node. For example, if
there’s an edge (a, b), and neither a nor b are connected to any other nodes,
then one of them must be in the cover. But in a graph of 40 nodes, this is
unlikely. So probably most nodes have multiple edges.

reliance on prompt examples

... Wait, in the example problem, the solution included nodes 0, 2, 4, 5, 6, 7,
8,9, 13, 14, 15, 19, 20, 23, 25, 26, 30, 32, 34, 37. So maybe similar patterns
here. But the new problem’s edges are different. ... Alternatively, perhaps the
solution is similar to the example. The example’s solution includes nodes 0,
2,4,5,6,7,8,9, 13, 14, 15, 19, 20, 23, 25, 26, 30, 32, 34, 37. Looking at the
problem’s edge set, perhaps some of these nodes are also high-degree here. Let’s
see. ... Wait, another idea: the example solution included nodes 0, 2, 4, 5, 6,
7,8,9, 13, 14, 15, 19, 20, 23, 25, 26, 30, 32, 34, 37. If I look at these nodes,
perhaps they are all the nodes from one side of a bipartition. For example, if
the graph is bipartite and these nodes form one partition.

reasoning repetition (example)

Looking at the edges, let’s see which nodes are involved a lot. For example,
node 8 appears in edges like (8,18), (8,35), (8,21), (8,30), (8,39), etc. Maybe
node 8 is a hub. ... In the problem to solve, node 8 is involved in many edges,
as per the edges provided. So including 8 in the cover would cover a lot of edges.
... For example, node 8 appears in a lot of edges. Including node 8 would cover
many edges. ... For example, many edges involve node 8. So including node 8
is a must.

reasoning repetition (logic)

... So perhaps the key is to find the longest possible superstring that includes as
many of these as possible, then add the 'b’ and the other small strings. But the
b’ is a problem. Let’s think: the superstring must include ’b’ as a substring.
Since none of the other strings contain 'b’; we have to include the string b’ in
the superstring. So the superstring will have the 'b’ as a standalone. But how?
... So in the current problem, perhaps there’s a way to find such a chain where
each string overlaps with the next, and ’'b’ is inserted in the right place. But
I'm stuck. Let’s try to look for possible overlaps between the strings, especially
those that include 'mmy’ and 'b’. Wait, the b’ must be present. How can 'b’ be
included? Since it’s a single character, perhaps it’s placed between two other
characters in the superstring. For example, if there’s a string ending with ’a’
and another starting with ’c’, but ’b’ is inserted between them. But in this case,
the other strings don’t have ’a’ or ’c’ next to 'b’, so the b’ would have to be
a standalone. So the superstring must contain ’b’ as a separate character. ...
So, perhaps the superstring is a combination of several merged strings, with ’b’
inserted in between.

60

Published in Transactions on Machine Learning Research (02/2026)

Claude. Unlike Deepseek-R1, Claude’s failure cases’ reasoning content is generally much shorter. Claude
usually starts with giving the high-level step-by-step solution but does not do detailed calculation and
verification. It derives a final answer with approximation calculation and claims that the answer is verified as
correct. An example is shown in Table 23.

Table 23: Claude Failure Case.

Based on my analysis of the edge patterns, the following nodes would form
an effective vertex cover:

- 11 (connects to many nodes)

- 14 (high degree, covers many edges)

- 10 (connects to multiple nodes)

- 16 (appears frequently in edge list)

- 19 (connects to several nodes)

This selection ensures that every edge in the graph has at least one endpoint
in our subset, with a total of 11 nodes which meets our constraint.

61

Published in Transactions on Machine Learning Research (02/2026)

M Thorough Error Analysis of QwQ-32B

We present a detailed analysis of QwQ-32B’s distinctive output behavior and failure modes. Table 24 provides
representative examples of the model’s reasoning outputs.

Format-Following Difficulty. A notable limitation of QwQ-32B is its difficulty adhering to strict output
formats. Although the prompt explicitly specifies responses in the format json{"solution": ...}, the
model frequently omits the json prefix, producing outputs of the form {"solution": ...} instead. This
behavior likely stems from QwQ’s pretraining on mathematical problem-solving datasets, where instructions
typically encourage responses such as "Please reason step by step and place your final answer within \boxed{},"
rather than enforcing rigid structured formats. While the model occasionally self-corrects to conform to
the specified format, such instances are rare. To address this limitation, we relax format requirements for
all models in npeval during parsing the solutions (shown in the response part of Appendix D), accepting
responses of the form {"solution": ...}. This adjustment enables fairer evaluation of offline models with
limited format-following capabilities, allowing answers with minor format violations to be considered valid.

Does Increasing Token Limit Reduce Errors? For offline models, the output token limit is set to 7,500
tokens, consistent with other benchmarks (Lin et al., 2025). On average across all problems and difficulty
levels, QwQ-32B reaches this limit in 64.53% of cases, demonstrating its tendency toward verbose generation.
We tested QwQ-32B with an increased token limit (32,768), which did not significantly improve overall
reasoning success rates. In contrast, other offline reasoning models such as DeepSeek-R1-32B do not exhibit
comparable difficulties under similar conditions. This suggests an inherent limitation in QwQ’s reasoning
capacity attributable to its verbosity.

Limited Reasoning Capability. As shown in Appendix K, QwQ-32B exhibits a distinct error distribution
compared to other models, with notably high rates of JSON ERROR, particularly as problem difficulty
increases. Importantly, this elevated error rate does not result from format-following issues but rather from
the model’s failure to complete its reasoning process and produce a valid answer before reaching the token
limit. We identify two common failure modes on challenging problems. First, the model may enter infinite
reasoning loops, repeatedly generating identical content until exhausting the token limit. This behavior
is not unique to QwQ-32B and has been observed in other reasoning models, including DeepSeek-R1, as
illustrated in Table 22. This phenomenon highlights a potential direction for future improvements in reasoning
model design. Second, QwQ-32B may resort to best-effort guessing, abandoning systematic reasoning in
favor of heuristic solutions that satisfy only simple problem constraints. This behavior further indicates that
benchmark problems exceed the model’s effective reasoning capacity.

Takeaways for Errors of QwQ-32B

e The format \boxed{} format is handled through our general answer-parsing template

e The errors primarily arise from incomplete reasoning processes, driven by Qw(Q-32B’s verbosity and
limited reasoning capability

62

Published in Transactions on Machine Learning Research (02/2026)

Table 24: QwQ-32B Reasoning Representative Examples

Example

Reasoning Content

Problem in Format Follow-
ing

... All are present. So this should be a valid solution. Let me confirm again.
Another check: For X=5, we chose triple8 (5,13,29). That uses Y=13 and
7Z=29 ... So correct. Yes, this seems to work. So the solution is the list
of these triples: {"solution": [[0,10,21],[1,15,28], [2,16,26],[3,14,20],[4,11,23],
[5,13,29],[6,18,24],[7,19,25],...]}

Self-Correction in Format
Following

Final Answer {"solution": ([3,19,21],[6,13,20],[9,11,26],
[4,15,24],[8,10,25],[5,16,23],[7,18,29], [0,17,22],[1,12,28],[2,14,27]]}. Wait,
the user’s instruction says to present the answer in the specified JSON format.
I think the correct way is to just output the JSON without any extra text.
So the final answer is: json{"solution": [[3,19,21],[6,13,20],[9,11,26],...]} Final
Answer json {"solution": [[3,19,21],(6,13,20],[9,11,26],...]}

Infinite Reasoning Loop

All are present. So this is a valid solution. The solution is the
list of these triples. Final Answer {"solution": [[0,13,29],[1,12,28],[2,17,20],
[3,10,26],[4,18,27],[5,14,23], [6,11,25],[7,15,24],...]} Final Answer {"solution":
[[0,13,29],]1,12,28],[2,17,20], [3,10,26],[4,18,27],[5,14,23],...]} Final Answer {"so-
lution": [[0,13,29],[1,12,28],...]} ... (repeated output continues)

Best-Effort Guess

Plausible Solution: Given the complexity, I’ll generate a solution by making
educated guesses and ensuring key clauses are satisfied. For instance, Set
variables involved in multiple clauses to "true" to cover more clauses. After
careful consideration and ensuring no immediate contradictions, here’s a
generated solution ... For an exact answer, a SAT solver should be used.

63

	Introduction
	Related Work
	Preliminaries
	Nondeterministic Polynomial-time Problem Challenge
	Problem Suite: npgym
	Solver Suite: npsolver
	Evaluation Suite: npeval

	Results
	Analysis of Performance
	Analysis of Used Tokens
	Analysis of Solution Errors
	Analysis of Reasoning Failure Cases
	Cost of Evaluations

	Limitations and Future Work
	Conclusion
	Frequently Asked Questions (FAQs)
	Why Ever-Scaling and the Four Desiderata?
	Why Focusing on NP (Specifically NPC) Problems?
	Why Not Considering More Complex Test-time Scaling?
	Why Not Focusing on 3SAT Only?
	Can Tool Use Crush NPPC?
	Determining the Difficulty Levels
	Selection of Models
	Code and Leaderboard
	Correlation of Performance between NPPC and Other Benchmarks
	Broader Impact Statement

	Computational Complexity: P, NP, NP-complete and NP-hard
	Modules in NPPC
	Problem Suite: npgym
	Solver Suite: npsolver
	Evaluation Suite: npeval

	Prompts and Responses
	List of NP-complete Problems
	Hyperparameters
	Full Results over Problems
	Performance over Problems
	Tokens
	Aha Moments
	Solution Errors
	Analysis of Reasoning Failure Cases
	Thorough Error Analysis of QwQ-32B

