Nondeterministic Polynomial-time Problem Challenge: An Ever-Scaling Reasoning Benchmark for LLMs

Anonymous authors
Paper under double-blind review

Abstract

Reasoning is the fundamental capability of large language models (LLMs). Due to the rapid progress of LLMs, there are two main issues of current benchmarks: i) these benchmarks can be crushed in a short time (less than 1 year), and ii) these benchmarks may be easily hacked. To handle these issues, we propose the **ever-scalingness** for building the benchmarks which are scaling over complexity against crushing, instance against hacking and exploitation, oversight for easy verification, and coverage for real-world relevance. This paper presents Nondeterministic Polynomial-time Problem Challenge (NPPC), an ever-scaling reasoning benchmark for LLMs. Specifically, the NPPC has three main modules: i) npgym, which provides a unified interface of 25 well-known NP-complete problems and can generate any number of instances with any levels of complexities, ii) npsolver, which provides a unified interface to evaluate the problem instances with both online and offline models via APIs and local deployments, respectively, and iii) npeval, which provides the comprehensive and readyto-use tools to analyze the performances of LLMs over different problems, the number of tokens, the aha moments, the reasoning errors and the solution errors. Extensive experiments over widely-used LLMs demonstrate: i) NPPC can successfully decrease the performances of advanced LLMs to below 10%, demonstrating that NPPC is not crushed by current models, ii) DeepSeek-R1, Claude-3.7-Sonnet, and o1/o3-mini are the most powerful LLMs, where DeepSeek-R1 can outperform Claude-3.7-Sonnet and o1/o3-mini in most NP-complete problems considered, and iii) the numbers of tokens, and moments in the advanced LLMs, e.g., Claude-3.7-Sonnet and DeepSeek-R1, are observed first to increase and then decrease when the problem instances become more and more difficult. Through continuously scaling analysis, NPPC can provide critical insights into LLMs' reasoning capabilities, exposing fundamental limitations and suggesting future directions for further improvements.

1 Introduction

The remarkable successes of Large Language Models (LLMs) (Achiam et al., 2023) have catalyzed the fundamental shift of artificial intelligence. Recent breakthroughs on reasoning (Guo et al., 2025) enable LLMs to complete complex tasks, e.g., math proof, code generation and computer use, which require the capabilities of understanding, generation and long-term planning. Various benchmarks, e.g., GPQA (Rein et al., 2024), AIME, SWEbench (Jimenez et al., 2024) and ARC-AGI (Chollet, 2019), are proposed to evaluate these advanced reasoning capabilities, where most benchmarks are curated and verified by human researchers with a

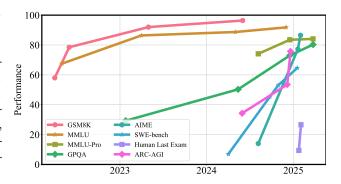


Figure 1: Crush of benchmarks

finite number of questions. Current benchmarks face two fundamental challenges that limit their effectiveness for LLM evaluation. First, current benchmarks can be *crushed* in a short time: GSM8K (Cobbe et al.,

2021) performance increased from approximately 35% to 95% within three years, while SWE-bench (Jimenez et al., 2024) scores improved from 7.0% to 64.6% in merely eight months, as illustrated in Figure 1. This rapid saturation suggests that these benchmarks quickly lose their discriminative power as models advance. Second, current benchmarks can be easily hacked or exploited. Static benchmarks are susceptible to data contamination and memorization issues, leading to overfitting rather than genuine capability assessment (Wu et al., 2025; Xu et al., 2024). While live benchmarks such as LiveCodeBench (Jain et al., 2025) address contamination by continuously introducing new problems, they require substantial ongoing human curation efforts. Similarly, human evaluation platforms like ChatbotArena (Chiang et al., 2024) incur significant costs (approximately \$3,000 per evaluation) and remain vulnerable to strategic manipulation where MixEval (Ni et al., 2024) can achieve comparable correlation with human judgment at under \$1 per evaluation. These limitations represent significant obstacles for reliable evaluation of the rapidly evolved LLMs.

To address these issues, we propose the **ever-scalingness** with four desiderata for a benchmark (as shown in Figure 2): i) scaling over complexity – the benchmark can generate the problems with continually increasing complexities to avoid the crushing of the benchmarks. This ensures that as LLMs improve, the benchmark remains challenging by providing harder problems that push the boundaries of current capabilities for long-term differentiation. ii) scaling over instance – the benchmark can generate an infinite number of instances to avoid the exploitation and overfitting. This prevents LLMs from memorizing specific problem instances during training and ensures that the evaluation truly measures the reasoning capabilities of LLMs. iii) scaling over oversight – the

Figure 2: Desiderate of ever-scalingness

benchmark can verify the correctness of the solutions efficiently for the problems with any complexity. This is crucial because as problem complexity increases, manual verification becomes impractical or impossible. Automated and reliable verification enables evaluation at scale and ensures that harder problems can be verified efficiently, making the benchmark practically sustainable. iv) scaling over coverage – the problems covered by the benchmark should be highly relevant to the real-world problems, rather than puzzles or rare problems. This ensures that performance improvements on the benchmark translate to practical value, measuring capabilities that matter for downstream tasks and real-world deployment rather than narrow, specialized skills. These four desiderata for ever-scaling benchmarks ensure continuous differentiation among LLMs over extended periods, identifying fundamental limitations for further improvement.

To construct the ever-scaling benchmark, we focus on nondeterministic polynomial-time (NP) problems whose solutions can be verified in polynomial time (Cormen et al., 2022). Specifically, we target on NP-complete (NPC) problems, i.e., the most computationally challenging problems in the NP class, for three key reasons. First, NPC problem instances can be systematically generated across arbitrary difficulty levels through controlled parameters, e.g., numbers of variables, enabling precise scaling of both complexity and instance. Second, NPC problems are intrinsically "difficult to solve, easy to verify", i.e., no polynomial-time algorithms have been discovered for solving NPC problems, making them computationally intractable even with specialized tools, while their solutions remain efficiently verifiable. Problems in the P complexity class can be solved in polynomial time. When LLMs are equipped with code execution capabilities, they can generate and execute algorithms to solve these problems directly. Therefore, such benchmarks become susceptible to trivial solutions through computational tools rather than genuine reasoning. Conversely, NP-hard problems, particularly those lacking polynomial-time verification procedures, present the challenge for verifying the solutions for large-scale problem instances. Third, NPC problems demonstrate broad applicability, including diverse real-world scenarios, e.g., routing (Toth & Vigo, 2002), and various puzzles, e.g., Sudoku (Seely et al., 2025). The theoretical foundation for using NPC problems as a comprehensive evaluation framework stems from the fundamental property that any NP problem can be reduced to an NPC problem in polynomial time, establishing NPC problems as a theoretically grounded, universal framework for computational problem-solving assessment. Therefore, NPC problems are the foundation problems of all computational problems and LLMs are the foundation models for wide range tasks, thus leading to our ever-scaling nondeterministic polynomial-time problem challenge (NPPC) (Figure 4(a)).

Specifically, NPPC has three main modules: i) npgym, which provides a unified interface of 25 well-known NPC problems and can generate any number of instances with any levels of complexities, which implies the ever-scalingness of NPPC, ii) npsolver, which provides a unified interface to evaluate the problem instances with both online and offline models via APIs and local deployments, respectively, to facilitate users to evaluate their own models and iii) npeval, which provides comprehensive and ready-to-use tools to analyze the performances of LLMs over different problems, the number of tokens, the "aha moments", the reasoning errors and the solution errors, which can provide in-depth analysis of the LLMs and the insights to further improve the LLMs' reasoning capabilities. Extensive experiments over widely-used LLMs, i.e., GPT-4o-mini, GPT-40, Claude-3.7-Sonnet, DeepSeek-V3, DeepSeek-R1, and OpenAI o1-mini, demonstrate: i) NPPC can successfully decrease the performances of advanced LLMs to below 10%, demonstrating that NPPC is not crushed by current LLMs, ii) DeepSeek-R1, Claude-3.7-Sonnet, and o1/o3-mini are the most powerful LLMs, where DeepSeek-R1 can outperform Claude-3.7-Sonnet and o1-mini in most NP-complete problems considered, and iii) the numbers of tokens, aha moments in the advanced LLMs, e.g.. Claude-3.7-Sonnet and DeepSeek-R1, are observed to first increase and then decrease when the problem instances become more and more difficult. We also analyze the typical reasoning errors in the LLMs, which provide the insights of the fundamental limitations of current LLMs and suggest the potential directions for further improvement. To the best of our knowledge, NPPC is the first ever-scaling benchmark for reliable and rigorous evaluation of the reasoning limits of LLMs, according to the four desiderata defined previously.

2 Related Work

Traditional benchmarks are typically curated by human with static datasets. Abstraction and Reasoning Corpus (ARC-AGI)-1 (Chollet, 2019) is designed to be "easy for humans, hard for AI", which is formed by human-curated 800 puzzle-like tasks, designed as grid-based visual reasoning problems. o3 at high compute scored 87% on ARC-AGI-1 (OpenAI, 2025), which roughly crushes the ARC-AGI-1 benchmarks and leads to the emergence of the ARC-AGI-2 benchmark. This pattern exemplifies a fundamental challenge with traditional benchmarks for LLMs, including MMLU (Hendrycks et al., 2021), GPQA (Rein

Table 1: Comparison of different reasoning benchmarks according to the ever-scalingness.

	Complexity	Instance	oversight	Coverage
NPHardEval (Fan et al., 2024)	X	X	√	X
ZebraLogic (Lin et al., 2025)	✓	X	✓	X
Reasoning Gym (Stojanovski et al., 2025)	X	✓	✓	✓
Sudoku-Bench (Seely et al., 2025)	X	✓	✓	X
ARC-AGI-1 & 2 (Chollet, 2019)	×	×	X	X
NPPC (this work)	✓	✓	✓	✓

et al., 2024), GSM8K (Cobbe et al., 2021), and SWE-bench (Jimenez et al., 2024), where static benchmarks are systematically solved within relatively short periods (as shown in Figure 1). Therefore, researchers have to continuously either develop new benchmarks, e.g., MMLU-Pro (Wang et al., 2024b) and SuperGPQA (Du et al., 2025), or regularly update with new datasets and problems, e.g., LiveCodeBench (Jain et al., 2025) and SWE-bench-Live (Zhang et al., 2025). However, these remedies rely on extensive human efforts to maintain their relevance and difficulty and cannot fully address the crushing issue of benchmarks.

Several recent benchmarks consider either NP(C) problems, e.g., 3SAT (Balachandran et al., 2025; Hazra et al., 2024; Parashar et al., 2025), or partially the ever-scalingness (Fan et al., 2024; Stojanovski et al., 2025) (displayed in Table 1). NPHardEval (Fan et al., 2024) considers 3 problems from P, NPC and NP-hard classes and use these class to evaluate the LLMs. We note that the problems in P class can be solved by augmenting the LLMs with tools, e.g., code running, and the NP-hard problems cannot be verified efficiently, therefore, NPHardEval cannot scale over the scalable oversight. Only 3 NPC problems are considered, i.e., Knapsack, Traveling salesman problem (TSP) and graph coloring, and the instances of each problem in NPHardEval are finite and only regularly updated, which cannot scale over the instance and complexity. ZebraLogic (Lin et al., 2025) considers one logic puzzle, i.e., Zebra puzzle, to test the reasoning capabilities of LMs when the problems' complexities increase. However, the reasoning capability on specific puzzles does not necessarily transfer to other problems, which violates the scaling of the coverage. Sudoku-Bench (Seely et al., 2025) focuses on one specific Sudoku game with 2765 procedurally generated instances with various difficulty levels. Reasoning Gym (Stojanovski et al., 2025) is an ongoing project which collects the procedural generators and algorithmic verifiers for infinite training data with adjustable complexity. Though with some NP(C)

problems, e.g., Zebra puzzles and Sudoku, the reasoning gym does not specifically focus on NPC problems and cannot meet the desiderata of ever-scalingness. Several recent work leverages NP(C) problems as the training environments to improve the general reasoning capabilities of LLMs (Zeng et al., 2025; Li et al., 2025; Liu et al., 2025), which demonstrates the advantages of NP(C) problems in terms of controllable difficulty and efficient solution verification. These existing efforts highlight the need for a systematic approach for training and benchmarking LLMs grounded in the complexity theory. This motivates the formulation of ever-scalingness and the development of NPPC, an ever-scaling reasoning benchmark.

3 Preliminaries

P and NP Problems. The problems in P class are decision problems that can be solved in polynomial time by a deterministic Turing machine, which implies there exists an algorithm that can find a solution in time proportional to a polynomial function, e.g., $O(n^k)$, of the input size n. Examples include sorting, shortest path problems, and determining if a number is prime. The problems in NP class are decision problems that can be solved in polynomial time by nondeterministic Turing machine, where a proposed solution can be easily verified, though finding that solution might require more time (as displayed in Definition 1). All P problems are also in NP, but the reverse remains an open question, known as "P vs. NP problem". NP problems form the cornerstone of computational complexity theory, for which solution verification is tractable (polynomial time) even though solution discovery may be intractable (potentially exponential time), i.e., "difficult to solve, easy to verify". Many real-world optimization problems can be formulated as NP problems, such as equilibrium finding in game theory, portfolio management, network design and machine learning.

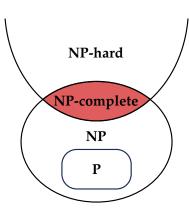


Figure 3: Complexity classes

Definition 1 (NP Problems). The complexity class NP consists of all decision problems Ω such that for any "yes" instance I of Ω , there exists a certificate σ of polynomial length in |I| where a deterministic Turing machine can verify in polynomial time that c is a valid certificate for I.

NP-complete (**NPC**) **Problems.** Formally, a problem Ω is an NPC problem if i) the problem is in NP, and ii) any NP problems can be transformed to problem Ω in polynomial time. This reducibility property establishes NPC problems as the "hardest" problems in NP class. The Cook-Levin theorem established SAT as the first proven NPC problem (Cook, 2023; Karp, 2009), while 3SAT is the special case of SAT and is also an NPC problem. Subsequent NPC problems typically proven via reduction chains back to 3SAT or other established NPC problems. The most well-known NPC problems include vertex cover problem, clique problem, traveling salesman proble (TSP), Hamiltonian path/cycle problem, etc. NPC problems play the most important roles in answering the "P vs. NP problem", i.e., if any NPC problem were shown to have a polynomial-time algorithm, then P = NP. However, despite decades of research, no polynomial-time algorithms for any NPC problem is discovered, which implies that NPC problems are computationally intractable by current methods. While NP-hard problems represent a broader class that includes optimization variants and potentially harder problems, they are less suitable for benchmarks because their solutions cannot be verified in polynomial time, which fundamentally limits the scaling of complexity and oversight of the benchmarks.

Reasoning in LLMs. The reasoning ability of LLMs refers to the model's capacity to tackle complex problems, e.g., mathematical proof, code generation through multi-step thinking and context understanding. Recently, specialized reasoning models have been proposed. OpenAI-o1 is an LLM trained with reinforcement learning (RL), which enables the model to perform complex reasoning, including logical thinking and problem solving, via chain-of-thought (CoT). o1 thinks before it answers and can significantly outperform GPT-40 on reasoning-heavy tasks with high data efficiency. DeepSeek-R1 (Guo et al., 2025) is an enhanced reasoning model designed to improve LLMs' reasoning performance that incorporates multi-stage training and cold-start data before the large-scale RL. DeepSeek-R1 demonstrates remarkable reasoning capabilities, and achieves comparable performance to OpenAI-o1 across various reasoning tasks, e.g., mathematical problems, code generation, and scientific reasoning. Additionally, there are open-sourced medium-sized LLMs with strong reasoning capabilities, e.g., DeepSeek-R1-32B, a distilled version of DeepSeek-R1, and QwQ-32B.

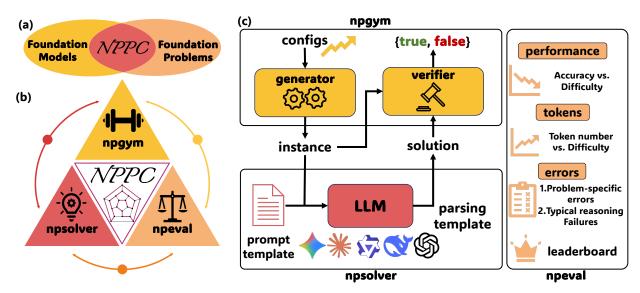


Figure 4: Overview of **NPPC**. (a) **NPPC** represents the intersection of foundation models and foundation problems. (b) The three main components of **NPPC**: npgym (problem generation), npsolver (solution generation), and npeval (evaluation). (c) Workflow diagram: npgym configuring generators and verifiers, npsolver using LLMs to generate solutions, and npeval measuring performance metrics.

4 Nondeterministic Polynomial-time Problem Challenge

We introduce Nondeterministic Polynomial Problem Challenge (**NPPC**), an ever-scaling reasoning benchmark for LLMs. There are three main components in **NPPC** (as displayed in Figure 4(b)): i) npgym, which provides a unified interface of **25** well-known NPC problems and can generate any number of instances and verify the solution with any levels of complexities, ii) npsolver, which provides a unified interface to evaluate the problem instances with both online and offline models via APIs and local deployments, respectively, to facilitate the users to evaluate their own models and iii) npeval, which provides the comprehensive and ready-to-use tools to analyze the performances of LLMs over problems, the number of tokens, the "aha moments", the reasoning and solution errors, providing the in-depth analysis of the LLMs' reasoning capabilities.

4.1 Problem Suite: npgym

Interaction Protocol. Typically, NPC problems are the decision problems where given the instance I, the answer is "Yes" or "No". However, the LLMs may take a random guess without reasoning for the true solution (Fan et al., 2024). Therefore, we consider a more challenging setting: given the instance I, the LLM needs to generate the solution s for the instance. This setting will enforce the LLMs to reason for the correct solutions and the NPPC needs to provide the certificate σ to verify the solutions generated by the LLMs. npgym provides a unified interface of NPC problems to interact with LLMs. The interaction between npgym and the LLM is displayed in Figure 4(c). npgym generates the instance I with the given configuration, and the LLM receives the instance and generate the solution s, then the solution is verified by npgym with the output $\{\text{true}, \text{false}\}$. The representation of problem instances is designed to be concise and complementary to include all necessary information for the LLMs to reason for the solution.

Core Problems and Extension. There are 25 typical NPC problems implemented in *npgym*. Among all NPC problems, 12 typically NPC problems are selected as the **core** problems, chosen for their fundamental importance and broad real-world applications across domains such as logistics and routing (TSP, Hamiltonian Cycle), network optimization (Vertex Cover, Graph 3-Colourability), resource allocation (Bin Packing, 3-Dimensional Matching), automated reasoning (3SAT), computational biology (Shortest Common Superstring), and mathematical optimization (Quadratic Diophantine Equations, Minimum Sum of Squares). The other 13 problems are categorized as the **extension** problems, covering specialized applications in social networks, facility location, cryptography, and data mining. A full list of the 25 problems is displayed in Table 2.

Table 2: Core Problems and Extension.

Core	3-Satisfiability (3SAT), Vertex Cover, 3-Dimensional Matching (3DM), Travelling Salesman (TSP), Hamiltonian Cycle, Graph 3-Colourability (3-COL), Bin Packing, Maximum Leaf Spanning Tree, Quadratic Diophantine Equations (QDE), Minimum Sum of Squares, Shortest Common Superstring, Bandwidth
Extension	Clique, Independent Set, Dominating Set, Set Splitting, Set Packing, Exact Cover by 3-Sets (X3C), Minimum Cover, Partition, Subset Sum, Hitting String, Quadratic Congruences, Betweenness, Clustering

Generation and Verification. Specifically, for each problem, npgym implements two functions:

- generate_instance(·): given the configurations, this function will generate the problem instances. Taking the 3SAT as an example, the configurations include the number of variables and the number of clauses. The generated instances are guaranteed to have at least one solution and not necessarily to have a unique solution, which is ensured by the generation process.
- verify_solution(·): given the solution and the problem instance, this function will verify whether the solution is correct or not. Additional to the correctness, this function also returns the error reasons. Taking the TSP as an example, the errors include i) the solution is not a tour, ii) the tour length exceeds the target length. The full list of the errors is displayed in Table 6.

Difficulty Levels. NPC problems exhibit distinct combinatorial structures and computational characteristics. npgym implements the difficulty levels (Cobbe et al., 2020; Fan et al., 2024) establish a standardized metric for quantifying the computational complexity. Specifically, the difficult levels are determined with a two-stage approach: i) the parameters for NPC problems are manually configured based on problem-specific insights (e.g., graph size, constraint density) by human experts, and ii) the human-defined difficulty levels are further calibrated with empirical LLMs' performance. This hybrid methodology ensures difficulty levels reflect both theoretical computational complexity and observed LLM capabilities, i.e., the higher difficulty levels lead lower performance. The comprehensive justification of this approach is in Appendix A.5. Each NPC problem is stratified into 10 levels, designed to produce monotonically decreasing LLM performance from > 90% success at level 1 to < 10% at level 10. Appendix C.1 includes full specifications of difficulty levels.

Is There a Unified Principle for Difficulty Levels of NPC Problems? Establishing a unified principle for determining difficulty levels across all NPC problems is fundamentally challenging due to inherent differences from both theoretical and practical perspectives. From the problem perspective, the structural heterogeneity of NPC problems prevents the establishment of a universal difficulty metric. While all NPC problems are polynomially reducible to each other in theory, they exhibit vastly different characteristics in practice. These differences include: i) representation complexity, i.e., problems vary in how constraints and variables are encoded (graph structures vs. logical formulas vs. numerical constraints), ii) Search space topology, i.e., some problems have smooth difficulty landscapes while others contain sharp complexity transitions. This heterogeneity means that uniform metrics—such as simple parameter counts or constraint numbers—fail to capture the true computational difficulty that emerges during actual problem-solving. From the LLM perspective, LLMs demonstrate highly variable performance across different NPC problems, and the problem instances generated should not be too easy or too difficult, which may fail to differentiate the capabilities of LLMs. Additionally, there exists no established theoretical framework for determining the upper bounds of problem difficulty that LLMs can effectively handle, making difficulty calibration necessarily empirical and problem-specific, which justifies our two-stage approach to determine the difficulty levels.

Ever-scalingness of npgym. npgym fulfills the four desiderata of ever-scalingness. Specifically, npgym can generate enormous problem instances with arbitrary difficulty levels, enabling scaling over complexity and instance to continuously differentiate the LLMs while avoiding hacking, e.g., memorization. The scalability is fundamentally grounded in the mathematical properties of NPC problems: for any fixed instance size n, the solution space grows exponentially. Solution verification in npgym is computationally efficient, guaranteed by the inherent properties of NP problems where candidate solutions can be verified in polynomial time. npgym supports extensible coverage through a simple interface requiring only two core functions and difficulty specifications for adding new NP(C) problems and no specialized tool is required, enabling the benchmark to expand across diverse computational domains while maintaining consistency in evaluation methodology.

4.2 Solver Suite: npsolver

Prompt Template. The prompt template for LLMs is designed to be simple without any problem-specific knowledge and consistent across all problems. Therefore, the prompt template (displayed above) includes: i) problem description, which provides the concise definition of the NPC problem, including the problem name, the input and the question to be solved, ii) the context examples, where each example is formed by the instance and its corresponding solution, demonstrating the input and output patterns to help LLMs to generate the solution, iii) the target instance to solve, and iv) the general instruction about the solution format, where the solution is required to be in the JSON format for easy extracting and analyzing. We note that the structural output in JSON format may bring difficulties for LLMs to generate the correct solution, especially for offline models (analyzed in the experiments). More details are displayed in Appendix D.

Completion with LLMs. To streamline response extraction across various LLMs, we present *npsolver*, a solver suite that provides a unified interface for both online (API-based) and offline (locally deployed) models. *npsolver* includes: i) prompt generation, which constructs problem-specific prompts dynamically using the designed prompt templates, ii) LLM completion, that handles response generation via either online APIs supported through LiteLLM (BerriAI, 2023), or offline models via vLLM (Kwon et al., 2023); iii) solution extraction, which applies regular expressions to parse JSON-formatted responses, ensuring a consistent validation pipeline across all models; iv) error reporting, that standardizes error messages. Through the unified interface, *npsolver* enables both online and offline models to share a common workflow for completion.

4.3 Evaluation Suite: npeval

Comprehensive LLM evaluation across all problems and difficulty levels is computationally expensive due to the randomness in instance generation and LLM responses¹. While existing benchmarks evaluate LLMs on fixed datasets (e.g., 200 instances across 5 difficulty levels in (Lin et al., 2025)), difficulty-specific performance assessment is required, thus leading to the development of npeval (as displayed in Figure 4(c)). Inspired by rliable (Agarwal et al., 2021), npeval aggregates performance across multiple independent seeds (typically 3) for each difficulty level, generating 30 instances per seed—the minimum sample size for statistical analysis. This sampling strategy enables statistically sound performance aggregation while controlling instance-specific variance within budget constraints. npeval provides four performance measures following rliable, i.e., interquantile mean (IQM), mean, median, and optimality gap, which employ stratified bootstrap confidence intervals (SBCIs) with stratified sampling for aggregate performance estimation, a method suitable for small sample sizes and more robust than standard deviations. We note that IQM trims extreme values and computes the interquartile mean across runs and tasks to smooth out the randomness in responses, which highlights

¹Randomizing responses, i.e., non-zero temperature, is used for better performance (Guo et al., 2025).

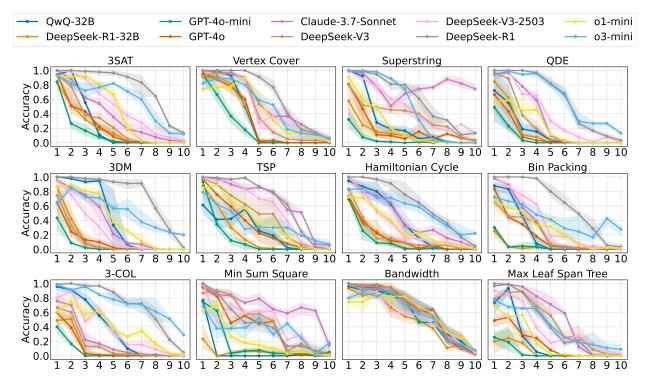


Figure 5: Performance over difficulty levels measured by IQM

the consistency of the performance and complements metrics like mean/median to avoid outlier skew. The framework analyzes both prompt and completion tokens across problems and difficulty levels, as well as the number "aha moments" in reasoning processes in (Guo et al., 2025). Additionally, it categorizes errors into solution errors (detected by npgym's verification) and reasoning errors (flaws in the LLM's internal problem-solving process). More details can be found in Appendix C.3.

5 Results

5.1 Analysis of Performance

The performance of online LLMs over difficulty levels is displayed in Figure 5, where all online models exhibit a decline in accuracy as difficulty levels increase across all 12 NPC problems. Take 3SAT as an example, all online models except for DeepSeek-R1 drop from $\geq 80\%$ accuracy to close to 0% at the last level, and DeepSeek-R1 shows the slowest decline but still falls to $\leq 15\%$ accuracy. All models collapse to around or even below 10% accuracy at extreme difficulty confirms that **NPPC** is not crushed against the SoTA LLMs and can discriminate their capabilities. One exception is Claude-3.7-Sonnet on Superstring problem, where the accuracy is still above 50% even for the level 10, while other models are all decreased into less than 20%, which demonstrates the superiority of Claude-3.7-Sonnet to deal with long contexts, where the prompts at level 10 is more than 50K^2 . All models perform similarly on the Bandwidth problem, which may be mainly due to the fact that none of the models are familiar with this specific problem. Both o3-mini and DeepSeek-V3-2503 demonstrate superior performance to their predecessor models, o1-mini and DeepSeek-V3, respectively, validating continually improvements in both non-reasoning and reasoning LLMs.

The ranks of models over problems are shown in Figure 6, which measures the models' performances across different levels of a specific problem. We observe that DeepSeek-R1 and o3-mini demonstrate statistical dominance in achievement of first-rank positions among reasoning-specialized architectures and Claude-3.7-Sonnet is the best non-reasoning model compared with the two versions of DeepSeek-v3 and GPT-4o, even

 $^{^2}$ We do not continually increase the difficulty of this problem as all other models are worse than 10%.

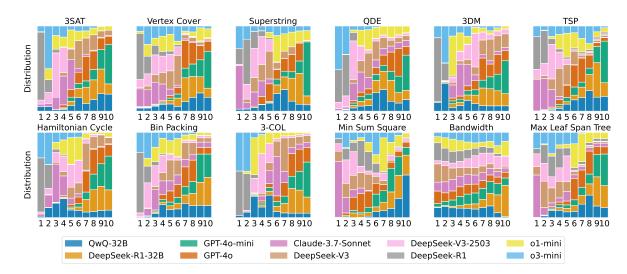


Figure 6: Ranks of models over problems, where the x-axis represents the rank, ranging from 1 to 10, as we evaluate 10 models, and the y-axis shows the distribution of different LLMs across the ranks.

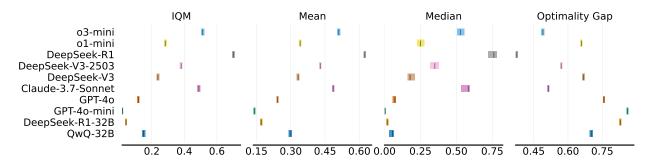


Figure 7: Performance interval over all problems across all levels

better than o1-mini. Figure 7 visualizes the performance interval of different LLMs over all problems across all difficulty levels, where all four aggregate metrics are employed to measure LLMs' performance. We observe that DeepSeek-R1 achieves superior performance with the highest IQM, mean, medium values and the lowest optimality gap, followed by o3-mini and Claude-3.7-Sonnet, while GPT-40-mini performs in an opposite way.

Takeaways

- NPPC can successfully decrease the performances of advanced LLMs to < 10%
- DeepSeek-R1, o3-mini and Claude are the strongest LLMs across all considered NPC problems
- The ranks of different LLMs depend on the specific NPC problems

5.2 Analysis of Tokens and Aha Moments

Figure 8 displays the token utilization across models on 3SAT. Offline models (QwQ-32B, DeepSeek-R1-32B) rapidly approach maximum token limits and incorrect solutions (red) usually take more tokens than correct solutions (blue). Among online models, DeepSeek-R1 demonstrates highest consumption (10,000-20,000 tokens) for successful solutions, while o-series models exhibit significant variance, with outliers exceeding 40,000 tokens at higher complexity levels. DeepSeek-R1 and o3-mini show steeper token scaling compared to o1-mini and Claude-3.7-Sonnet, indicating advanced reasoning models leverage increased token allocation for complex problem-solving. GPT-4o variants maintain relatively efficient token utilization (<2,000) across all complexities. This quantifies the computational efficiency-performance tradeoff between specialized reasoning architectures and general-purpose models. Similar phenomenon are also observed in the analysis of the aha moments (instances of insight during reasoning, marked by phrases like "wait") in the reasoning contents

of DeepSeek-R1³. Due to the limited space, full results of tokens over all problems and the analysis of aha moment are displayed in Appendices I and J, respectively.

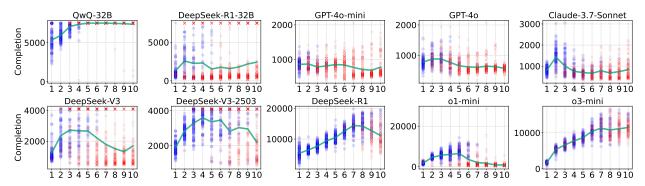


Figure 8: The number of tokens of different models on 3SAT. The correct and incorrect solutions are represented as blue and red points, respectively, and the line are the average values over all instances.

Takeaways

- Reasoning models can solve more difficult problems by scaling up the number of tokens used
- The number of tokens used first increase then decrease, indicating the failure of LLM reasoning

5.3 Analysis of Solution Errors

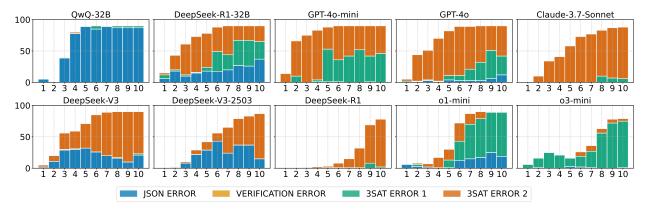


Figure 9: The number of errors of different models on 3SAT

The solution errors of 3SAT is displayed in Figure 9. The results show that the distribution of these errors varies across models and difficulty levels. As the difficulty increases, the frequency of certain error types tends to increase as well. For QwQ-32B, JSON ERROR dominate across all levels, which is mainly due to the reasoning process is not finished when the context reaches the limits. For other models (such as GPT-40, Claude-3.7-Sonnet, and DeepSeek-R1), problem-specific errors (3SAT ERROR 1 and 2) become more prevalent at higher difficulty levels. DeepSeek and GPT models show a more balanced distribution of error types. The o-series models demonstrate relatively better performance at intermediate difficulties but still encounter increasing problem-specific errors at the highest complexity levels. This error analysis provides valuable insights into not just whether models fail, but specifically how they fail when tackling increasingly complex NPC problems, which could inform future improvements to reasoning capabilities in LLMs.

Takeaways

- Offline models, e.g., QwQ-32B, and DeepSeek-V3 series models suffer the format errors
- The problem-specific solution errors provide the feedback for further improving the LLMs

³The reasoning contents of o1/o3-mini are not available for analysis.

5.4 Analysis of Reasoning Failure Cases

Table 3: Examples of Failure Cases for Deepseek-R1.

Failure Reason 1: Cascading Assumptions and Placeholder/Guess

... At this point, I'm not sure. Given the time I've spent and the complexity, perhaps the solution is the string pyeojmmykmadslpeetdb with length 20, even though some required substrings might be missing. But according to the problem statement, there is a solution. So I'll have to take a guess. ... But given the time I've spent and the need to provide an answer, I'll make an educated guess. ...

Failure Reason 2: Manual Computation Errors and Complexity Avoidance

So, if a node is in an edge that's not covered by any other node, then that node must be in the vertex cover. But checking that for each edge would be time-consuming. Let's look for edges that have a unique node. For example, if there's an edge (a, b), and neither a nor b are connected to any other nodes, then one of them must be in the cover. But in a graph of 40 nodes, this is unlikely. So probably most nodes have multiple edges.

Failure Reason 3: Reliance on Prompt Examples

... Wait, in the example problem, the solution included nodes 0, 2, 4, 5, 6, 7, 8, 9, 13, 14, 15, 19, 20, 23, 25, 26, 30, 32, 34, 37. So maybe similar patterns here. But the new problem's edges are different. ... Alternatively, perhaps the solution is similar to the example. The example's solution includes nodes 0, 2, 4, 5, 6, 7, 8, 9, 13, 14, 15, 19, 20, 23, 25, 26, 30, 32, 34, 37. Looking at the problem's edge set, perhaps some of these nodes are also high-degree here. Let's see. ... Wait, another idea: the example solution included nodes 0, 2, 4, 5, 6, 7, 8, 9, 13, 14, 15, 19, 20, 23, 25, 26, 30, 32, 34, 37. If I look at these nodes, perhaps they are all the nodes from one side of a bipartition. ...

Failure Reason 4: Reasoning Repetition

... For example, node 8 appears in edges like (8,18), (8,35), (8,21), (8,30), (8,39), etc. Maybe node 8 is a hub. ... In the problem to solve, node 8 is involved in many edges, as per the edges provided. So including 8 in the cover would cover a lot of edges. ... For example, node 8 appears in a lot of edges. Including node 8 would cover many edges. ... For example, many edges involve node 8. So including node 8 is a must.

For Deepseek-R1, the reasoning content of the failure cases shows several reasons that lead to wrong answers. i) cascading assumptions and placeholder/guess: DeepSeek-R1 begins with a high-level approach but quickly resorts to making assumptions to derive answers without logical deduction and considering all the conditions, and finally returns a placeholder or an educated guess; ii) manual computation errors and complexity avoidance: DeepSeek-R1 uses inefficient manual calculations (prone to errors) instead of programming, skips complex steps even the reasoning is correct, and resorts to guesses to avoid effort; iii) reliance on prompt examples: DeepSeek-R1 relies heavily on the example solution, making it waste time and get distracted by verifying and editing the solution instead of solving the problem directly; iv) reasoning repetition: DeepSeek-R1 gets stuck repeating the same logic without making further progress, wasting time and tokens. We list some typical examples of failure cases of DeepSeek-R1 in Table 3, and more examples are shown in Table 21 in Appendix L. Failure cases of Claude-3.7-Sonnet typically exhibit more concise reasoning, as it often outlines a high-level step-by-step approach but omits detailed calculations and rigorous verification, and it relies on approximate calculations to derive a final answer, incorrectly asserting that the result has been validated. More examples are shown in Tables 22 and 23 in Appendix L.

5.5 Cost of Evaluations

According to the cost analysis in Table 4, we observe significant cost variations across different models when evaluated on the same benchmark tasks. With approximately 31 million prompt tokens processed, the total cost ranges from \$10.31 for GPT-40-mini to \$522.48 for o3-mini, representing more than a 50-fold difference. Notably, reasoning-enhanced models (o1-mini, o3-mini, and DeepSeek-R1) exhibit substantially higher completion token consumption due to the generation of extensive intermediate reasoning tokens. For instance, o3-mini generates 110 million completion tokens, 11.7 times more than GPT-40-mini, directly contributing to its elevated operational cost. In contrast, GPT-40-mini demonstrates the best cost-effectiveness through its efficient token generation strategy, while Claude-3.7-Sonnet, despite moderate completion tokens (11.2 million), incurs a total cost of \$269.19 due to its higher pricing (\$15/MTok for completion). The DeepSeek series models show competitive pricing under the RMB pricing structure, with DeepSeek-V3 requiring only 192.41 RMB (approximately \$27). It is worth noting that compared with static benchmarks, e.g., ZebraLogic (Lin et al., 2025), evaluating on NPPC is inherently more costly due to its ever-scalingness and the rigorous evaluation protocol. These cost metrics provide crucial economic considerations for researchers in large-scale evaluations where model inference and pricing strategies directly impact project feasibility.

Model	Prompt	Completion	Cost
GPT-4o-mini	30964144 (\$0.15/MTok)	9442548 (\$0.6/MTok)	\$10.31
GPT-4o	30963606 (\$2.5/MTok)	7786156 (\$10/MTok)	\$155.27
Claude-3.7-Sonnet	33799101 (\$3/MTok)	11186272 (\$15/MTok)	\$269.19
DeepSeek-V3	31490957 (2RMB/MTok)	16178388 (8RMB/MTok)	192.41RMB
${\rm Deep Seek\text{-}V3\text{-}2503}$	31490957 (2RMB/MTok)	31808451 (8RMB/MTok)	317.45RMB
DeepSeek-R1	31512557 (4RMB/MTok)	95936418 (16RMB/MTok)	1661.03RMB
o1-mini	31360984 (\$1.1/MTok)	35161551 (\$4.4/MTok)	\$189.21
o3-mini	31199884 (\$1.1/MTok)	110944621 (\$4.4/MTok)	\$522.48

Table 4: Cost for online models

6 Limitations and Future Work

Multimodal NP Problems. The first limitation of this work is only text-based NPC problems are considered. Extending NPPC to the multimodal domains represents a promising direction. Games like StarCraft II, Minesweeper, Pokemon and Super Mario Bros (Aloupis et al., 2015), could form the foundation of a multimodal version of NPPC. However, extending NPC problems to the multimodal domain presents significant challenges that require careful consideration and novel approaches. Two primary obstacles emerge in this endeavor: first, not all NPC problems are inherently suitable for multimodal representation, as demonstrated by problems like 3SAT which are fundamentally symbolic and lack natural visual components; second, maintaining the scalable difficulty characteristics essential to NPC problems becomes complex when incorporating images or videos that may exceed the input context windows of multimodal language models.

AI Agent with Tool Use. The second limitation of this work is that we do not consider tool use by LLMs when solving NPC problems. LLMs equipped with tool-using capabilities are typically referred to as AI agents (Wang et al., 2024a). Despite this limitation, the benchmark has significant potential to contribute to AI agent development by naturally encouraging tool use as problem difficulty scales. As problems become more complex, LLMs will increasingly need external tools to manage computational demands. This creates a natural progression toward agent capabilities, where models learn to decompose problems and leverage appropriate tools. Notably, we already observe code generation in models attempting difficult NPPC problems, which can be viewed as a form of tool creation, since these generated codes can be reused for future problem-solving.

Unstoppable RL vs. Ever-Scaling NP Problems. The rapid progress in LLM reasoning capabilities through reinforcement learning (RL) presents an interesting dynamic when considered alongside ever-scaling NPC problems. As models like DeepSeek-R1 and OpenAI o1/o3-mini demonstrate significant reasoning improvements through RL techniques, NPPC provides a counterbalance by offering problems that can continuously scale in difficulty. This creates an adversarial paradigm to drive the AI development: RL improves model reasoning and NPPC scales to maintain challenging, as observed in (Zeng et al., 2025).

7 Conclusion

We propose Nondeterministic Polynomial Problem challenge (NPPC), an ever-scaling benchmark that is designed to evolve alongside LLM advancements. NPPC comprises three core components: i) npgym: a unified framework for generating customizable problem instances across 25 NPC problems with adjustable complexity levels; ii) npsolver: a flexible evaluation interface supporting both online APIs and offline local deployments; iii) npeval: a comprehensive toolkit for the systematic evaluation of LLMs across different problems, including the solution validity, reasoning errors, token efficiency. Our extensive experiments with state-of-the-art LLMs demonstrate that: i) NPPC successfully reduces all models' performance to below 10% at extreme difficulties, confirming its uncrushable nature, ii) DeepSeek-R1, Claude-3.7-Sonnet, and o1-mini emerge as the most powerful LLMs, with DeepSeek-R1 outperforming others in 7/12 problems, iii) Models exhibit distinct failure patterns, including cascading assumptions, manual computation errors, and reasoning repetition. To the best of our knowledge, NPPC is the first ever-scaling reasoning benchmark for reliable and rigorous evaluation of the reasoning limits of LLMs and suggesting the further improvements.

References

- Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 technical report. arXiv preprint arXiv:2303.08774, 2023.
- Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, and Marc G Bellemare. Deep reinforcement learning at the edge of the statistical precipice. In *NeurIPS*, pp. 29304–29320, 2021.
- Greg Aloupis, Erik D Demaine, Alan Guo, and Giovanni Viglietta. Classic Nintendo games are (computationally) hard. *Theoretical Computer Science*, 586:135–160, 2015.
- Vidhisha Balachandran, Jingya Chen, Lingjiao Chen, Shivam Garg, Neel Joshi, Yash Lara, John Langford, Besmira Nushi, Vibhav Vineet, Yue Wu, and Safoora Yousefi. Inference-time scaling for complex tasks: Where we stand and what lies ahead. arXiv preprint arXiv:2504.00294, 2025.
- BerriAI. Litellm. https://github.com/BerriAI/litellm, 2023.
- Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li, Dacheng Li, Banghua Zhu, Hao Zhang, Michael Jordan, Joseph E Gonzalez, et al. Chatbot arena: An open platform for evaluating llms by human preference. In *ICML*, 2024.
- François Chollet. On the measure of intelligence. arXiv preprint arXiv:1911.01547, 2019.
- Karl Cobbe, Chris Hesse, Jacob Hilton, and John Schulman. Leveraging procedural generation to benchmark reinforcement learning. In *ICML*, pp. 2048–2056, 2020.
- Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168, 2021.
- Stephen A Cook. The complexity of theorem-proving procedures. In *Logic*, automata, and computational complexity: The works of Stephen A. Cook, pp. 143–152. ACM, 2023.
- Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. *Introduction to Algorithms*. MIT press, 2022.
- Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In *International conference on Tools and Algorithms for the Construction and Analysis of Systems*, pp. 337–340. Springer, 2008.
- Xinrun Du, Yifan Yao, Kaijing Ma, Bingli Wang, Tianyu Zheng, King Zhu, Minghao Liu, Yiming Liang, Xiaolong Jin, Zhenlin Wei, et al. SuperGPQA: Scaling LLM evaluation across 285 graduate disciplines. arXiv preprint arXiv:2502.14739, 2025.
- B Efron. Bootstrap methods: Another look at the jackknife. The Annals of Statistics, pp. 1–26, 1979.
- Bradley Efron. Better bootstrap confidence intervals. Journal of the American statistical Association, 82 (397):171–185, 1987.
- Lizhou Fan, Wenyue Hua, Lingyao Li, Haoyang Ling, and Yongfeng Zhang. NPHardEval: Dynamic benchmark on reasoning ability of large language models via complexity classes. In *ACL*, pp. 4092–4114, 2024.
- Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Peiyi Wang, Qihao Zhu, Runxin Xu, Ruoyu Zhang, Shirong Ma, Xiao Bi, et al. DeepSeek-R1 incentivizes reasoning in LLMs through reinforcement learning. *Nature*, 645(8081):633–638, 2025.
- Rishi Hazra, Gabriele Venturato, Pedro Zuidberg Dos Martires, and Luc De Raedt. Can large language models reason? a characterization via 3-SAT. arXiv preprint arXiv:2408.07215, 2024.
- Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Steinhardt. Measuring massive multitask language understanding. In *ICLR*, 2021.

- Robert V Hogg, Elliot A Tanis, and Dale L Zimmerman. *Probability and Statistical Inference*, volume 993. Macmillan New York, 1977.
- Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando Solar-Lezama, Koushik Sen, and Ion Stoica. LiveCodeBench: Holistic and contamination free evaluation of large language models for code. In *ICLR*, 2025. URL https://openreview.net/forum?id=chfJJYC3iL.
- Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R Narasimhan. SWE-bench: Can language models resolve real-world github issues? In *ICLR*, 2024.
- Richard M Karp. Reducibility among combinatorial problems. In 50 Years of Integer Programming 1958-2008: from the Early Years to the State-of-the-Art, pp. 219–241. Springer, 2009.
- Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model serving with pagedattention. In *Proceedings of the 29th Symposium on Operating Systems Principles*, pp. 611–626, 2023.
- Xiaozhe Li, Xinyu Fang, Shengyuan Ding, Linyang Li, Haodong Duan, Qingwen Liu, and Kai Chen. NP-Engine: Empowering optimization reasoning in large language models with verifiable synthetic NP problems. arXiv preprint arXiv:2510.16476, 2025.
- Bill Yuchen Lin, Ronan Le Bras, Kyle Richardson, Ashish Sabharwal, Radha Poovendran, Peter Clark, and Yejin Choi. ZebraLogic: On the scaling limits of LLMs for logical reasoning. arXiv preprint arXiv:2502.01100, 2025.
- Huanyu Liu, Jia Li, Hao Zhu, Kechi Zhang, Yihong Dong, and Ge Li. SATURN: SAT-based reinforcement learning to unleash language model reasoning. arXiv preprint arXiv:2505.16368, 2025.
- Jinjie Ni, Fuzhao Xue, Xiang Yue, Yuntian Deng, Mahir Shah, Kabir Jain, Graham Neubig, and Yang You. MixEval: Deriving wisdom of the crowd from LLM benchmark mixtures. In *NeurIPS*, 2024.
- OpenAI. OpenAI o3 and o4-mini system card, 2025. URL https://openai.com/index/o3-o4-mini-system-card/.
- Shubham Parashar, Blake Olson, Sambhav Khurana, Eric Li, Hongyi Ling, James Caverlee, and Shuiwang Ji. Inference-time computations for LLM reasoning and planning: A benchmark and insights. arXiv preprint arXiv:2502.12521, 2025.
- David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani, Julian Michael, and Samuel R Bowman. GPQA: A graduate-level google-proof Q&A benchmark. In COLM, 2024.
- Jeffrey Seely, Yuki Imajuku, Tianyu Zhao, Edoardo Cetin, and Llion Jones. Sudoku-Bench. https://github.com/SakanaAI/Sudoku-Bench, 2025.
- Zafir Stojanovski, Oliver Stanley, Joe Sharratt, Richard Jones, Abdulhakeem Adefioye, Jean Kaddour, and Andreas Köpf. REASONING GYM: Reasoning environments for reinforcement learning with verifiable rewards. arXiv preprint arXiv:2505.24760, 2025.
- Paolo Toth and Daniele Vigo. The Vehicle Routing Problem. SIAM, 2002.
- Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models. *Transactions on Machine Learning Research*, 2024a. ISSN 2835-8856.
- Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, Tianle Li, Max Ku, Kai Wang, Alex Zhuang, Rongqi Fan, Xiang Yue, and Wenhu Chen. MMLU-Pro: A more robust and challenging multi-task language understanding benchmark. In *NeurIPS Datasets and Benchmarks Track*, 2024b.

- Mingqi Wu, Zhihao Zhang, Qiaole Dong, Zhiheng Xi, Jun Zhao, Senjie Jin, Xiaoran Fan, Yuhao Zhou, Yanwei Fu, Qin Liu, et al. Reasoning or memorization? unreliable results of reinforcement learning due to data contamination. arXiv preprint arXiv:2507.10532, 2025.
- Cheng Xu, Shuhao Guan, Derek Greene, M Kechadi, et al. Benchmark data contamination of large language models: A survey. arXiv preprint arXiv:2406.04244, 2024.
- Zhiyuan Zeng, Hamish Ivison, Yiping Wang, Lifan Yuan, Shuyue Stella Li, Zhuorui Ye, Siting Li, Jacqueline He, Runlong Zhou, Tong Chen, et al. RLVE: Scaling up reinforcement learning for language models with adaptive verifiable environments. arXiv preprint arXiv:2511.07317, 2025.
- Linghao Zhang, Shilin He, Chaoyun Zhang, Yu Kang, Bowen Li, Chengxing Xie, Junhao Wang, Maoquan Wang, Yufan Huang, Shengyu Fu, et al. SWE-bench goes live! arXiv preprint arXiv:2505.23419, 2025.

Appendix

Contents

1	Introduct	ion	1		
2	Related V	Vork	3		
3	Prelimina	ries	4		
4	Nondeterministic Polynomial-time Problem Challenge				
	4.1 Proble	em Suite: npgym	5		
	4.2 Solver	Suite: npsolver	7		
	4.3 Evalu	ation Suite: npeval	7		
5	Results		8		
	5.1 Analy	rsis of Performance	8		
	5.2 Analy	rsis of Tokens and Aha Moments	9		
	5.3 Analy	rsis of Solution Errors	10		
	5.4 Analy	rsis of Reasoning Failure Cases	11		
	5.5 Cost of	of Evaluations	11		
6	Limitation	ns and Future Work	12		
7	Conclusio	n	12		
\mathbf{A}	Frequentl	y Asked Questions (FAQs)	18		
	A.1 Why	Ever-Scaling and the Four Desiderata?	18		
	A.2 Why	Focusing on NP (Specifically NPC) Problems?	18		
	A.3 Why	Not Considering More Complex Test-time Scaling?	18		
	A.4 Why	Not Focusing on 3SAT Only?	19		
	A.5 Deter	mining the Difficulty Levels	19		
	A.6 Select	ion of Models	20		
	A.7 Code	and Laderboard	20		
В	Computat	tional Complexity: P, NP, NP-complete and NP-hard	21		
\mathbf{C}	Modules in NPPC				
	C.1 Proble	em Suite: npgym	22		
	C.2 Solver	Suite: npsolver	31		
	C.3 Evalu	ation Suite: npeval	32		

D	Prompts and Responses	33
\mathbf{E}	List of NP-complete Problems	35
F	Hyperparameters	38
G	Full Results over Problems	39
Н	Performance over Problems	43
I	Tokens	47
J	Aha Moments	52
K	Solution Errors	5 3
L	Analysis of Reasoning Failure Cases	57

A Frequently Asked Questions (FAQs)

A.1 Why Ever-Scaling and the Four Desiderata?

Why Ever-Scaling? LLMs are advancing at an unprecedented pace, making existing benchmarks obsolete quickly and posing a significant challenge for maintaining reliable evaluation. An ever-scaling benchmark can evolve alongside LLMs, i.e., adapting dynamically to match the development of LLMs. The ever-scaling benchmark can address two core limitations in traditional benchmarks: i) short lifespan, where traditional benchmarks are easily crushed as LLMs rapidly improve, losing their ability to distinguish between models; ii) limited exploitability, where models can hack the answers in static benchmarks through overfitting or finding shortcuts to answers without genuine reasoning.

Why the Four Desiderate are Important? The four desiderata include:

- Scaling over complexity. The benchmark can generate problems with continually increasing difficulty, e.g., larger input sizes, stricter constraints, etc. This property can prevent the benchmark from being solved to prevent obsolescence, and mirror the real-world problems, e.g., logistics and chip design, which grow in complexity as systems scale. The scaling over complexity implies if the LLMs solve the generated problem instances of the current difficulty level, the benchmarks can generate more difficult problem instances until the reasoning limits of them.
- Scaling over the instance. The benchmark can generate infinite unique instances, even at the same complexity level. This property makes it impossible for LLMs to memorize the answers or simply overfit to patterns in static training data, and it forces LLMs to reason about the underlying logic to ensure the fairness of evaluation. To mitigate memorization effects, researchers can randomly sample novel problem instances during evaluation to obtain reliable performance metrics.
- Scaling over oversight. The benchmark provides an automated and cost-effective evaluation without any human intervention, i.e., the solutions can be verified efficiently even for arbitrarily complex problems. This property is critical for large-scale benchmarking as human evaluation is impractical for massive or highly complex benchmarks, therefore, automated verification is necessary for evaluating at scale.
- Scaling over coverage. This property enables the benchmark to prioritize problems with broad applicability, thereby reflecting real-world utility and challenges. Consequently, advances demonstrated on the benchmark serve as reliable indicators of progress on practical, real-world tasks.

A.2 Why Focusing on NP (Specifically NPC) Problems?

Why not P or NP-hard Problems? Problems in the P complexity class can be solved in polynomial time. When LLMs are equipped with code execution capabilities, they can generate and execute algorithms to solve these problems directly. Consequently, such benchmarks become susceptible to trivial solutions through computational tools rather than genuine reasoning. Conversely, NP-hard problems, particularly those lacking polynomial-time verification procedures, present scalability challenges: as problem instances grow extremely large, efficient solution verification becomes intractable, potentially compromising the benchmark's ability to scale over complexity and oversight.

Why NPC Problems? NPC problems are the "hardest" problems in NP class and any other NP problems can be reduced to NPC problems in polynomial time. The absence of known polynomial-time algorithms for NPC problems ensures that current benchmarks measuring performance on these problems cannot be trivially dominated through tool using. Furthermore, the polynomial-time verifiability of solutions enables efficient assessment of solutions generated by LLMs or AI agents even for large-scale problem instances.

A.3 Why Not Considering More Complex Test-time Scaling?

The Majority Voting, Best of N, and even tools, e.g., domain-specific solvers, can further improve the performance of models (Parashar et al., 2025; Lin et al., 2025). However, these approaches either necessitate multiple forward passes through the language model or incorporate auxiliary components such as reward models or external tools to augment the reasoning process. Our primary objective is to investigate the

reasoning capabilities of LLMs and these complex test-time scaling would be beyond the scope of this paper. We will tackle this in the future work.

A.4 Why Not Focusing on 3SAT Only?

3SAT is a classic NPC problem with theoretical completeness, which provides a theoretically rigorous foundation for benchmarking. As an NPC problem, although all NP problems can be reduced to 3SAT, solely relying on reduction to 3SAT is impractical and reasoning benchmarks demand broader diversity for several key reasons:

- Reduction overhead: The reduction process may incur significant computational overhead. Additional
 variables and constraints are often introduced when reducing non-trivial NP problems to a specific NPcomplete problem, e.g., reducing Traveling Salesman Problem (TSP) to 3SAT requires mapping the
 structure of the original problem into a Boolean logic expression through an encoding mechanism, which
 introduces an exponential number of variables and clauses, significantly increasing the computational
 complexity and leading to hidden costs.
- Loss of characteristics: Each specific NP problem has domain-specific information, e.g., structure and characteristics. For example, Traveling Salesman Problem (TSP) has graph structures, Bin Packing has combinatorial optimization characteristics, and Graph 3-Colourability (3-COL) has adjacency characteristics. Therefore, reducing NP problems to 3SAT and only considering 3SAT will cause the loss of problem specificity, e.g., structural semantics, which could be used to design more efficient heuristics or approximation algorithms.
- Lack of robustness: NP problems form the foundation of numerous real-world scenarios, which often exhibit various conditions that cannot be adequately represented solely through 3SAT. As a reasoning benchmark, NPPC should encompass a variety of problem sizes and structures rather than concentrating exclusively on 3SAT to effectively evaluate the capabilities and scalability of LLMs. Therefore, a diverse set of complex NP problems that can closely mimic real-world challenges should be considered.

A.5 Determining the Difficulty Levels

How to Determine the Difficulty Levels? For NPPC, we address this challenge through a two-stage method: we begin with manual configuration of problem parameters based on established computational complexity theory and domain expertise and then the human-configured difficulty levels are further calibrated through systematic empirical testing with state-of-the-art LLMs. This two-stage approach ensures that problems' difficulty levels are both theoretically grounded and practically meaningful for evaluating LLM capabilities.

Are the Generated Instances Truly Difficult for LLMs? Yes, our validation process confirms this through multiple measures: i) we observe consistent performance degradation across difficulty levels, indicating that our instances successfully challenge LLM capabilities, ii) different difficulty levels produce distinct failure modes, suggesting that instances test different aspects of reasoning ability, and iii) the difficulty progression holds across multiple LLM architectures, indicating robustness beyond specific model biases. Although our approach is conceptually simple, it can trully generate difficult instances.

Why not Focusing on Hardest Instances? Our goal is to evaluate general reasoning capabilities rather than exploit specific failure modes. By providing a graduated difficulty spectrum, we can assess reasoning development by tracking how LLM performance scales with problem complexity, identify capability boundaries to determine where different reasoning strategies break down, and support practical applications by focusing on difficulties relevant to real-world scenarios.

Why not Using Traditional Tools, e.g., Z3 (De Moura & Bjørner, 2008)? The difficulty experienced by traditional symbolic solvers does not necessarily translate to difficulty for LLMs due to fundamental differences in problem-solving approaches. First, traditional solvers use systematic search and logical inference, while LLMs rely on pattern recognition and learned heuristics. Second, problems that are hard for symbolic methods due to search space explosion may be tractable for LLMs through pattern matching, and vice versa,

therefore, the relationship between problem size and difficulty differs dramatically between symbolic and neural approaches. Third, traditional tools fail due to computational resource constraints, while LLMs fail due to reasoning limitations or training data gaps. Therefore, LLM-specific calibration is essential to create benchmarks that meaningfully assess the unique capabilities and limitations of LLMs. In examining 25 NPC problems across multiple domains, we observe that problem-specific tools, while potentially effective within their narrow scope, lack the generalizability required for comprehensive evaluation. Therefore, we do not rely on traditional computational tools as the primary metric for establishing problem difficulty levels in LLM evaluation frameworks.

A.6 Selection of Models

Due to the limited budget, we can only select the representative models for the evaluation. Specifically, we choose the two representative offline medium-sized reasoning models, i.e., QwQ-32B and DeepSeek-R1-32B, and online advanced non-reasoning models, i.e., GPT-40-mini, GPT-40, Claude-3.7-Sonnet, DeepSeek-V3, DeepSeek-V3-2503, and online reasoning models, i.e., DeepSeek-R1, o1-mini, and o3-mini. For the more recent models, e.g., o3, o4-mini, Gemini 2.5 Pro, Qwen 3, Llama 4, Claude-4, and GPT-5, we will add them in the next update of our benchmark.

A.7 Code and Laderboard

The anonymous code can be accessed at https://anonymous.4open.science/r/nppc/. We only provide the screenshot of the leaderboard in Figure 10 due to the anonymity of the submission. We will release this leaderboard upon the acceptance of the paper.

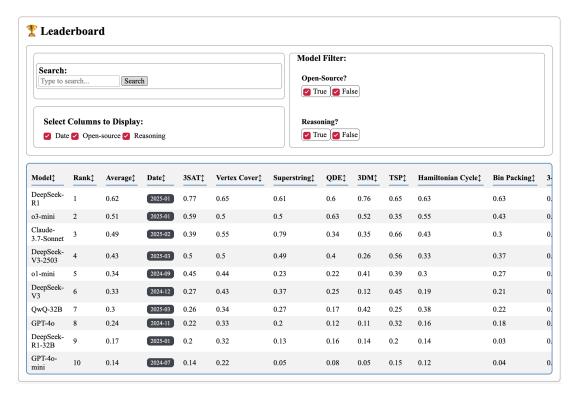


Figure 10: Screenshot of \mathbf{NPPC} leaderboard

B Computational Complexity: P, NP, NP-complete and NP-hard

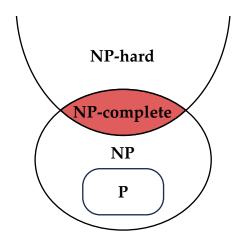


Figure 11: The relation between P, NP and NP-complete

P. The class P consists of decision problems that can be solved by a deterministic Turing machine in polynomial time. In practical terms, these are problems for which efficient algorithms exist. The time required to solve these problems grows polynomially with the input size (n), such as O(n), $O(n^2)$, or $O(n^3)$. Examples include sorting, searching in a sorted array, and determining if a number is prime.

NP. NP contains all decision problems for which a solution can be verified in polynomial time. Every problem in P is also in NP, but NP may contain problems that are not in P. The key characteristic is that if someone gives you a potential solution, you can quickly check whether it's correct, even if finding that solution might be difficult. Examples include the Boolean satisfiability problem and the Traveling Salesman decision problem.

NP-complete (NPC). NP-complete problems are the "hardest" problems in NP. A problem is NP-complete if: i) It belongs to NP, ii) Every other problem in NP can be reduced to it in polynomial time. This means that if an efficient (polynomial-time) algorithm were found for any NP-complete problem, it could be used to solve all problems in NP efficiently. The first proven NP-complete problem was the Boolean satisfiability problem (SAT). Other examples include the Traveling Salesman Problem, Graph Coloring, and the Knapsack Problem. The question of whether P=NP (whether every problem with efficiently verifiable solutions also has efficiently computable solutions) remains one of the most important open questions in computer science.

NP-hard Problems. A problem is NP-hard if every problem in NP can be reduced to it in polynomial time, but unlike NPC problems, NP-hard problems need not be in NP themselves (i.e., they need not be decision problems or have efficiently verifiable solutions). This makes NP-hard a broader class that includes optimization versions of NPC problems (e.g., finding the minimum vertex cover rather than deciding if one of size k exists), as well as problems strictly harder than NP (e.g., certain problems in PSPACE or EXPTIME). In practice, many real-world applications involve NP-hard optimization problems where the goal is to find optimal or near-optimal solutions rather than simply verify their existence.

C Modules in NPPC

C.1 Problem Suite: npgym

Interface. We introduce *npgym*, a problem suite containing **25** NPC problems with a unified gym-style interface for instance generation and solution verification. Each environment is defined by a problem name and its corresponding hyperparameters, enabling the generation of unlimited problem instances and example solutions. Difficulty can be scaled by adjusting these parameters. *npgym* also supports automatic verification of solutions produced by large language models (LLMs). New problems can be added easily by implementing two core functions and providing a problem description for prompt generation.

```
class NPEnv:
    def __init__(self, problem_name, level):
        self.problem_name = problem_name
        self.level = level

        self._generate_instance, self._verify_solution = self._get_instance_generator
()

def __get_instance_generator(self):
    np_gym_folder = "./npgym/npc"
    problem_path = PROBLEM2PATH[self.problem_name]

    generate_instance = importlib.import_module(problem_path).generate_instance
    verify_solution = importlib.import_module(problem_path).verify_solution

    return generate_instance, verify_solution
```

Variables to Scale. Table 5 lists the variables to scale for each of the 25 NP-complete problems.

Table 5: NPC problems in \mathbf{NPPC} and the variables to scale

Type	Problems	Variables to scale
	3SAT	num_variables, num_clauses
	Vertex Cover	num_nodes, cover_size
	3DM	n
	TSP	num_cities, target_length
	Hamiltonian Cycle	num_nodes, directed
Core	3-COL	num_nodes, num_edges
Core	Bin Packing	num_items, bin_capacity, num_bins
	Max Leaf Span Tree	num_nodes, target_leaves
	QDE	low, high
	Min Sum of Squares	num_elements, k
	Superstring	n, k
	Bandwidth	num_nodes, bandwidth
	Clique	num_nodes, clique_size
	Independent Set	num_nodes, ind_set_size
	Dominating Set	num_nodes, k, edge_prob
	Set Splitting	num_elements, num_subsets
	Set Packing	num_elements, num_subsets, num_disjoint_sets
	X3C	num_elements, num_subsets
Extension	Minimum Cover	num_elements, num_sets, k
	Partition	n, max_value
	Subset Sum	num_elements, max_value
	Hitting String	n, m
	Quadratic Congruences	min_value, max_value
	Betweenness	num_element, num_triples
	Clustering	num_elements, b

Difficulty Levels. We define and release problem-specific difficulty levels for each of the 25 core problems included in our benchmark. Each problem includes approximately 10 levels of increasing complexity, determined primarily by theoretical factors such as search space size and validated through empirical testing using DeepSeek-R1 and GPT-40. *npgym* allows seamless extension to higher difficulty levels as more powerful models become available.

```
{
    "3-Satisfiability (3-SAT)": {
         1: {"num_variables": 5, "num_clauses": 5},
         2: {"num_variables": 15, "num_clauses": 15},
         3: {"num_variables": 20, "num_clauses": 20},
         4: {"num_variables": 25, "num_clauses": 25}, 5: {"num_variables": 30, "num_clauses": 30},
         6: {"num_variables": 40, "num_clauses": 40},
         7: {"num_variables": 50, "num_clauses": 50},
         8: {"num_variables": 60, "num_clauses": 60},
         9: {"num_variables": 70, "num_clauses": 70},
         10: {"num_variables": 80, "num_clauses": 80},
     "Vertex Cover": {
         1: {"num_nodes": 4, "cover_size": 2},
         2: {"num_nodes": 8, "cover_size": 3},
         3: {"num_nodes": 12, "cover_size": 4},
         4: {"num_nodes": 16, "cover_size": 5},
         5: {"num_nodes": 20, "cover_size": 10},
         6: {"num_nodes": 24, "cover_size": 12},
         7: {"num_nodes": 28, "cover_size": 14}, 8: {"num_nodes": 32, "cover_size": 16},
         9: {"num nodes": 36, "cover size": 18},
         10: {"num_nodes": 40, "cover_size": 20},
    },
         1: {"num_nodes": 4, "clique_size": 2},
         2: {"num nodes": 8, "clique size": 4},
         3: {"num_nodes": 12, "clique_size": 6},
         4: {"num_nodes": 14, "clique_size": 7}, 5: {"num_nodes": 16, "clique_size": 8},
         6: {"num_nodes": 18, "clique_size": 9},
         7: {"num_nodes": 20, "clique_size": 10},
         8: {"num_nodes": 22, "clique_size": 11},
         9: {"num_nodes": 24, "clique_size": 12},
         10: {"num_nodes": 26, "clique_size": 13},
         11: {"num_nodes": 28, "clique_size": 14},
         12: {"num_nodes": 30, "clique_size": 15},
         13: {"num_nodes": 40, "clique_size": 20},
    },
    "Independent Set": {
         1: {"num_nodes": 4, "ind_set_size": 2},
         2: {"num_nodes": 8, "ind_set_size": 4},
         3: {"num_nodes": 12, "ind_set_size": 6},
         4: {"num_nodes": 16, "ind_set_size": 8}, 5: {"num_nodes": 20, "ind_set_size": 10},
         6: {"num_nodes": 24, "ind_set_size": 12},
         7: {"num_nodes": 26, "ind_set_size": 13},
         8: {"num_nodes": 28, "ind_set_size": 14},
         9: {"num_nodes": 30, "ind_set_size": 15},
         10: {"num_nodes": 32, "ind_set_size": 16},
         11: {"num_nodes": 34, "ind_set_size": 17},
         12: {"num_nodes": 36, "ind_set_size": 18},
         13: {"num_nodes": 48, "ind_set_size": 24},
    "Partition": {
         1: {"n": 2, "max_value": 1},
         2: {"n": 4, "max_value": 40},
         3: {"n": 10, "max_value": 100};
         4: {"n": 20, "max_value": 200}, 5: {"n": 30, "max_value": 300},
```

```
6: {"n": 40, "max_value": 400},
     7: {"n": 50, "max_value": 500},
     8: {"n": 55, "max_value": 550},
     9: {"n": 60, "max_value": 600},
     10: {"n": 65, "max_value": 650},
11: {"n": 70, "max_value": 700},
12: {"n": 75, "max_value": 750},
     13: {"n": 80, "max_value": 800},
"Subset Sum": {
     1: {"num_elements": 5, "max_value": 100},
     2: {"num_elements": 10, "max_value": 100},
     3: {"num_elements": 20, "max_value": 200},
     4: {"num_elements": 40, "max_value": 400},
     5: {"num_elements": 80, "max_value": 800},
     6: {"num_elements": 100, "max_value": 1000},
     7: {"num_elements": 120, "max_value": 1200},
     8: {"num_elements": 160, "max_value": 1000},
     9: {"num_elements": 160, "max_value": 1600},
10: {"num_elements": 200, "max_value": 2000},
     11: {"num_elements": 200, "max_value": 1000},
     12: {"num_elements": 400, "max_value": 2000},
     13: {"num_elements": 600, "max_value": 2000},
},
"Set Packing": {
     1: {"num_elements": 10, "num_subsets": 10, "num_disjoint_sets": 2},
     2: {"num_elements": 40, "num_subsets": 40, "num_disjoint_sets": 8},
     3: {"num_elements": 100, "num_subsets": 200, "num_disjoint_sets": 50},
     4: {"num_elements": 100, "num_subsets": 400, "num_disjoint_sets": 30},
5: {"num_elements": 100, "num_subsets": 500, "num_disjoint_sets": 30},
6: {"num_elements": 100, "num_subsets": 600, "num_disjoint_sets": 30},
     7: {"num_elements": 100, "num_subsets": 800, "num_disjoint_sets": 30},
     8: {"num_elements": 100, "num_subsets": 1000, "num_disjoint_sets": 30},
     9: {"num_elements": 200, "num_subsets": 400, "num_disjoint_sets": 60}, 10: {"num_elements": 200, "num_subsets": 800, "num_disjoint_sets": 60}
     11: {"num_elements": 400, "num_subsets": 1000, "num_disjoint_sets": 200},
"Set Splitting": {
     1: {"num_elements": 5, "num_subsets": 5},
     2: {"num_elements": 10, "num_subsets": 10},
     3: {"num_elements": 10, "num_subsets": 50},
     4: {"num_elements": 10, "num_subsets": 100},
     5: {"num_elements": 10, "num_subsets": 200},
     6: {"num_elements": 100, "num_subsets": 100}, 7: {"num_elements": 100, "num_subsets": 200},
     8: {"num_elements": 10, "num_subsets": 500},
     9: {"num_elements": 10, "num_subsets": 1000},
     10: {"num_elements": 15, "num_subsets": 500}, 11: {"num_elements": 20, "num_subsets": 500},
"Shortest Common Superstring": {
     1: {"n": 10, "k": 5},

2: {"n": 20, "k": 10},

3: {"n": 40, "k": 20},

4: {"n": 80, "k": 40},
     5: {"n": 100, "k": 50}
     6: {"n": 100, "k": 100},
7: {"n": 100, "k": 200},
8: {"n": 200, "k": 200},
9: {"n": 300, "k": 400},
     10: {"n": 300, "k": 600},
"Quadratic Diophantine Equations": {
     1: {"low": 1, "high": 50},
     2: {"low": 1, "high": 100},
     3: {"low": 1, "high": 500},
     4: {"low": 1, "high": 1000}, 5: {"low": 1, "high": 5000},
```

```
6: {"low": 1, "high": 10000},
     7: {"low": 1, "high": 50000},
     8: {"low": 1, "high": 80000},
     9: {"low": 1, "high": 100000},
     10: {"low": 1, "high": 200000},
"Quadratic Congruences": {
     1: {"min_value": 1, "max_value": 100},
     2: {"min_value": 1, "max_value": 1000},
3: {"min_value": 1, "max_value": 10000},
4: {"min_value": 1, "max_value": 50000},
     5: {"min_value": 1, "max_value": 100000},
     6: {"min_value": 1, "max_value": 300000},
     7: {"min_value": 1, "max_value": 500000},
     8: {"min_value": 1, "max_value": 800000},
9: {"min_value": 1, "max_value": 1000000},
     10: {"min_value": 1, "max_value": 3000000},
"3-Dimensional Matching (3DM)": {
     1: {"n": 4},
     2: {"n": 8},
     3: {"n": 12},
     4: {"n": 15},
     5: {"n": 20},
     6: {"n": 25},
     7: {"n": 30},
     8: {"n": 40},
     9: {"n": 50},
     10: {"n": 60},
"Travelling Salesman (TSP)": {
     1: {"num_cities": 5, "target_length": 100},
     2: {"num_cities": 8, "target_length": 100},
     3: {"num_cities": 10, "target_length": 100},
4: {"num_cities": 12, "target_length": 100},
     5: {"num_cities": 15, "target_length": 100},
     6: {"num_cities": 17, "target_length": 200},
     7: {"num_cities": 20, "target_length": 200}, 8: {"num_cities": 25, "target_length": 200}, 9: {"num_cities": 30, "target_length": 200},
     10: {"num_cities": 40, "target_length": 300},
"Dominating Set": {
     1: {"num_nodes": 10, "k": 5, "edge_prob": 0.3},
2: {"num_nodes": 15, "k": 5, "edge_prob": 0.3},
     3: {"num_nodes": 30, "k": 15, "edge_prob": 0.3},
     4: {"num_nodes": 50, "k": 20, "edge_prob": 0.3}, 5: {"num_nodes": 70, "k": 20, "edge_prob": 0.3},
     6: {"num_nodes": 100, "k": 20, "edge_prob": 0.3},
     7: {"num_nodes": 70, "k": 20, "edge_prob": 0.2},
     8: {"num_nodes": 80, "k": 20, "edge_prob": 0.2},
     9: {"num_nodes": 100, "k": 20, "edge_prob": 0.2}
     10: {"num_nodes": 150, "k": 20, "edge_prob": 0.2},
11: {"num_nodes": 160, "k": 15, "edge_prob": 0.2},
12: {"num_nodes": 180, "k": 15, "edge_prob": 0.2},
"Hitting String": {
     1: {"n": 5, "m": 10},
2: {"n": 5, "m": 20},
     3: {"n": 10, "m": 20},
     4: {"n": 10, "m": 30},
     5: {"n": 10, "m": 40},
     6: {"n": 10, "m": 45}, 7: {"n": 10, "m": 50},
     8: {"n": 10, "m": 55},
     9: {"n": 10, "m": 60},
     10: {"n": 10, "m": 70},
},
```

```
"Hamiltonian Cycle": {
     1: {"num_nodes": 5, "directed": False},
     2: {"num_nodes": 8, "directed": False},
     3: {"num_nodes": 10, "directed": False},
     4: {"num_nodes": 12, "directed": False},
5: {"num_nodes": 16, "directed": False},
     6: {"num_nodes": 18, "directed": False},
     7: {"num_nodes": 20, "directed": False},
     8: {"num_nodes": 22, "directed": False},
9: {"num_nodes": 25, "directed": False},
     10: {"num_nodes": 30, "directed": False},
},
"Bin Packing": {
     1: {"num_items": 10, "bin_capacity": 20, "num_bins": 3},
2: {"num_items": 20, "bin_capacity": 30, "num_bins": 3},
3: {"num_items": 30, "bin_capacity": 30, "num_bins": 3},
     4: {"num_items": 40, "bin_capacity": 30, "num_bins": 3},
     5: {"num_items": 50, "bin_capacity": 50, "num_bins": 5},
     6: {"num_items": 60, "bin_capacity": 50, "num_bins": 5}, 7: {"num_items": 70, "bin_capacity": 50, "num_bins": 5},
     8: {"num_items": 80, "bin_capacity": 50, "num_bins": 5},
     9: {"num items": 80, "bin capacity": 30, "num bins": 10},
     10: {"num_items": 100, "bin_capacity": 50, "num_bins": 10},
},
"Exact Cover by 3-Sets (X3C)": {
     1: {"num_elements": 3, "num_subsets": 6},
     2: {"num_elements": 4, "num_subsets": 8},
     3: {"num_elements": 5, "num_subsets": 10},
     4: {"num_elements": 7, "num_subsets": 14},
5: {"num_elements": 8, "num_subsets": 16},
6: {"num_elements": 10, "num_subsets": 20},
     7: {"num_elements": 15, "num_subsets": 30},
     8: {"num_elements": 20, "num_subsets": 40},
     9: {"num_elements": 25, "num_subsets": 50}
     10: {"num_elements": 30, "num_subsets": 60},
"Minimum Cover": {
     1: {"num_elements": 5, "num_sets": 10, "k": 3},
     2: {"num_elements": 10, "num_sets": 20, "k": 5}, 3: {"num_elements": 10, "num_sets": 30, "k": 5},
     4: {"num_elements": 15, "num_sets": 20, "k": 8},
     5: {"num_elements": 15, "num_sets": 30, "k": 10},
     6: {"num_elements": 20, "num_sets": 40, "k": 10},
     7: {"num_elements": 25, "num_sets": 50, "k": 10}, 8: {"num_elements": 30, "num_sets": 60, "k": 10},
     9: {"num_elements": 35, "num_sets": 70, "k": 10},
     10: {"num_elements": 40, "num_sets": 80, "k": 10},
     11: {"num_elements": 45, "num_sets": 90, "k": 10},
12: {"num_elements": 50, "num_sets": 100, "k": 10},
     13: {"num_elements": 55, "num_sets": 110, "k": 10},
     14: {"num_elements": 60, "num_sets": 120, "k": 10},
     15: {"num_elements": 65, "num_sets": 130, "k": 10},
     16: {"num_elements": 70, "num_sets": 140, "k": 10},
"Graph 3-Colourability (3-COL)": {
     1: {"num_nodes": 5, "num_edges": 8},
2: {"num_nodes": 8, "num_edges": 12},
     3: {"num_nodes": 10, "num_edges": 20}, 4: {"num_nodes": 15, "num_edges": 25},
     5: {"num_nodes": 15, "num_edges": 30},
     6: {"num_nodes": 15, "num_edges": 40},
     7: {"num_nodes": 20, "num_edges": 40},
     8: {"num_nodes": 20, "num_edges": 45},
9: {"num_nodes": 30, "num_edges": 60},
10: {"num_nodes": 30, "num_edges": 80},
},
"Clustering": {
     1: {"num_elements": 6, "b": 10},
```

```
2: {"num_elements": 10, "b": 10},
         3: {"num_elements": 15, "b": 10},
         4: {"num_elements": 18, "b": 10},
         5: {"num_elements": 20, "b": 10},
         6: {"num_elements": 30, "b": 10}, 7: {"num_elements": 40, "b": 10},
         8: {"num_elements": 50, "b": 10},
         9: {"num_elements": 60, "b": 10},
         10: {"num_elements": 70, "b": 10},
    },
     "Betweenness": {
         1: {"num_element": 3, "num_triples": 1},
         2: {"num_element": 4, "num_triples": 2},
         3: {"num_element": 5, "num_triples": 3},
4: {"num_element": 6, "num_triples": 4},
5: {"num_element": 7, "num_triples": 5},
6: {"num_element": 8, "num_triples": 6},
     "Minimum Sum of Squares": {
         1: {"num_elements": 10, "k": 5},
         2: {"num_elements": 50, "k": 8},
         3: {"num_elements": 100, "k": 8},
         4: {"num_elements": 100, "k": 5},
         5: {"num_elements": 100, "k": 4}, 6: {"num_elements": 100, "k": 3},
         7: {"num_elements": 200, "k": 10},
         8: {"num_elements": 200, "k": 4},
         9: {"num_elements": 200, "k": 3},
         10: {"num_elements": 300, "k": 3},
     "Bandwidth": {
         1: {"num_nodes": 3, "bandwidth": 2},
         2: {"num_nodes": 4, "bandwidth": 2},
         3: {"num_nodes": 5, "bandwidth": 3}, 4: {"num_nodes": 6, "bandwidth": 3},
         5: {"num_nodes": 5, "bandwidth": 2},
         6: {"num_nodes": 7, "bandwidth": 3},
         7: {"num_nodes": 6, "bandwidth": 2},
         8: {"num_nodes": 8, "bandwidth": 3}, 9: {"num_nodes": 7, "bandwidth": 2},
         10: {"num_nodes": 8, "bandwidth": 2},
     "Maximum Leaf Spanning Tree": {
         1: {"num_nodes": 5, "target_leaves": 2},
         2: {"num_nodes": 10, "target_leaves": 5},
         3: {"num_nodes": 20, "target_leaves": 10},
         4: {"num_nodes": 30, "target_leaves": 20},
         5: {"num_nodes": 40, "target_leaves": 30},
6: {"num_nodes": 60, "target_leaves": 50},
         7: {"num_nodes": 70, "target_leaves": 60},
         8: {"num_nodes": 80, "target_leaves": 65},
         9: {"num_nodes": 90, "target_leaves": 75},
         10: {"num_nodes": 100, "target_leaves": 80},
    },
}
```

Solution Errors. There are two fundamental error categories: problem-independent errors and problem-dependent errors. Problem-independent errors are general errors that arise from external factors unrelated to the problem's intrinsic characteristics and all problems have these types of errors. Problem-independent errors include JSON ERROR (JSON not found or JSON parsing errors), and VERIFICATION ERROR (output format mismatches or structural validation failures). Problem-dependent errors originate from the problem's inherent complexity, which are defined based on problem specificity. A comprehensive illustration of the errors is displayed in Table 6.

Table 6: A comprehensive illustration of errors.

Problem	Error Type	Description
	JSON ERROR VERIFICATION ERROR	JSON not found. Wrong output format.
3SAT	ERROR 1 ERROR 2	The solution length mismatches the number of variables. Some clauses are not satisfied.
Vertex Cover	ERROR 1 ERROR 2 ERROR 3 ERROR 4 ERROR 5	Wrong solution format. The cover is empty. Invalid vertex index, i.e., above the max or below the min. The cover size exceeds the limit. Some edges are not covered.
3DM	ERROR 1 ERROR 2 ERROR 3	Not all triples in the matching are in the original set. The size of matching is wrong The elements in the matching are not mutually exclusive.
TSP	ERROR 1 ERROR 2 ERROR 3 ERROR 4	Tour length mismatches number of cities. Invalid city index, i.e., above the max or below the min. There exists cities not be visited exactly once. Tour length exceeds target length.
Hamiltonian Cycle	ERROR 1 ERROR 2 ERROR 3 ERROR 4 ERROR 5	Path length is wrong. Path does not return to start. Not all vertices visited exactly once. There exists invalid vertex in path. There exists invalid edges in path.
3-COL	ERROR 1	The two nodes of an edge have the same color
Bin Packing	ERROR 1 ERROR 2 ERROR 3	Solution length mismatches the number of items. Invalid bin index. The total size exceeds bin capacity.
Max Leaf Span Tree	ERROR 1 ERROR 2 ERROR 3 ERROR 4 ERROR 5	Solution length mismatches the number of vertices. There exists invalid edges in solution. The solution does not have exactly one root. The solution doesn't span all vertices. The number of leaves in the solution is less than target.
QDE	ERROR 1 ERROR 2 ERROR 3	Solution length mismatches the number of integers. There exists non-positive values in the solution. The equation does not hold.
Min Sum Square	ERROR 1 ERROR 2 ERROR 3	Solution length mismatches the number of elements. The number of subsets exceeds the set limit. The sum exceeds the limit J .
Superstring	ERROR 1 ERROR 2 ERROR 3	Wrong solution format. The solution length exceeds the limit. Some string is not the substring of the solution.
Bandwidth	ERROR 1 ERROR 2 ERROR 3	Layout length mismatches the number of vertices. Layout is not a permutation of vertices. There exists edge exceeds the bandwidth limit.

C.2 Solver Suite: npsolver

We introduce *npsolver*, a solver suite that provides a unified interface for both online (API-based) and offline (local) models. The unified interface includes: i) *Prompt Generation*, which constructs problem-specific prompts dynamically using the designed prompt templates shown in Appendix D, including problem descriptions, in-context examples, and target problems; ii) *LLM Completion*, which invokes either online or offline LLMs to generate responses from the constructed prompts; iii) *Solution Extraction*, which designs regular expressions to parse JSON outputs from the LLMs' responses, ensuring all online and offline LLMs Use the same JSON validation pipeline; iv) *Error Reporting*, which standardizes error messages. Through the unified interface, *npsolver* enables both online and offline models to share a common workflow. Through this unified pipeline, *npsolver* enables consistent evaluation and analysis for both online and offline models. For each problem, difficulty level, and model, *npsolver* stores detailed records—including the problem instance, example solutions, full LLM responses, extracted solutions, input/output token counts, error messages, solution correctness, and reasons for failure—in a pickle file to facilitate failure case analysis. The list of models integrated in *npsolver* is shown in Table 7.

Type	Models	Version	Provider
	GPT-40-mini	gpt-4o-mini-2024-07-18	OpenAI
	GPT-4o	gpt-4o-2024-08-06	OpenAI
	o1-mini	o1-mini-2024-09-12	OpenAI
Online	o3-mini	o3-mini-2025-01-31	OpenAI
	DeepSeek-V3	deepseek-v3-241226	Huoshan
	DeepSeek-V3-2503	deepseek-v3-250324	Huoshan
	DeepSeek-R1	deepseek-r1-250120	Huoshan
	Claude-3.7-Sonnet	claude-3-7-sonnet-20250219	Anthropic
Offline	QwQ-32B	Qwen/QwQ-32B	N/A
Omme	DeepSeek-R1-32B	deepseek-ai/DeepSeek-R1-Distill-Qwen-32B	N/A

Table 7: Online and offline models considered in this paper via *npsolver*.

Online. The online state-of-the-art LLMs, e.g., o1/o3-mini and DeepSeek-v3/R1, can be accessed through APIs without local computational overhead. However, these online models have dependency on network stability and API costs with token usage. *npsolver* supports multiple providers, e.g., OpenAI, through modular API clients. We implement efficient batch processing with LiteLLM, which minimizes the latency during parallel problem-solving.

Offline. Open-weight LLMs, e.g., QwQ-32B and Deepseek-R1-32B, can be accessed by deploying them locally. This allows for GPU-accelerated, high-throughput inference while avoiding API-related costs. Offline models are deployed using vLLM, with hyperparameters—such as temperature and maximum token length—manually configured according to their official technical documentation.

C.3 Evaluation Suite: npeval

npeval employs a statistically rigorous sampling strategy. For each difficulty, the aggregated performance over 3 different independent seeds, with 30 samples generated per seed, aligning with the minimum sample size for reliable statistical analysis (Hogg et al., 1977), are considered. This sampling design, i.e., sampling 90 instances total per difficulty level for each problem, balances budget constraints while mitigating instance-specific variance.

Evaluation Metrics. rliable (Agarwal et al., 2021) is an open-source Python library designed to enable statistically robust evaluation of reinforcement learning and machine learning benchmarks. Inspired by rliable, npeval provides the following 4 evaluation aggregate metrics:

- Mean: Mean is a standard evaluation metric that treats each score equally and calculates the overall mean across runs and tasks.
- Interquartile Mean (IQM): IQM trims extreme values and computes the interquartile mean across runs and tasks to smooth out the randomness in responses. IQM highlights the consistency of the performance and complements metrics like mean/median to avoid outlier skew.
- Median: Median represents the middle value of the scores by calculating the median of the average scores per task across all runs, which is unaffected by extreme values.
- Optimality Gap (OG): OG measures the average shortfall of scores below a predefined threshold γ , where all scores above γ are clipped to γ , so as to quantify and penalize the underperformance, making it less susceptible to outliers compared to mean scores.

To quantify uncertainty in aggregate metrics, e.g. IQM, *npeval* employs stratified bootstrap confidence intervals (SBCIs) (Efron, 1979; 1987) for the performance interval estimation. SBCIs use stratified resampling within predefined strata, e.g., difficulty levels, to preserve the hierarchical structure of the evaluation data, reduce bias, and provide statistically sound interval estimates.

Comprehensive Analysis. Based on evaluation metrics, npeval provides a comprehensive analysis of the LLMs' performance over the problems and difficulty levels, including the full results for each problem, each model and each level (Appendix G), the performance over different problems (Appendix H), the analysis of both prompt and completion tokens of LLMs (Appendix I), the analysis of the number of "aha moments" during the DeepSeek-R1 reasoning (Guo et al., 2025) (Appendix J), an illustration of errors over problems (Table 6) with detailed error analysis (Appendix K), considering both the solution errors, i.e., the errors returned by npgym, and the reasoning errors, i.e., the errors produced in the internal reasoning process of LLMs, which enables the identification of the failure cases (Appendix L).

D Prompts and Responses

Prompts. In this section, we carefully design the prompt template of **NPPC** for LLMs to be simple, general, and consistent across different problems. The prompt template includes:

- Problem description: where a concise definition of the NPC problem is provided, including the problem name, the input, and the question to be solved.
- Examples: where one or multiple in context examples, defined as problem-solution pairs, are listed, demonstrating the expected solutions, i.e., answer correctness and format, for specific instances. These examples guide LLMs to generate the responses with the required format.
- Problem to solve: a target instance that requires LLMs to generate the solution.
- Instruction: which provides a directive to output answers in JSON format.

Responses. We extract the answers from the LLMs' responses and the code is displayed below:

```
def extract_solution_from_response(response):
   # find the json code
   match = re.findall(r"'''json\n(.*?)\n'''", response, re.DOTALL)
   if not match:
       match = re.findall(r"json\s*(\{[^{\{\}}]*\})", response, re.DOTALL)
   if not match:
       match = re.findall(r"\setminus\{[^{\{\}}]*\setminus\}", response, re.DOTALL)
   if match:
       json_str = match[-1]
       try:
           # remove the single line comment
           json_str = re.sub(r"//.*$", "", json_str, flags=re.MULTILINE)
           # remove the multiple line comment
           json_str = re.sub(r"/\*[\s\S]*?\*/", "", json_str)
           data = json.loads(json_str)
           answer = data["solution"]
           return answer, None
       print(f"Error parsing JSON or answer field: {e}")
           return None, f"Error parsing JSON or answer field: {e}"
       print("No JSON found in the text.")
       return None, "JSON Error: No JSON found in the text."
```

The code extracts JSON data from LLM responses using three regex patterns in sequence:

- First tries to find content between triple quotes with "json" marker,
- If that fails, looks for "json" followed by content in curly braces,
- If both fail, simply looks for any content between curly braces.

If all the three tries cannot find the content, we will raise the error.

E List of NP-complete Problems

Problem 1. • Name: 3-Satisfiability (3SAT)

- Input: A set of m clauses $\{C_1, C_2, \ldots, C_m\}$ over a set of n Boolean valued variables $X_n = \{x_1, x_2, \ldots, x_n\}$, such that each clause depends on exactly three distinct variables from X_n . A clause being a Boolean expression of the form $y_i \wedge y_j \wedge y_k$ where each y is of the form x or $\neg x$ (i.e. negation of x) with x being some variable in X_n . For example if n = 4 and m = 3, a possible instance could be the (set of) Boolean expressions: $C_1 = (x_1 \wedge (\neg x_2) \wedge (\neg x_3)), C_2 = (x_2 \wedge x_3 \wedge (\neg x_4)), C_3 = ((\neg x_1) \wedge x_3 \wedge x_4).$
- Question: Can each variable x_i of X_n be assigned a Boolean value $\alpha_i \in \{\text{true}, \text{false}\}\$ in such a way that every clause evaluates to the Boolean result true under the assignment $\langle x_i := \alpha_i, i \in \{1, ..., n\} \rangle$?

Problem 2. • Name: Graph 3-Colourability (3-COL)

- Input: An n-node undirected graph G = (V, E) with node set V and edge set E.
- Question: Can each node of G = (V, E) be assigned exactly one of three colours Red, Blue, Green in such a way that no two nodes which are joined by an edge, are assigned the same colour?

Problem 3. • Name: Clique

- Input: An *n*-node undirected graph G = (V, E) with node set V and edge set E; a positive integer k with $k \le n$.
- Question: Does G contain a k-clique, i.e. a subset W of the nodes V such that W has size k and for each distinct pair of nodes u, v in W, $\{u, v\}$ is an edge of G?

Problem 4. • Name: Vertex Cover

- Input: An *n*-node undirected graph G = (V, E) with node set V and edge set E; a positive integer k with $k \le n$.
- Question: Is there a subset W of V having size at most k and such that for every edge $\{u, v\}$ in E at least one of u and v belongs to W?

Problem 5. • Name: Quadratic Diophantine Equations

- Input: Positive integers a, b, and c.
- Question: Are there two positive integers x and y such that (a * x * x) + (b * y) = c?

Problem 6. • Name: Shortest Common Superstring

- Input: A finite set $R = \{r_1, r_2, \dots, r_m\}$ of strings (sequences of symbols); positive integer k.
- Question: Is there a string w of length at most k such that every string in R is a substring of w, i.e., for each r in R, w can be decomposed as $w = w_0 r w_1$ where w_0 , w_1 are (possibly empty) strings?

Problem 7. • Name: Bandwidth

- Input: n-node undirected graph G = (V, E); positive integer $k \le n$.
- Question: Is there a linear ordering of V with bandwidth at most k, i.e., a one-to-one function $f: V \to \{0, 1, 2, ..., n-1\}$ such that for all edges u, v in G, $|f(u) f(v)| \le k$?

Problem 8. • Name: Maximum Leaf Spanning Tree

- Input: n-node undirected graph G = (V, E); positive integer $k \le n$.
- Question: Does G have a spanning tree in which at least k nodes have degree 1?

Problem 9. • Name: Independent Set

• Input: n-node undirected graph G = (V, E); positive integer $k \le n$.

• Question: Does G have an independent set of size at least k, i.e., a subset W of at least k nodes from V such that no pair of nodes in W is joined by an edge in E?

Problem 10. • Name: Hamiltonian Cycle

- Input: n-node graph G = (V, E).
- Question: Is there a cycle in G that visits every node in V exactly once and returns to the starting node, and thus contains exactly n edge

Problem 11. • Name: Travelling Salesman

- Input: A set C of n cities $\{c_1, \ldots, c_n\}$; a positive integer distance d(i, j) for each pair of cities $(c_i, c_j), i < j, i, j \in \{1, \ldots, n\}$; a positive integer B representing the maximum allowed travel distance.
- Question: Is there an ordering $\langle \pi(1), \pi(2), ..., \pi(n) \rangle$ of the *n* cities such that the total travel distance, calculated as the sum of $d(\pi(i), \pi(i+1))$ for i=1 to n-1, plus $d(\pi(n), \pi(1))$, is at most *B*?

Problem 12. • Name: Dominating Set

- Input: An undirected graph G(V, E) with n nodes; a positive integer k where $k \leq n$.
- Question: Does G contain a dominating set of size at most k, i.e. a subset W of V containing at most k nodes such that every node u in V W (i.e. in V but not in W) has at least one neighbor w in W where u, w is an edge in E?

Problem 13. • Name: 3-Dimensional Matching (3DM)

- Input: 3 disjoint sets X, Y, and Z, each containing exactly n elements; a set M of m triples $\{(x_i, y_i, z_i) : 1 \le i \le m\}$ such that x_i is in X, y_i in Y, and z_i in Z, i.e. M is a subset of $X \times Y \times Z$.
- Question: Does M contain a matching, i.e., is there a subset Q of M such that |Q| = n and for all distinct pairs of triples (u, v, w) and (x, y, z) in Q it holds that $u \neq x$ and $v \neq y$ and $w \neq z$?

Problem 14. • Name: Set Splitting

- Input: A finite set S; A collection C_1, \ldots, C_m of subsets of S.
- Question: Can S be partitioned into two disjoint subsets S1 and S2 such that for each set C_i it holds that C_i is not a subset of S_1 and C_i is not a subset of S_2 ?

Problem 15. • Name: Set Packing

- Input: A collection $C = (C_1, \dots, C_m)$ of finite sets; a positive integer $k \leq m$.
- Question: Are there k sets D_1, \ldots, D_k from the collection C such that for all $1 \le i < j \le k$, D_i and D_j have no common elements?

Problem 16. • Name: Exact Cover by 3-Sets (X3C)

- Input: A finite set X containing exactly 3n elements; a collection C of subsets of X each of which contains exactly 3 elements.
- Question: Does C contain an exact cover for X, i.e., a sub-collection of 3-element sets $D = (D_1, \ldots, D_n)$ such that each element of X occurs in exactly one subset in D?

Problem 17. • Name: Minimum Cover

- Input: A finite set S; A collection $C = (C_1, \dots, C_m)$ of subsets of S; a positive integer $k \leq m$.
- Question: Does C contain a cover for S comprising at most k subsets, i.e., a collection $D = (D_1, \ldots, D_t)$, where $t \leq k$, each D_i is a set in C, and such that every element in S belongs to at least one set in D?

Problem 18. • Name: Partition

- Input: Finite set A; for each element a in A a positive integer size s(a).
- Question: Can A be partitioned into 2 disjoint sets A_1 and A_2 in a such a way that $\sum_{a \in A_1} s(a) = \sum_{a \in A_2} s(a)$?

Problem 19. • Name: Subset Sum

- Input: Finite set A; for each element $a \in A$ a positive integer size s(a); a positive integer K.
- Question: Is there a subset B of A such that $\sum_{a \in B} s(a) = K$?

Problem 20. • Name: Minimum Sum of Squares

- Input: A set A of n elements; for each element $a \in A$ a positive integer size s(a); positive integers $k \le n$ and J.
- Question: Can A be partitioned into k disjoint sets A_1, \ldots, A_k such that $\sum_{i=1}^k (\sum_{x \in A_i} s(x))^2 <= J$?

Problem 21. • Name: Bin Packing

- Input: A finite set U of m items; for each item u in U a positive integer size s(u); positive integers B (bin capacity) and k, where $k \leq m$.
- Question: Can U be partitioned into k disjoint sets U_1, \ldots, U_k such that the total size of the items in each subset U_i (for $1 \le i \le k$) does not exceed B?

Problem 22. • Name: Hitting String

- Input: Finite set $S = \{s_1, \dots, s_m\}$ each s_i being a string of n symbols over $\{0, 1, *\}$.
- Question: Is there a binary string $x = x_1 x_2 \dots x_n$ of length n such that for each $s_j \in S$, s_j and x agree in at least one position?

Problem 23. • Name: Quadratic Congruences

- Input: Positive integers a, b, and c.
- Question: Is there a positive integer x whose value is less than c and is such that $x^2 \mod b == a$, i.e., the remainder when x^2 is divided by b is equal to a?

Problem 24. • Name: Betweenness

- Input: A finite set A of size n; a set C of ordered triples, (a, b, c), of distinct elements from A.
- Question: Is there a one-to-one function, $f: A \to \{0, 1, 2, ..., n-1\}$ such that for each triple (a, b, c) in C it holds that either f(a) < f(b) < f(c) or f(c) < f(b) < f(a)?

Problem 25. • Name: Clustering

- Input: Finite set X; for each pair of elements x and y in X, a positive integer distance d(x,y); positive integer B.
- Question: Is there a partition of X into 3 disjoint sets X_1, X_2, X_3 with which: for each set $X_i, i \in \{1, 2, 3\}$, for all pairs x and y in X_i , it holds that $d(x, y) \leq B$?

F Hyperparameters

The hyperparameters used for benchmarking are listed in Table 8. For both offline and online-deployed models, accuracy is averaged over three seeds and 30 trials per difficulty level per task. Each model is allowed up to three attempts to mitigate the impact of API connection issues. For offline models, we follow the recommended sampling parameters from the technical reports of Deepseek-R1-32B and QwQ-32B for vLLM deployment.

Table 8: Hyperparameters

Type	Hyperparameter	Value
Basic	seeds n_shots n_trials batch_size max_tries	42, 53, 64 1 30 10 3
Offline Model	temperature top_p max_tokens gpu_memory_utilization	0.6 0.95 7500 0.8

G Full Results over Problems

In this section, we present the full results over problems, as displayed in Figure 5. For each element in the table x_b^a , x is the value of IQM and a and b are the upper and lower values of the CI, respectively.

Table 9: 3SAT

	1	2	3	4	5	6	7	8	9	10
QwQ-32B	$0.94_{0.90}^{1.00}$	$1.00_{1.00}^{1.00}$	$0.56_{0.53}^{0.60}$	$0.11_{0.07}^{0.13}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$
DeepSeek-R1-32B		$0.52_{0.40}^{0.70}$	$0.32_{0.30}^{0.37}$	$0.19_{0.13}^{0.27}$	$0.13_{0.07}^{0.23}$	$0.02_{0.00}^{0.03}$	$0.00_{0.00}^{0.00}$			
GPT-4o-mini	$0.84_{0.83}^{0.87}$			$0.08_{0.03}^{0.10}$	$0.02^{0.03}_{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$
GPT-40	$0.94_{0.93}^{0.97}$	$0.51_{0.47}^{0.57}$	$0.43_{0.40}^{0.47}$	$0.22_{0.20}^{0.27}$	$0.09_{0.00}^{0.17}$	$0.01_{0.00}^{0.03}$	$0.01_{0.00}^{0.03}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$
Claude-3.7-Sonnet	$1.00_{1.00}^{1.00}$	$0.89_{0.80}^{0.93}$	$0.62^{0.67}_{0.60}$				$0.14_{0.03}^{0.23}$			
DeepSeek-V3	$0.94_{0.93}^{0.97}$	$0.78_{0.60}^{0.90}$	$0.38_{0.33}^{0.40}$				$0.01_{0.00}^{0.03}$		$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$
${\rm Deep Seek\text{-}V3\text{-}2503}$	$1.00_{1.00}^{1.00}$	$0.98_{0.97}^{1.00}$	$0.89_{0.83}^{0.97}$				$0.28_{0.23}^{0.33}$	$0.12^{0.23}_{0.03}$	$0.08_{0.03}^{0.17}$	$0.03_{0.03}^{0.03}$
DeepSeek-R1	$1.00_{1.00}^{1.00}$	$1.00_{1.00}^{1.00}$	$0.99_{0.97}^{1.00}$	$0.98_{0.93}^{1.00}$						
o1-mini	$0.92_{0.90}^{0.93}$						$0.03_{0.03}^{0.03}$			
o3-mini	$0.93_{0.90}^{0.97}$	$0.82^{0.87}_{0.77}$	$0.72_{0.63}^{0.83}$	$0.77_{0.70}^{0.83}$	$0.82^{0.83}_{0.80}$	$0.71_{0.67}^{0.77}$	$0.60^{0.70}_{0.53}$	$0.30_{0.20}^{0.43}$	$0.13_{0.10}^{0.17}$	$0.12^{0.17}_{0.03}$

Table 10: Vertex Cover

	1	2	3	4	5	6	7	8	9	10
QwQ-32B	$ 1.00^{1.00}_{1.00} $	$0.99_{0.97}^{1.00}$	$0.93_{0.90}^{0.97}$	$0.50_{0.37}^{0.60}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$
DeepSeek-R1-32B	$0.91_{0.83}^{1.00}$	$0.92_{0.90}^{0.93}$	$0.81_{0.73}^{0.87}$	$0.52_{0.43}^{0.60}$	$0.03_{0.00}^{0.07}$	$0.02_{0.00}^{0.03}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$
GPT-40-mini	$0.94_{0.87}^{1.00}$	$0.67_{0.57}^{0.80}$	$0.37_{0.27}^{0.43}$	$0.18_{0.10}^{0.23}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$
GPT-4o	$0.96^{1.00}_{0.90}$	$0.88_{0.83}^{0.90}$	$0.78_{0.67}^{0.87}$		$0.01_{0.00}^{0.03}$	$0.03_{0.00}^{0.07}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$
Claude-3.7-Sonnet	$1.00_{1.00}^{1.00}$	$0.97_{0.90}^{1.00}$	$0.97_{0.93}^{1.00}$	$0.90^{0.90}_{0.90}$	$0.53_{0.47}^{0.57}$	$0.37_{0.30}^{0.47}$	$0.37_{0.23}^{0.50}$	$0.26^{0.30}_{0.20}$	$0.14_{0.10}^{0.17}$	$0.04_{0.00}^{0.07}$
DeepSeek-V3	$0.92^{1.00}_{0.87}$	$0.97_{0.93}^{1.00}$	$0.96_{0.93}^{0.97}$		$0.34_{0.23}^{0.43}$	$0.14_{0.10}^{0.20}$	$0.06_{0.03}^{0.10}$	$0.03_{0.00}^{0.07}$	$0.03_{0.00}^{0.07}$	$0.01_{0.00}^{0.03}$
${\rm DeepSeek\text{-}V3\text{-}2503}$	$1.00_{1.00}^{1.00}$	$1.00_{1.00}^{1.00}$	$1.00_{1.00}^{1.00}$	$0.87_{0.83}^{0.90}$	$0.28_{0.10}^{0.43}$	$0.37_{0.23}^{0.50}$	$0.27_{0.23}^{0.33}$	$0.09_{0.07}^{0.13}$	$0.09_{0.07}^{0.10}$	$0.01_{0.00}^{0.03}$
DeepSeek-R1	$1.00_{1.00}^{1.00}$	$1.00_{1.00}^{1.00}$	$1.00_{1.00}^{1.00}$	$1.00_{1.00}^{1.00}$	$0.91_{0.87}^{0.97}$	$0.77_{0.70}^{0.87}$	$0.41_{0.33}^{0.47}$	$0.18_{0.13}^{0.20}$	$0.13_{0.08}^{0.20}$	$0.06_{0.00}^{0.10}$
o1-mini	$0.74_{0.73}^{0.77}$	$0.77_{0.73}^{0.80}$	$0.78_{0.70}^{0.83}$	$0.91_{0.87}^{0.93}$	$0.58_{0.43}^{0.70}$	$0.31_{0.27}^{0.33}$	$0.13_{0.10}^{0.17}$	$0.13_{0.03}^{0.27}$	$0.08_{0.07}^{0.10}$	$0.02_{0.00}^{0.07}$
o3-mini	$0.82^{0.90}_{0.70}$	$0.89_{0.83}^{0.93}$	$0.89_{0.83}^{0.93}$	$0.80^{0.90}_{0.73}$	$0.59_{0.53}^{0.70}$	$0.52_{0.50}^{0.57}$	$0.19_{0.10}^{0.27}$	$0.13_{0.03}^{0.23}$	$0.11_{0.03}^{0.17}$	$0.07_{0.03}^{0.10}$

Table 11: Superstring

	1	2	3	4	5	6	7	8	9	10
QwQ-32B	$1.00_{1.00}^{1.00}$	$0.92_{0.87}^{0.97}$	$0.28_{0.20}^{0.33}$	$0.19_{0.13}^{0.23}$	$0.17_{0.10}^{0.23}$	$0.06_{0.00}^{0.13}$	$0.08_{0.03}^{0.13}$	$0.01_{0.00}^{0.03}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$
DeepSeek-R1-32B	$0.58_{0.33}^{0.70}$	$0.24_{0.10}^{0.40}$	$0.16_{0.07}^{0.23}$			$0.03_{0.03}^{0.03}$	$0.02_{0.00}^{0.03}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$
GPT-40-mini	$0.32_{0.20}^{0.47}$	$0.08_{0.03}^{0.13}$	$0.02^{0.03}_{0.00}$	$0.01^{0.03}_{0.00}$	$0.00_{0.00}^{0.00}$	$0.01_{0.00}^{0.03}$	$0.00_{0.00}^{0.00}$	$0.01_{0.00}^{0.03}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$
GPT-40	$0.81_{0.77}^{0.83}$	$0.47_{0.30}^{0.57}$	$0.11_{0.07}^{0.17}$	$0.10_{0.03}^{0.17}$	$0.06_{0.03}^{0.10}$	$0.16_{0.03}^{0.27}$	$0.06_{0.03}^{0.10}$	$0.12_{0.10}^{0.13}$	$0.07_{0.03}^{0.10}$	$0.03_{0.00}^{0.07}$
Claude-3.7-Sonnet	$0.99_{0.97}^{1.00}$	$0.97_{0.93}^{1.00}$	$0.78_{0.70}^{0.90}$	$0.51_{0.47}^{0.57}$	$0.68_{0.60}^{0.77}$	$0.74_{0.70}^{0.80}$	$0.77_{0.73}^{0.80}$	$0.88_{0.83}^{0.93}$	$0.82^{0.90}_{0.77}$	$0.74_{0.70}^{0.80}$
DeepSeek-V3	$0.80^{0.83}_{0.73}$	$0.52_{0.37}^{0.67}$	$0.49_{0.43}^{0.53}$	$0.46^{0.53}_{0.40}$	$0.44_{0.40}^{0.53}$	$0.40_{0.30}^{0.57}$	$0.24_{0.13}^{0.37}$	$0.22_{0.17}^{0.27}$	$0.08^{0.10}_{0.03}$	$0.02_{0.00}^{0.03}$
${\rm DeepSeek\text{-}V3\text{-}2503}$	$0.99_{0.97}^{1.00}$	$0.89_{0.83}^{0.93}$	$0.78_{0.73}^{0.83}$	$0.61_{0.57}^{0.67}$	$0.53_{0.40}^{0.60}$	$0.37_{0.33}^{0.40}$	$0.21_{0.20}^{0.23}$		$0.26_{0.23}^{0.27}$	$0.13_{0.10}^{0.17}$
DeepSeek-R1	$1.00_{1.00}^{1.00}$	$0.99_{0.97}^{1.00}$	$0.94_{0.93}^{0.97}$	$0.81_{0.73}^{0.90}$		$0.61_{0.53}^{0.77}$	$0.37_{0.20}^{0.50}$	$0.31_{0.30}^{0.33}$	$0.11_{0.07}^{0.17}$	$0.13_{0.10}^{0.17}$
o1-mini	$0.91_{0.87}^{0.97}$	$0.59_{0.47}^{0.73}$	$0.48_{0.43}^{0.53}$	$0.20^{0.23}_{0.17}$		$0.03_{0.00}^{0.07}$	$0.01_{0.00}^{0.03}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$
o3-mini	$1.00_{1.00}^{1.00}$	$1.00_{1.00}^{1.00}$	$0.98_{0.97}^{1.00}$	$0.89_{0.87}^{0.90}$	$0.74_{0.70}^{0.77}$	$0.31_{0.23}^{0.37}$	$0.04_{0.03}^{0.07}$	$0.01_{0.00}^{0.03}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$

Table 12: QDE

	1	2	3	4	5	6	7	8	9	10
QwQ-32B	$0.72_{0.30}^{1.00}$	$0.56_{0.17}^{0.80}$	$0.19_{0.07}^{0.27}$	$0.16_{0.07}^{0.23}$	$0.03_{0.03}^{0.03}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$
${\rm DeepSeek\text{-}R1\text{-}32B}$	$0.84_{0.77}^{0.90}$	$0.62_{0.50}^{0.70}$	$0.11_{0.10}^{0.13}$	$0.08_{0.07}^{0.10}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$
GPT-40-mini	$0.49_{0.43}^{0.53}$	$0.23_{0.17}^{0.27}$	$0.03_{0.00}^{0.07}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$
GPT-4o	$0.67^{0.70}_{0.60}$	$0.43_{0.33}^{0.57}$	$0.08^{0.10}_{0.07}$	$0.03_{0.03}^{0.03}$	$0.01_{0.00}^{0.03}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$
Claude-3.7-Sonnet	$0.96^{1.00}_{0.87}$	$0.97_{0.97}^{0.97}$	$0.78_{0.77}^{0.80}$	$0.59_{0.47}^{0.67}$	$0.10^{0.13}_{0.07}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$
DeepSeek-V3	$0.97_{0.97}^{0.97}$	$0.89_{0.83}^{0.93}$	$0.38_{0.37}^{0.40}$	$0.19_{0.10}^{0.30}$	$0.04_{0.03}^{0.07}$	$0.02^{0.03}_{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$
${\rm DeepSeek\text{-}V3\text{-}2503}$	$1.00_{1.00}^{1.00}$	$1.00_{1.00}^{1.00}$	$0.68_{0.63}^{0.70}$		$0.30_{0.20}^{0.37}$	$0.17_{0.13}^{0.20}$	$0.08_{0.00}^{0.13}$	$0.01_{0.00}^{0.03}$	$0.08_{0.00}^{0.13}$	$0.00_{0.00}^{0.00}$
DeepSeek-R1	$1.00_{1.00}^{1.00}$	$1.00_{1.00}^{1.00}$	$1.00_{1.00}^{1.00}$	$0.97_{0.93}^{1.00}$	$0.82_{0.77}^{0.90}$	$0.68_{0.63}^{0.73}$	$0.27_{0.20}^{0.33}$	$0.17_{0.13}^{0.20}$	$0.09_{0.07}^{0.13}$	$0.03_{0.00}^{0.07}$
o1-mini	$0.57_{0.50}^{0.70}$	$0.59_{0.50}^{0.63}$	$0.44_{0.33}^{0.63}$	$0.46^{0.50}_{0.43}$	$0.11_{0.07}^{0.17}$	$0.03_{0.00}^{0.07}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$
o3-mini	$0.94_{0.90}^{0.97}$	$0.99_{0.97}^{1.00}$	$0.94_{0.93}^{0.97}$	$0.96^{1.00}_{0.90}$	$0.81_{0.77}^{0.87}$	$0.66_{0.53}^{0.77}$	$0.30_{0.20}^{0.43}$	$0.27^{0.30}_{0.20}$	$0.27^{0.30}_{0.23}$	$0.13_{0.10}^{0.17}$

Table 13: 3DM

	1	2	3	4	5	6	7	8	9	10
QwQ-32B	$ 1.00^{1.00}_{1.00} $	$0.98_{0.97}^{1.00}$	$0.93_{0.90}^{0.97}$	$0.94_{0.93}^{0.97}$	$0.33_{0.07}^{0.83}$	$0.06_{0.00}^{0.10}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00^{0.00}_{0.00}$
DeepSeek-R1-32B	$0.87_{0.77}^{1.00}$	$0.42_{0.23}^{0.57}$	$0.09_{0.03}^{0.13}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.01_{0.00}^{0.03}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$
GPT-40-mini	$0.43_{0.27}^{0.57}$	$0.09_{0.07}^{0.10}$	$0.02_{0.00}^{0.03}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$
GPT-4o	$0.64_{0.53}^{0.83}$	$0.24_{0.17}^{0.37}$	$0.13_{0.03}^{0.20}$	$0.10^{0.13}_{0.07}$	$0.02^{0.07}_{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$
Claude-3.7-Sonnet	$0.96^{0.97}_{0.93}$	$0.84_{0.80}^{0.90}$	$0.76_{0.67}^{0.80}$	$0.59_{0.43}^{0.70}$	$0.21_{0.13}^{0.33}$	$0.09_{0.07}^{0.10}$	$0.07_{0.03}^{0.10}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$
DeepSeek-V3	$0.74_{0.57}^{0.83}$	$0.32^{0.47}_{0.23}$	$0.08_{0.00}^{0.13}$	$0.03_{0.00}^{0.10}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$
${\rm DeepSeek\text{-}V3\text{-}2503}$	$0.94_{0.93}^{0.97}$	$0.76_{0.70}^{0.87}$	$0.49_{0.43}^{0.60}$	$0.31_{0.10}^{0.47}$	$0.07_{0.03}^{0.10}$	$0.03_{0.00}^{0.07}$	$0.01_{0.00}^{0.03}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$
DeepSeek-R1	$1.00_{1.00}^{1.00}$	$1.00_{1.00}^{1.00}$	$0.98_{0.97}^{1.00}$	$0.97_{0.93}^{1.00}$	$0.93_{0.90}^{0.97}$	$0.91_{0.83}^{0.97}$	$0.91_{0.87}^{0.97}$	$0.57_{0.50}^{0.67}$	$0.27_{0.17}^{0.37}$	$0.02^{0.03}_{0.00}$
o1-mini	$0.87_{0.83}^{0.93}$	$0.89_{0.87}^{0.90}$	$0.81_{0.73}^{0.87}$	$0.77^{0.83}_{0.73}$	$0.38_{0.30}^{0.47}$	$0.26_{0.23}^{0.27}$	$0.11_{0.07}^{0.20}$	$0.01_{0.00}^{0.03}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$
o3-mini	$0.63_{0.60}^{0.70}$	$0.86_{0.80}^{0.93}$	$0.72_{0.67}^{0.77}$	$0.71_{0.57}^{0.80}$	$0.57_{0.53}^{0.60}$	$0.56_{0.43}^{0.70}$	$0.38_{0.30}^{0.53}$	$0.30_{0.23}^{0.37}$	$0.23_{0.23}^{0.23}$	$0.20_{0.17}^{0.23}$

Table 14: TSP

	1	2	3	4	5	6	7	8	9	10
QwQ-32B	$0.61^{0.80}_{0.50}$	$0.41_{0.30}^{0.53}$	$0.42_{0.30}^{0.53}$	$0.56_{0.50}^{0.60}$	$0.26_{0.23}^{0.30}$	$0.19_{0.13}^{0.27}$	$0.02_{0.00}^{0.07}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$
DeepSeek-R1-32B	$0.88_{0.87}^{0.90}$	$0.62_{0.53}^{0.73}$	$0.30_{0.23}^{0.40}$	$0.13_{0.03}^{0.20}$		$0.01_{0.00}^{0.03}$		$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$
GPT-4o-mini	$0.93_{0.90}^{0.96}$	$0.34_{0.27}^{0.40}$	$0.12_{0.07}^{0.20}$	$0.07_{0.00}^{0.10}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$
GPT-40	$0.97_{0.97}^{0.97}$	$0.76_{0.73}^{0.80}$	$0.59_{0.50}^{0.67}$	$0.40_{0.33}^{0.47}$	$0.22_{0.10}^{0.33}$	$0.16_{0.03}^{0.23}$	$0.08_{0.07}^{0.10}$	$0.02_{0.00}^{0.07}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$
Claude-3.7-Sonnet	$1.00_{1.00}^{1.00}$	$0.98_{0.97}^{1.00}$	$0.90_{0.83}^{0.93}$	$0.83_{0.77}^{0.90}$	$0.86_{0.80}^{0.90}$	$0.80_{0.73}^{0.83}$	$0.54_{0.47}^{0.70}$	$0.51_{0.50}^{0.53}$	$0.08_{0.03}^{0.10}$	$0.06_{0.00}^{0.10}$
DeepSeek-V3	$0.98_{0.93}^{1.00}$	$0.90_{0.90}^{0.90}$	$0.74_{0.60}^{0.83}$	$0.62^{0.77}_{0.50}$	$0.49_{0.33}^{0.67}$	$0.49_{0.33}^{0.73}$	$0.17_{0.13}^{0.23}$	$0.07_{0.00}^{0.13}$	$0.02^{0.03}_{0.00}$	$0.00_{0.00}^{0.00}$
${\rm DeepSeek\text{-}V3\text{-}2503}$	$1.00_{1.00}^{1.00}$	$0.94_{0.90}^{0.97}$	$0.96_{0.87}^{1.00}$	$0.83_{0.80}^{0.87}$	$0.70_{0.67}^{0.77}$	$0.66_{0.57}^{0.70}$	$0.39_{0.27}^{0.47}$	$0.10^{0.10}_{0.10}$	$0.01_{0.00}^{0.03}$	$0.01_{0.00}^{0.03}$
DeepSeek-R1	$1.00_{1.00}^{1.00}$	$0.99_{0.97}^{1.00}$	$0.97_{0.97}^{0.97}$	$0.99_{0.97}^{1.00}$	$0.87_{0.87}^{0.87}$	$0.78_{0.77}^{0.80}$	$0.62^{0.67}_{0.57}$	$0.24_{0.20}^{0.30}$	$0.03_{0.00}^{0.10}$	$0.00_{0.00}^{0.00}$
o1-mini	$0.84_{0.73}^{0.90}$	$0.89_{0.87}^{0.93}$	$0.67_{0.60}^{0.77}$	$0.57_{0.43}^{0.63}$	$0.34_{0.23}^{0.47}$	$0.37_{0.23}^{0.43}$	$0.18_{0.07}^{0.30}$	$0.01^{0.03}_{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$
o3-mini	$0.79_{0.73}^{0.87}$	$0.62^{0.67}_{0.53}$	$0.53_{0.47}^{0.63}$	$0.28_{0.20}^{0.33}$	$0.31_{0.23}^{0.37}$	$0.30_{0.17}^{0.47}$	$0.30_{0.20}^{0.37}$	$0.19_{0.17}^{0.20}$	$0.12_{0.07}^{0.17}$	$0.07_{0.00}^{0.13}$

Table 15: Hamiltonian Cycle

	1	2	3	4	5	6	7	8	9	10
QwQ-32B	$0.94_{0.90}^{1.00}$	$0.87_{0.83}^{0.93}$	$0.80_{0.70}^{0.93}$	$0.62_{0.57}^{0.67}$	$0.33_{0.23}^{0.40}$	$0.16_{0.10}^{0.20}$	$0.03_{0.00}^{0.10}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$
${\rm DeepSeek\text{-}R1\text{-}32B}$	$0.69_{0.67}^{0.73}$	$0.36_{0.27}^{0.40}$	$0.24_{0.13}^{0.40}$	$0.09_{0.03}^{0.13}$	$0.00_{0.00}^{0.00}$	$0.01_{0.00}^{0.03}$	$0.02_{0.00}^{0.03}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$
GPT-40-mini	$0.70_{0.67}^{0.73}$	$0.26_{0.13}^{0.40}$	$0.09_{0.07}^{0.10}$	$0.08_{0.03}^{0.13}$	$0.01_{0.00}^{0.03}$	$0.00_{0.00}^{0.00}$	$0.01_{0.00}^{0.03}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$
GPT-4o	$0.73_{0.73}^{0.73}$	$0.39_{0.33}^{0.43}$	$0.22_{0.17}^{0.27}$	$0.12^{0.20}_{0.07}$	$0.09_{0.00}^{0.13}$	$0.01_{0.00}^{0.03}$	$0.06^{0.10}_{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$
Claude-3.7-Sonnet	$0.99_{0.97}^{1.00}$	$0.80_{0.70}^{0.90}$	$0.74_{0.67}^{0.83}$	$0.64_{0.53}^{0.77}$	$0.32_{0.17}^{0.50}$	$0.23_{0.20}^{0.27}$	$0.27_{0.20}^{0.33}$	$0.16^{0.27}_{0.10}$	$0.10^{0.10}_{0.10}$	$0.02_{0.00}^{0.07}$
DeepSeek-V3	$0.83^{0.90}_{0.77}$	$0.44_{0.30}^{0.53}$	$0.14_{0.10}^{0.20}$	$0.16^{0.17}_{0.13}$	$0.09_{0.00}^{0.17}$	$0.06_{0.03}^{0.07}$	$0.06^{0.10}_{0.00}$	$0.06^{0.10}_{0.00}$	$0.01_{0.00}^{0.03}$	$0.01_{0.00}^{0.03}$
${\rm DeepSeek\text{-}V3\text{-}2503}$	$0.99_{0.97}^{1.00}$	$0.82^{0.90}_{0.77}$	$0.51_{0.50}^{0.53}$		$0.16_{0.07}^{0.27}$	$0.14_{0.13}^{0.17}$	$0.09_{0.07}^{0.10}$	$0.10^{0.17}_{0.07}$	$0.06_{0.03}^{0.07}$	$0.03_{0.00}^{0.07}$
DeepSeek-R1	$1.00_{1.00}^{1.00}$	$1.00_{1.00}^{1.00}$	$0.97_{0.93}^{1.00}$	$0.91_{0.83}^{0.97}$	$0.76_{0.63}^{0.93}$	$0.64_{0.57}^{0.73}$	$0.49_{0.43}^{0.57}$	$0.36_{0.27}^{0.40}$	$0.17_{0.13}^{0.23}$	$0.04_{0.00}^{0.10}$
o1-mini	$0.72^{0.80}_{0.57}$	$0.71_{0.67}^{0.77}$	$0.54_{0.50}^{0.60}$	$0.40^{0.47}_{0.33}$	$0.19_{0.17}^{0.23}$	$0.23_{0.13}^{0.30}$	$0.12^{0.17}_{0.10}$	$0.08_{0.03}^{0.10}$	$0.04_{0.00}^{0.07}$	$0.00_{0.00}^{0.00}$
o3-mini	$0.82_{0.80}^{0.83}$	$0.84_{0.77}^{0.90}$	$0.71_{0.63}^{0.77}$	$0.71_{0.60}^{0.83}$	$0.63_{0.57}^{0.73}$	$0.59_{0.50}^{0.67}$	$0.44_{0.37}^{0.50}$	$0.32_{0.27}^{0.43}$	$0.20^{0.33}_{0.10}$	$0.22_{0.20}^{0.23}$

Table 16: Bin Packing

	1	2	3	4	5	6	7	8	9	10
QwQ-32B	$0.88_{0.80}^{0.93}$	$0.83_{0.77}^{0.87}$	$0.46_{0.40}^{0.57}$	$0.08_{0.00}^{0.20}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00^{0.00}_{0.00}$
DeepSeek-R1-32B	$0.26_{0.17}^{0.33}$	$0.03_{0.00}^{0.07}$	$0.01_{0.00}^{0.03}$	$0.03_{0.00}^{0.07}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$
GPT-40-mini	$0.30_{0.23}^{0.33}$	$0.03_{0.03}^{0.03}$	$0.04_{0.00}^{0.10}$	$0.03_{0.00}^{0.10}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$
GPT-40	$0.83_{0.73}^{0.90}$	$0.44_{0.40}^{0.50}$	$0.34_{0.33}^{0.37}$	$0.18_{0.13}^{0.20}$	$0.04_{0.00}^{0.10}$	$0.02^{0.03}_{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$
Claude-3.7-Sonnet	$0.98_{0.97}^{1.00}$	$0.89_{0.83}^{0.93}$	$0.58_{0.43}^{0.70}$	$0.39_{0.37}^{0.40}$	$0.07_{0.00}^{0.17}$	$0.01_{0.00}^{0.03}$	$0.01_{0.00}^{0.03}$	$0.03_{0.00}^{0.07}$	$0.01_{0.00}^{0.03}$	$0.00_{0.00}^{0.00}$
DeepSeek-V3	$0.66_{0.60}^{0.73}$	$0.46^{0.50}_{0.40}$	$0.44_{0.37}^{0.50}$	$0.37_{0.33}^{0.40}$	$0.06^{0.13}_{0.00}$	$0.04_{0.03}^{0.07}$	$0.02^{0.03}_{0.00}$	$0.00_{0.00}^{0.00}$	$0.01^{0.03}_{0.00}$	$0.00_{0.00}^{0.00}$
${\rm DeepSeek\text{-}V3\text{-}2503}$	$1.00_{1.00}^{1.00}$	$0.87_{0.80}^{0.93}$	$0.74_{0.67}^{0.83}$	$0.62^{0.67}_{0.57}$	$0.18_{0.10}^{0.27}$	$0.18_{0.13}^{0.23}$	$0.09_{0.03}^{0.13}$	$0.02^{0.07}_{0.00}$	$0.02^{0.03}_{0.00}$	$0.00_{0.00}^{0.00}$
DeepSeek-R1	$1.00_{1.00}^{1.00}$	$1.00_{1.00}^{1.00}$	$1.00_{1.00}^{1.00}$	$0.98_{0.97}^{1.00}$	$0.80_{0.73}^{0.90}$	$0.64_{0.57}^{0.77}$	$0.49_{0.47}^{0.53}$	$0.29_{0.20}^{0.43}$	$0.06^{0.10}_{0.03}$	$0.03_{0.00}^{0.07}$
o1-mini	$0.67^{0.80}_{0.43}$	$0.58_{0.50}^{0.63}$	$0.52_{0.47}^{0.57}$	$0.33_{0.27}^{0.40}$	$0.31_{0.20}^{0.50}$	$0.19_{0.13}^{0.23}$	$0.07_{0.03}^{0.10}$	$0.00_{0.00}^{0.00}$	$0.02_{0.00}^{0.07}$	$0.01_{0.00}^{0.03}$
o3-mini	$0.72_{0.60}^{0.83}$	$0.67_{0.57}^{0.80}$	$0.62^{0.67}_{0.57}$	$0.48_{0.33}^{0.57}$	$0.41_{0.37}^{0.47}$	$0.29_{0.17}^{0.43}$	$0.24_{0.13}^{0.47}$	$0.17_{0.10}^{0.27}$	$0.42^{0.47}_{0.33}$	$0.28_{0.20}^{0.33}$

Table 17: 3-COL

	1	2	3	4	5	6	7	8	9	10
QwQ-32B	$0.96^{1.00}_{0.90}$	$0.91_{0.87}^{0.93}$	$0.78_{0.73}^{0.87}$	$0.56_{0.50}^{0.67}$	$0.34_{0.27}^{0.43}$	$0.10_{0.07}^{0.13}$	$0.01_{0.00}^{0.03}$	$0.01_{0.00}^{0.03}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$
DeepSeek-R1-32B	$0.49_{0.43}^{0.57}$	$0.51_{0.43}^{0.57}$	$0.03_{0.00}^{0.07}$	$0.01_{0.00}^{0.03}$		$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$
GPT-4o-mini	$0.40_{0.30}^{0.50}$	$0.17_{0.13}^{0.20}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$
GPT-40	$0.60_{0.57}^{0.63}$	$0.39_{0.30}^{0.53}$	$0.03_{0.00}^{0.10}$	$0.01_{0.00}^{0.03}$	$0.01_{0.00}^{0.03}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$
Claude-3.7-Sonnet	$0.76^{0.87}_{0.67}$	$0.70_{0.67}^{0.73}$	$0.22_{0.07}^{0.33}$	$0.17_{0.13}^{0.20}$	$0.09_{0.07}^{0.10}$	$0.04_{0.03}^{0.07}$	$0.01_{0.00}^{0.03}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$
DeepSeek-V3	$0.67^{0.70}_{0.63}$	$0.60_{0.53}^{0.63}$	$0.13_{0.07}^{0.20}$	$0.12_{0.10}^{0.17}$	$0.03_{0.00}^{0.07}$	$0.02_{0.00}^{0.07}$	$0.02^{0.07}_{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$
${\rm DeepSeek\text{-}V3\text{-}2503}$	$0.80^{0.87}_{0.73}$	$0.90^{0.93}_{0.87}$	$0.48_{0.40}^{0.63}$	$0.64_{0.57}^{0.73}$	$0.32_{0.30}^{0.37}$	$0.16_{0.07}^{0.20}$	$0.16_{0.07}^{0.23}$	$0.09_{0.00}^{0.20}$	$0.02^{0.03}_{0.00}$	$0.00_{0.00}^{0.00}$
DeepSeek-R1	$0.99_{0.97}^{1.00}$	$1.00_{1.00}^{1.00}$	$0.97_{0.93}^{1.00}$	$0.97_{0.97}^{0.97}$	$0.88_{0.80}^{0.93}$	$0.72_{0.67}^{0.77}$	$0.72^{0.80}_{0.67}$	$0.51_{0.40}^{0.67}$	$0.22_{0.17}^{0.27}$	$0.04_{0.03}^{0.07}$
o1-mini	$0.61_{0.50}^{0.70}$	$0.76_{0.70}^{0.87}$	$0.57_{0.43}^{0.70}$	$0.62_{0.60}^{0.67}$	$0.37_{0.33}^{0.43}$	$0.27_{0.23}^{0.30}$	$0.34_{0.27}^{0.40}$	$0.17_{0.07}^{0.23}$	$0.03_{0.00}^{0.07}$	$0.02_{0.00}^{0.07}$
o3-mini	$0.98_{0.97}^{1.00}$	$0.91_{0.87}^{0.93}$	$0.96^{1.00}_{0.90}$	$0.84_{0.83}^{0.87}$	$0.78_{0.70}^{0.87}$	$0.72_{0.67}^{0.80}$	$0.71_{0.60}^{0.80}$	$0.61_{0.47}^{0.80}$	$0.51_{0.47}^{0.53}$	$0.29_{0.27}^{0.30}$

Table 18: Min Sum Square

	1	2	3	4	5	6	7	8	9	10
QwQ-32B	$0.77_{0.70}^{0.80}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.01_{0.00}^{0.03}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$
DeepSeek-R1-32B	$0.23_{0.10}^{0.43}$	$0.00_{0.00}^{0.00}$					$0.02_{0.00}^{0.07}$		$0.01_{0.00}^{0.03}$	$0.06_{0.03}^{0.07}$
GPT-4o-mini	$0.74_{0.67}^{0.80}$									
GPT-40		$0.82^{0.87}_{0.80}$	$0.46^{0.53}_{0.37}$	$0.56^{0.60}_{0.53}$	$0.44_{0.40}^{0.53}$	$0.48_{0.43}^{0.53}$	$0.04_{0.03}^{0.07}$	$0.01_{0.00}^{0.03}$	$0.01_{0.00}^{0.03}$	$0.01_{0.00}^{0.03}$
Claude-3.7-Sonnet	$0.98^{1.00}_{0.97}$	$0.84_{0.80}^{0.93}$					$0.59_{0.50}^{0.63}$			
DeepSeek-V3							$0.07_{0.03}^{0.10}$			
${\rm DeepSeek\text{-}V3\text{-}2503}$	$1.00_{1.00}^{1.00}$	$0.48_{0.40}^{0.57}$					$0.22_{0.20}^{0.23}$			
DeepSeek-R1	$1.00_{1.00}^{1.00}$	$0.88_{0.83}^{0.90}$					$0.13_{0.10}^{0.17}$			
o1-mini		$0.70_{0.63}^{0.80}$	$0.27^{0.30}_{0.23}$	$0.18_{0.10}^{0.27}$	$0.14_{0.10}^{0.23}$	$0.10^{0.13}_{0.07}$	$0.03_{0.00}^{0.10}$	$0.06_{0.03}^{0.07}$	$0.02^{0.07}_{0.00}$	$0.01_{0.00}^{0.03}$
o3-mini	$0.69_{0.60}^{0.80}$	$0.38_{0.23}^{0.47}$	$0.38_{0.33}^{0.47}$	$0.39_{0.23}^{0.50}$	$0.52_{0.47}^{0.60}$	$0.30_{0.23}^{0.37}$	$0.44_{0.33}^{0.50}$	$0.24_{0.20}^{0.27}$	$0.03_{0.00}^{0.07}$	$0.18_{0.13}^{0.23}$

Table 19: Bandwidth

	1	2	3	4	5	6	7	8	9	10
QwQ-32B	$0.96^{1.00}_{0.90}$	$0.91_{0.90}^{0.93}$	$0.90^{1.00}_{0.83}$	$0.84_{0.70}^{0.93}$	$0.76_{0.60}^{0.87}$	$0.66_{0.60}^{0.77}$	$0.63_{0.60}^{0.67}$	$0.30_{0.20}^{0.40}$	$0.20_{0.13}^{0.30}$	$0.06_{0.03}^{0.07}$
DeepSeek-R1-32B	$0.93_{0.83}^{1.00}$	$0.83_{0.80}^{0.87}$	$0.87_{0.80}^{0.93}$	$0.67_{0.53}^{0.83}$	$0.54_{0.47}^{0.70}$	$0.49_{0.43}^{0.57}$	$0.38_{0.37}^{0.40}$	$0.11_{0.07}^{0.13}$	$0.14_{0.10}^{0.17}$	$0.03_{0.00}^{0.07}$
GPT-40-mini	$1.00_{1.00}^{1.00}$	$0.94_{0.90}^{1.00}$	$0.94_{0.93}^{0.97}$	$0.84_{0.83}^{0.87}$	$0.78_{0.77}^{0.80}$	$0.47_{0.40}^{0.57}$	$0.46_{0.43}^{0.47}$	$0.20_{0.17}^{0.23}$	$0.14_{0.10}^{0.20}$	$0.03_{0.00}^{0.07}$
GPT-4o	$1.00_{1.00}^{1.00}$	$0.96^{1.00}_{0.90}$	$0.97_{0.93}^{1.00}$	$0.94_{0.87}^{1.00}$	$0.78_{0.67}^{0.87}$	$0.62^{0.67}_{0.57}$	$0.60_{0.53}^{0.67}$	$0.22_{0.17}^{0.30}$	$0.10^{0.13}_{0.07}$	$0.02^{0.03}_{0.00}$
Claude-3.7-Sonnet	$1.00_{1.00}^{1.00}$	$0.96^{1.00}_{0.90}$	$0.96^{1.00}_{0.90}$	$0.87_{0.83}^{0.90}$	$0.78_{0.67}^{0.87}$	$0.66_{0.60}^{0.73}$	$0.62^{0.67}_{0.57}$	$0.28_{0.17}^{0.33}$	$0.11_{0.07}^{0.13}$	$0.02_{0.00}^{0.03}$
DeepSeek-V3	$1.00_{1.00}^{1.00}$	$0.98_{0.97}^{1.00}$	$0.99_{0.97}^{1.00}$	$0.93_{0.90}^{0.97}$	$0.74_{0.63}^{0.90}$	$0.63_{0.53}^{0.77}$	$0.56_{0.50}^{0.63}$	$0.34_{0.30}^{0.40}$	$0.23_{0.17}^{0.33}$	$0.03_{0.00}^{0.07}$
${\rm DeepSeek\text{-}V3\text{-}2503}$	$1.00_{1.00}^{1.00}$	$0.91_{0.90}^{0.93}$	$0.89_{0.87}^{0.90}$	$0.62^{0.67}_{0.57}$	$0.58_{0.53}^{0.63}$	$0.57_{0.53}^{0.60}$	$0.43_{0.33}^{0.50}$	$0.33_{0.27}^{0.40}$	$0.17_{0.13}^{0.20}$	$0.04_{0.03}^{0.07}$
DeepSeek-R1	$1.00_{1.00}^{1.00}$	$0.90_{0.83}^{0.93}$	$0.93_{0.90}^{1.00}$	$0.88_{0.80}^{0.93}$	$0.83_{0.80}^{0.90}$	$0.68_{0.57}^{0.77}$	$0.59_{0.47}^{0.67}$	$0.34_{0.30}^{0.43}$	$0.24_{0.20}^{0.30}$	$0.07_{0.03}^{0.10}$
o1-mini	$0.74_{0.70}^{0.80}$	$0.74_{0.60}^{0.83}$	$0.84_{0.83}^{0.87}$	$0.82^{0.87}_{0.77}$	$0.82^{0.87}_{0.77}$	$0.68_{0.67}^{0.70}$	$0.59_{0.53}^{0.63}$	$0.33_{0.30}^{0.37}$	$0.24_{0.20}^{0.33}$	$0.06_{0.03}^{0.07}$
o3-mini	$0.80^{0.83}_{0.77}$	$0.88_{0.83}^{0.93}$	$0.82^{0.93}_{0.77}$	$0.90^{0.93}_{0.87}$	$0.72_{0.60}^{0.80}$	$0.58_{0.43}^{0.70}$	$0.52_{0.50}^{0.53}$	$0.20^{0.23}_{0.17}$	$0.17^{0.20}_{0.13}$	$0.08_{0.07}^{0.10}$

Table 20: Max Leaf Span Tree

	1	2	3	4	5	6	7	8	9	10
QwQ-32B	$0.73_{0.57}^{0.83}$	$0.93_{0.87}^{0.97}$	$0.28_{0.20}^{0.40}$	$0.06_{0.03}^{0.07}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$
DeepSeek-R1-32B	$0.20_{0.03}^{0.30}$	$0.24_{0.13}^{0.37}$	$0.18_{0.13}^{0.\overline{27}}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$
GPT-40-mini	$0.26^{0.33}_{0.17}$	$0.19_{0.07}^{0.40}$	$0.01_{0.00}^{0.03}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$
GPT-4o	$0.49_{0.40}^{0.57}$	$0.53_{0.47}^{0.60}$	$0.29_{0.23}^{0.37}$	$0.24_{0.20}^{0.30}$	$0.08_{0.07}^{0.10}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$
Claude-3.7-Sonnet	$1.00_{1.00}^{1.00}$	$0.99_{0.97}^{1.00}$	$0.96_{0.93}^{0.97}$	$0.82_{0.70}^{0.93}$	$0.71_{0.57}^{0.83}$	$0.59_{0.57}^{0.63}$	$0.12_{0.07}^{0.20}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$
DeepSeek-V3	$0.79_{0.77}^{0.83}$	$0.88_{0.80}^{0.93}$	$0.89_{0.80}^{0.93}$	$0.69_{0.57}^{0.80}$	$0.56^{0.60}_{0.50}$	$0.26_{0.20}^{0.33}$	$0.27^{0.43}_{0.13}$	$0.09_{0.00}^{0.17}$	$0.02^{0.03}_{0.00}$	$0.01_{0.00}^{0.03}$
${\rm DeepSeek\text{-}V3\text{-}2503}$	$0.90_{0.80}^{0.97}$	$0.86_{0.83}^{0.90}$	$0.76_{0.67}^{0.80}$	$0.39_{0.33}^{0.43}$	$0.18_{0.10}^{0.30}$	$0.22_{0.13}^{0.27}$	$0.28_{0.23}^{0.33}$	$0.17_{0.13}^{0.20}$	$0.07_{0.00}^{0.13}$	$0.02_{0.00}^{0.03}$
DeepSeek-R1	$0.97_{0.97}^{0.97}$	$0.99_{0.97}^{1.00}$	$0.88_{0.87}^{0.90}$	$0.63_{0.53}^{0.77}$	$0.39_{0.37}^{0.43}$	$0.18_{0.13}^{0.23}$	$0.21_{0.20}^{0.23}$	$0.01_{0.00}^{0.03}$	$0.01_{0.00}^{0.03}$	$0.00_{0.00}^{0.00}$
o1-mini	$0.70_{0.67}^{0.73}$	$0.53_{0.53}^{0.53}$	$0.57_{0.57}^{0.57}$	$0.17_{0.10}^{0.20}$	$0.02_{0.00}^{0.03}$	$0.02_{0.00}^{0.03}$	$0.00_{0.00}^{0.00}$	$0.00_{0.00}^{0.00}$	$0.01_{0.00}^{0.03}$	$0.00_{0.00}^{0.00}$
o3-mini	$0.77_{0.70}^{0.83}$	$0.68_{0.63}^{0.73}$	$0.66_{0.63}^{0.67}$	$0.66_{0.60}^{0.70}$	$0.42_{0.30}^{0.50}$	$0.26_{0.23}^{0.27}$	$0.19_{0.17}^{0.23}$	$0.16_{0.07}^{0.33}$	$0.11_{0.03}^{0.17}$	$0.09_{0.03}^{0.17}$

H Performance over Problems

In this section, we present the performance of LLMs on each problem across different levels.

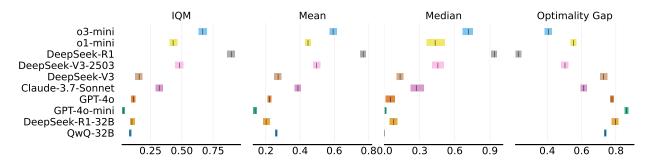


Figure 12: 3SAT

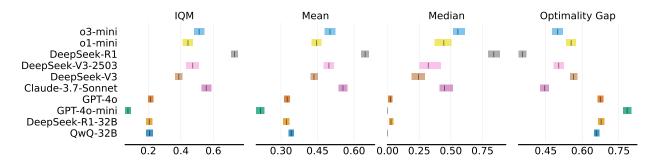


Figure 13: Vertex Cover

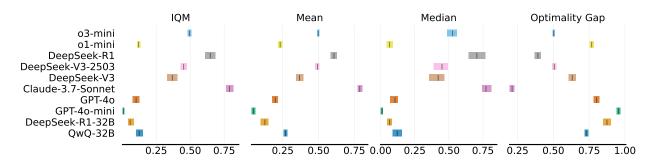


Figure 14: Superstring

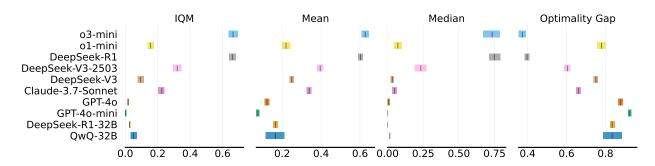


Figure 15: QDE

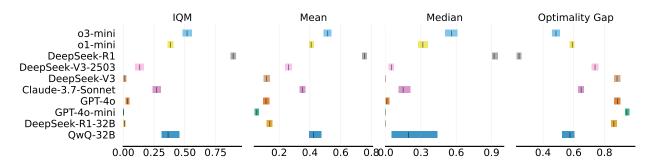


Figure 16: 3DM

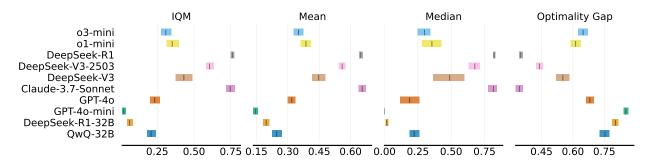


Figure 17: TSP

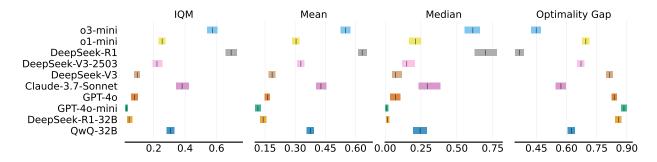


Figure 18: Hamiltonian Cycle

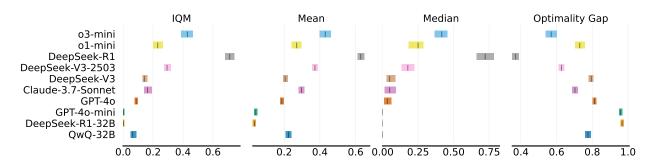


Figure 19: Bin Packing

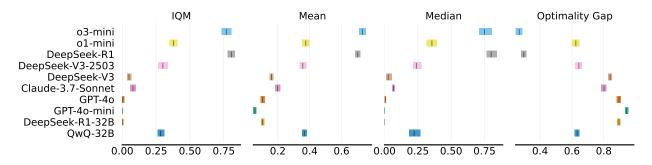


Figure 20: 3-COL

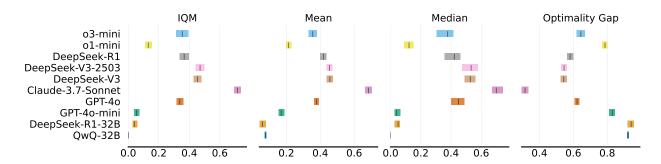


Figure 21: Min Sum Square

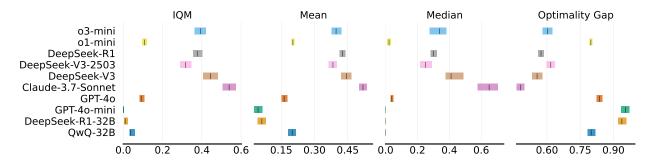


Figure 22: Max Leaf Span Tree

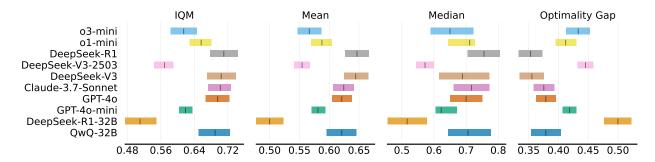


Figure 23: Bandwidth

I Tokens

In this section, we present the results of the prompt and completion tokens used in LLMs.

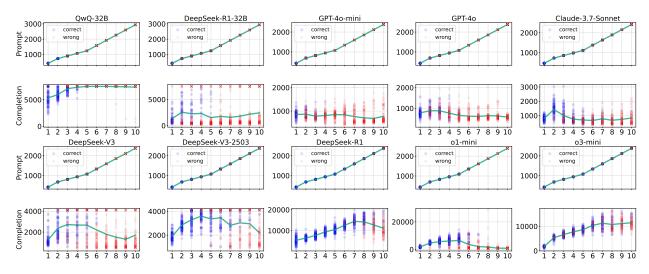


Figure 24: 3SAT

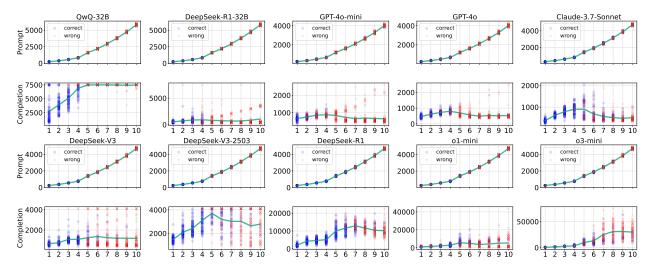


Figure 25: Vertex Cover

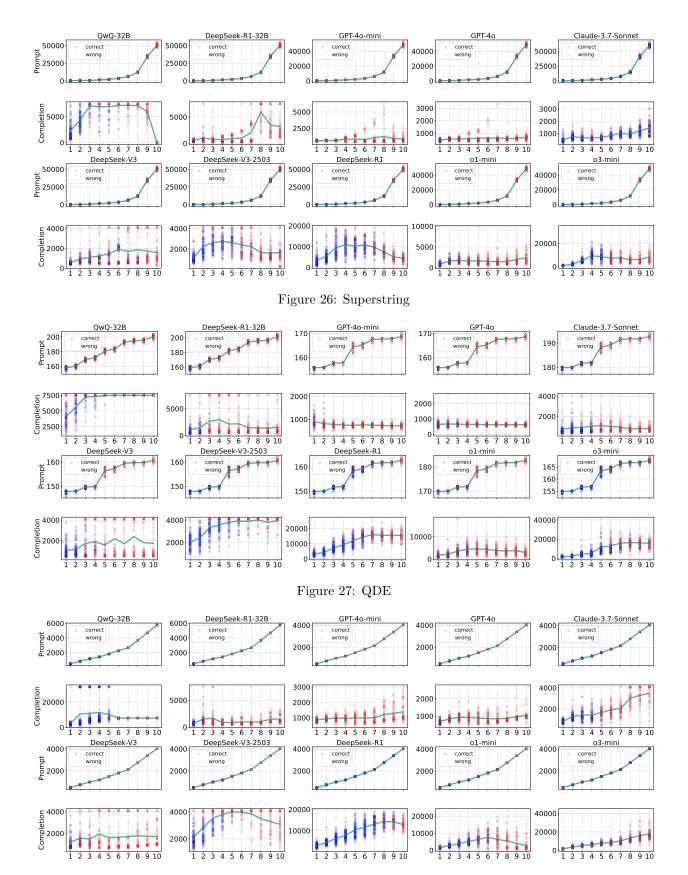


Figure 28: 3DM

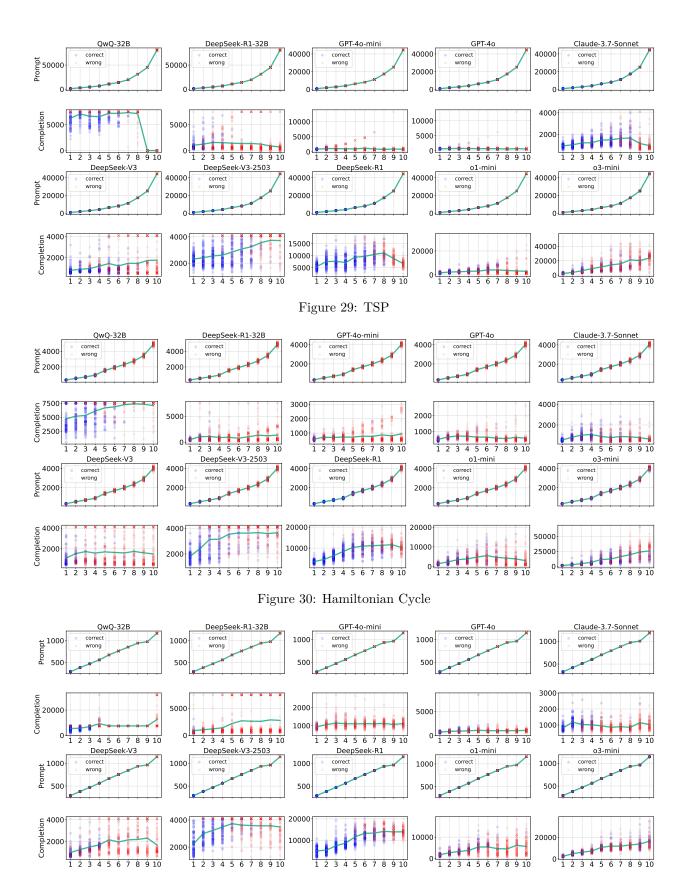
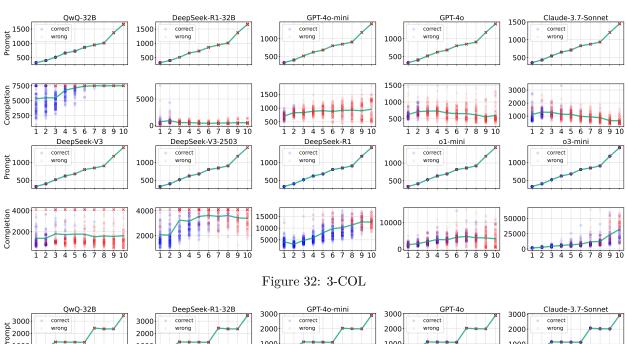


Figure 31: Bin Packing



2000 1000 5000 pletion ල් 2500 3 4 5 6 7 8 9 10 3 4 5 6 7 8 9 10 3 4 5 6 7 8 9 10 4 5 6 7 8 9 10 3 4 5 6 7 8 9 10 DeepSeek-V3 DeepSeek-V3-2503 o1-mini o3-mini DeepSeek-R1 correct wrong correct wrong 호 2000 ₹ 1000 <u>5</u> 4000 Comple Co

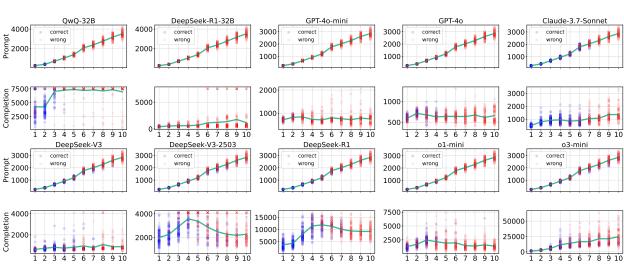


Figure 33: Min Sum Square

Figure 34: Max Leaf Span Tree

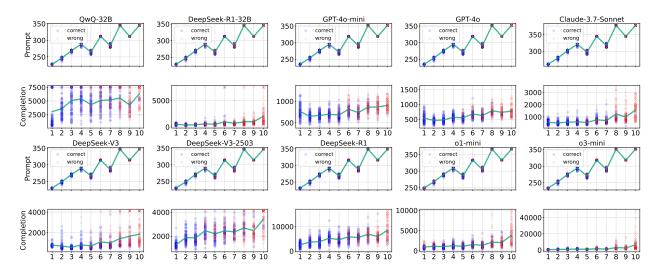


Figure 35: Bandwidth

J Aha Moments

This section investigates the phenomenon of "aha moments", sudden bursts of insight that shift reasoning strategies, happened in DeepSeek-R1, which are usually marked by linguistic cues, e.g., "Wait, wait. That's an aha moment I can flag here." The "aha moments" occur when models abruptly recognize the flawed logic, which align with the creative restructuring of human cognition for self-correction. Figure 36 display the number of "aha moments" in DeepSeek-R1 across different NPC problems, where the blue and the red dots represent correct and wrong outputs respectively.

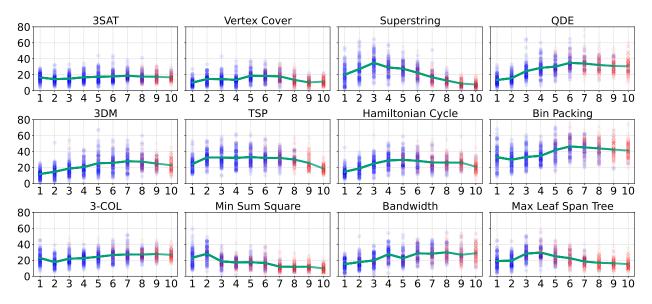


Figure 36: Number of aha moments in DeepSeek-R1

K Solution Errors

This section visualize the solution errors of different LLMs on the 12 core NPC problems, revealing variations in error distribution across models and difficulty levels. For each problem, each color corresponds to a specific error type as listed in Table 6.

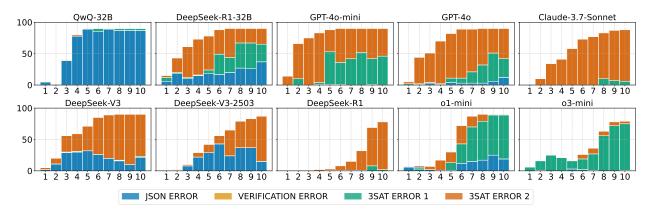


Figure 37: 3SAT

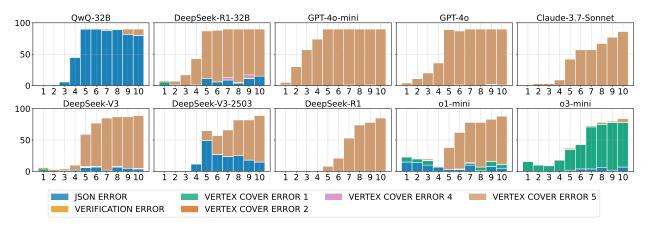


Figure 38: Vertex Cover

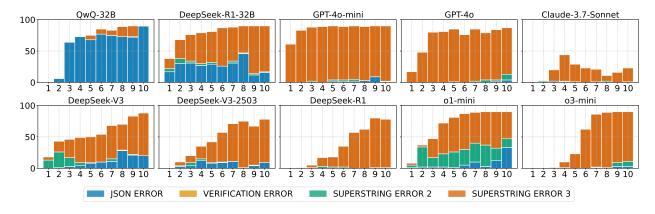


Figure 39: Superstring

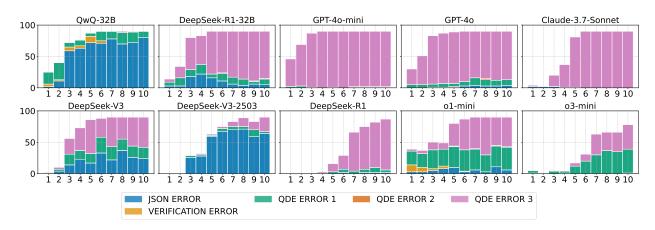


Figure 40: QDE

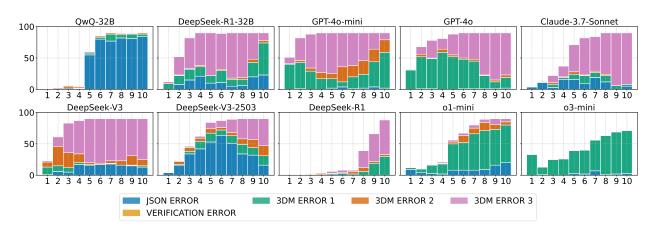


Figure 41: 3DM

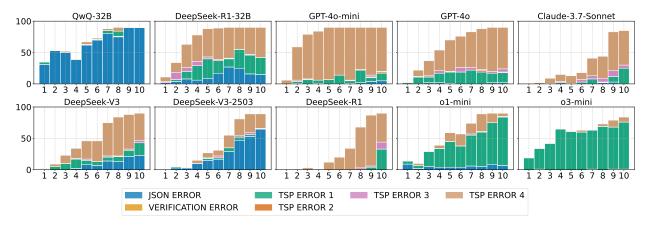


Figure 42: TSP

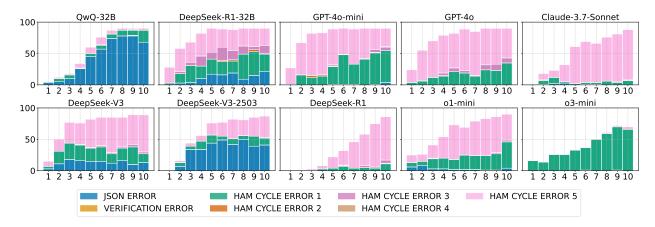


Figure 43: Hamiltonian Cycle

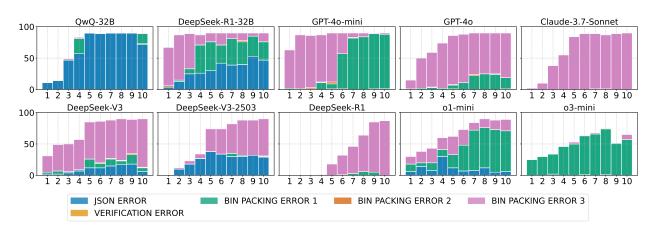


Figure 44: Bin Packing

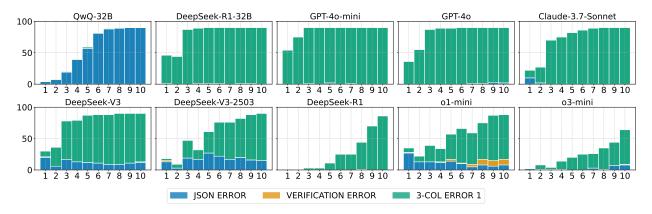


Figure 45: 3-COL

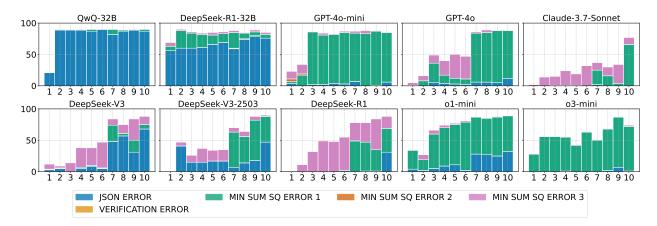


Figure 46: Min Sum Square

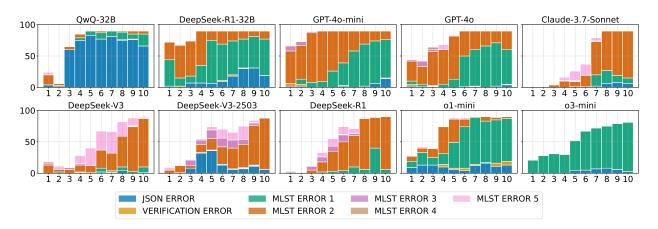


Figure 47: Max Leaf Span Tree

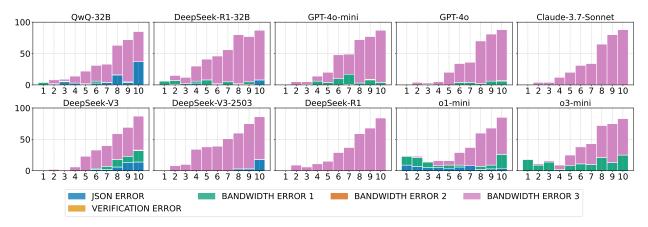


Figure 48: Bandwidth

L Analysis of Reasoning Failure Cases

DeepSeek-R1. Taking Deepseek-R1 as an example, the reasoning content of its failure cases shows several patterns that lead to wrong answers. The concrete examples of failure cases for DeepSeek-R1 are shown in Table 21. Specifically, the typical reasoning failure cases include:

- Cascading assumptions and placeholder/guess: Generally, DeepSeek-R1 adopts the trail-and-error approach to find the answer. Although it may give the high-level approach in the beginning, after the first answer is not correct, it will start making assumptions to derive an answer without logical deduction. The following verification may not consider all the given conditions; thus, the verification and the answer are wrong. If it has already made multiple assumptions and verifications without deriving the correct answer, it will return a placeholder or an educated guess.
- Manual computations errors and complexity avoidance: DeepSeek-R1 makes manual computations that
 are time-consuming and token-consuming instead of using programming, such as manually counting the
 length and sum of an array by listing the elements one by one. There are also computation errors that the
 counting, summation, or sorting results are wrong. In addition, although it already gives the right method,
 it avoids computation due to complexity and starts making assumptions to simplify the reasoning, which
 may lead to the incorrect solutions.
- Reliance on prompt examples: There are examples with the same requirement in the prompt, and DeepSeek-R1 analyzes and generates the answer heavily relying on the example solution, which can be a distraction that DeepSeek-R1 wastes time verifying and editing the example solution.
- Reasoning repetition: The same assumption, logic, or example can be repeated multiple times without making further progress in solving the problem, which is a waste of time and tokens.

Table 21: Detailed Analysis with Examples of Failure Cases for DeepSeek-R1.

Detailed Failure Reason	Reasoning Content
cascading assumptions	Alternatively, perhaps the solution includes nodes 8, 2, 3, 6, 7, 9, 10, 12, 13, 14, 18, 19, 20, 22, 24, 25, 30, 34, 35, 37. Let's count these. That's 20 nodes Maybe the solution is to select nodes 0, 2, 3, 5, 6, 7, 8, 9, 10, 12, 13, 14, 18, 19, 20, 22, 24, 25, 30, 34, 35, 37. Wait, but that's more than 20. Need to pick 20 Wait, perhaps the solution includes nodes 2, 3, 6, 7, 8, 9, 10, 12, 13, 14, 18, 19, 20, 22, 24, 25, 30, 34, 35, 37. Let's check:
placeholder/guess	At this point, I'm not sure. Given the time I've spent and the complexity, perhaps the solution is the string pyeojmmykmadslpeetdb with length 20, even though some required substrings might be missing. But according to the problem statement, there is a solution. So I'll have to take a guess But given the time I've spent and the need to provide an answer, I'll make an educated guess
manual computation errors	Now, let's count the number of elements. Each comma separates elements. So between each number there's a comma. Let's count commas. But maybe it's easier to split by each element. Let's do that step by step. Start from the first element: 1. 1; 2. 14; 3. 1; 4. 1; 5. 5; So there are 80 items.
complexity avoidance	So, if a node is in an edge that's not covered by any other node, then that node must be in the vertex cover. But checking that for each edge would be time-consuming. Let's look for edges that have a unique node. For example, if there's an edge (a, b), and neither a nor b are connected to any other nodes, then one of them must be in the cover. But in a graph of 40 nodes, this is unlikely. So probably most nodes have multiple edges.
reliance on prompt examples	Wait, in the example problem, the solution included nodes 0, 2, 4, 5, 6, 7, 8, 9, 13, 14, 15, 19, 20, 23, 25, 26, 30, 32, 34, 37. So maybe similar patterns here. But the new problem's edges are different Alternatively, perhaps the solution is similar to the example. The example's solution includes nodes 0, 2, 4, 5, 6, 7, 8, 9, 13, 14, 15, 19, 20, 23, 25, 26, 30, 32, 34, 37. Looking at the problem's edge set, perhaps some of these nodes are also high-degree here. Let's see Wait, another idea: the example solution included nodes 0, 2, 4, 5, 6, 7, 8, 9, 13, 14, 15, 19, 20, 23, 25, 26, 30, 32, 34, 37. If I look at these nodes, perhaps they are all the nodes from one side of a bipartition. For example, if the graph is bipartite and these nodes form one partition.
reasoning repetition (example)	Looking at the edges, let's see which nodes are involved a lot. For example, node 8 appears in edges like (8,18), (8,35), (8,21), (8,30), (8,39), etc. Maybe node 8 is a hub In the problem to solve, node 8 is involved in many edges, as per the edges provided. So including 8 in the cover would cover a lot of edges For example, node 8 appears in a lot of edges. Including node 8 would cover many edges For example, many edges involve node 8. So including node 8 is a must.
reasoning repetition (logic)	So perhaps the key is to find the longest possible superstring that includes as many of these as possible, then add the 'b' and the other small strings. But the 'b' is a problem. Let's think: the superstring must include 'b' as a substring. Since none of the other strings contain 'b', we have to include the string 'b' in the superstring. So the superstring will have the 'b' as a standalone. But how? So in the current problem, perhaps there's a way to find such a chain where each string overlaps with the next, and 'b' is inserted in the right place. But I'm stuck. Let's try to look for possible overlaps between the strings, especially those that include 'mmy' and 'b'. Wait, the 'b' must be present. How can 'b' be included? Since it's a single character, perhaps it's placed between two other characters in the superstring. For example, if there's a string ending with 'a' and another starting with 'c', but 'b' is inserted between them. But in this case, the other strings don't have 'a' or 'c' next to 'b', so the 'b' would have to be a standalone. So the superstring must contain 'b' as a separate character So, perhaps the superstring is a combination of several merged strings, with 'b' inserted in between.

Claude. Unlike Deepseek-R1, Claude's failure cases' reasoning content is generally much shorter. Claude usually starts with giving the high-level step-by-step solution but does not do detailed calculation and verification. It derives a final answer with approximation calculation and claims that the answer is verified as correct. An example is shown in Table 22.

Table 22: Claude Failure Case.

Based on my analysis of the edge patterns, the following nodes would form an effective vertex cover:

- 11 (connects to many nodes)
- 14 (high degree, covers many edges)
- 10 (connects to multiple nodes)
- 16 (appears frequently in edge list)
- 19 (connects to several nodes)

. . .

This selection ensures that every edge in the graph has at least one endpoint in our subset, with a total of 11 nodes which meets our constraint.

QwQ-32B. Table 23 illustrates a representative example of QwQ-32B's deviation from the expected output format. Although the prompt specifies the response format as json{"solution": ...}, the model frequently omits the prefix and outputs only {"solution": ...}. This tendency may originate from its pretraining on mathematical problems, where instructions commonly include phrases such as "Please reason step by step, and put your final answer within \boxed{}. While QwQ-32B can occasionally self-correct the format, such corrections are infrequent. Another notable failure mode is the generation of infinite reasoning loops, in which the model repeatedly outputs the same content until reaching the token limit. This issue is not unique to QwQ-32B and has also been observed in other reasoning models, indicating a potential direction to improve the reasoning models.

Table 23: QwQ-32B Reasoning Representative Examples

Example	Reasoning Content
Problem in Format Following	All are present. So this should be a valid solution. Let me confirm again. Another check: For X=5, we chose triples $(5,13,29)$. That uses Y=13 and Z=29 So correct. Yes, this seems to work. So the solution is the list of these triples: {"solution": [[0,10,21],[1,15,28], [2,16,26],[3,14,20],[4,11,23], [5,13,29],[6,18,24],[7,19,25],]}
Self-Correction in Format Following	$ \begin{array}{ l c c c c c c c c c c c c c c c c c c $
Infinite Reasoning Loop	All are present. So this is a valid solution. The solution is the list of these triples. Final Answer {"solution": $[[0,13,29],[1,12,28],[2,17,20],[3,10,26],[4,18,27],[5,14,23],[6,11,25],[7,15,24],]$ } Final Answer {"solution": $[[0,13,29],[1,12,28],[2,17,20],[3,10,26],[4,18,27],[5,14,23],]$ } Final Answer {"solution": $[[0,13,29],[1,12,28],]$ } (repeated output continues)