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Abstract

Combining knowledge from source domains to learn efficiently from a few labelled instances
in a target domain is a transfer learning problem known as cross-domain few-shot learning
(CDFSL). Feature extractor stacking (FES) is a state-of-the-art CDFSL method that main-
tains a collection of source domain feature extractors instead of a single universal extractor.
FES uses stacked generalisation to build an ensemble from extractor snapshots saved dur-
ing target domain fine-tuning. It outperforms several contemporary universal model-based
CDFSL methods in the Meta-Dataset benchmark. However, it incurs higher storage cost be-
cause it saves a snapshot for every fine-tuning iteration for every extractor. In this work, we
propose a bidirectional snapshot selection strategy for FES, leveraging its cross-validation
process and the ordered nature of its snapshots, and demonstrate that a 95% snapshot
reduction can be achieved while retaining the same level of accuracy.

1 Introduction

Deep learning methods generally require a large amount of labelled training data to obtain high predictive
performance when training a model for a new target domain. Cross-domain few-shot learning (CDFSL)
attempts to address this by transferring knowledge gained from one or more source domains, with plenty of
labelled training instances, to the target domain, for which only few labelled training instances are available.
The target domain may only be weakly related to any particular source domain. CDFSL aims to achieve
high accuracy when predicting labels for new unlabelled instances in the target domain—the so-called “query
set”—by aggregating knowledge from the source domains and placing emphasis on those most relevant to
the small labelled target domain training set—the so-called “support set”. In practice, to evaluate CDFSL
methods and compare them to each other, a large collection of query-and-support set pairs is sampled from
a large labelled dataset such as CIFAR10, and average predictive performance on the query sets is reported.
Each query-and-support set pair is called an “episode”.

Most recent top-performing CDFSL algorithms, such as URL (Li et al., 2021), its TSA-based variant (Li
et al., 2022), and FLUTE (Triantafillou et al., 2021), derive a universal model from source domains and
then fit it to a support set using a small set of trainable parameters. In contrast, FES (Wang et al.,
2024), a CDFSL method based on stacked generalisation (Wolpert, 1992), maintains a collection of source
domain-specific models instead of a universal one and produces a linear combination of model snapshots
saved during support set fine-tuning that have been evaluated through cross-validation. FES outperforms
several contemporary universal model-based methods on the Meta-Dataset benchmark (Triantafillou et al.,
2020), achieving the current state of the art (Wang et al., 2024). FES can be applied with semi-supervised
STC classifiers (Wang et al., 2023) to further improve its accuracy using additional unlabelled data. FES
also exhibits good interpretability as each snapshot’s weight reflects its contribution to the learned task.
However, it has high storage cost as it saves a snapshot for every fine-tuning iteration for every model. In
this paper, we address this shortcoming by taking inspiration from the results in Wang et al. (2024), which
show that only a minority of snapshots are assigned significant weights: most are assigned trivial weights
and have no meaningful impact on predictions individually.
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The key observation for the work presented here is that snapshot pruning in FES can be framed as a feature
subset selection problem where the logits provided by every snapshot are the input features for the linear
combination trained in the stacking approach—the “stacking classifier”. Wrapper-based approaches using
greedy search methods such as forward selection or backward elimination can be applied to such problems
by using cross-validation performance to determine the relevance of feature subsets (Kohavi & John, 1997).
However, naive greedy search yields an infeasibly large search space when applying FES with a non-trivial
number of snapshots, as it evaluates combinations of a selected subset with each of the remaining features,
yielding runtime that scales quadratically in the total number of snapshots. Fortunately, we can exploit the
ordering of snapshots, provided by the sequence of fine-tuning steps for each extractor, to limit the set of
available choices, only evaluating a small pool of potentially relevant candidates in each step of the search.
This strategy can be interpreted as a form of linear forward selection (Gütlein et al., 2009).

We propose a bidirectional snapshot selection (BSS) strategy for pruning FES that performs linear forward
selection with an initial candidate pool comprising snapshots at the beginning and the end of every model’s
fine-tuning. When a candidate is selected, the pool is replenished with the candidate’s adjacent snapshot in
fine-tuning. Given a fixed number of extractors, BSS runtime scales linearly in the total number of snapshots.
We show BSS outperforms several baseline strategies and achieves over 95% average snapshot reduction while
retaining the same level of accuracy as unpruned FES in both supervised and semi-supervised settings.

2 Related Work

We first review work in CDFSL before covering FES. Lastly, we consider wrapper-based feature selection.
To keep this review concise, we do not discuss other, potentially orthogonal, machine learning approaches
for settings where it is expensive to label data, such as semi-supervised learning, exemplified by the classic
self-training approach (Chapelle et al., 2006), or active learning, exemplified by uncertainty sampling (Lewis
& Gale, 1994) and query by committee (Seung et al., 1992).

2.1 Cross-domain few-shot learning

Early few-shot learning work is in-domain (Vinyals et al., 2016; Snell et al., 2017; Finn et al., 2017), where
source and target domain classes are different partitions of the same dataset. Guo et al. (2020) showed that
simple transfer learning outperforms these methods in CDFSL. Meta-Dataset (Triantafillou et al., 2020) is
a benchmark for evaluating CDFSL methods, originally containing eight domains, ilsvrc_2012, omniglot,
aircraft, cu_birds, dtd, quickdraw, fungi, and vgg_flower, and two target domains from which episodes
can be sampled: traffic_sign and mscoco. Three additional target domains—mnist, cifar10, and cifar100—
were added by Requeima et al. (2019), and a further five, namely, CropDisease, EuroSAT, ISIC, ChestX,
and Food101, were added by Wang et al. (2024). Note that only target domain tasks qualify as cross-
domain. Using established terminology, an algorithm’s accuracy in the target domains represents its “strong
generalisation" (SG) performance, while that in source domains, even when measured on episodes sampled
from data of these domains that has been held out, represents performance in “weak generalisation" (WG).

CDFSL can be divided into three stages: pretraining, fine-tuning, and inference. The pretraining stage
fits model(s) to source domain data. This stage generally has abundant training data in one or multiple
source domains. Some CDFSL methods pretrain a model specifically on each source domain, while others
pretrain one model on all source domains. The fine-tuning stage fits the pretrained model(s) to few-shot
target domain data. The inference stage uses the fine-tuned model(s) for predictions in the target domain.

Early work in CDFSL includes SUR (Dvornik et al., 2020), URT (Liu et al., 2021), CNAPs (Requeima
et al., 2019), simple CNAPs (Bateni et al., 2020), and transductive CNAPs (Bateni et al., 2022). URL (Li
et al., 2021) and FLUTE (Triantafillou et al., 2021) are newer methods that outperform these algorithms on
Meta-Dataset. URL distils a universal model by optimising it to match feature and logit output of source
domain extractors using source domain instances. Given an episode, a feature projection attached at the end
of the universal model is fine-tuned on the support set with a nearest-centroid classifier. In contrast, FLUTE
trains a universal template with source domain-specific batch normalisation layers and a set of convolutional
layers shared by all source domains. Given an episode, a set encoder (Zaheer et al., 2017) blends the batch
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normalisation weights based on the predicted likeliness of the support set to the source domains. The blended
weights are fine-tuned on the support set.

Task-specific adaptors (TSA) (Li et al., 2022), originally proposed for URL, are architectural components
specifically designed to improve fine-tuning for CDFSL. Given a feature extractor, these adaptors are attached
to its convolutional layers. Multiple adaptor configurations are viable, and Li et al. (2022) found residual
channel-wise projections to be most effective, fine-tuned along with the feature projection from URL. We use
TSA with URL as the few-shot reference method because it outperforms the original URL and FLUTE (Li
et al., 2022). We also use TSA for obtaining the feature extractor snapshots in FES, as in Wang et al. (2024).

2.2 Feature extractor stacking

FES (Wang et al., 2024) composes an ensemble of source domain-specific feature extractor snapshots fine-
tuned on the support set, using stacking to estimate each snapshot’s performance via cross-validation and
combine all snapshots linearly. To obtain snapshots in FES for a given episode, each feature extractor is
combined with a classifier and fine-tuned on the support set, and a snapshot of the extractor and classifier is
saved before any fine-tuning and after each fine-tuning iteration. To yield a linear combination of the snap-
shots by training the stacking classifier, cross-validation is used: the support set is split into two partitions
using stratified cross-validation, and these two partitions alternate as training and test splits to produce
logits, where an extractor and its classifier are fine-tuned on one split and produce logits from the other
split after each fine-tuning iteration. These logits are used as training data for the weights of the stacking
classifier, constituting a linear combination of snapshots. The trained stacking classifier is then applied to
combine the logits of the snapshots obtained by fine-tuning on the full support set to obtain classifications
for the query set. The weights of the stacking classifier can be visualised as a heatmap to indicate each
snapshot’s impact on final predictions. In essence, FES is a stacked generalisation (Wolpert, 1992) method
adopting stratified two-fold cross-validation and treating each snapshot as a separate base model.

Wang et al. (2023) showed that self-trained centroids (STC) can be applied to adapt FES for semi-supervised
learning and improve its accuracy by utilising unlabelled instances. Here, a semi-supervised CDFSL episode
comprises a labelled support set and an unlabelled set pertaining to the same classes. The supervised fine-
tuning procedure is first performed using the labelled set to obtain fine-tuned feature extractor(s) with which
the labelled and unlabelled sets are then converted into feature vectors. Self-training (Rosenberg et al., 2005)
is applied to the centroid-based classification head based on the extracted feature vectors: 1) the centroids
of labelled feature vectors are used to soft-label the unlabelled feature vectors with pseudo labels, 2) the
unlabelled feature vectors are aggregated to obtain class centroids by forming a weighted average using their
soft pseudo labels, and 3) the two sets of class centroids from the labelled and unlabelled feature vectors are
combined using a simple arithmetic average, leading to semi-supervised self-trained centroids for classifying
query instances. STC can be considered a generalisation of the “inference only” baseline in Ren et al. (2018).

For FES, STC is applied to each extractor during both cross-validation and full support set fine-tuning.
During cross-validation, STC is applied using the training split as the labelled set, and test split logits
produced by the self-trained centroid classifier are used as training data for the FES stacking classifier. In
short, compared to supervised FES, semi-supervised FES with STC uses logits obtained from STC classifiers
instead of supervised centroid classifiers whenever logits are needed.

2.3 Wrapper-based feature selection

Greedy feature subset selection using wrapper methods that apply cross-validation was popularised by sem-
inal work presented in Kohavi & John (1997). Commonly, it is implemented using forward selection as the
search strategy, so it starts with an empty subset of features. Then, given a set of candidate features, it
separately includes each candidate in the existing subset and evaluates the subset’s features in concert using
cross-validation. The candidate whose inclusion leads to the highest cross-validation performance is selected
into the feature subset. Intuitively, the feature with the highest cross-validation performance on its own is
first selected into the empty subset, then the one with the highest cross-validation performance in concert
with the first selection is selected into the subset, and so on. Commonly, the search proceeds until no can-
didate improves cross-validation performance when added to the existing feature subset, and this subset is
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Figure 1: Bidirectional snapshot selection: The candidate pool is marked with light circles. The arrow marks the
selected snapshot yielding the highest decrease in cross-validated loss. Its neighbour replaces it in the pool.

returned as the resulting feature selection. This approach of evaluating a candidate jointly with the existing
subset is more robust against correlated features than evaluating the candidate independently, as a feature
needs to yield the highest improvement of the existing subset’s predictive performance to merit its selection.
Note that consecutive FES snapshots in fine-tuning are inherently correlated.

Linear forward selection is a variant of forward selection that only evaluates a limited pool of candidates at
each step (Gütlein et al., 2009). Given a feature set without explicit order, this method ranks the features
by their individual cross-validation performance and initialises a pool of a user-specified size with the top-
ranked features. During the search, this pool can be optionally replenished by the remaining features in
ranked order. Gütlein et al. (2009) found linear forward selection is faster, finds smaller subsets, and
sometimes improves accuracy compared to naive forward selection. As FES snapshots of the same extractor
are implicitly ordered because they are sequentially generated during fine-tuning, this search technique is a
natural fit for computationally efficient pruning of FES ensembles.

3 Pruning FES with BSS

We now present bidirectional snapshot selection (BSS) for pruning FES ensembles, which is shown as pseudo
code in Algorithm 1 and visualised in Figure 1. In essence, BSS initialises an empty selection and a pool
of candidates containing the first and last fine-tuning snapshots of each extractor; it iteratively selects the
candidate snapshot from the pool into the selection that leads to the highest reduction in cross-validation
loss when incorporated into the FES ensemble, replenishing the pool with adjacent unexplored snapshots;
the iterative process stops when no snapshot in the pool reduces cross-validation loss or no further snapshots
remain, and the selection is returned as the final ensemble.

Given a support set containing instances X and labels Y , K source domain feature extractors Φ1, ..., ΦK ,
each to be fine-tuned for J iterations, and a patience value P ∈ N, BSS returns a subset of the K × (J + 1)
snapshots.

BSS leverages the 2-fold stratified cross-validation performed by FES to guide the search, where the support
set is split into two partitions of instances, which alternate to serve for extractor fine-tuning and logit
extraction, leading to two partitions of logits. Fine-tuning extractors is generally the most computationally
heavy process of FES, and BSS can utilise its outcome without extra cost. BSS alternates the two logit
partitions to use one to train the FES stacking classifier weights and the other as input to the trained
stacking classifier to obtain meta-logits. The meta-logits are used with their corresponding labels to compute
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Algorithm 1 Bidirectional snapshot selection
Input: Support set instances X and labels Y , K extractors Φ1, ..., ΦK

Parameter: fine-tuning iterations J and patience P
Output: Snapshot subset S
1: Split the support set into X1, X2 and Y1, Y2 using stratified cross-validation.
2: for k ∈ [1, K] do
3: Fine-tune Φk using X1 and Y1 and save snapshots ΦCV1

k,0 , ..., ΦCV1
k,J

.
4: Fine-tune Φk using X2 and Y2 and save snapshots ΦCV2

k,0 , ..., ΦCV2
k,J

.
5: end for
6: Let selected subset S = ∅, temporary subset T = ∅, best loss ℓbest = ∞, patience value P V = P , candidate pool P = {(k, j)|k ∈

[1, K], j ∈ {0, J}}.
7: while P ̸= ∅ ∧ P V ≥ 0 do
8: Let temporary best cross-validation loss ℓtemp = ∞.
9: for p ∈ P do

10: Apply {ΦCV1
e |e ∈ T ∪ {p}} to X2 to extract logits LCV2 .

11: Apply {ΦCV2
e |e ∈ T ∪ {p}} to X1 to extract logits LCV1 .

12: Train FES stacking classifier weights W CV1 using LCV1 and Y1 and evaluate it using LCV2 and Y2 to obtain loss ℓCV2 .
13: Train FES stacking classifier weights W CV2 using LCV2 and Y2 and evaluate it using LCV1 and Y1 to obtain loss ℓCV1 .
14: if ℓCV1 + ℓCV2 < ℓtemp then
15: Let best candidate b = p, ℓtemp = ℓCV1 + ℓCV2 .
16: end if
17: end for
18: Let T = T ∪ {b}; P = (P ∪ P reb ∪ Sucb) \ T.
19: if ℓtemp < ℓbest then
20: Let S = T, ℓbest = ℓtemp, P V = P .
21: else
22: Let P V = P V − 1.
23: end if
24: end while
25: return S

cross-validated cross-entropy, and losses of the two partitions are summed to represent cross-validation loss
of the evaluated subset. Selection of subsets is based on minimising this cross-validation loss.

The search starts with an empty subset and initialises its candidate pool with the first and last snapshots of
each extractor’s fine-tuning process, i.e., 2 × K snapshots. Then, it evaluates each candidate by measuring
cross-validation loss on an expanded version of the existing subset (initially empty) to which the candidate
has been added. The candidate that leads to the highest decrease in cross-validation loss is selected into
the subset and removed from the pool; an adjacent snapshot is used to replenish the pool. This snapshot
is the selected candidate’s successor if it is at the beginning of fine-tuning or predecessor if it is at the end,
and it is only added to the pool if not already in the subset. For brevity, in Algorithm 1, given a snapshot
of the k-th extractor at the j-th iteration b = (k, j), its predecessor set is denoted as Preb = {(k, j − 1)} if
j − 1 ≥ 0 else ∅, and its successor set is denoted as Sucb = {(k, j + 1)} if j + 1 ≤ J else ∅.

If the patience parameter P has value zero, the search terminates, and the current subset is returned if no
candidate in the pool decreases cross-validation loss when added to the subset. For P > 0, the process only
terminates if no loss decrease is achieved in P consecutive steps. In this case, the candidate leading to the
lowest loss increase is tentatively selected even if a previous subset achieved a lower loss, and its selection is
only confirmed when a later step within the patience limit achieves lower loss than the previous best subset.
Termination returns the subset with the lowest cross-validation loss explored by the search. Depletion of the
candidate pool also leads to termination of search.

Once BSS returns a subset, the final FES model is trained on this subset only: weights for the stacking
classifier are trained on cross-validation logits of the snapshots in the subset; when producing predictions,
these weights are used to aggregate the output of the corresponding subset of snapshots fine-tuned using all
support set data.

BSS is proposed to address the complexity issue of naïvely selecting from all snapshots, which can be
prohibitive for long snapshot sequences. At the beginning, selecting from all snapshots has to perform J
times as many evaluations as BSS to select each snapshot. On average, the complexity for the number of
evaluations is O(KJ) for selecting each snapshot from all snapshots, while it is O(K) for selecting each
snapshot using BSS.
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4 Experimental Setup

We perform evaluation on Meta-Dataset with the extended set of target domains and adhere to the official
sampling method to generate 600 few-shot episodes for each domain: each episode contains 5 to 50 classes,
up to 100 support set instances per class, up to 500 (potentially class-imbalanced) support set instances
in total, and 10 query set instances per class. The sampled episodes are cached to ensure that all pruning
strategies are evaluated using the same episodes.

We use FES with TSA fine-tuning to evaluate pruning strategies. FES hyperparameters are consistent with
Wang et al. (2024), and TSA hyperparameters are consistent with Li et al. (2022). ResNet18 (He et al.,
2016) extractors are used throughout. Each of the eight source domain extractors is fine-tuned with TSA
for 40 iterations, leading to 8 × 41 = 328 snapshots in total. We also evaluate semi-supervised FES with
TSA fine-tuning and STC, using the hyperparameters from Wang et al. (2023).

We evaluate three baselines: 1) FES without pruning, 2) exhaustively searching through all extractor com-
binations, where selecting an extractor leads to inclusion of all of its 41 snapshots, and 3) exhaustively
searching through all combinations of the extractors’ final snapshots. For reference, we include a URL model
with TSA fine-tuning (Li et al., 2022). We evaluate BSS with patience = 0 as our main method. In an
ablation study, we evaluate two unidirectional snapshot selection strategies that are akin to BSS but only
search in one direction: unidirectional forward snapshot selection (UFSS) initialises its candidate pool with
only snapshots from the beginning of fine-tuning, and conversely, unidirectional backward snapshot selection
(UBSS) initialises its candidate pool with only snapshots from the end of fine-tuning. We also evaluate
BSS, UFSS, and UBSS with patience values from 0, i.e., no patience, to 328, which ensures depletion of the
candidate pool. We perform paired t-tests with p = 0.05 using accuracy of individual episodes to determine
statistical significance of differences in accuracy on individual datasets.

5 Results

We first compare BSS to the baseline strategies. Then, we visualise pruning results as heatmaps. Follow-
ing this, we conduct an ablation study with UFSS and UBSS and consider varying patience values. We
then evaluate BSS pruning in semi-supervised learning with STC. Lastly, we analyse runtime and memory
consumption of FES pruned with BSS and discuss the trade-off between accuracy and cost.

5.1 Comparison to baselines

Table 1 compares BSS to the baselines. Accuracy and percentage of snapshots remaining after pruning, i.e.,
|S|/(K × (J + 1)), are reported with 95% confidence intervals. Mean WG and SG performance and ranks
are also reported. Each baseline is evaluated against BSS in paired t-tests. If a statistical significance is
detected, i.e., p < 0.05, • indicates better BSS accuracy, whereas ◦ indicates better baseline accuracy.

Compared to naive FES without pruning, BSS achieves higher average SG accuracy while the two exhaustive
baselines perform worse. Exhaustive extractor search only removes approximately half of all snapshots. On
the other hand, while exhaustively searching through combinations of the last snapshots achieves impressive
reduction, as only 8 snapshots out of the total 328 are considered, its SG performance is the weakest among
the four methods. BSS achieves the highest accuracy in SG while achieving over 95% snapshot reduction. The
URL model with TSA fine-tuning achieves the highest WG accuracy but the lowest SG accuracy compared
to the pruned and unpruned FES methods.

We have also evaluated several other baselines but they proved inferior to the strategies presented in Table 1,
so they are omitted. These baseline strategies include: 1) exhaustive search involving only each extractor’s
snapshot with the lowest individual cross-validation loss, 2) greedy forward selection with at most one
snapshot per extractor, performed by including all snapshots in the initial pool and when a snapshot is
selected, removing all candidates of the same extractor, 3) greedy forward selection with at most one snapshot
per extractor but allowing replacement of a snapshot in the selected subset with another snapshot of the
same extractor, 4) ranking all snapshots by individual cross-validation loss, iterating through the ranking,
and selecting snapshots whose inclusion in the subset decreases cross-validation loss, and 5) pruning by
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applying L1 regularisation to FES stacking classifier training to force the weights of some snapshots to zero,
hereby removing them.

5.2 Visualisation

Figure 2 presents stacking classifier weight matrices as heatmaps. In each pair of graphs, the left one
represents average weight assigned to each snapshot by unpruned FES, and the right one represents the
version by FES pruned with BSS. (Unselected snapshots receive zero weight.) Results are averages from the
600 episodes of the corresponding target domain. Five domains are presented in Figure 2 and analysed in
detail: traffic_sign, mscoco, ISIC, ChestX, and Food101. The other five target domains are omitted as their
unpruned weight matrices focus on one or two source domains where weights change gradually as fine-tuning
progresses, while the pruned version focuses on the same domains with sparse weights concentrating at the
end of fine-tuning.

In traffic_sign, three source domains are focused on: ImageNet, textures (dtd), and quickdraw. The un-
pruned version features gradual snapshot weight changes in these three source domains, while the pruned
version heavily focuses on the snapshots at the end of fine-tuning, which is sufficient according to Table 1:
the pruned version achieves significantly higher accuracy according to a paired t-test.

ImageNet is the main focus in both mscoco and Food101. Unpruned FES focuses heavily on early snapshots
in mscoco, while pruned FES focuses on the final snapshot. In Food101, the unpruned version focuses on two
snapshots in particular: the one before any fine-tuning and the one after two fine-tuning iterations, whereas
the pruned version focuses on the former only. Table 1 shows that the pruned version performs significantly
better in these two domains than the unpruned version. Pruning also makes FES heatmaps more concise
and thus more interpretable in these two domains as well as the aforementioned traffic_sign.

FES appears unfocused in ISIC and ChestX, likely because there is no strong relationship between any
source domain and these two target domains. Pruned FES has weights concentrated at the beginning and
end of fine-tuning, and Table 1 shows that BSS pruning significantly decreases average accuracy in these
two domains. The unpruned heatmaps show significant weights assigned to snapshots in the middle of fine-
tuning, which may be the reason for this. The results indicate that the existence of target domains that
are related to the source domains can lead to a smoother and more monotonic cross-validation accuracy
curve during fine-tuning, resulting in a concentration of the best snapshots at the beginning or the end of
fine-tuning, which BSS can leverage to achieve significant pruning without tangible accuracy loss. When
such properties are potentially absent, like in ISIC or ChestX, BSS is more likely to suffer a loss in accuracy.

Overall, these figures show that BSS is able to remove many snapshots while retaining and sometimes even
enhancing interpretability. Moreover, snapshots at the beginning and the end of fine-tuning can both be
relevant to a task. However, it may occasionally fail to include relevant snapshots observed during the middle
of fine-tuning.

5.3 Ablation Study

Table 2 shows BSS, UFSS, and UBSS results. Each strategy is performed either with no patience or with
maximum patience, which guarantees candidate pool depletion.

For both, zero and maximum patience, BSS achieves higher accuracy and snapshot reduction than the two
unidirectional variants. This again indicates that snapshots relevant to a task can be at both the beginning
and the end of fine-tuning and adopting the model at the end of fine-tuning may not be best in every CDFSL
scenario. Given the same strategy, maximum patience leads to better accuracy but lower reduction. The
mean accuracy difference between zero and maximum patience is small for BSS, while it is more substantial
for UFSS and UBSS. Given these observations, we conclude that BSS without patience achieves the best
balance between accuracy and reduction.
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Table 1: BSS compared to the baselines: no pruning (full), exhaustively searching through extractors (EE), and
exhaustively searching through the last snapshot of each extractor (EL). A URL extractor with TSA fine-tuning is
evaluated for reference.

BSS full EE EL URL-TSA
Dataset accuracy ratio accuracy accuracy ratio accuracy ratio accuracy

ilsvrc_2012 56.35±1.16 3.76±0.28 56.22±1.14 56.28±1.15 50.44±1.34 56.32±1.17 1.44±0.03 56.78±1.12 ◦
omniglot 93.09±0.70 12.29±0.81 93.33±0.64 ◦ 93.25±0.66 47.50±1.86 93.33±0.66 ◦ 1.28±0.04 94.98±0.41 ◦
aircraft 87.75±0.79 4.86±0.36 87.64±0.79 87.60±0.83 50.15±1.31 87.72±0.83 1.32±0.03 88.43±0.51 ◦
cu_birds 80.05±0.86 4.03±0.26 79.93±0.85 80.02±0.85 48.88±1.28 79.77±0.87 • 1.36±0.03 81.47±0.72 ◦
dtd 76.48±0.82 3.23±0.26 76.21±0.81 • 76.17±0.80 • 49.67±1.27 76.69±0.82 ◦ 1.29±0.03 77.11±0.67 ◦
quickdraw 83.56±0.59 2.93±0.18 83.38±0.61 • 83.35±0.61 • 42.04±1.28 83.33±0.62 • 1.27±0.03 81.96±0.61 •
fungi 69.50±1.14 3.24±0.26 69.43±1.13 69.67±1.13 ◦ 43.06±1.39 69.24±1.13 • 1.33±0.03 68.30±1.06 •
vgg_flower 91.85±0.70 5.62±0.49 91.92±0.66 91.88±0.67 53.38±1.30 92.06±0.67 ◦ 1.45±0.03 92.07±0.55

WG avg 79.83 4.99 79.74 79.78 48.10 79.80 1.34 80.14
WG rank 2.97 2.98 2.92 3.02 3.11

traffic_sign 85.66±0.95 2.85±0.31 84.90±0.97 • 84.80±0.98 • 59.56±1.52 85.72±0.94 ◦ 1.45±0.03 82.81±0.94 •
mscoco 54.54±1.03 3.38±0.22 54.14±1.02 • 54.28±1.03 • 59.50±1.59 53.63±1.04 • 1.51±0.03 53.81±1.06 •
mnist 96.99±0.52 6.35±0.63 97.08±0.48 96.85±0.52 • 40.73±1.20 97.01±0.52 1.19±0.03 96.62±0.38 •
cifar10 78.32±0.89 2.65±0.21 78.14±0.87 78.24±0.87 46.33±1.49 78.52±0.86 ◦ 1.24±0.03 79.94±0.76 ◦
cifar100 70.64±1.06 3.55±0.33 70.35±1.05 • 70.32±1.05 • 49.40±1.54 70.62±1.06 1.49±0.03 70.26±1.03 •
CropDisease 87.96±0.68 4.57±0.35 88.15±0.68 ◦ 87.94±0.68 56.83±1.20 87.83±0.68 • 1.58±0.03 84.38±0.77 •
EuroSAT 89.33±0.64 2.50±0.20 88.85±0.63 • 88.97±0.61 • 41.33±1.33 89.37±0.62 1.21±0.03 89.62±0.54
ISIC 48.32±0.94 3.42±0.17 49.52±0.93 ◦ 49.16±0.95 ◦ 56.33±1.38 47.82±0.95 • 1.47±0.03 48.38±0.88
ChestX 27.04±0.58 3.20±0.33 27.67±0.61 ◦ 27.55±0.60 ◦ 55.35±1.60 26.69±0.59 • 1.37±0.03 27.17±0.57
Food101 55.71±1.12 2.94±0.19 55.22±1.11 • 55.35±1.11 • 48.71±1.16 54.58±1.15 • 1.61±0.03 53.37±1.21 •

SG avg 69.44 3.55 69.40 69.36 51.43 69.17 1.41 68.64
SG rank 2.76 2.90 2.94 3.00 3.40

(a) Unpruned traffic_sign (b) Pruned traffic_sign

(c) Unpruned mscoco (d) Pruned mscoco

(e) Unpruned ISIC (f) Pruned ISIC

(g) Unpruned ChestX (h) Pruned ChestX

(i) Unpruned Food101 (j) Pruned Food101

Figure 2: Pairs of unpruned and pruned stacking classifier weight matrices
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Table 2: Ablation study results with BSS, UFSS, and UBSS, performed with either zero or maximum patience

BSS BSS UFSS UFSS UBSS UBSS
P = 0 (Bi) P = 328 (BiP) P = 0 (F) P = 328 (FP) P = 0 (Ba) P = 328 (BaP)

Dataset acc ratio acc ratio acc ratio acc ratio acc ratio acc ratio

ilsvrc_2012 56.3±1.2 3.8±0.3 56.4±1.2 22.8±1.5 56.0±1.1 • 6.7±0.3 56.2±1.1 • 44.0±2.3 56.3±1.2 7.2±0.4 56.3±1.1 32.7±1.8
omniglot 93.1±0.7 12.3±0.8 93.3±0.7 ◦ 31.0±2.1 93.8±0.6 ◦ 14.3±0.8 93.3±0.6 ◦ 39.3±2.3 93.2±0.7 11.5±0.8 93.3±0.7 ◦ 32.7±2.2
aircraft 87.8±0.8 4.9±0.4 87.7±0.8 30.1±1.6 87.8±0.6 11.1±0.4 87.7±0.8 55.5±2.2 87.7±0.8 5.5±0.4 87.7±0.8 29.5±1.8
cu_birds 80.0±0.9 4.0±0.3 80.1±0.8 24.0±1.4 79.6±0.8 • 8.3±0.4 79.8±0.9 • 44.4±2.2 79.8±0.9 • 5.9±0.4 79.9±0.8 55.6±2.4
dtd 76.5±0.8 3.2±0.3 76.4±0.8 18.6±1.4 75.7±0.8 • 7.8±0.3 76.0±0.8 • 39.8±2.1 76.5±0.8 3.4±0.3 76.4±0.8 24.3±1.6
quickdraw 83.6±0.6 2.9±0.2 83.5±0.6 • 16.2±1.1 83.2±0.6 • 6.7±0.3 83.3±0.6 • 40.9±2.1 83.4±0.6 • 5.6±0.4 83.4±0.6 • 26.0±1.6
fungi 69.5±1.1 3.2±0.3 69.5±1.1 26.5±1.5 69.7±1.1 ◦ 7.4±0.3 69.5±1.1 42.7±2.0 69.7±1.1 6.6±0.4 69.6±1.1 ◦ 32.4±1.9
vgg_flower 91.8±0.7 5.6±0.5 91.9±0.7 19.9±1.4 91.5±0.7 • 15.1±0.6 91.7±0.7 • 44.7±1.9 92.0±0.7 ◦ 4.9±0.5 92.0±0.7 ◦ 20.8±1.7

WG avg 79.83 4.99 79.85 23.64 79.66 9.68 79.69 43.91 79.83 6.33 79.83 31.75
WG rank 3.33 3.35 3.87 3.62 3.43 3.39

traffic_sign 85.7±0.9 2.9±0.3 85.4±1.0 • 30.6±1.9 71.9±1.1 • 4.6±0.2 84.5±1.0 • 85.9±1.7 85.7±0.9 ◦ 2.3±0.3 85.4±0.9 • 19.7±1.6
mscoco 54.5±1.0 3.4±0.2 54.3±1.0 • 43.5±2.1 53.0±1.0 • 3.3±0.2 53.8±1.0 • 76.0±2.1 53.7±1.0 • 4.2±0.3 53.9±1.0 • 69.3±2.5
mnist 97.0±0.5 6.4±0.6 97.1±0.5 20.9±1.4 97.0±0.5 8.7±0.5 96.9±0.5 28.4±1.7 97.0±0.5 5.5±0.6 97.0±0.5 21.1±1.6
cifar10 78.3±0.9 2.7±0.2 78.2±0.9 37.8±2.2 74.6±0.9 • 3.1±0.2 77.3±0.9 • 63.2±2.6 78.5±0.9 ◦ 2.6±0.2 78.2±0.9 40.5±2.1
cifar100 70.6±1.1 3.5±0.3 70.5±1.1 • 36.4±2.0 66.5±1.1 • 3.7±0.2 70.0±1.1 • 71.6±2.4 70.6±1.1 5.3±0.4 70.4±1.1 • 53.2±2.5
CropDisease 88.0±0.7 4.6±0.4 88.1±0.7 ◦ 34.4±1.7 85.4±0.7 • 5.7±0.2 87.7±0.7 • 60.0±2.2 87.8±0.7 • 4.2±0.4 87.9±0.7 40.8±1.8
EuroSAT 89.3±0.6 2.5±0.2 89.3±0.6 20.7±1.6 85.7±0.6 • 3.1±0.2 88.2±0.6 • 53.3±2.6 89.4±0.6 2.1±0.2 89.3±0.6 23.1±1.6
ISIC 48.3±0.9 3.4±0.2 49.0±0.9 ◦ 38.3±2.0 47.2±0.9 • 4.1±0.2 49.4±0.9 ◦ 66.1±2.2 47.7±1.0 • 2.5±0.1 48.5±0.9 37.1±1.8
ChestX 27.0±0.6 3.2±0.3 27.5±0.6 ◦ 58.5±2.2 25.4±0.5 • 3.6±0.2 27.6±0.6 ◦ 69.8±2.2 27.0±0.6 2.2±0.3 27.2±0.6 40.0±2.1
Food101 55.7±1.1 2.9±0.2 55.7±1.1 20.1±1.7 53.3±1.1 • 3.7±0.1 54.4±1.1 • 51.7±2.8 54.6±1.1 • 4.6±0.3 55.2±1.1 • 81.2±2.1

SG avg 69.44 3.55 69.51 34.12 66.00 4.36 68.98 62.60 69.20 3.55 69.30 42.60
SG rank 3.03 3.05 4.75 3.61 3.32 3.23

Table 3: Results of FES with/without STC and/or BSS

BSS STC full sup full STC BSS sup
Dataset acc ratio acc acc acc ratio

ilsvrc_2012 56.72±1.15 4.07±0.25 56.22±1.14 • 56.63±1.13 56.35±1.16 • 3.76±0.28
omniglot 93.68±0.67 13.14±0.82 93.33±0.64 • 94.00±0.58 ◦ 93.09±0.70 • 12.29±0.81
aircraft 88.01±0.73 4.88±0.32 87.64±0.79 • 87.88±0.75 87.75±0.79 • 4.86±0.36
cu_birds 80.30±0.82 4.81±0.30 79.93±0.85 • 80.17±0.82 • 80.05±0.86 • 4.03±0.26
dtd 76.46±0.77 3.34±0.27 76.21±0.81 • 76.18±0.77 • 76.48±0.82 3.23±0.26
quickdraw 83.95±0.57 3.39±0.25 83.38±0.61 • 83.85±0.58 • 83.56±0.59 • 2.93±0.18
fungi 70.86±1.10 3.57±0.25 69.43±1.13 • 70.88±1.09 69.50±1.14 • 3.24±0.26
vgg_flower 92.34±0.67 5.88±0.50 91.92±0.66 • 92.43±0.61 91.85±0.70 • 5.62±0.49

WG avg 80.29 5.39 79.74 80.25 79.83 4.99
WG rank 2.34 2.67 2.35 2.64

traffic_sign 86.48±0.95 2.77±0.28 84.90±0.97 • 85.99±0.96 • 85.66±0.95 • 2.85±0.31
mscoco 55.51±1.02 3.49±0.28 54.14±1.02 • 55.48±1.01 54.54±1.03 • 3.38±0.22
mnist 97.31±0.47 6.77±0.64 97.08±0.48 • 97.37±0.43 96.99±0.52 • 6.35±0.63
cifar10 78.96±0.84 2.69±0.18 78.14±0.87 • 78.61±0.84 • 78.32±0.89 • 2.65±0.21
cifar100 71.18±1.03 3.58±0.34 70.35±1.05 • 70.87±1.03 • 70.64±1.06 • 3.55±0.33
CropDisease 88.83±0.66 4.45±0.35 88.15±0.68 • 89.07±0.64 ◦ 87.96±0.68 • 4.57±0.35
EuroSAT 89.56±0.61 2.54±0.21 88.85±0.63 • 89.02±0.61 • 89.33±0.64 • 2.50±0.20
ISIC 49.66±0.95 3.19±0.20 49.52±0.93 51.43±0.93 ◦ 48.32±0.94 • 3.42±0.17
ChestX 27.16±0.61 3.00±0.17 27.67±0.61 ◦ 28.44±0.64 ◦ 27.04±0.58 3.20±0.33
Food101 55.99±1.11 3.12±0.20 55.22±1.11 • 55.47±1.11 • 55.71±1.12 • 2.94±0.19

SG avg 70.08 3.56 69.39 70.18 69.44 3.55
SG rank 2.22 2.83 2.25 2.71
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5.4 Semi-supervised Pruning with STC and BSS

Table 3 shows FES results with BSS pruning (P = 0) and STC semi-supervised learning with 1000 unlabelled
instances. The results are compared to those obtained from supervised FES without pruning, as well as FES
with only STC semi-supervised learning and FES with only BSS pruning. FES with BSS and STC is set as
the reference method in Table 3, and the other methods are evaluated against it using the paired t-test. A •
indicates significantly better reference method performance and a ◦ indicates significantly better performance
from the other method.

Table 3 shows that semi-supervised learning with STC consistently improves FES performance in both
pruned and unpruned settings. Semi-supervised FES pruned with BSS achieves slightly lower average strong
generalisation accuracy than its unpruned counterpart, but with only 3.56% of the snapshots on average.
Also, five of its wins are statistically significant while there are only three statistically significant losses, and
its average rank is higher too.

5.5 Runtime and Memory Consumption

Table 4 shows computational cost and accuracy of a single URL extractor, unpruned FES, and FES with
BSS pruning. The ResNet18 architecture contains 11M parameters, while TSA adaptors for one such model
contain 1.5M parameters. As only the adaptors are fine-tuned, only one copy of the 11M base parameters
needs to be saved for each extractor, and each snapshot only contains the 1.5M TSA adaptor parameters.
Note that we use the largest traffic_sign support set, which has 497 training instances, and Table 4 represents
an upper bound in our experimental setup. Fine-tuning and stacking are performed on an NVIDIA A6000
GPU, while pruning is performed on an Intel Core i7-6700K CPU as a CPU iterates through snapshot
combinations more quickly than a GPU. For this particular episode, pruning leads to 51 snapshots belonging
to six extractors, and the other two extractors can be excluded entirely. Note that FES can fine-tune its
extractors sequentially, so its GPU memory requirement is close to using a single extractor of the same
architecture.

The main time consumption of FES is due to its fine-tuning process, as the extractors need to be fine-tuned
both for cross-validation and on the full support set. Time consumption of pruning is significant but not
overwhelming, constituting an approximate 20% runtime increase compared to the FES version without
pruning. However, the pruned version requires approximately 75% less storage space for its parameters
compared to the unpruned version. BSS scales well with the number of snapshots as discussed in Section
3, while exhaustive search scales exponentially with the number of snapshots considered. Likely due to the
larger number of training instances in the episode considered, the ratio of remaining snapshots, i.e., 51 out of
328, is greater than the traffic_sign average reported in Table 1. Users are advised to refer to Tables 1 and
4 to consider trade-off among accuracy, runtime, and storage cost when choosing among a universal model,
unpruned FES, and FES pruned with BSS.

6 Conclusion

We propose BSS, a pruning strategy for FES based on linear forward selection that leverages its cross-
validation process and the ordered nature of FES snapshots. BSS achieves over 95% average snapshot
reduction while retaining state-of-the-art supervised and semi-supervised accuracy. It outperforms several
baselines and unidirectional snapshot selection strategies, indicating that relevant snapshots can be found at
both the beginning and the end of fine-tuning. We also show that visualisation of BSS models aids analysis
of target domains.
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Table 4: Computational cost of the following methods, all applied with 40 iterations of TSA fine-tuning: a single
URL universal feature extractor, unpruned FES using the eight Meta-Dataset source domain extractors, and the
same FES setup with BSS pruning. The values are obtained using the largest traffic_sign support set (497 instances)
in our evaluation.

single extractor FES full FES BSS

fine-tune time 9.30s 150.95s 150.95s
prune time - - 29.22s
stacking time - 0.33s 0.03s
frozen parameters 11M 11M×8 = 88M 11M×6 = 66M
trainable parameters 1.5M 1.5M×8 = 12M 1.5M×6 = 9M
stored parameters 11M + 1.5M = 12.5M 11M×8 + 1.5M×328 = 580M 11M×6 + 1.5M×51 = 142.5M
stacking classifier parameters - 328 51
training GPU memory 8.2G 8.3G 8.3G
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