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Abstract

In recent years, there has been much interest in understanding the generalization
behavior of interpolating predictors, which overfit on noisy training data. Whereas
standard analyses are concerned with whether a method is consistent or not, recent
observations have shown that even inconsistent predictors can generalize well.
In this work, we revisit the classic interpolating Nadaraya-Watson (NW) estima-
tor (also known as Shepard’s method), and study its generalization capabilities
through this modern viewpoint. In particular, by varying a single bandwidth-like
hyperparameter, we prove the existence of multiple overfitting behaviors, ranging
non-monotonically from catastrophic, through benign, to tempered. Our results
highlight how even classical interpolating methods can exhibit intricate generaliza-
tion behaviors. In addition, for the purpose of tuning the hyperparameter, the results
suggest that over-estimating the intrinsic dimension of the data is less harmful than
under-estimating it. Numerical experiments complement our theory, demonstrating
the same phenomena.

1 Introduction

The incredible success of over-parameterized machine learning models has spurred a substantial
body of work, aimed at understanding the generalization behavior of interpolating methods (which
perfectly fit the training data). In particular, according to classical statistical analyses, interpolating
inherently noisy training data can be harmful in terms of test error, due to the bias-variance tradeoff.
However, contemporary interpolating methods seem to defy this common wisdom [1, 2]. Therefore,
a current fundamental question in statistical learning is to understand when models that perfectly fit
noisy training data can still achieve strong generalization performance.

The notion of what it means to generalize well has somewhat changed over the years. Classical
analysis has been mostly concerned with whether or not a method is consistent, meaning that
asymptotically (as the training set size increases), the excess risk converges to zero. By now, several
settings have been identified where even interpolating models may be consistent, a phenomenon
known as “benign overfitting” [3–6]. However, following Mallinar et al. [7], a more nuanced view
of overfitting has emerged, based on the observation that not all inconsistent learning rules are
necessarily unsatisfactory.

In particular, it has been argued both empirically and theoretically that in many realistic settings,
benign overfitting may not occur, yet interpolating methods may still overfit in a “tempered” manner,
meaning that their excess risk is proportional to the Bayes error. On the other hand, in some situations
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overfitting may indeed be “catastrophic”, leading to substantial degradation in performance even
in the presence of very little noise. The difference between these regimes is significant when the
amount of noise in the data is relatively small, and in such a case, models that overfit in a tempered
manner may still generalize relatively well, while catastrophic methods do not. These observations
led to several recent works aiming at characterizing which overfitting profiles occur in different
settings beyond consistency, mostly for kernel regression and shallow ReLU networks [8–14]. We
note that one classical example of tempered overfitting is 1-nearest neighbor, which asymptotically
achieves at most twice the Bayes error [15]. Moreover, results of a similar flavor are known for
k-nearest neighbor where k > 1 (see [16]). However, unlike the interpolating predictors we study
here, k-nearest neighbors do not necessarily interpolate the training data when k > 1.

With this modern nuanced approach in mind, we revisit in this work one of the earliest and most
classical learning rules, namely the Nadaraya-Watson (NW) estimator [17, 18]. In line with recent
analysis focusing on interpolating predictors, we focus on an interpolating variant of the NW estimator,
for binary classification: given (possibly noisy) classification data S = (xi, yi)

m
i=1 ⊂ Rd × {±1}

sampled from some continuous distribution D, and given some β > 0, we consider the predictor

ĥβ(x) :=

{
sign

(∑m
i=1

yi
∥x−xi∥β

)
if x /∈ S

yi if x = xi for some xi ∈ S .
(1)

The predictor in Eq. (1) has a long history in the literature and is known by many different names,
such as Shepard’s method, inverse distance weighting (IDW), the Hilbert kernel estimate, and singular
kernel classification (see Section 2 for a full discussion).

Notably, for any choice of β > 0, ĥβ interpolates the training set, meaning that ĥβ(xi) = yi. We will
study the predictor’s generalization in “noisy” classification tasks: we assume there exists a ground
truth f∗ : Rd → {±1} (satisfying mild regularity assumptions), so that for each sampled point x, its
associated label y ∈ {±1} satisfies Pr[y = f∗(x) |x] = 1− p for some p ∈ (0, 0.49). Clearly, for
this distribution, no predictor can achieve expected classification error better than p > 0. However,
interpolating predictors achieve 0 training error on the training set, and thus by definition overfit. We
are interested in studying the ability of these predictors to achieve low classification error with respect
to the underlying distribution. Factoring out the inevitable error due to noise, we can measure this via
the “clean” classification error Prx∼Dx [ĥβ(x) ̸= f∗(x)], which measures how well ĥβ captures the
ground truth function f∗.

As our starting point, we recall that ĥβ is known to exhibit benign overfitting when β = d precisely:

Theorem 1.1 (Devroye et al. [19]). Suppose Dx has a density on Rd, and let β = d. For any noise
level p ∈ (0, 0.49), it holds that the clean classification error of ĥβ goes to zero as m → ∞, i.e. ĥβ
exhibits benign overfitting.

In other words, although training labels are flipped with probability p ∈ (0, 0.49), the predictor is
asymptotically consistent, and thus predicts according to the ground truth f∗. Furthermore, Devroye
et al. [19] also informally argued that setting β ̸= d is inconsistent in general, and therefore excess
risk should be expected. Nonetheless, the behavior of the predictor ĥβ beyond the benign/consistent
setting is not known prior to this work.

In this paper, in light of the recent interest in inconsistent interpolation methods, we characterize
the price of overfitting in the inconsistent regime β ̸= d. What is the nature of the inconsistency for
β ̸= d? Is the overfitting tempered, or in fact catastrophic? As our main contribution, we answer
these questions and prove the following asymmetric behavior:
Theorem 1.2 (Main results, informal). For any dimension d ∈ N and noise level p ∈ (0, 0.49), the
following hold asymptotically as m → ∞:

• (“Tempered” overfitting) For any β > d, the clean classification error of ĥβ is between
Ω(poly(p)) and Õ(p).

• (“Catastrophic” overfitting) For any β < d, there is some f∗ for which ĥβ will suffer
constant clean classification error, independently of p.

We summarize the overfitting profile that unfolds in Figure 1, with an illustration of the Nadaraya-
Watson interpolator in one dimension. These results provide a modern analysis of a classical learning
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rule, uncovering a range of generalization behaviors: By varying a single hyperparameter, these
behaviors range non-monotonically from catastrophic to tempered overfitting, with a delicate sliver of
benign overfitting behavior in between. Our results highlight how intricate generalization behaviors,
including the full range from benign to catastrophic overfitting, can appear in simple and well-known
interpolating learning rules. To the best of our knowledge, for kernel interpolators, there is no other
example of a single kernel provably exhibiting all three types of overfitting as we do here (even with
a varying bandwidth).

Moreover, the results provide an interesting insight about the optimal tuning of β: Although Theo-
rem 1.1 might seem to suggest that the optimal value of β is simply the input dimension d, it does not
cover the common case where the data has some intrinsic dimension dint < d (due to the requirement
that Dx has a density on Rd). In that situation, our analysis suggests that the optimal value for β is
in fact dint, not d. Unfortunately, dint is generally not known, and can only be estimated. In that
case, our results suggest that setting β to an over-estimate of dint (namely, choosing some β > dint)
is much preferable to under-estimating it, as the former leads to tempered overfitting, whereas the
latter may lead to catastrophic overfitting. We further discuss this in Remark 5.2, and in Section 6 we
present numerical evidence supporting this claim.

d β

benign

0
catastrophic tempered

(a)

(b)

Figure 1: (a): Illustration of the entire overfitting profile of the NW interpolator given by Eq. (1).
(b): Toy illustration of the NW interpolator in dimension d = 1 with noisy data. (Left) Catastrophic
overfitting for β < d: the prediction at each point is influenced too heavily by far-away points,
and therefore the predictor does not capture the general structure of the ground truth function f∗.
(Middle) Benign overfitting for β = d: asymptotically the excess risk will be Bayes-optimal. (Right)
Tempered overfitting for β > d, the prediction at each point is influenced too heavily by nearby
points, so the predictor misclassifies large regions around label-flipped points, but only around them.

The paper is structured as follows. In Section 2, we review related work. In Section 3 we formally
present the discussed setting. In Section 4, we present our result for the tempered regime β > d. In
Section 5 we present our result for the catastrophic regime β < d. In Section 6 we provide some
illustrative experiments to complement our theoretical findings. We conclude in Section 7. All of the
results in the main text include proof sketches, while full proofs appear in the appendix.

2 Related work

Nadaraya-Watson kernel estimator. The Nadaraya-Watson (NW) estimator was introduced
independently in the seminal works of Nadaraya [17] and Watson [18]. Later, and again independently,
in the context of reconstructing smooth surfaces, Shepard [20] used a method referred to as Inverse
Distance Weighting (IDW), which is in fact a NW estimator with respect to certain kernels leading to
interpolation, identical to those we consider in this work. To the best of our knowledge, Devroye
et al. [19] provided the first statistical guarantees for such interpolating NW estimators (which they
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called the Hilbert kernel), showing that the predictor given by Eq. (1) with β = d is asymptotically
consistent. For a more general discussion on so called “kernel rules”, see [16, Chapter 10]. In more
recent works, Belkin et al. [21] derived non-asymptotic rates showing consistency under a slight
variation of the kernel. Radhakrishnan et al. [22], Eilers et al. [23] showed that in certain cases, neural
networks in the NTK regime behave approximately as the NW estimator, and leverage this to show
consistency. Abedsoltan et al. [24] showed that interpolating NW estimators can be used in a way
that enables in-context learning.

Overfitting and generalization. There is a substantial body of work aimed at analyzing the
generalization properties of interpolating predictors that overfit noisy training data. Many works
study settings in which interpolating predictors exhibit benign overfitting, such as linear predictors
[3, 25–30], kernel methods [31, 32, 6], and other learning rules [19, 33, 1].

On the other hand, there is also a notable line of work studying the limitations of generalization
bounds in interpolating regimes [34, 2, 35]. In particular, several works showed that various kernel
interpolating methods are not consistent in any fixed dimension [36–38], or whenever the number of
samples scales as an integer-degree polynomial with the dimension [39, 40, 12, 41].

Motivated by these results and by additional empirical evidence, Mallinar et al. [7] proposed a more
nuanced view of interpolating predictors, coining the term tempered overfitting to refer to settings in
which the asymptotic risk is strictly worse than optimal, but is still better than a random guess. A
well-known example is the classic 1-nearest-neighbor interpolating method, for which the excess risk
scales linearly with the probability of a label flip [15]. Several works subsequently studied settings
in which tempered overfitting occurs in the context of kernel methods [11, 12, 42], and for other
interpolation rules [8, 9, 43].

Finally, some works studied settings in which interpolating with kernels is in fact catastrophic,
meaning that the excess error is lower bounded by a constant which is independent of the noise level,
leading to substantial risk even in the presence of very little noise [9, 10, 13, 14].

We note that our proof techniques differ from most known results for kernel interpolators, which
typically rely on a spectral analysis. However, this often requires additional non-trivial assumptions
(e.g. Gaussian universality). By contrast, our proofs are based on characterizing the “locality” of the
predictor.

Varying kernel bandwidth. Several works considered generalization bounds that hold uniformly
over a family of kernels, parameterized by a bandwidth parameter [36, 44, 37, 38, 13]. The bandwidth
plays the same role as the parameter β in this paper, controlling how local/global the kernel is. Specif-
ically, these works showed that in fixed dimensions various kernels are asymptotically inconsistent
for all bandwidths. Medvedev et al. [13] showed that with large enough noise, the Gaussian kernel
with any bandwidth is at least as bad as a constant predictor, which we classify as catastrophic. As
far as we know, our paper provides the first known example of a kernel method provably exhibiting
all types of overfitting behaviors in fixed dimensions by varying the bandwidth alone.

3 Preliminaries

Notation. We use bold-faced font to denote vectors, e.g. x ∈ Rd, and denote by ∥x∥ the Euclidean
norm. We let [n] := {1, . . . , n}. Given some set A ⊆ Rd and a function f , we denote its restriction by
f |A : A → R, and by Unif(A) the uniform distribution over A. We let B(x, r) := {z | ∥x− z∥ ≤
r} be the ball of radius r centered at x. We denote by d

= equality in distribution. We use the standard
big-O notation, with O(·), Θ(·) and Ω(·) hiding absolute constants that do not depend on problem
parameters, and Õ(·), Ω̃(·) additionally hiding logarithmic factors. Given some parameter (or set of
parameters) θ, we denote by c(θ), C(θ), C1(θ), C̃(θ) etc. positive constants that depend on θ.

Setting. Given some target function f∗ : Rd → {±1}, we consider a classification task based
on noisy training data S = (xi, yi)

m
i=1 ⊂ Rd × {±1}, such that x1, . . . ,xm ∼ Dx are sampled

from some distribution Dx with a density µ, and for each i ∈ [m] independently, yi = f∗(xi) with
probability 1− p or else yi = −f∗(xi) with probability p ∈ (0, 0.49). We note that while we focus
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on a fixed noise level p for simplicity, our results can also be extended to the case where p varies
smoothly with x.

Given the predictor ĥβ introduced in Eq. (1), we denote the asymptotic clean classification error by1

L(ĥβ) = lim
m→∞

ES
[
Prx∼Dx [ĥβ(x) ̸= f∗(x)]

]
.

Throughout the paper we impose the following mild regularity assumptions on µ and f∗ :

Assumption 3.1. We assume µ is continuous at almost every x ∈ Rd. We also assume that for almost
every x ∈ Rd, there is a neighborhood Bx ⊃ {x} such that f∗|Bx ≡ f∗(x).

We note that the assumptions above are very mild. Indeed, any density is Lebesgue integrable,
whereas our assumption for µ is equivalent to it being Riemann integrable. As for f∗, the assumption
asserts that its associated decision boundary has zero measure, ruling out pathological functions.

Types of overfitting. We study the asymptotic error guaranteed by ĥβ in a “minimax” sense,
namely uniformly over µ, f∗ that satisfy Assumption 3.1. Under the described setting with noise
level p ∈ (0, 0.49), we say that:

• ĥβ exhibits benign overfitting if L(ĥβ) = 0;

• Else, ĥβ exhibits tempered overfitting if L(ĥβ) scales monotonically with p: there exists
φ : [0, 1] → [0, 1] non-decreasing, continuous with φ(0) = 0, so that L(ĥβ) ≤ φ(p);

• ĥβ exhibits catastrophic overfitting if there exist some µ, f∗ (satisfying the regularity
assumptions) such that L(ĥβ) is lower bounded by a positive constant (independent of p).

We remark that the latter definition of catastrophic overfitting slightly differs from the one of Mallinar
et al. [7], which called the method catastrophic only if L(ĥβ) = 1

2 . Medvedev et al. [13] noted that
the latter definition can result in even the most trivial predictor, a function that is constant outside the
training set, being classified as tempered instead of catastrophic. We therefore find the formalization
above more suitable, which also coincides with previous works [8, 9, 12, 13, 43].

4 Tempered overfitting

We start by presenting our main result for the β > d parameter regime, establishing tempered
overfitting of the predictor ĥβ :

Theorem 4.1. For any d ∈ N, any β > d, any density µ and target function f∗ satisfying Assump-
tion 3.1, and any noise level p ∈ (0, 0.49), it holds that

C1(β/d) · pc(β/d) ≤ L(ĥβ) ≤ C2(β/d) · log
1

1−d/β (1/p) · p ,

where c(β/d) =
(

8·2β/d

β/d−1

) 1
β/d−1

> 0, and C1(β/d), C2(β/d) > 0 are constants that depend only

on the ratio β/d.

In particular, the theorem implies that for any β > d it holds that L(ĥβ) = Õ(p), hence in low noise
regimes the error is never too large. Moreover, we note that the lower bound (of the form Ω(poly(p))
for any β > d) holds for any target function satisfying mild regularity assumptions. Therefore, the
tempered cost of overfitting holds not only in a minimax sense, but for any instance.

Further note that since we know that β = d leads to benign overfitting, one should expect the lower
bound in Theorem 4.1 to approach 0 as β → d+. Indeed, the lower bound’s polynomial degree

satisfies c(β/d) =
(
8·2β/d

β/d−1

) 1
β/d−1

β→d+−→ ∞, and thus pc(β/d)
β→d+−→ 0.2

1Technically, the limit may not exist in general. In that case, our lower bounds hold for the lim infm→∞,
while our upper bounds hold for the lim supm→∞, and therefore both hold for all partial limits.

2To be precise, one needs to make sure that the constant C1(β/d) does not blow up, which is indeed the case.
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We provide below a sketch of the main ideas that appear in the proof of Theorem 4.1, which is
provided in Appendix B. In a nutshell, the proof establishes that when β > d, the predictor ĥβ
is highly local, and thus prediction at a test point is affected by flipped labels nearby, yet only by
them. The proof essentially shows that in this parameter regime, ĥβ behaves similar to the k nearest
neighbor (k-NN) method for some finite k that depends on β/d (although notably, as opposed to ĥβ ,
k-NN does not interpolate), and has a similarly tempered generalization guarantee accordingly.

Proof sketch of Theorem 4.1. Looking at some test point x ∈ Rd, we are interested in understanding
the prediction ĥβ(x). Clearly, by definition in Eq. (1), the prediction depends on the random variables
∥x− xi∥−β for i ∈ [m], so that closer datapoints have a great affect on the prediction at x. Denote by
y(1), . . . , y(m) the labels ordered according to the distance of their corresponding datapoints, namely∥∥x− x(1)

∥∥ ≤
∥∥x− x(2)

∥∥ ≤ · · · ≤
∥∥x− x(m)

∥∥. By analyzing the distribution of distances from the
sample to x, for datapoints sufficiently close to x we can jointly approximate the random variables by
∥x− x(i)∥−β ≈ µ(x)(

∑m+1
i=1 Ei)

β/d/(
∑i
j=1 Ej)

β/d, where E1, . . . , Em
i.i.d.∼ exp(1) are standard

exponential random variables. Furthermore, datapoints which are more than some constant distance
away from x can contribute at most a constant, so for some m′ < m we obtain

ĥβ(x) ≈ sign

(
µ(x)

(m+1∑
i=1

Ei

)β/d m′∑
i=1

y(i)

(
∑i
j=1 Ej)

β/d
+O(m)

)
. (2)

Since E[
∑i
j=1 Ej ] = i, we apply concentration bounds for sums of exponential variables to argue

that with high probability
∑i
j=1 Ej ≈ i simultaneously over all i ∈ N, so the prediction is roughly

ĥβ(x) ≈ sign

(
µ(x)(m+ 1)β/d

m′∑
i=1

y(i)

iβ/d
+O(m)

)
≈ sign

( m′∑
i=1

y(i)

iβ/d

)
,

since O(m) ≪ (m+ 1)β/d is asymptotically negligible and µ(x)(m+ 1)β/d > 0.

Crucially, for any β > d, the sum above converges, and therefore there exists a constant k ∈ N (that
depends only on the ratio β/d) so that the tail is smaller than the first k summands:∣∣∣∣∣∣

m′∑
i=k+1

y(i)

iβ/d

∣∣∣∣∣∣ ≲
∞∑

i=k+1

1

iβ/d
≲

1

kβ/d−1
≪

k∑
i=1

1

iβ/d
.

Therefore, under the event that all nearby labels coincide, the prediction depends only on the k nearest
neighbors, and we would get that predictor returns their value. By Assumption 3.1, for sufficiently
large sample size m and fixed k, for almost every x the k nearest neighbors should be labeled the
same as x, namely f∗(x) = f∗(x(1)) = · · · = f∗(x(k)). So overall, we see that

Pr[ĥβ(x) ̸= f∗(x)] ≤ Pr[∃i ∈ [k] : y(i) ̸= f∗(x(i))︸ ︷︷ ︸
flipped label

] = 1− (1− p)k ≤ kp ,

and similarly
Pr[ĥβ(x) ̸= f∗(x)] ≥ Pr[∀i ∈ [k] : y(i) ̸= f∗(x(i))︸ ︷︷ ︸

all k labels flipped

] = pk .

The two inequalities above show the desired upper and lower bounds on the prediction error.

5 Catastrophic overfitting

We now turn to present our main result for the β < d parameter regime, establishing that ĥβ can
catastrophically overfit:
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Theorem 5.1. For any d ∈ N and any 0 < β < d, there exist a density µ and a target function f∗

satisfying Assumption 3.1, such that for some absolute constants C1, C2 ∈ (0, 1), and c(β, d) :=

Cβ
1 · (1− β/d) > 0, it holds for any p ∈ (0, 0.49) that

L(ĥβ) ≥ C2 · c(β, d) .

The theorem states that whenever β < d, the error can be arbitrarily larger than the noise level, since
L(ĥβ) = Ω(1) even as p → 0. Note that since the benign overfitting result for β = d holds over any
distribution and target function (under the same regularity assumptions), the fact that the lower bound
of Theorem 5.1 approaches 0 as β → d is to be expected.
Remark 5.2. Interestingly, the only role played by d in the proofs of Theorems 4.1 and 5.1 is
the fact that locally, the probability mass scales as

∫
B(x,r)

µ ≍ rd (for almost all x and small
r > 0). Accordingly, when the data distribution is supported on a lower dimensional manifold of
dimension dint < d, the result suggests that tempered overfitting occurs whenever β > dint, and that
catastrophic overfitting can occur whenever β < dint. Although we do not attempt to formalize it in
this paper,3 we conjecture that in general the parameter d can be replaced by dint in all our results.
Since dint generally can only be estimated, it suggests a potential practical implication: Setting β
to an over-estimate of dint is less harmful than under-estimating it, as the former leads to tempered
overfitting whereas the latter may lead to catastrophic overfitting. This is further supported by our
experiments in Section 6.

We provide below a sketch of the main ideas of the proof, which is provided in Appendix C. Notably,
the main idea behind the proof is quite different from that of Theorem 4.1. There, the analysis
was highly local, i.e. for every test point x we showed that we can restrict our analysis to a small
neighborhood around that point. In contrast, the reason we will obtain catastrophic overfitting for
β < d is precisely that the predictor is too global, as we will see that for every test point x, all
points xi in the training set have a non-negligible effect on ĥβ(x). Our proof essentially shows
that whenever a small region of constant probability mass is surrounded by the opposite label, the
predictor will mislabel it, incurring a constant error. Our construction is therefore quite generic, and
we expect the same intuition to extend to many target functions f∗. The full proof can be found in
the appendix.

Proof sketch of Theorem 5.1. We will construct an explicit distribution and target function for which
ĥβ exhibits catastrophic overfitting. The distribution we consider consists of an inner ball of constant
probability mass labeled −1, and an outer annulus labeled +1, as illustrated in Figure 2. Specifically,
we denote c := c(β, d) = Cβ

1 · (1− β/d) for some absolute constant C1 > 0 to be specified later,
and consider the following density and target function:

µc(x) =


c

Vol(B(0, 14 ))
if ∥x∥ ≤ 1

4

1−c
Vol(B(0,1)\B(0, 34 ))

if 3
4 ≤ ∥x∥ ≤ 1

0 else

, f∗(x) =

{
−1 if ∥x∥ ≤ 1

4

1 else
.

We consider a test point x with ∥x∥ ≤ 1
4 , and will show that for sufficiently large m, with high

probability x will be misclassified as +1. This implies the desired result, since then

L(ĥβ) ≳ Pr
x

[
∥x∥ ≤ 1

4

]
= c .

To that end, we decompose
m∑
i=1

yi

∥x− xi∥β
=

∑
i:∥xi∥≤ 1

4

yi

∥x− xi∥β
+

∑
i:∥xi∥≥ 3

4

yi

∥x− xi∥β

≥ −
∑

i:∥xi∥≤ 1
4

1

∥x− xi∥β︸ ︷︷ ︸
=:T1

+
∑

i:∥xi∥≥ 3
4

1− 2p

∥x− xi∥β︸ ︷︷ ︸
=:T2

+
∑

i:∥xi∥≥ 3
4

yi − 1 + 2p

∥x− xi∥β︸ ︷︷ ︸
=:T3

, (3)

3This should not be difficult in principle, but the proofs would become substantially more technical when the
manifold is non-linear.
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Figure 2: Illustration of the lower bound construction used in the proof of Theorem 5.1. When β < d,
the inner circle will be misclassified as +1 with high probability, inducing constant error.

where T1 crudely bounds the contribution of points in the inner circle, T2 is the expected contribution
of outer points labeled 1, and T3 is a perturbation term. Noting that T2 > 0, our goal is to show that
T2 dominates the expression above, implying that Eq. (3) is positive and thus hβ(x) = 1.

Let k :=
∣∣{i : ∥xi∥ ≤ 1

4}
∣∣ denote the number of points inside the inner ball, and note that we can

expect k ≈ E[k] = cm. To bound T1, we express its distribution using exponential random variables
in a manner that is similar to the proof of Theorem 4.1. Specifically, for standard exponential random
variables E1, . . . , Em

i.i.d.∼ exp(1), we show that with high probability

−T1 ≳ −
∑

i:∥xi∥≤ 1
4

(
∑m
i=1 Ei)

β/d

( 1
4c1/d

)β
(∑i

j=1 Ej

)β/d ≳(1) −cβ/d4β ·mβ/d ·
m∑

i=k+1

1

iβ/d

≳ −cβ/d4β ·mβ/d · k1−β/d

1− β/d
≳(2) −cm · 4β

(1− β/d)
,

where (1) uses concentration bounds on the sums of exponential random variables to argue that∑i
j=1 Ej ≈ i, and (2) follows from showing k ≈ cm.

To show that T2 is sufficiently large, we use the fact that ∥x− xi∥ ≤ ∥x∥ + ∥xi∥ ≤ 5
4 , and that∣∣{i : ∥xi∥ ≥ 3

4

}∣∣ ≈ (1− c)m ≥ 1
2m with high probability to obtain

T2 =
∑

i:∥xi∥≥ 3
4

1− 2p

∥x− xi∥β
≥ (1− 2p)

∣∣∣∣{xi : ∥xi∥ ≥ 3

4

}∣∣∣∣ · (4

5

)β
≳ m ·

(
4

5

)β
.

Lastly, we show that T3 is asymptotically negligible, by noting that E[T3] = 0 hence T3 = o(m) with
high probability by Hoeffding’s inequality. Thus Eq. (3) becomes

ĥβ(x) = sign

[
m∑
i=1

yi

∥x− xi∥β

]
≳ sign

[
m

((
4

5

)β
− c · 4β

1− β/d

)]
.

Overall, we see that the right-hand side above is positive as long as c = Cβ
1 ·
(
1− β

d

)
< 1−β/d

5β
, or

equivalently C1 < 1
5 , meaning that ĥβ(x) = 1 even though f∗(x) = −1.

6 Experiments

In this section, we provide numerical simulations that illustrate and complement our theoretical
findings. In all experiments, we sample m datapoints according to some distribution, flip each label
independently with probability p, and plot the clean test error of ĥβ for various values of β. We ran
each experiment 50 times, and plotted the average error surrounded by a 95% confidence interval.
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6.1 Synthetic data

We start by discussing several experiments with synthetic data distributions.

Warm up: one dimensional data. In our first experiment, we considered data in dimension d = 1
distributed according to the construction considered in the proof of Theorem 5.1. In particular, we
consider

Dx = 1
10 ·Unif

(
(0, 1

4 )
)
+ 9

10 ·Unif
(
( 34 , 1)

)
, f∗(x) =

{
−1 if x ∈ (0, 1

4 )

1 else
. (4)

In Figure 3, on the left we plot the results for m = 2000 and various values of p, and on the right we
fix p = 0.04 and vary m.

Figure 3: The classification error of ĥβ for varying values of β, with data in dimension d = 1 given
by Eq. (4). On the left, m = 2000 is fixed, p varies. On the right, p = 0.04 is fixed, m varies. Best
viewed in color.

As seen in Figure 3, the generalization is highly asymmetric with respect to β. For β < 1, the test
error degrades independently of the noise level p, and quickly reaches 0.1 in all cases, illustrating that
the predictor errors on the negative labels (which have 0.1 probability mass). On the other hand, for
β > 1, the test error exhibits a gradual deterioration. Moreover, we see this deterioration is controlled
by the noise level p, matching our theoretical finding. The right figure illustrates all of the discussed
phenomena hold similarly for moderate sample sizes, which complements our asymptotic analysis.

Spherical data. In our second experiment, we consider a similar distribution over the unit sphere
S2 ⊂ R3, where the inner negatively labeled region is a spherical cap. In particular, consider the
spherical cap defined by A :=

{
x = (x1, x2, x3) ∈ S2 | x3 >

√
3/2
}

, and let

Dx = 1
10 ·Unif(A) + 9

10 ·Unif(S2 \A) , f∗(x) =

{
−1 if x ∈ A

1 else
. (5)

In Figure 4, on the left we plot the results for m = 2000 and various values of p, and on the right we
fix p = 0.04 and vary m.

Figure 4: The classification error of ĥβ for varying values of β, with data on S2 ⊂ R3 given by
Eq. (5). On the left, m = 2000 is fixed, p varies. On the right, p = 0.04 is fixed, m varies. Best
viewed in color.

As seen in Figure 4, the same asymmetric phenomenon holds in which overly large β are more
forgiving than overly small β, especially in low noise regimes. The main difference between the first
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and second experiment is that the optimal “benign” exponent in the second case is β = 2, matching
the intrinsic dimension of the sphere, even though the data is embedded in 3-dimensional space. This
agrees with our conjecture that for distributions with low intrinsic dimension dint < d, the overfitting
behavior depends on dint rather than d (as discussed in Remark 5.2).

In Appendix E we provide an extension of the spherical data experiment, in which the inputs are
corrupted by Gaussian noise. As the noise variance increases, hence the dataset is drawn away from
having a low intrinsic dimension, the β value with minimal test error gradually increases from 2 to 3.
This illustrates a robustness to input-noise which is prevalent in practice, complementing an aspect
that our current formal results do not cover.

6.2 Intrinsic Dimension of MNIST

Next, we consider an experiment in which the data consists of images of handwritten 0 and 1 digits
from the MNIST dataset. In Figure 5, on the left we plot the results with respect to the entire training
set m = 12, 665 and various values of p, and on the right we fix p = 0.1 and vary m.

Figure 5: The classification error of ĥβ for varying values of β, with respect to MNIST’s 0/1 data.
On the left, m is fixed to the entire train set, p varies. On the right, p = 0.1 is fixed, m varies. Best
viewed in color.

As seen in Figure 5, the same asymmetric phenomenon demonstrated by both our theory as well as
the synthetic experiments, clearly holds once more. It is interesting to note that each image in MNIST
is of size 28 × 28 = 784 pixels, and so the extrinsic dimension is 784. Nonetheless, the optimal
exponent is roughly β ≈ 8 ≪ 784, which matches an estimate of the intrinsic dimension of MNIST
measured by Pope et al. [45]. Moreover, as seen on the right, the asymptotic phenomenon manifests
quite clearly already for small samples sizes, and only becomes more pronounced as the number of
samples increases.

7 Discussion

In this work, we characterized the generalization behavior of the NW interpolator for any choice of
the hyperparameter β. Specifically, NW interpolates in a tempered manner when β > d, exhibits
benign overfitting when β = d, and overfits catastrophically when β < d. This substantially extends
the classical analysis of this method, which only focused on consistency. In addition, it indicates that
the NW interpolator is much more tolerant to over-estimating β as opposed to under-estimating it.

Our analysis and experiments both suggest that the dependence on d arises from the assumption that
the distributions considered here have a density in Rd, and that more generally over-estimating the
intrinsic dimension of the data is preferable to under-estimating it when setting β.

Overall, our results highlight how intricate generalization behaviors, including the full range from
benign through tempered to catastrophic overfitting, can already appear in simple and well-known
interpolating learning rules. We hope these results will further motivate revisiting other fundamental
learning rules using this modern viewpoint, going beyond the classical consistency-vs.-inconsistency
dichotomy.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction describe the concrete contributions of this paper,
as indicated throughout the rest of the paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: As discussed in Remark 5.2 and elsewhere in the paper, our analysis does not
formally cover the case in which the distribution is supported over a lower-dimensional
curved manifold. Other than that, any theoretical paper is limited by the setting it considers,
and we do not believe our paper is further missing pointers to any specific limitations.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

14



Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: All assumptions, theorems, lemmas and proof sketches are provided in the
main text. The full proofs are provided in the appendices.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We clearly discuss all of the above in Section 6.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: The experiments described in Section 6 are very easy to reproduce based on
our accurate description. We believe there is no added value by sharing this code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide a complete description of the details in Section 6. We remark that
some of the variables described above are not directly relevant to the experiments in this
paper (e.g., no optimizer etc.).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The figures in Section 6 include confidence intervals, as described therein.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [No]

Justification: We do not explicitly mention these, as the experiments are extremely light-
weight and take at most a couple of minutes to run locally on a standard computer.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We reviewed the NeurIPS Code of Ethics, and the research conforms with it.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: This work is theoretical, and its goal is to advance our understanding of a
certain phenomenon observed the field of Machine Learning. While there are potential
societal consequences of Machine Learning as a whole, we believe none of which must be
specifically highlighted here.
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Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

19

paperswithcode.com/datasets


• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Notation and order statistics

We start by introducing some notation that we will use throughout the proofs to follow. We denote
X1 ≍ X2 to abbreviate X1 = Θ(X2), X1 ≲ X2 to abbreviate X1 = O(X2) and X1 ≳ X2 to
abbreviate X1 = Ω(X2). Throughout the proofs we let α := β/d, and abbreviate h = ĥβ . Given
some x ∈ supp(µ) and m ∈ N, we consider the one-dimensional random variables

Wx
i := V α

d ∥x− xi∥β ,

where Vd is the volume of the d dimensional unit ball, and the randomness is over xi. We let Fx be
the CDF of Wx

i (which is clearly the same for all i ∈ [m]). We also let Ui ∼ U([0, 1]), i ∈ [m] be
standard uniform random variables, and denote by Wx

(i) and U(i) the ordered versions of the Wx
i s

and Uis respectively, namely

Wx
(1) ≤ Wx

(2) ≤ · · · ≤ Wx
(m) ,

U(1) ≤ U(2) ≤ · · · ≤ U(m) .

We will often omit the superscript/subscript x where it is clear by context and use the nota-
tions Wi,W(i) and F to denote Wx

i ,W
x
(i) and Fx respectively. Lastly, we let F−1 : [0, 1] →

[0, 1], F−1(t) = inf{s : F (s) ≥ t} be the quantile function, and note that it satisfies F (w) ≤ u if
and only if w ≤ F−1(u).

Lemma A.1 (46, Theorem 2.1). For any i ∈ [m], x ∈ Rd : Wx
i

d
= F−1

x (Ui).

Note that since (Wi)i∈[m] are independent, the lemma above further applies to the joint distribution,
and to the joint distribution of the order statistics (see e.g. 46, Example 2.3). Since we will use this
often, we state this as a separate lemma.

Lemma A.2. For any x ∈ Rd : (Wx
(i))i∈[m]

d
=
(
F−1
x (U(i))

)
i∈[m]

jointly.

The behavior of U(i) is best understood through the following lemma.

Lemma A.3 (47, Chapter 8, Proposition 1). Let E1, . . . Em+1 be i.i.d. standard exponential random
variables. Then (

U(1), . . . , U(m)

)
∼ 1∑m+1

i=1 Ei

(
1∑
i=1

Ei, . . . ,

m∑
i=1

Ei

)
.

B Proof of Theorem 4.1

Throughout the proof, we will use the notation introduced in Appendix A.

Lemma B.1. For almost every x ∈ Rd and ϵ > 0, there exists δx > 0 such that for any u ≤ V α
d δβx :

2

3µ(x)
uα ≤ F−1(u) ≤ 2

µ(x)
uα .

Proof. By the Lebesgue differentiation theorem (cf. 48, Chapter 3), for almost every x ∈ Rd and
ϵ > 0, there exists some δx > 0 such that

sup
0<r≤δx

∣∣∣∣∣
∫
B(x,r)

µ(z)dz

Vdrd
− µ(x)

∣∣∣∣∣ ≤ ϵµ(x).

In particular, for any 0 < u ≤ V α
d δβx , taking r = u1/β

V
1/d
d

(which in particular satisfies r ≤ δx) we have∣∣∣∣∣
∫
B(x,r)

µ(z)dz

u
1
α

− µ(x)

∣∣∣∣∣ ≤ ϵµ(x).
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As a result,

F (w) = Pr
z

(
V α
d ∥x− z∥β ≤ w

)
= Pr

z

(
∥x− z∥ ≤ w1/β

V
1/d
d

)

=

∫
B(x,r)

µ(z)dz ∈
[
(1− ϵ)µ(x)w1/α, (1 + ϵ)µ(x)w1/α

]
.

The result readily follows by plugging ϵ = 1
2 and inverting.

Lemma B.2. For any k ∈ N, α > 1 and almost every x ∈ Rd there exists a constant C̃(x, k, α)

such that as long as m ≥ C̃(x, k, α), the following holds: If the k nearest neighbors of x are all
labeled the same y(1) = · · · = y(k), then h(x) = y(1) with probability at least 1− c1 exp(−c2k)−
exp(−cαk

1− 1
α ) over the randomness of (xi)mi=1.

Proof. Given x, let δ = δx > 0 be the radius given by Lemma B.1, and assume without loss of
generality that δ is sufficiently small so that f∗ is constant over B(x, δ) (otherwise replace it by the
smaller radius given by Assumption 3.1). Note that for all indices i such that W(i) ≤ δ, it holds that
yi are independent variables (that equal f∗(x) with probability 1− p). Furthermore, given k ∈ N, we
assume m is sufficiently large so that the k nearest neighbors of x all lie in B(x, δ) with probability
at least 1− exp(−k). Under this likely event, we decompose

m∑
i=1

yi
Wi

=
∑

i:W(i)≤δ

yi
Wi

+
∑

i:W(i)>δ

yi
Wi

d
=

k∑
i=1

y(i)

F−1(U(i))︸ ︷︷ ︸
(I)

+

|Sx∩B(x,δ)|∑
i=k+1

y(i)

F−1(U(i))︸ ︷︷ ︸
(II)

+
∑

i:W(i)>δ

yi
Wi︸ ︷︷ ︸

(III)

.

We will show that whenever y(1) = · · · = y(k), then with high probability (I) is the dominant term
in the sum above. We start by noting that if y(1) = · · · = y(k), then (I) = y(1)

∑k
i=1

1
F−1(U(i))

, thus

|(I)| =
k∑
i=1

1

F−1(U(i))
≥ 1

F−1(U(1))
≥ µ(x)

2Uα
(1)

d
=

µ(x)

2

(
m+1∑
i=1

Ei

)α
· 1

Eα
1

. (6)

Similarly,

|(II)| ≤ 2µ(x)

|Sx∩B(x,δ)|∑
i=k+1

1

Uα
(i)

≤ 2µ(x)

m∑
i=k+1

1

Uα
(i)

d
= 2µ(x)

(
m+1∑
i=1

Ei

)α
·

m∑
i=k+1

1

(
∑i
j=1 Ej)

α

So the probability of |(II)| < 1
2 |(I)| is at least the probability of the event in which

8
∑m
i=k+1

1
(
∑i

j=1 Ej)α
< 1

Eα
1

. To see this event is indeed likely, we apply Lemma D.1 to get

that with probability at least 1 − c1 exp(−c2k), for all i ≥ k + 1 : 1
(
∑i

j=1 Ej)α
≤ 1

(i/2)α , and

therefore under this event we get

8

m∑
i=k+1

1

(
∑i
j=1 Ej)

α
≤ 8 · 2α

∞∑
i=k+1

1

iα
≤ 8 · 2α

∫ ∞

k

t−αdt =
8 · 2α

(α− 1)kα−1
.

The latter is smaller than 1/Eα
1 as long as E1 ≤ (α−1)1/αk1−1/α

2·81/α , which by definition, oc-

curs with probability 1 − exp
[
− (α−1)1/α

2·81/α k1−1/α
]
. To complete the proof, we note that

|(III)| ≤ m
δ is asymptotically negligible for sufficiently large m, since using Eq. (6) we see

that |I| ≥ µ(x)
2Eα

1

(∑m+1
i=1 Ei

)α
≥ µ(x)

2Eα
1
(m/2)α = ω(m) with probability at least 1− c1 exp(−c2m)

by Lemma D.1.

Lemma B.3. Given x ∈ Rd, let Akx be the event in which all of x’s k nearest neighbors (x(i))
k
i=1

satisfy f∗(xi) = f∗(x). Then for any fixed k, it holds for almost every x ∈ supp(µ) that
limm→∞ Pr[Akx] = 1.
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Proof. Let x ∈ supp(µ) be such that µ is continuous at x (which holds for a full measure set
by assumption). Since µ(x) > 0, then there exists ρ > 0 so that µ|B(x,ρ) > 0, and assume ρ is
sufficiently small so that f∗|B(x,ρ) = f∗(x). Note that B(x, ρ) has some positive probability mass
which we denote by ϕ :=

∫
B(x,ρ)

µ. Under this notation, we see that

Pr[¬Akx] ≤ Pr [|{x1, . . . ,xm} ∩B(x, ρ)| < k] = Pr[Binomial(m,ϕ) < k]
m→∞−→ 0 .

Proof of Theorem 4.1 We start by proving the upper bound. Let k := log
α

α−1 (1/p), and for any
x ∈ Rd, consider the event Akx in which x’s k nearest neighbors (x(i))

k
i=1 satisfy f∗(xi) = f∗(x)

(as described in Lemma B.3). Using the law of total expectation, we have that

ES
[
Pr
x
(h(x) ̸= f∗(x))

]
= ESEx[1 {h(x) ̸= f∗(x)}]

= ExES [1 {h(x) ̸= f∗(x)}]

= Ex

[
ES
[
1 {h(x) ̸= f∗(x)} | Akx

]
· Pr
S
[Akx]

]
+ Ex

[
ES
[
1 {h(x) ̸= f∗(x)} | ¬Akx

]
Pr
S
[¬Akx]

]
(7)

≤ ExES
[
1 {h(x) ̸= f∗(x)} | Akx

]
+ Ex Pr

S
[¬Akx] .

Note that by Lemma B.3 limm→∞ PrS [¬Akx] = 0, and therefore it remains to bound the first
summand above.

To that end, we continue by temporarily fixing x. Denote by Bk
x the event in which x’s k nearest

neighbors are all labeled correctly (namely, their labels were not flipped), and note that PrS [Bk
x] =

(1− p)k ≥ 1− kp, hence PrS [¬Bk
x] < kp. By Lemma B.2 we also know that for sufficiently large

m :
Pr
S
[h(x) ̸= f∗(x) | Akx, Bk

x] ≤ c1 exp(−c2k) + exp(−cαk
1− 1

α ) .

Therefore,

ES [1 {h(x) ̸= f∗(x)} | Akx] = Pr
S
[h(x) ̸= f∗(x) | Akx]

= Pr
S
[h(x) ̸= f∗(x) | Akx, Bk

x] · Pr
S
[Bk

x]

+ Pr
S
[h(x) ̸= f∗(x) | Akx,¬Bk

x] · Pr
S
[¬Bk

x]

≤
(
c1 exp(−c2k) + exp(−cαk

1− 1
α )
)
· 1 + 1 · kp

≤ Cα log
α

α−1 (1/p) log(p) ,

where the last inequality follows by our assignment of k. Since this is true for any x, it is also true in
expectation over x, thus completing the proof of the upper bound.

We proceed to prove the lower bound. We consider Akx to be the same event as before, yet now we

set k := kα =
(

8·2α
α−1

) 1
α−1

. By lower bounding Eq. (7) (instead of upper bounding it as before), we
obtain

ES
[
Pr
x
(h(x) ̸= f∗(x))

]
≥ Ex[ES [1 {h(x) ̸= f∗(x)} | Akx]︸ ︷︷ ︸

(⋆)

· Pr
S
[Akx]]− Ex Pr

S
[¬Akx] .

As limm→∞ PrS [A
k
x] = 1 and limm→∞ PrS [¬Akx] = 0 by Lemma B.3, it once again remains to

bound (⋆).

To that end, we temporarily fix x, denote by Dk
x the event in which the labels of x’s k nearest

neighbors were are all flipped. Note that since the label flips are independent of the location of the
datapoints, it holds that PrS [Dk

x | Akx] = PrS [D
k
x] = pk. By Lemma B.2 we also know that for

sufficiently large m :

Pr
S
[h(x) ̸= f∗(x) | Akx, Dk

x] ≥ 1− c1 exp(−c2k)− exp(−cαk
1− 1

α ) .
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Therefore,

ES [1 {h(x) ̸= f∗(x)} | Akx] = Pr
S
[h(x) ̸= f∗(x) | Akx]

≥ Pr
S
[h(x) ̸= f∗(x) ∧ Dk

x | Akx]

= Pr
S
[h(x) ̸= f∗(x) | Akx, Dk

x] · Pr[Dk
x | Akx]

≥
(
1− c1 exp(−c2k)− exp(−cαk

1− 1
α )
)
pk

≥ cαp
k ,

is due to our assignment of k (and the explicit form of cα in Lemma B.2).

C Proof of Theorem 5.1

Setting for the proof. Throughout the proof, we will use the notation introduced in Appendix A.
We start by specifying the target function and distribution for which we will prove that catastrophic
overfitting occurs. We will consider a slightly more general version than mentioned in the main text.
Fix R, r, c > 0 that satisfy R > 3r. We define a distribution on B(0, R) whose density is given by

µ(x) :=


c

Vol(B(0,r)) ∥x∥ < r
1−c

Vol(B(0,R)\B(0,3r)) 3r ≤ ∥x∥ ≤ R

0 else
=


c

Vdrd
∥x∥ < r

1−c
Vd·(Rd−(3r)d)

3r ≤ ∥x∥ ≤ R

0 else
,

where Vd is the volume of the d-dimensional unit ball. We also define the target function

f∗(x) :=

{
−1 ∥x∥ ≤ r

1 else
.

The main lemma from we derive the proof of Theorem 5.1 is the following:

Lemma C.1. Under setting C suppose that c satisfies

c ≤ 1− β/d

2400
(
1 + R

r

)β .
Then there exists some m0 ∈ N, such that for any x ∈ B(0, r), m > m0 and p ∈ (0, 0.49), it holds

with probability at least 1− Õm

(
1
m + 1

m
1−β/d
β/d

)
over the randomness of the training set S that

ĥβ (x) = 1.

We temporarily defer the proof of Lemma C.1, and start by showing that it easily implies the theorem:

Proof. of Theorem 5.1 Fix R > 3r, let c = 1−β/d
2400(1+R

r )β
and consider the distribution and target

function given by Setting C. Using the law of total expectation, we have that

ES
[
Pr
x
(h(x) ̸= f∗(x))

]
= ESEz[1 {h(z) ̸= f∗(z)}]

= EzES [1 {h(z) ̸= f∗(z)}]
≥ Ez [ES [1 {h(z) ̸= f∗(z)}] | z ∈ B(0, r)] · Pr (z ∈ B(0, r))

= Ez

[
Pr
S
(1 {h(z) ̸= f∗(z)} | z ∈ B(0, r))

]
· Pr (z ∈ B(0, r))

≥(∗) c

(
1− Õm

(
1

m
+

1

m
1−β/d
β/d

))
where (∗) follows from Lemma C.1. This completes the proof by sending m → ∞.
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C.1 Proof of Lemma C.1

Fix some x with ∥x∥ < r, we will show that for sufficiently large m, with high probability x will be
misclassified as +1. To that end, we decompose

m∑
i=1

yi

∥x− xi∥β
=

∑
i:∥xi∥≤r

yi

∥x− xi∥β
+

∑
i:∥xi∥≥3r

yi

∥x− xi∥β

=
∑

i:∥xi∥≤r

yi

∥x− xi∥β
+

∑
i:∥xi∥≥3r

1− 2p

∥x− xi∥β
+

∑
i:∥xi∥≥3r

yi − 1 + 2p

∥x− xi∥β

≥ −
∑

i:∥xi∥≤r

1

∥x− xi∥β︸ ︷︷ ︸
=:T1

+
∑

i:∥xi∥≥3r

1− 2p

∥x− xi∥β︸ ︷︷ ︸
=:T2

−

∣∣∣∣∣∣
∑

i:∥xi∥≥3r

yi − 1 + 2p

∥x− xi∥β

∣∣∣∣∣∣︸ ︷︷ ︸
=:T3

, (8)

where T1 crudely bounds the contribution of points in the inner circle, T2 is the expected contribution
of outer points labeled 1, and T3 is a perturbation term. Let km := |{i ∈ [m] | ∥xi∥ ≤ r}| denote the
number of training points inside the inner ball. By Lemma C.3, whenever c ≤ 1

2 (we will ensure this
happens) it holds with probability at least 1− 2 exp

(
−m

8

)
that

cm

2
≤ km ≤ 3cm

2
≤ 3m

4
. (9)

Throughout the rest of the proof, we assume this event indeed occurs.

Bounding T1: Using that ∥x∥ < r and that the pdf µ is such that for all xi /∈ B(0, r), ∥x− xi∥ >
3r − r > 2r, we have that the km nearest neighbors x(1), . . . ,x(km) are precisely the points with
∥xi∥ ≤ r.

For any w ≤ (2r)β and any z ∈ B
(
x, w

1
β

)
it holds that ∥z∥ ≤ 3r, and µ(x) ≤ c

Vdrd
. Thus, for

such a w,

F (w) :=Pr
z

(
∥z− x∥β ≤ w

)
= Pr

z

(
∥z− x∥ ≤ w

1
αd

)
=

∫
B
(
x,w

1
αd

) µ(x)dz
≤
∫
B
(
x,w

1
αd

) c

Vdrd
dz =

c

rd
w

1
α .

Correspondingly, by substituting u = c
rd
w

1
α , we obtain for any u ≤ 2dc that u ≥ F

(
uαrαd

cα

)
and

thus F−1(u) ≥ uαrαd

cα . Note that for any i ∈ [km],
∥∥x− x(i)

∥∥β < (2r)αd so W(i) satisfies the
condition that W(i) ≤ (2r)αd. As such, using Lemma A.2 we obtain

∀i ∈ [km], W(i)
d
= F−1(U(i)) ≥

Uα
(i)r

αd

cα
. (10)

Now for T1, we have from Eq. (10):

−T1
d
=−

km∑
i=1

1

F−1(U(i))β
≥ − cα

rαd

km∑
i=1

1

Uα
(i)

≥(1) −
2 · 3α

(1− α)

cα

rαd
·mαk1−αm

≥(2) −
2 · 3α

(1− α)

cα

rαd
·mα

(
3cm

2

)1−α

= −m · 2α · 3
(1− α)rαd

· c,

where (1) holds by Lemma C.4 with probability at least 1 − Õkm

(
1
km

+ 1

k
1−α
α

m

)
=

Om

(
1
m + 1

m
1−α
α

)
and (2) follows from Eq. (9).
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Bounding T2: Using the fact that for any i ∈ [m], ∥x− xi∥ ≤ ∥x∥+ ∥xi∥ ≤ R+ r, and the bound
on km from Eq. (9), we have for any p < 0.49 that

T2 ≥ (1− 2p)(m− km)

(R+ r)αd
≥ (1− 2p)

(R+ r)αd
·
(
m− 3

4
m

)
> m · 1

200(R+ r)αd
.

Bounding T3: From Lemma C.2 and Eq. (9), it holds with probability at least 1− 2 exp
(
−
√

m
4

)
that

T3 ≤ (m− km)
3
4

(2r)αd
≤ m

3
4 · 1

(2r)αd
.

Putting it Together: For any ϵ > 0 there is some m0 ∈ N, such that for any m > m0, −T3 ≥ −mϵ.
So overall, we obtain that with probability at least 1− Õm

(
1
m + 1

m
1−α
α

)
,

1

m

m∑
i=1

yi

∥x− xi∥αd
≥ 1

m
(−T1 + T2 − T3) >− 2α · 3

(1− α)rαd
· c+ 1

200(R+ r)αd
− ϵ

≥− 6

(1− α)rαd
· c+ 1

400(R+ r)αd
,

where the last line follows by using that α < 1, and by fixing some sufficiently small ϵ. Finally, fixing
some c ≤ (1−α)rαd

2400(R+r)αd = 1−α
2400(1+R

r )
αd suffices to ensure that this is positive, implying ĥβ(x) = 1.

Lemma C.2. Under Setting C, let x ∈ B(0, r) and km := |{i ∈ [m] | ∥xi∥ ≤ r}|. It holds with
probability at least 1− 2 exp

(
−
√
m− km

)
that∣∣∣∣∣∣

∑
i:∥xi∥≥3r

yi − 1 + 2p

∥x− xi∥β

∣∣∣∣∣∣ ≤ (m− km)
3
4

(2r)αd
.

Proof. Let ξi be the random variable representing a label flip, meaning that ξi is 1 with probability
p and −1 with probability 1− p, and yi = f∗(xi)ξi by assumption. For any xi with ∥xi∥ ≥ 3r, it
holds that f∗(xi) = 1, and that ∥x− xi∥ ≥ ∥xi∥ − ∥x∥ ≥ 2r, and thus yi

∥x−xi∥αd are bounded as∣∣∣∣∣ yi

∥x− xi∥αd

∣∣∣∣∣ ≤ 1

(2r)αd
.

We thus apply Hoeffding’s Inequality (cf. 49, Theorem 2.2.6) yielding that for any t ≥ 0

Pr

∣∣∣∣∣∣
∑

i:∥xi∥≥3r

yi

∥x− xi∥αd
−

∑
i:∥xi∥≥3r

1− 2p

∥x− xi∥αd

∣∣∣∣∣∣ ≥ t

 ≤ 2 exp

(
− t2(2r)2αd

2(m− km)

)
.

In particular, we have that with probability at least 1− 2 exp
(
− 1

2

√
m− km

)
that∣∣∣∣∣∣

∑
i:∥xi∥≥3r

yi

∥x− xi∥αd
− (1− 2p)

∑
i:∥xi∥≥3r

1

∥x− xi∥αd

∣∣∣∣∣∣ ≤ (m− km)
3
4

(2r)αd
.

Lemma C.3. Under setting C, let km := |{i : ∥xi∥ ≤ r}|, then it holds with probability at least
1− 2 exp(− c2m

2 ) that

cm

2
≤ km ≤ 3cm

2
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Proof. We can rewrite km =
∑m
i=1 Bi where Bi = 1 if ∥xi∥ ≤ r and 0 otherwise. Notice that

each Bi is a Bernoulli random variable with parameter c, i.e Bi is 1 with probability c and 0 with
probability 1− c. So by Hoeffding’s inequality (cf. 49, Theorem 2.2.6), we have for any t ≥ 0 that

Pr

(∣∣∣∣∣
m∑
i=1

Bi − cm

∣∣∣∣∣ ≥ t

)
≤ exp

(
−2t2

m

)
.

Taking t = cm
2 concludes the proof.

Lemma C.4. It holds for any k ≤ m ∈ N, 0 < α < 1 that with probability at least
1− Õk

(
1
k + 1

k
1−α
α

)
,

k∑
i=1

1

Uα
(i)

≤ 2 · 3α

1− α
.

Proof. Fix some n0 ≤ k which will be specified later. Using Lemma A.3, we can write
k∑
i=1

1

Uα
(i)

d
=

(
m∑
i=1

Ei

)α k∑
i=1

1(∑i
j=1 Ej

)α


=

(
m∑
i=1

Ei

)α
︸ ︷︷ ︸

:=T1


n0∑
i=1

1(∑i
j=1 Ej

)α
︸ ︷︷ ︸

:=T2

+

k∑
i=n0

1(∑i
j=1 Ej

)α
︸ ︷︷ ︸

:=T3

 . (11)

By Lemma D.1, for some absolute constant C > 0 it holds with probability 1−2(1+ 1
C ) exp(−Cn0)

that for all n ≥ n0,

1

2
≤

n∑
i=1

Ei ≤
3n

2
. (12)

Conditioned on this even occurring, we use this to bound both T1 and T3. For T1, Eq. (12) directly
implies that T1 ≤

(
3
2m
)α

. For T3, using both Eq. (12) as well as the integral test for convergence we
obtain

T3 ≤ 2α
k∑

i=n0

1

iα
≤ 2α

∫ k

n0−1

1

iα
≤ 2α

k1−α − (n0 − 1)1−α

1− α
.

It remains to bound T2. By definition of an exponential random variable, for any t ≥ 0 it holds for

any Ei with probability at least exp(−t) (which is ≥ 1− t) that Ei ≥ t. So taking t =
(
n0

k1−α

) 1
α , it

holds with probability at least 1−
(
n0

k1−α

) 1
α that E1 ≥

(
n0

k1−α

) 1
α . As a result,

T2 ≤ n0 ·
1

Eα
1

≤ n0 ·
1(
n0

k1−α

) = k1−α. (13)

To ensure that the probability that both Eq. (12) and Eq. (13) hold is sufficiently high, we take
n0 = max

(
1
C log(k), 2

)
. As such, we obtain that with probability at least 1− Õ

(
1
k + 1

k
1−α
α

)
that

Eq. (11) can be bounded as
k∑
i=1

1

Uα
(i)

d
=T1 (T2 + T3) ≤

(
3

2
m

)α(
2α

k1−α − (n0 − 1)1−α

1− α
+ k1−α

)
≤
(
3

2
m

)α
· k1−α

(
2α

1− α
+ 1

)
≤
(
3

2
m

)α
· k1−α · 2 · 2α

1− α

≤ 2 · 3α

1− α
·mαk1−α.
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D Auxiliary lemma

Lemma D.1. Suppose (Ei)i∈N
iid∼ exp(1) are standard exponential random variables. Then there

exists some absolute constant C > 0 such that:

1. For any n ∈ N it holds that

Pr

(
n

2
≤

n∑
i=1

Ei ≤
3n

2

)
≥ 1− 2 exp(−Cn) .

2. For any n0 ∈ N it holds that

Pr

( ∞⋂
n=n0

[
n

2
≤

n∑
i=1

Ei ≤
3n

2

])
≥ 1− 2

(
1 +

1

C

)
exp(−Cn0) .

Proof. Denote by ∥ · ∥ψ1
the sub-exponential norm of a random vector (for a reminder of the definition,

see for example Vershynin 49, Definition 2.7.5). Each Ei satisfies for any t > 0, Pr (Ei ≥ t) ≤
exp(−t) implying that ∥Ei∥ψ1

= 1. By Vershynin [50, Remark 5.18], this implies ∥Ei − 1∥ψ1
≤ 2.

So Bernstein’s inequality for sub exponential random variables [49, Corollary 2.8.3] states that there
exists some absolute constant C ′ > 0 such that for any t ≥ 0

Pr

(∣∣∣∣∣
(
1

n

n∑
i=1

Ei

)
− 1

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
−C ′ min

(
t2

4
,
t

2

)
n

)
.

Taking t = 1
2 and taking C := C′

16 yields

Pr

(∣∣∣∣∣
n∑
i=1

Ei − n

∣∣∣∣∣ ≥ n

2

)
≤ 2 exp (−Cn) .

This proves the first statement. For the second statement, we union bound and apply the integral test
for convergence, to get that

Pr

( ∞⋃
n=n0

[∣∣∣∣∣
n∑
i=1

Ei − n

∣∣∣∣∣ ≥ n

2

])
≤

∞∑
n=n0

Pr

(∣∣∣∣∣
n∑
i=1

Ei − n

∣∣∣∣∣ ≥ n

2

)

≤ 2

∞∑
n=n0

exp (−Cn)

≤ 2 exp(−Cn0) + 2

∫ ∞

n0

exp(−Cn0)

≤ 2 exp(−Cn0) +
2

C
exp(−Cn0) .

E Additional experiment

In this appendix, we provide an extension of the spherical data experiment discussed in the main
paper, demonstrating the effect of noisy sampling on our results.

We repeated the experiment with data sampled from the sphere the sphere S2 ⊂ R3, given by Eq. (5).
This time, after sampling from the sphere, we added Gaussian noise distributed as N (0, σ2I3) to
each data point independently, and examined the effect of the noise variance σ2 on the exponent β
achieving minimal test error (corresponding to the intrinsic dimension in our theory).

The results are presented in Figure 6, with m = 2000, p = 0.04 and various values of σ2.
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Figure 6: The classification error of ĥβ for varying values of β and sampling noise σ2. Best viewed
in color.

As the noise increases, we see that this “best” β gradually increases from 2 to 3, as the data indeed
becomes fully dimensional for significant noise in the data-points. For example, with variance 0.04 in
each coordinate (equivalently, standard deviation 0.2), the optimal β is roughly 2.5, which is notably
still smaller than 3.
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