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Abstract

We present a volume rendering-based neural surface reconstruction method that
takes as few as three disparate RGB images as input. Our key idea is to regularize
the reconstruction, which is severely ill-posed and leaving significant gaps between
the sparse views, by learning a set of neural templates to act as surface priors. Our
method, coined DiViNet, operates in two stages. It first learns the templates, in the
form of 3D Gaussian functions, across different scenes, without 3D supervision. In
the reconstruction stage, our predicted templates serve as anchors to help “stitch”
the surfaces over sparse regions. We demonstrate that our approach is not only
able to complete the surface geometry but also reconstructs surface details to a
reasonable extent from a few disparate input views. On the DTU and BlendedMVS
datasets, our approach achieves the best reconstruction quality among existing
methods in the presence of such sparse views and performs on par, if not better,
with competing methods when dense views are employed as inputs.

1 Introduction

3D reconstruction from multi-view images is a fundamental task in computer vision. Recently, with
the rapid advances in neural fields [51, 31] and differentiable rendering [18], many methods have
been developed for neural 3D reconstruction [34, 55, 23, 28, 48, 22, 54, 36, 62, 50]. Among them,
volume rendering-based methods have achieved impressive results. Exemplified by neural radiance
fields (NeRF) [31], these approaches typically employ compact MLPs to encode scene geometry and
appearance, with network training subjected to volume rendering losses in RGB space.

The main drawback of most of these methods is the requirement of dense views with considerable
image overlap, which may be impractical in real-world settings. When the input views are sparse,
these methods often fail to reconstruct accurate geometries due to radiance ambiguity [61, 49]. Despite
employing smoothness priors during SDF/occupancy prediction as an inductive bias [34, 55, 48, 54],
the limited overlap between regions in the input images causes little-to-no correlation to the actual
3D surface, resulting in holes and distortions, among other artifacts, in the reconstruction.

Several recent attempts have been made on neural reconstruction from sparse views. SparseNeuS [25]
learns generalizable priors across scenes by constructing geometry encoding volumes at two res-
olutions in a coarse-to-fine and cascading manner. While the method can handle as few as 2 or 3
input images, the corresponding views must be sufficiently close to ensure significant image overlap
and quality reconstruction. MonoSDF [58] relaxes on the image overlap requirement and relies on
geometric monocular priors such as depth and normal cues to boost sparse-view reconstruction. How-
ever, such cues are not always easy to obtain, e.g., MonoSDF relied on a pre-trained depth estimation
model requiring 3D ground-truth (GT) data. Moreover, depth prediction networks often rely on cost
volumes [52, 14] which are memory expensive and thus restricted to predicting low-resolution depth
maps. Because of this, the results obtained typically lack fine geometric details [58].
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Figure 1: Surface reconstruction results on the DTU dataset [16] for three disparate view inputs
(shown on the left). We compare our technique against NeuS[48], which does not use any regulariza-
tion, and against MonoSDF [58], which uses additional depth and normal supervision to regularize
the surface reconstruction process. The results clearly show that our method not only reconstructs
the complete surface but also preserves sharp geometric details without using any other ground truth
information beyond the RGB inputs. See Section 4.1 for a detailed explanation.

In this paper, we target neural surface reconstruction from sparse and disparate views. That is, not
only are the input RGB images few in number, they also do no share significant overlap; see Figure 1.
Our key idea is to regularize the reconstruction, which is severely ill-posed and leaves significant
gaps to be filled in between the few disparate views, by learning a set of neural templates that act
as surface priors. Specifically, in the first stage, we learn the neural templates, in the form of 3D
Gaussian functions, across different scenes. Our network is a feedforward CNN encoder-decoder,
trained with RGB reconstruction and auxiliary losses against the input image collection. In the second
stage, surface reconstruction via volume rendering, our predicted templates serve as anchors to help
“stitch” the surfaces over sparse regions without negatively impacting the ability of the signed distance
function (SDF) prediction network from recovering accurate geometries.

Our two-stage learning framework (see Figure 2) is coined DiViNet for neural 3D reconstruction
from Disparate Views via NEural Templates regularization. We conduct extensive experiments on
two real-world object-scenes datasets, viz., DTU [16] and BlendedMVS [53], to show the efficiency
of our method over existing approaches on the surface reconstruction task, for both sparse and dense
view input settings. Through ablation studies, we validate the design choices of our network in the
context of different optimization constraints employed during training.

2 Related Work

View-based 3D Reconstruction. Reconstructing 3D surfaces from image inputs is a non-trivial task
mainly due to the difficulty of establishing reliable correspondences between different regions in the
input images and estimating their correlation to the 3D space. This is especially pronounced when
the number of views is limited and disparate. Multi-view stereo (MVS) techniques, both classical
[1, 3, 6, 9, 44, 12, 4, 41, 45], and learning-based [27, 47, 59, 39, 15, 52, 57], while using an explicit
3D representation, address the problem of multi-view 3D reconstruction either by estimating depth
via feature matching across different input views or by voxelizing 3D space for shape reconstruction.

A recent exploration of neural implicit functions for 3D shape/scene representation [29, 37, 30, 24, 46,
40, 17] has led to an explosion of 3D reconstruction from multi-view images, where two prominent
directions exist – one based on surface rendering techniques [34, 55, 23], which require accurate 2D
masks at the input, and the other based on volume rendering techniques [28, 48, 22, 54, 36, 62, 50],
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Figure 2: A two-stage learning framework developed to reconstruct 3D surfaces from sparse, disparate
view input images. In Stage 1 (see Section 3.1), we train a network across different scenes to predict
structured templates (Gaussians, in our case) that encode surface priors. In Stage 2 (see Section
3.2), we train a surface reconstruction model to reconstruct the surface SDF values by leveraging
the predicted templates from Stage 1. The purpose served by the predicted templates is in aiding the
reconstruction process by acting as regularizers, allowing to obtain complete geometry (see Figure 1
and 7), and even details to a reasonable extent (see Figure 5), from disparate view inputs.

which require no such object masks. The latter techniques combine the representational power of
neural implicit with the recently proposed NeRF models [31], achieving better surface reconstructions
over the former techniques. A major drawback of these works is that they all require dense multi-
view images as input. Two recent techniques, Sparse NeuS [25] and Mono-SDF [58] learn 3D
reconstruction from just three input images. In the case of [25], the three input images have a
significant amount of overlap, and can not be employed when the views are disparate. [58], on the
other hand, leverages additional cues such as ground truth depths and normals, allowing reconstruction
from disparate views. Our work differs from these in the sense that we do not make use of any explicit
cues in the form of ground truth depths and normals, while still being able to faithfully reconstruct
3D surfaces from just three disparate RGB images as input.

Regularizing Neural Surface Reconstruction. Our ability to reconstruct 3D surfaces from sparse,
disparate view images is made possible through template-based regularization that provides helpful
surface priors during the volume rendering stage. Regularization has been explored in the context
of novel-view synthesis [33, 7], where patch-based regularization for both the scene geometry and
color is performed [33] or additional cues such as depth supervision are incorporated [7] while
handling sparse inputs in both cases. In the context of surface reconstruction, MonoSDF [58] uses
depth and normal supervision as a part of unsaid regularization to obtain surface geometry from
sparse input images. Other works [5, 60, 8] study the effect of regularization on the volumetric
rendering-based surface reconstruction framework. Their goal is to improve surface reconstruction by
imposing multi-view photometric and COLMAP [43] constraints on the Signed Distance Field (SDF)
prediction during training. Such methods show significant improvements over vanilla approaches
for surface reconstruction. However, under sparse scenarios, because of significant view differences,
photometric and COLMAP constraints are difficult to satisfy, resulting in poor reconstruction quality.
In contrast to these methods, inspired by [11, 10, 35], we propose to learn surface priors in the form
of templates across a data distribution and use these templates to guide the reconstruction process.

3 Method

Our method achieves 3D reconstruction of solid objects from a small set of RGB images {Ii}N−1
i=0

with very less visual overlap, where N can be as less as 3 images and Ii ∈ [0, 1]H×W×3. We assume
that camera extrinsics and intrinsics are known for all the images. As shown in Figure 2 our approach
is realized in two stages: (1) Learning a network for predicting shape templates (see Section 3.1), and
(2) Leveraging the predicted templates, learning a volumetric surface reconstruction network with
depth and SDF constraints (see Section 3.2).
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3.1 Stage 1: Learning Surface Priors with Neural Templates

Template Representation. We represent the shape with a bunch of Nt local implicit functions called
templates, where the influence of ith template is represented as gi(p, φi) and is given by,

gi(p, φi) = si exp

 ∑
d∈{x,y,z}

−(ci,d − pd)
2

2r2i,d

 , (1)

where p ∈ R3 is the 3D location of a point in the volume and φi is the template parameter. Specifically,
each template φi is represented as a scaled, anisotropic 3D Gaussian, φi ∈ R7, which consists of
a scaling factor si, a center point ci ∈ R3, and per-axis radii ri ∈ R3. Using this local implicit
function, we can find the probability of a point near the surface by summing up the influences of all
Nt templates, i.e. G(p,Φ) =

∑Nt

i=1 gi(p, φi), where Φ is the set of all the template parameters.
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Figure 3: Template Learning stage. We train the template
prediction network across scenes to predict Nt structured
templates Φ, alongwith local feature volumes per template.

Network Architecture. Figure 3
shows the template training stage.
Given a fixed set of Nt templates (Φ)
and input images set {Ii}, we aim to
optimize a network Tθ for the task
of template prediction which com-
prises of an encoder (E ) and decoders
(Dgeo,Dvox). The encoder is a feed-
forward Convolutional Neural Net-
work (CNN), which we first use to
extract 2D image features from indi-
vidual input views. We then obtain
per template latent code zφi

∈ R64

using a bi-linear interpolation step as
shown in Figure 4. For this step, de-
pending on the number of templates,
we create a uniform grid of points, which we then use for the interpolation of features obtained from
convolutional layers. Each latent code of the template, zφi is then decoded through two decoders
Dgeo and Dvox. Dgeo is the geometry decoder with simple MLP layers predicting the template
parameters φi. That is, Dgeo : R64 → R7. Dvox, on the other hand, is a feature decoder comprised of
transposed convolutional layers. The objective of Dvox is to map the template feature representation,
zφi

, to a local volumetric feature grid for each individual template.

𝑁
𝑡

𝑁𝑡

H/16

W/16

Figure 4: Interpolation step.√
Nt ×

√
Nt codes obtained

from H/16×W/16 features.

Decoding all the template latent codes zφi
at once through Dvox

results in a dense voxel grid V ∈ R(C∗M)×(M∗
√
Nt)×(M∗

√
Nt),

which we then rearrange to Nt local volumes of size RC×M3

, where
C is the feature dimension of each voxel and M is the resolution of
the feature grid. In our experiments, we set Nt = 576, C = 8 and
M = 16. For more details refer to supplementary.

Network Training. Due to the lack of ground truth 3D information
of objects in the training set, we use RGB reconstruction loss along
with auxiliary losses to optimize the template parameters. Given the
predicted feature volume from the template network, we can query
a continuous field at any 3D query point pi by passing its tri-linearly
interpolated feature fvox(pi), along with the location pi to a small
MLP, consisting of 2 layers and 256 hidden dimensions. The output
of the MLP is the color prediction at that particular query point,
pi in the 3D space. In addition to color, we compute each point’s
blending weights wi in 3D space using our predicted templates. This
blending weight is computed by summing up the local influences of
each template on the query point. We then integrate the predicted colors and weights to obtain the
predicted image Î . For K query points sampled along a ray, this can be written as:
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Î(r) =

K∑
i=1

wici, wi =
G(pi,Φ)∑

i G(pi,Φ) + ϵ
(2)

Here, pi is a query point along a ray, ϵ is a small perturbation to prevent wi from diverging to
infinity when G(pi,Φ) takes small values, whereas G(pi,Φ) =

∑
i∈Nt

gi(pi, ϕi). We then optimize
our template prediction network using RGB reconstruction loss. To make sure that the predicted
templates are plausible and near the surface, we propose auxiliary loss functions. The total loss by
combining all the losses is given as:

Ltotal = Lrgb + λcdLchamfer + λcLcov + λrLradius + λvLvar (3)

Here, Lrgb is the mean square error loss between the predicted pixel Î(r) and ground truth pixels
I(r) which is defined as:

Lrgb =
∑
r∈R

∥Î(r)− I(r)∥22 (4)

Lchamfer is the chamfer distance loss, which minimizes the distance between the template cen-
ters {Ct : c1, c2, · · · , cNt ∈ R3}, with the corresponding sparse reconstructed point cloud
{Sc : s1, s2, · · · , sN ∈ R3} obtained using triangulation, from COLMAP[43]. This loss makes
sure that the predicted templates from the network are near the surface. This is given by:

Lchamfer =
1

|Ct|
∑
ci∈Ct

min
sj∈Sc

(∥ci − sj∥22) +
1

|Sc|
∑

sj∈Sc

min
ci∈Ct

(∥sj − ci∥22) (5)

Lcov is the coverage loss, which is defined over the entire sparse points, Sc. This ensures that the
predicted templates cover the entire object. It is defined as,

Lcov =
1

|Sc|
∑
s∈Sc

(1− σ(

Nt∑
i=1

gi(s, φi))) (6)

where σ(.) is the sigmoid function. In addition to this, we also use radius Lradius and variance loss
Lvar, which penalizes large and skewed template radii. This is given by:

Lradius =
∑

ri∈Rt

∥ri∥22, Lvar =
∑

ri∈Rt

∥ri − r̄t∥2 (7)

Here, Rt is the set of all template radii. ri is the individual template radii, and r̄t is the mean radius
across all the templates, Nt.

3.2 Stage 2: Surface Reconstruction using Volume Rendering

Geometry Representation and Volume Rendering. Following the recent works of surface recon-
struction with volume rendering [48, 54, 36], we represent the volume contained by the object to
be reconstructed using a signed distance field s̃i, which is parameterized using an MLP fθs , with
learnable parameters θs i.e s̃i = fθs(γ(xi)). Here γ(.) is the positional encoding of point in 3D space
[31]. Given the signed distance field, the surface S of the object is represented as its zero-level set i.e.

S = {x ∈ R3|fθs(x) = 0}. (8)

To train the SDF network in volume rendering framework, we follow [48], and use the below function,
to convert the SDF predictions, fθs(pi) to αi at each point, pi in the 3D space.

αi = max

(
Φs(fθs(pi))− Φs(fθs(pi+1))

Φs(fθs(pi))
, 0

)
. (9)

Here, Φs(x) = (1 + e−sx)−1 is the sigmoid function and s is learned during training.

Along with the signed distance field, s̃i, we also predict color, c̃i for each sampled point in 3D space
using a color MLP, fθc . Following [55] the input to the color MLP is a 3D point pi, a viewing
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direction d̂, analytical gradient n̂i of our SDF, and a feature vector zi computed for each point pi
by fθs . Hence, the color MLP is the following function, c̃i = fθc(pi, d̂, n̂i, zi). We optimize these
networks using volume rendering, where the rendered color of each pixel is integrated over M
discretely sampled points {pi = o+ tid̂|i = 1, · · · ,M, ti < ti+1} along a ray traced from camera
center o and in direction d̂. Following [31] the accumulated transmittance Ti for a sample point pi is
defined as Ti =

∏i−1
j=1(1− αj), where αj is the opacity value defined in Eq. 9. Following this, we

can compute the pixel color and depth as follows:

Ĉ(r) =

M∑
i=1

Tiαic̃i, ẑ(r) =

M∑
i=1

Tiαiti (10)

Optimization. The overall loss function we use for optimizing for the surface is:

L = Lcolor + λ1Leikonal + λ2Ldepth + λ3Lsdf (11)

Lcolor, is the L1 loss between the predicted and ground truth colors which is given as:

Lcolor =
∑
r∈R

∥Ĉ(r)− C(r)∥1 (12)

Following [13] we use Eikonal loss to regularize the SDF in 3D space, which is given as:

Leikonal =
∑
x∈X

(∥∇fθs(x)∥2 − 1)2 (13)

In addition to these, we propose the following regularization terms in order to aid the surface
reconstruction process, especially in sparse reconstruction scenarios.

Depth Loss: We sample depth cues zt(r) along each ray using the templates predicted by our
template network. These depth cues are obtained by finding the depth locations where the template
weight function w(x) at a point x, mentioned in 2 attains a maximum value among all the points
sampled along a ray. We then minimize the L1 loss Ldepth between the predicted depth, ẑ(r) and the
computed depth cues zt(r) as:

Ldepth =
∑

r∈Rvalid

∥ẑ(r)− zt(r)∥1 (14)

Here, Rvalid denotes the set of rays that intersect the templates in the 3D space. We find these rays
using ray sphere intersection.

SDF Loss: In addition to depth, we also constraint our SDF to pass through the template centers
which we assume are near the surface. This is done by minimizing the L1 loss between the SDF at
the template centers and the zero-level set. Here, Nt is the number of template parameters.

Lsdf =
1

Nt

∑
x∈Ct

∥fθs(x)∥1 (15)

Implementation Details. Our implementation is based on the PyTorch framework [38]. For both
stages, we use the Adam optimizer [20] to train our networks and set a learning rate of 5e−4. For
stage-1, we set λcd, λc, λr and λv to 1.0, 0.1, 0.1, and 1.0, respectively. And for stage-2, we set
λ1, λ2 and λ3 to 1.0, 0.8 and 0.8, respectively. As the templates are not perfect, we follow [58] and
use an exponentially decaying loss weight for both SDF and depth regularization for the first 25k
iterations of optimization. During training in both stages, we sample a batch of 512 rays in each
iteration. During both stages, we assume that the object is within the unit sphere. Our SDF network
fθs , is an 8 layer MLP with 256 hidden units with a skip connection in the middle. The weights of
the SDF network are initialized by geometric initialization [2]. The color MLP is a 4 layer MLP with
256 hidden units. The 3D position is encoded with 6 frequencies, whereas the viewing direction is
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Figure 5: This figure compares the details on the reconstructed geometry, for sparse-view inputs on
the DTU dataset, against the second-best competing method, MonoSDF (see Table 1). Our approach
produces sharper details, which can be attributed to the surface guidance from the predicted templates.

encoded with 4 frequencies. We train the network for 300k iterations which takes roughly 8 hours on
NVIDIA RTX 3090Ti GPU. After training, we extract the mesh using marching cubes [26] at a 5123
resolution. See the Supplementary material for more details.

4 Results and Evaluation

Datasets. We use two commonly employed real-world object-scenes datasets, viz., DTU [16] and
BlendedMVS dataset [53]. DTU dataset contains multi-view images (49-64) of different objects
captured with a fixed camera and lighting parameters. For training sparse view reconstruction models,
we use the same image IDs as in [33, 58, 56]. In addition to this, in order to show the generalization
ability of our template prediction network we experiment with our method on the MobileBrick dataset
[21], which consists of high-quality 3D models along with precise ground-truth annotations.

For the template learning stage, our training split consists of objects that do not overlap with the 15
test scans of the DTU dataset. We provide the list of scans used for training in the supplementary. We
evaluate our method on standard 15 scans used for evaluation by [34, 55, 54, 48, 36]. The resolution
of each image in the dataset is 1200 × 1600. Unlike MonoSDF [58] which resizes the images to
384 × 384 resolution for training, we input the actual image resolution to our pipeline. The other
dataset, BlendedMVS, consists of 113 scenes captured from multiple views, where each image is of
resolution 576× 768. Unlike DTU, BlendedMVS dataset has not been employed before in the sparse
view setting, and as such, specific view IDs to train and test are not available. We therefore manually
select 3 views that have little overlap.

Baselines. For sparse views, we compare against the classical MVS method, COLMAP [42], and
recent volume rendering-based methods such as NeuS [48], VolSDF [54] and MonoSDF [58]. We
exclude SparseNeuS [25] evaluation in disparate settings because of its inability to reconstruct 3D
geometry when the input images have significantly less overlap. For dense views, we additionally
compare against the recent grid-based method, Voxurf [50]. A mesh from COLMAP point cloud
output is obtained using Screened Poisson Surface Reconstruction [19].

Evaluation Metrics. Following standard evaluation protocol, we use Chamfer Distance (CD) between
the ground truth point cloud and predicted meshes to quantify the reconstruction quality. On the
DTU dataset, following prior works [54, 48, 58], we report CD scores. On the BlendedMVS dataset,
we simply show qualitative results as is commonly done in the literature. In addition to this, for
evaluation on the MobileBrick dataset, we use F1 score computed using the ground-truth mesh.

4.1 Results on DTU

Figure 1 and Table 1 show qualitative and quantitative results, respectively, in the presence of sparse
view inputs (three, to be specific) on the DTU dataset. We observe from Table 1 that our method
outperforms all other competing methods, including MonoSDF [58], on nine of the fifteen scenes in
the test set, and achieves the lowest mean CD score (the next best adds an additional 0.09 CD score).
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Figure 6: Dense view reconstruction results on the DTU dataset.

Table 1: Quantitative comparisons for sparse and disparate view 3D reconstruction on DTU dataset
(Section 4.1). For Scan ID 110, × indicates that COLMAP could not reconstruct any points.

Chamfer Distance (CD) (↓)

Scan ID → 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 Mean

COLMAP[41] 4.45 4.67 2.51 1.9 2.81 2.92 2.12 2.05 2.93 2.05 2.01 × 1.1 2.72 1.64 2.56
VolSDF [54] 5.24 5.09 3.99 1.42 5.1 4.33 5.36 3.15 5.78 2.07 2.79 5.73 1.2 5.64 6.2 4.2
NeuS [48] 4.39 4.59 5.11 5.37 5.21 5.60 5.26 4.72 5.91 3.97 4.02 3.1 4.84 3.91 5.71 4.78

MonoSDF [58] 3.47 3.61 2.1 1.05 2.37 1.38 1.41 1.85 1.74 1.1 1.46 2.28 1.25 1.44 1.45 1.86

Ours 3.37 4.11 1.46 0.75 2.74 1.52 1.13 1.63 2.08 0.98 0.87 2.7 0.47 1.24 1.57 1.77

On the other six scans, our method is the second-best performing method behind MonoSDF. This is
because our predicted templates are not always perfect for all objects, meaning, regions on the surface
with no predicted templates potentially suffer from incomplete reconstructions. Other methods such
as VolSDF [54] and NeuS [48] fail to even beat the classical MVS method, COLMAP [43], indicating
that these methods either require dense view inputs[54] or require a significant amount of overlap on
the input views [25] to faithfully reconstruct the surface. This emphasizes the effectiveness of our
method on the disparate views case. Further, Figure 5 compares surface details on the reconstructed
geometry against, MonoSDF [58], where it can be observed that our method produces sharper details,
attributed mainly to the geometry guidance from learned template priors.

Table 2: Generalization of TPN on MobileBrick dataset.

F1 Score (↑)

Object → Bridge Camera Colosseum Castle

Ours (pre-trained TPN) 0.565 0.61 0.219 0.175
Ours (TPN re-training) 0.658 0.67 0.22 0.187

On dense view inputs (49-
64), Figure 6 and Table 3
present qualitative and quan-
titative results, respectively,
over the aforementioned tech-
niques. We additionally com-
pare against a recent method,
Voxurf [50]. In this setting, all
neural surface reconstruction
methods outperform COLMAP, indicating that the presence of dense view inputs is necessary to tap
into the learning ability of neural rendering techniques for improved geometry reconstruction. We
observe that our method outperforms the rest on five scans, which is higher than any other method
(Voxurf-three scans, NeuS-four, MonoSDF-two, and VolSDF-one). Overall, our method achieves the
second-best mean CD score, closely trailing behind Voxurf (a difference of 0.03 CD score). This is
expected as feature-grid-based approaches tend to reconstruct sharper details compared to MLP [58].
But otherwise, we beat all other existing works owing to our neural template regularization scheme.
More qualitative results on dense view inputs are provided in the Supplementary material.

4.2 Results on BlendedMVS

We also run our pipeline on a more challenging, also real-world, BlendedMVS dataset [53]. We use
the sparse input setting and show comparisons against the same set of prior works, i.e., NeuS[48]
and MonoSDF [58]. Figure 7 shows qualitative results on 4 object-scenes with complex geometries.
Clearly, our method obtains the best surface reconstruction. NeuS is not able to reconstruct the
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Table 3: Quantitative comparisons for dense-view 3D reconstruction on DTU dataset (Section 4.1).
Chamfer Distance (CD) (↓)

Scan ID → 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 Mean

COLMAP[41] 0.81 2.05 0.73 1.22 1.79 1.58 1.02 3.05 1.4 2.05 1.0 1.32 0.49 0.78 1.17 1.36
NeuS[48] 1.0 1.37 0.93 0.43 1.1 0.65 0.57 1.48 1.09 0.83 0.52 1.2 0.35 0.49 0.54 0.84

VolSDF [54] 1.14 1.26 0.81 0.49 1.25 0.7 0.72 1.29 1.18 0.7 0.66 1.08 0.42 0.61 0.55 0.86
MonoSDF [58] 0.83 1.61 0.65 0.47 0.92 0.87 0.87 1.3 1.25 0.68 0.65 0.96 0.41 0.62 0.58 0.84

Voxurf [50] 0.91 0.73 0.45 0.34 0.99 0.66 0.83 1.36 1.31 0.78 0.53 1.12 0.37 0.53 0.51 0.76
Ours 0.78 1.29 0.68 0.42 0.96 0.70 0.68 1.43 1.30 0.827 0.62 0.94 0.34 0.49 0.49 0.79

Figure 7: Qualitative reconstruction results for three disparate view inputs on the challenging
BlendedMVS dataset [53]. See Section 4.2 and the Supplementary for a more details explanation.

geometry faithfully for any of the objects due to disparate view inputs. MonoSDF, on the other
hand, despite using ground truth depth and normal cues, fails to reconstruct accurate geometry,
especially for Clock and Sculpture objects. In contrast to this, our method can accurately reconstruct
the geometric details owing to template guidance coming from Stage 1.

4.3 Generalization on MobileBrick Dataset

We test the generalization ability of our template prediction network (TPN) on a new dataset,
MobileBrick [21], by comparing the reconstruction results when the neural templates were learned
by a pre-trained TPN (on DTU) vs. when they were trained on MobileBrick. Note that overall, the
models from these two datasets are quite different in terms of geometry and structure. The results
in Table 2 and qualitative results in Figure 8a (a) show that the reconstruction qualities under the
two scenarios are comparable, attesting to the generalizability of our TPN. As mentioned before, the
metric used in this evaluation is F1 score as reported by MobileBrick dataset.

4.4 Ablation Studies
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Figure 8: (a) Generalization of TPN on MobileBrick Dataset. (b) Effect on chamfer distance with #
of Views (left) and Gaussians (right).

Figure 9: Effect of different optimization constraints (Figure 2, Section 3.2) employed in our pipeline.

Table 4: Impact of each constraint.

CD (↓)

Only SDF Constraint 2.70
Only Depth Constraint 1.96

SDF + Depth Constraint 1.52

In Figure 9, we demonstrate the need for employing differ-
ent loss functions as described in Section 3.2 and depicted
on the right side of Figure 2 and Table 4. We observe how
the reconstructed geometry changes when Lsdf and Ldepth

are separately employed. Evidently, only SDF constraints
cannot reconstruct surfaces due to the coarse supervision
from template centers. On the other hand, depth regular-
ization significantly improves the reconstruction but holes
still exist. Our full pipeline includes both the above constraints, resulting in improved reconstruction,
as can be seen in the last column of Figure 9 and Table 4. We also study reconstruction quality as a
function of the number of input views. Figure 8b depicts the behavior of two such methods i.e. NeuS
and Ours, up to fifty views. Our method achieves the same Chamfer Distance (CD) score for twelve
views as NeuS achieves for around thirty. This demonstrates the efficacy of our method to “catch”
surface geometry even when sufficient view inputs are not present. In addition to this, we measure
the effect on reconstruction quality by varying the number of Gaussians. As it can be seen in Figure
8b the surface reconstruction quality significantly improves as we increase the number of gaussians.
The reconstruction quality saturates after 576 gaussians and hence we use 576 gaussians throughout
our experiments.

5 Discussions, Limitations and Future Work

We present DiViNet for sparse multi-view 3D reconstruction. Our core idea is a simple two-
stage framework with neural Gaussian templates learned across different scenes serving as surface
priors to regularize the volume-rendering-based reconstruction. Experiments demonstrate quality
reconstructions by DiViNet in both dense and sparse+disparate view settings, with clearly superior
performance over state-of-the-art in the latter.

One current limitation of our method is its reconstruction speed. While comparable to NeuS [48],
VolSDF [54], and MonoSDF [58], it is still slow due to the two-stage approach, especially when
generalizing to a large number of real-world scenes. In addition to addressing these issues, e.g.,
dynamic templates, we would also like to replace the MLPs in DiViNet with more efficient grid-
based techniques, e.g., instant NGP [32], and explore more general primitives such as convexes and
super-quadrics in place of Gaussians.
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