
Under review as a conference paper at ICLR 2021

EMPIRICALLY VERIFYING HYPOTHESES
USING REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper formulates hypothesis verification as an RL problem. Specifically, we
aim to build an agent that, given a hypothesis about the dynamics of the world, can
take actions to generate observations which can help predict whether the hypothesis
is true or false. Existing RL algorithms fail to solve this task, even for simple
environments. We formally define this problem, and develop environments to test
different algorithms’ performance. We analyze methods which are given additional
pre-training rewards and find that the most effective of these is one that exploits
the underlying structure of many hypotheses, factorizing them as {pre-condition,
action sequence, post-condition} triplets. By leveraging this structure we show that
RL agents are able to succeed. Furthermore, subsequent fine-tuning of the policies
allows the agent to correctly verify hypotheses not amenable to this factorization.

1 INTRODUCTION

Empirical research on early learning Gopnik (2012); Kushnir & Gopnik (2005) shows that infants
build an understanding of the world by constantly formulating hypotheses about how some physical
aspect of the world might work and then proving or disproving them through deliberate play. Through
this process the child builds up a consistent causal understanding of the world. This contrasts with
manner in which current ML systems operate. Both traditional i.i.d and interactive learning settings
use a single user-specified objective function that codifies a high-level task, and the optimization
routine finds the set of parameters (weights) which maximizes performance on the task. The learned
representation (knowledge of how the world works) is embedded in the weights of the model - which
makes it harder to inspect, hypothesize or even enforce domain constraints that might exist. On the
other hand, hypothesis generation and testing is a process explored in classical approaches to AI
Brachman & Levesque (2004). In this paper we take a modest step towards the classical AI problem
of building agents capable of testing hypotheses about its world using modern ML approaches.

The problem we address is illustrated in Figure 1. Agents are placed in a world which has several
interactive elements. They are provided with a hypothesis (an "action sentence" Pearl (2009)) about
the underlying mechanics of the world via a text string (e.g. "A will be true if we do B"). The task is
to determine if the hypothesis is true or not. This problem cannot be solved without interaction with
a dynamic world (comparing the state before and after taking action B).

A key novelty in our work is formulating the task in a manner that permits the application of modern
RL methods, allowing raw state observations to be used rather than abstract Boolean expressions of
events. To do this, we use a model composed of two different deep parametric functions which are
learned through interaction: (i) a policy that generates observations relevant to verification of the
hypothesis and (ii) a prediction function which uses the observations to predict whether it is true.

We first show that agents trained end-to-end using deep RL cannot learn policies that can generate ob-
servations to verify the hypothesis. To remedy this, we exploit the underlying structure of hypotheses
– they can often be formulated as a triplet of a pre-condition (P), an action sequence (collectively
B), and a post-condition (A) that is causally related to the pre-condition and actions. Using this
structure, we can seed our action policy to learn behaviors which alter the truth of the pre-condition
and post-condition. This allows agents to learn policies that can generate meaningful observations for
training the prediction function. We further demonstrate that these policies can be adapted to learn to
verify more general hypotheses that do not necessarily fit into the triplet structure. Our experiments
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[pickup]

[craft]

Hypothesis: “when you are at craftingtable and you have stick and then you craft then torch is made”

[answer: true]

Figure 1: Example "crafting" world. The agent verifies a hypothesis (provided a text). Acting
according a learned policy, the agent manipulates the observation to one that allows a learned
predictor to determine if the hypothesis is true. The learning of policy and predictor is aided by a
pretraining phase, during which an intermediate reward signal is provided by utilizing hypotheses
that factor into {pre-condition state, action sequence, post-condition state}.

show that this approach outperforms naive RL and several flavors of intrinsic motivation designed to
encourage the agent to interact with the objects of interest.

2 RELATED WORK

Knowledge representation and reasoning (KRR) Brachman & Levesque (2004) is a central theme
of traditional AI. Commonsense reasoning Davis (1990); Davis & Marcus (2015); Liu & Singh (2004)
approaches, e.g. CYC Lenat (1995), codify everyday knowledge into a schema that permits inference
and question answering. However, the underlying operations are logic-based and occur purely within
the structured representation, having no mechanism for interaction with an external world. Expert
systems Giarratano & Riley (1998) instead focus on narrow domains of knowledge, but are similarly
self-contained. Logic-based planning methods Fikes & Nilsson (1971); Colaco & Sridharan (2015)
generate abstract plans that could be regarded as action sequences for an agent. By contrast, our
approach is statistical in nature, relying on Reinforcement Learning (RL) to guide the agent.

Our approach builds on the recent interest Mao et al. (2019); Garcez et al. (2012) in neural-symbolic
approaches that combine neural networks with symbolic representations. In particular, some recent
works Zhang & Stone (2015); Lu et al. (2018) have attempted to combine RL with KRR, for tasks
such as navigation and dialogue. These take the world dynamics learned by RL and make them
usable in declarative form within the knowledge base, which is then used to improve the underlying
RL policy. In contrast, in our approach, the role of RL is to verify a formal statement about the world.
Our work also shares some similarity with Konidaris et al. (2018), where ML methods are used to
learn mappings from world states to representations a planner can use.

Causality and RL: There are now extensive and sophisticated formalizations of (statistical) causality
Pearl (2009). These provide a framework for an agent to draw conclusions about its world, and verify
hypothesis as in this work. This is the approach taken in Dasgupta et al. (2019), where RL is used
to train an agent that operates directly on a causal Bayesian network (CBN) in order to predict the
results of interventions on the values on its nodes. In contrast, the approach in this work is to sidestep
this formalization with the hope of training agents who test hypotheses without building explicit
CBNs. Unlike Dasgupta et al. (2019), our agents intervene on the actual world (where interventions
may take many actions), rather than the abstract CBN. Nevertheless, we find that it is necessary to add
inductive bias to the training of the agent; here we use the pretraining on (P , B, A) triplets. These
approaches are complementary; one could combine explicit generation and analysis of CBNs as an
abstract representation of an environment with our training protocols.

Our work is thus most similar to Denil et al. (2016), which uses RL directly on the world, and the
agent gets reward for answering questions that require experimentation. However, in that work (and
in Dasgupta et al. (2019)), the “question” in each world is the same; and thus while learning to
interact led to higher answer accuracy, random experimental policies could still find correct answers.
On the other hand, in this work, the space of questions possible for any given world is combinatorial,
and random experimentation (and indeed vanilla RL) is insufficient to answer questions.

Cognitive development: Empirical research on early learning Gopnik (2012); Kushnir & Gopnik
(2005) shows infants build an understanding of the world in ways that parallel the scientific process:
constantly formulating hypotheses about how some physical aspect of the world might work and
then proving or disproving them through deliberate play. Through this process the child builds up
an abstract consistent causal understanding of the world. Violations of this understanding elicit
measurable surprise Spelke et al. (1992).
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Automated Knowledge Base completion: This work is also related to knowledge base completion
Fader et al. (2011); Bordes et al. (2013); Suchanek et al. (2007), especially as formulated in Riedel
et al. (2013). Instead of using facts in the knowledge base or a text corpus to predict edges, here the
agent acts in a world and observes the results of its actions. This recalls Mitchell et al. (2018), where
the system verifies facts it had hypothesized by searching for corroboration in the corpus.

Automation of the scientific process: has been tried in several domains. Robotic exploration of
chemical reactivity was demonstrated Granda et al. (2018) using ML techniques. King et al. (2009)
developed a robot scientist that explored geonomics hypotheses about yeast and experimentally tested
them using laboratory automation. In biochemistry Vanlier et al. (2014) used Bayesian methods for
optimal experiment design. More generally, the Automated Statistician project Steinruecken et al.
(2019) uses a Bayesian approach to reason about different hypotheses for explaining the data, with
the aim of creating interpretable knowledge.

Embodied Question and Answering: The problem studied in this paper is closely related to the
embodied visual question-answering problem in Das et al. (2018). Indeed, our basic formulation
is a particular case of the most general formulation of embodied QA, as the agent is rewarded for
successfully answering questions about the world that require interaction. However, the form of the
questions is different than those considered in that work, as they may require drawing a conclusion
about the dynamics of the world, rather than a static property. Even the questions about static
properties we are interested in have a different flavor, as they encode rules, rather than statements
about the current configuration. Our approach is built around hypothesis-conclusion structure special
to these questions. There is also a large body of work on visual QA Kafle & Kanan (2017); Wu et al.
(2016a) and text-based QA Rajpurkar et al. (2018). From this, most relevant to our work is Wu et al.
(2016b) who use a structured knowledge base to augment standard QA techniques.

3 THE HYPOTHESIS VERIFICATION PROBLEM

An agent is spawned in a world sampled from a distribution over possible worlds. In the case of
“Crafting”, shown in Figure 1, there are items lying around that the agent can pick up and combine
using a “craft” action. The exact dynamics change for every newly instantiated world; so in one
world, taking a craft action with a stick might produce a torch, and in another, it might produce a
pickaxe. At the start of each episode, the agent is given a hypothesis about the world, such as the one
shown at the top of Figure 1. The agent gets a reward when it correctly answers if that hypothesis is
true or false. Because the dynamics and rules change each episode, the agent must learn to interact
with the world in order to decide if the hypothesis is true. In Figure 1 the agent picks up the stick
and does a craft action to see that a torch is created. It then has enough information to decide the
hypothesis is true, and the agent receives reward for verifying the hypothesis correctly.

In this work, we will structure our hypotheses using templated language. One could imagine using
more expansive formal symbolic systems (e.g. first order logic), or alternatively, using natural
language descriptions of the hypotheses. The former might allow interfacing with symbolic solvers
or otherwise using combinatorial approaches; whereas the latter would allow scaling annotation
to untrained humans. We choose templated language because it is simple, and sufficient for the
environments on which we test, which are already challenging for standard RL. Moreover, in our
view it is a good starting point for further work that would use either more sophisticated formal
representations or more natural language representations.

Formal Definition We define a world as a set of states and actions with Markovian dynamics (an
MDP without reward). We define an environment E as a distribution over a set of worldsW and
hypothesesH. A world W ∈ W is specified by rules LW describing the dynamics of the world. We
define this reward-less MDP of one specific world W as MDPW = {SW , AW , TW } where state
space SW includes the position and state of objects in the world (e.g. the placement of the agents and
the object), AW is the action space, and TW is the transition function. Note that TW depends on LW ,
the rules of this specific world. Actions have different consequences depending on LW .

Now E is an episodic POMDP where each episode consists of sampling1 a W and h. (G is a ground-
truth function that takes in the hypothesis h and worldW and outputs {true, false}. In this work,
hypotheses are generated via templated language and their truth function G depends on W , more
specifically LW . The episode ends when the agent executes either the true or false action.

1See Appendix B for details on sampling procedures
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Given a world W and hypothesis h, an agent gets reward:

RHyp =

{
+1 a = G(h,W )
−1 a = ¬G(h,W )
0 otherwise

The observation in this POMDP is o = (sW , h), the state from the world W plus the hypothesis. The
state is s = (sW , h, LW ). This includes the rule LW which is not visible in the observation. The
action space is just AW ∪ {true, false} for any W (they are the same for a given environment); and
T = TW . Note that the transition function T depends on the (hidden) LW . The goal of hypothesis
verification is now to discover the truth of h, which depends on LW .

4 METHODS

RL baseline Given the formulation of the hypothesis verification problem as a POMDP, we could
try to solve it using an RL agent with a = π(Ot, h), where Ot = {ot, ot−1, . . . ot−K}. Here o is an
observation of the current world, K is a history window size, and h is the hypothesis for the current
world. We found that standard RL agents struggle to solve this problem.

To make the problem easier to solve, we can augment the reward with direct supervision of a
prediction network f(Ot, h) which takes in the last K observed observations and the hypothesis and
predicts whether or not the hypothesis is true. The policy network now, instead of taking true or false
actions, takes a special stop action which is replaced by true or false based on the prediction of f .

Even with the augmented supervision, as shown in Fig. 4, an RL baseline is not able to solve the
task. In order determine whether a hypothesis is true, the agent needs to take the correct sequence of
actions related to the hypothesis. But in order to know that a particular sequence of actions was the
right one, it needs to be able to correctly predict the hypothesis. Guessing with no information gives
a zero average reward, and despite the supervision on the output of the predictor, the predictor does
not see state transitions that allow it to learn.

Motivation to interact the world Given that naive RL and supervised learning is not up to our task,
how can we encourage policies to explore the world? The first thing we might think of would be
to initially reward agents for “exploring” the world. This can be done by encouraging the agent to
explore the world to minimize prediction error Pathak et al. (2017). We more directly incentivize
this kind of exploration by encouraging our agents to interact with the elements of the world we
know are related to our hypotheses. We test four variants of an “intrinsic” reward to see if other
pretraining schemes might perform equally well. We show results on the gridworld domains using 4
different intrinstic forms of pretraining: (i) change any item state in the world; receive reward at end
of episode. (ii) change any item referenced in the hypothesis; receive reward at end of episode. (iii)
change any item state in the world; receive reward instantaneously. (iv) change any item referenced
in the hypothesis; receive reward instantaneously. Here, “item" means any object that is not the agent
(including crafting items, switches, pushblocks, etc.). See Appendix H for additional details.

Note our baselines more directly reward the agents for exploring the specific subject of the hypotheses
compared to Pathak et al. (2017). Despite this, these methods still have relatively poor performance
on our problem (see Section 6). Is there a way we can more directly train our policies to explore the
cause and effect relationship of our hypotheses?

Pretraining using Triplet Hypotheses In light of the difficulties directly training an RL model using
terminal reward and hypothesis prediction supervision, we take advantage of the fact that many causal
statements about the world have the form: (pre-condition, action sequence) =⇒ post-condition

We define this formally in Appendix B.2, but informally this means that when the state meets a “pre-
condition” and an “action sequence” is taken, this will result in the state meeting a “post-condition.”
In Figure 1 the pre-condition is having a stick and being at craftingtable, the action sequence is craft,
and the post-condition is that a torch is made.

This structure can be converted into a reward function that can be used to pretrain the agent policy
π. The idea is to reward the agent for taking actions which alter the truth of the pre-condition and
post-condition (i.e. changing the world state so that pre/post-conditions are met or not). If it matches
the pre-condition state and takes the action, if the statement is true, the post-condition should toggle
from false to true in the world. Similarly, if post-condition changes but the pre-condition did not
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Color Switch Pushblock Crafting

if the blue switch is on the 
the door will open

the door state is 
independent of the 
pushblock being left

to create a torch you must 
have a stick and go to 
craftingtable and craft

Cartpole

when the wind blows left 
it is because you are in 

green

Figure 2: Examples of the four environments used in our experiements: ColorSwitch, Pushblock,
Crafting and Cartpole.

change, the statement must be false. This can be formalized in the following reward function to
encourage the agent to toggle pre-condition and post-condition states:

Rpre =

{
+C a = stop &

pre-condition changed in last K steps
0 otherwise

Rpre+post =

{
+C a = stop & post+pre-condition

changed in last K steps
0 otherwise

This encourages the policy π to change the pre-condition and post-conditions (via pre-condition) in
the last K steps, so that a predictor looking at the last K observations will be able to deduce the truth
value of the hypothesis. More generally, training with this reward function forces the policy network
to ground text concepts (e.g. the text "stick" means [object_stick]) and also captures the causal rules
within the world. Consequently, following pretraining, the policy network can then be fine-tuned
using the original reward function RHyp. Since the policy network is no longer random, a robust
prediction network f can also be learned. While not all hypotheses fit into the triplet format, we show
in the experiments that the knowledge captured by the policy and prediction networks during this
phase of training can generalize to less structured hypotheses. We have a set of hypotheses for each
world that contains only these triplet-structured hypotheses. We use this set for pretraining.

Training using Triplet hypothesis After pretraining the policy π, we further train π, as well as the
prediction network f using the same set of triplet hypotheses, but now using RHyp instead of Rpre or
Rpre+post. Two variants are explored: (i) “fixed” – keep π fixed but train the prediction network f and
(ii) “finetune" – finetune π and train f . Performance in this phase is used to select promising models
for subsequent stages of training. Specifically, runs achieving <90% accuracy (see the appendix for
alternate cutoff) are eliminated.

Adaptation to non-triplet hypotheses Next, we want to show that we can adapt these networks to
hypotheses other than those that fall neatly into the triplet structure. To adapt to the larger set of
hypotheses, we start with the networks trained previously on triplet templates. During this training
stage, the triplet-form constraint is relaxed and training proceeds with both triplet and non-triplet
hypotheses (see Sec. 5), using an even split between the two types.

5 EVALUATION ENVIRONMENTS

In this section we describe our environments. The environments E are designed so that the prior
probability p(h = true) = 0.5 and the initial observation o0 does not contain information about h.

Environments We created four different environments for hypothesis verification. ColorSwitch,
Pushblock and Crafting are all gridworld-based environments. A fourth enviornment is created by
adapting the standard Cartpole task to include interactive elements. See Fig. 2.

ColorSwitch: The agent is placed in a world with one or more color switches (randomly on or off)
and a door (open or closed). The agent can move and toggle the switch positions. One switches,
when in the correct position (on/off) will cause the door to open. The other switches have no effect.
Hypotheses relate to the color and position of switches and how that opens or closes the door.

Pushblock: The agent is placed in a world with a block which can be pushed by the agent, and a
door. The agent can push on the block. The door opens when the block is in a particular part of the
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grid: “up” – top two rows, “down” – bottom two rows, “left” – leftmost two rows, “right” – rightmost
two rows. The hypotheses relate to the position of the pushblock and how that affects the door.

Crafting: The agent is placed in a world with crafting rules similar to that of the popular Minecraft
game. The agent is spawned along with a number of crafting items, and a crafting location. The agent
is able to move, pick up items into its inventory and use the crafting location using special crafting
actions. There is some true “recipe” which produces some new item in the agent’s inventory.

Cartpole: This is the standard cartpole problem where a pole is attached by an un-actuated joint to a
cart. The actions are “left” and “right” and if the pole falls, the episode ends. In our modification,
there are “zones” (an interval on the x axis) where the physical laws change by either changing the
gravity constant, or applying a “wind force” blowing the cart in one direction. Like in ColorSwitch,
the zones are specified by color. Typically one color zone has an effect and the other is a decoy zone
that has no effect. The hypotheses relate to which zones correspond to changes to the physics.

In the grid world environments, items are randomly generated in a 5 by 5 grid. The world observation
is given by a 1-hot vector for each grid location and inventory. The hypothesis is encoded as sequence
of tokens. In Cartpole the state is the standard dynamics as well as a 1-hot vector specifying the
location and color of the zones.

Hypothesis Construction We now describe how the hypotheses for each world in each environment
are automatically generated via templates. Three different varieties are considered: (i) triplet
hypotheses, (ii) general templates and (iii) special case templates. (See Appendix B.3 for all of the
possible templates for an environment and further details).

Triplet hypotheses: Here hypotheses take the form of an logical statement: (pre-condition, action
sequence) =⇒ post-condition. When the pre-condition is true, and the action sequence is performed,
the post-condition becomes true. To generate triplet hypotheses, we: (i) randomly select a pre-
condition template from a set list; (ii) randomly select an action template; (iii) randomly select a
post-condition template; and (iv) fill in any entities. In our example from Fig. 1 this would be (“when
you are at crafting table and you have stick”; “and then you craft”; “then torch is made”).

General templates: Instead of drawing a template from the triplet form, a single template for the
hypothesis is drawn and the values populated. For instance, in Pushblock, a template might be “the
door can only be opened when the pushblock is PUSHBLOCK_POSITION” and then “left” would
be drawn for PUSHBLOCK_POSITION. These templates are more general than the triplet ones in
that they have no explicit (pre-condition, action sequence and post-condition) structure.

Special cases: We also use more difficult and general hypothesis templates. These cannot be neatly fit
into a triplet format by rewording, and may not fully describe the rules of the world. Some examples
of these harder templates are: (i) Negating effects (e.g. “door is not open"); (ii) Negating conditions
(e.g. “switch is not on"); and independence (e.g. “door independent of blue switch").

6 EXPERIMENTS

Figure 3 shows results from learning with pretraining rewards Rpre+post and Rpost. There is relatively
little variance, with all runs achieving near the theoretical maximal rewards2 For Crafting and
Cartpole, Rpre+post is not always achievable if true and distractor items are far away from each other.
See Appendix G.1 for further discussion. 3

In Figure 4, we show the results on non-triplet adaptation (Sec. 3). As discussed in Section 5,
this stage includes the more difficult, non-triplet templates not seen during pretraining or during
triplet hypothesis training. We also break down the final hypothesis prediction accuracy for the
triplet methods in Table 1. This allows us to see whether triplet methods were able to adapt to
non-triplet hypotheses. All network architectures for the policy and prediction networks, as well as
hyper-parameters are the same for all methods.

RL baseline Figure 4 shows the RL baseline at chance-level performance, the only exception being
CartPole were it achieves ∼ 60%, versus the ∼ 90% of triplet methods. Note that this is the RL

2For Pushblock, sometimes the block can be stuck against a wall, so not all worlds are solvable
3For gridworld environments we show variance runs on 25 seeds and 5 for Cartpole. We provide further

hyperparameters, and training details in Appendix C and D and network architecture and details in Appendix D
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baseline with the supervised predictor, as discussed in Section 3. This poor performance is a result of
training both policy and predictor from scratch; see Figure 6.

Figure 3: Pretraining reward (Rpre +Rpre+post) on our four environments.
.

Figure 4: Hypothesis prediction accuracy on both triplet and non-triplet hypotheses (1-1 ratio) for the
ColorSwitch, Pushblock, Crafting and Cartpole environments, using RHyp reward for training.

Other baselines We also include two other simple baselines “no act” and “random act.” The “no act"
baseline simply takes the stop action at t = 0, forcing the prediction network to give an answer from
just the first observation. This fails because the agent needs to take actions in the world to be able
to predict the hypothesis accurately. This also confirms that we do not accidentally leak the ground
truth of h into the initial observation. For “random act", a random policy is used (i.e. uniform across
actions). This fails as random actions are extremely unlikely to verify the hypothesis.

Discussion From these results, we can clearly see that naive RL and other baselines cannot efficiently
solve hypothesis verification tasks. When we use triplet pretraining we use the insight that hypotheses
often have a clear causal structure that can be exploited when they are formed as “triplet hypotheses.”
Not all hypotheses fall neatly into this form, and we may not have this form for all hypotheses. But if
we have some that fit this form, we can gain a foothold that lets us make progress on this problem,
and then later adapt them to other hypotheses. From Figure 4 we can see that this pretraining, triplet
training and adaptation works. We also show in Section 6 that other plausible pretraining rewards fail
to achieve the same results as our method.

Looking at the different environments, we see that in Pushblock and ColorSwitch, even with the
policy learned from the triplet pre/post reward, the agent is able to generalize and perform well on
hypotheses not seen in the pretraining phase as we can see in Table 1. Because the finetuning step
adds additional variance to training, there is a small, but non-trivial drop in average performance.
This drop is less extreme when comparing max values (see Appendix G.3).

Table 1: Average Hypothesis Prediction scores, broken down by triplet (pretrained) and non-triplet
(not seen in pretraining)

Method Overall Triplet Accuracy Non-triplet Accuracy

ColorSwitch Fixed Policy 86.6% 91.1% 82.1%
Finetuned Policy 77.5% 79.7% 75.4%

Pushblock Fixed Policy 86.9% 87.9% 85.9%
Finetuned Policy 85.6% 86.3% 84.8%

Crafting Fixed Policy 77.3% 92.8% 61.8%
Finetuned Policy 90.7% 98.4% 83.0%

Cartpole Fixed Policy 84.2% 92.0% 76.3%
Finetuned Policy 92.5% 93.4% 91.6%

In Crafting and Cartpole on the other hand, to do well on the unseen templates, the policy also needs
to be fine-tuned. This tells us that when we do have to generalize to unseen hypotheses (especially
non-triplet hypotheses), adapting the policy as well as the prediction network is necessary. Recall

7



Under review as a conference paper at ICLR 2021

Figure 5: Hypothesis accuracies with intrinsic pretraining versus triplet pretraining (purple).

that we test very different hypotheses such as as negations and “independence” hypotheses not see in
triplets (see suplementary). We see from Table 1 that indeed, finetuned policies greatly outperform
the fixed policies on the non-triplet templates.

We further break down these results by specific templates, entities mentioned (e.g. colors) and
whether the given template was true or false. We find for instance that for most environments it is
harder to determine a hypothesis is false than true. See Appendix F for the full analysis.

Alternate forms of pretraining

In Figure 5 we show the accuracies on the final hypothesis verification task for both triplet and
non-triplet hypotheses, using the four intrinsic pretraining methods discussed in Setion 3. We also
plot the final average accuracy obtained by triplet methods from Figure 4. For the intrinsic pretrained
policies the best run is shown to show the best-possible case of the alternative methods. For Crafting
the dense intrinsic pretraining works about as well as triplet pretraining. This can be explained by the
fact that this particular form intrinsic pretraining directly rewards the agent for doing many of the
operations in the actual Crafting task, i.e. picking up objects and crafting objects. However, averaging
across the three environments, all the intrinsic pretraining methods do worse.

Oracle ablations We also show two oracle analysis in the Crafting environment. In the first, we
provide an “oracle” hypothesis predictor which will output the ground truth of the hypothesis if it is
inferable from the last K frames, and test whether we can learn a policy directly using reward RHyp.
Similarly, we also train a hypothesis prediction network with observations from an oracle policy
network (observations from which the ground truth of the hypothesis is always inferable).

Figure 6: (Left) Results on training an RL using RHyp with oracle predictor on the Crafting environ-
ment. (Right) Results training just hypothesis prediction on oracle policy.

Figure 6 (left) shows the prediction oracle agent quickly converging. From this we surmise that if we
can predict the hypothesis already, learning an optimal policy is relatively straightforward. Similarly,
(right) show that with the correct observations from an oracle policy, the hypothesis predictor is able
to quickly converge as well. This shows the joint nature of the problem (i.e. learning both policy and
predictor) is what makes it challenging for the RL baseline.

7 DISCUSSION

In this work, we propose a tractable formulation of the problem of training agents that can interact
with a world to test hypotheses. We show that generic RL techniques struggle with the problem,
but we show that methods exploiting the structure of hypotheses are able to successfully complete
the problem. We hope that our formulation and analysis serve as a starting point for researchers to
explore the problem of hypotheses verification and further on how we can build towards agents that
can ask and answer questions about the world.
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A APPENDICES

Our Appendices include additional experiments, further details on environments and methods,
standard hyper-parameters and an exhaustive list of the hypothis templates used in this work.

In Appendix B, in B.1 we further detail how we randomly construct environment rules and hypotheses.
In B.2 we provide a fuller definition of our notion of “triplets”. And in B.3 we exhaustively list our
templates and named entities.

In Appendix C we provide additional training details including training hyperparameters.

In Appendix D we provide details and diagrams of our neural networks, a brief ablation analysis, and
network hyperparameters.

In Appendix E we show results of the triplet pretraining methods on held-out test hypotheses.

In AppendixF we show the performance of the triplet methods on different crosstabs of the hypotheses
and rules, including results on each individual hypothesis.

In Appendix G we provide additional details of the triplet pretrain methods and justification of some
parameter choices and results.

Finally, in Appendix we describe the intrinsic pretraining method in a bit more detail and show
training curves for the pre-training objectives

B TEMPLATES

B.1 WORLD AND HYPOTHESIS CONSTRUCTION

Returning again to our notation from the main paper, the environment at each spawn needs to construct
a world W , and a hypothesis h that is either true or false in the world. W in particular describes
the rules about how the environment works (i.e. which switch opens the door) which in our case
can precisely be describe by a hypothesis. So given a true hypothesis, we can exactly describe the
rules of the world. Therefore, in order to create an instance of a possible W , we can instead draw
a true hypothesis about the world at random. From the hypothesis, we can then construct the rules
the determine how objects in the world behave. Note that there are couple exceptions to this for our
harder hypotheses, where the hypothesis can be true but only partially describes all the rules of W .
For these cases, we draw yet another template which is consistent with the hypothesis and use that to
construct the rules, such as deciding which color switch really opens the door.

Because we have to randomly give either a true or false hypothesis, we also need to be able to generate
a false hypothesis for the world. So for every instance, we also draw a random false hypothesis. Now,
given a true and false hypothesis, we can fully generate the world and all the items that appear in
either statement. So for instance, if the true hypothesis mentions a green switch and the false one
mentions a blue switch, we generate both a green and blue switch. Then, we can set the rules such
that the right thing happens. So in this example, switching the green switch opens the door and the
blue switch does nothing.

The final step is then to randomly choose either the true or false statement as the “visible” hypothesis
which is passed to our agent to verify. Because we generate the world and spawn the items before we
make this choice, we ensure that we do not accidentally give away the truth of the hypothesis based
on what items spawned.

Our process for generating a new spawn of environment can thus be summarized as follows:

1. We randomly generate a true hypothesis

2. We randomly generate a false hypothesis

3. We construct a ruleset from the true hypothesis

4. We spawn the agent and the items in the world described in both the true and false hypothesis

5. We randomly choose either the true or false hypothesis as the “visible” hypothesis that the
agent must verify
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B.2 TRIPLET DEFINITIONS

Here we further define our terms “pre-condition” “action sequence” and “post-condition.”

Consider a state s (here we ignore the state/observation distinction for clarity of explanation, this
would be an observation in our POMDP). We can consider a pre-condition or post-condition
to be a boolean function of the state s. Given a state s, we can say whether a particular pre-
condition or post-condition is true or false. For example, the condition “the door is open” is a
function of the state s, which we can write as fthedoorisopen(s) which is true when the door is
open, and false when it is not. Action sequences are also boolean functions, but over a sequence
of states and actions. So for instance, “the agent moves to the craftingtable” can be written as
ftheagentmovestothecraftingtable(s1, s2, ..., a1, a2, ...) for some sequence of states and actions, which
is true when the agent starts not at the craftingtable and takes actions that move it to the craftingtable.

Now we can connect these three functions or conditions to causality. In this construction, what we are
doing is hypothesizing a causal connection between the pre-condition and action sequence and the
post-condition: (pre-condition, action sequence) =⇒ post-condition. This is a logical statement,
which can be true or false, which asserts that when we satisfy the pre-condition and take the action
sequence, the resulting state will satisfy the post-condition.

Finally, we connect this discription of these terms to the string text of the actual hypotheses. We
treated these three terms like exact logical functions, but we in fact translate these functions to text
strings. So a logical function of whether the door is open becomes "the door is open." In this work,
we write these strings ourselves, although in future work, these could be crowd-sourced, or generated
as part of an interactive game. Human language is more complicated and less un-ambigious than
mathematical formulations but as we note in the main paper, we train our agents to generalize to
new hypotheses and ones that do not follow this exact structure. By our choice of using templated
language, we keep the kinds of hypotheses agents can learn as general as possible. Future work might
explore how to solve new hypotheses online from humans, or even generate its own hypotheses to
solve.

In the next sub-section, we exhaustively list the triplet and non-triplet templates we use in this work.

B.3 TEMPLATES

Color Switch:

Pre-condition:
if the COLOR switch is ON_OFF_SWITCHSTATE
when the COLOR switch is in the ON_OFF_SWITCHSTATE position
the COLOR switch is ON_OFF_SWITCHSTATE

Action:
""

Post-condition:
then the door is open
the door is passable
and we see the door is open
the door will open

Finetune templates:
the door can only be opened by switching the COLOR switch to ON_OFF_SWITCHSTATE
when we see the COLOR switch is ON_OFF_SWITCHSTATE the door must be open
if the COLOR switch turns ON_OFF_SWITCHSTATE the door opens
when we see the door open it must be that the COLOR switch is in the ON_OFF_SWITCHSTATE position
those who want to open the door must first switch the COLOR switch ON_OFF_SWITCHSTATE
no password just make the COLOR switch be ON_OFF_SWITCHSTATE to open the door
COLOR switch ON_OFF_SWITCHSTATE implies door is open
only the COLOR switch being ON_OFF_SWITCHSTATE opens the door
the door is open because COLOR switch is in the ON_OFF_SWITCHSTATE position
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COLOR switch ON_OFF_SWITCHSTATE equals open door
the COLOR switch opens the door but only when it is ON_OFF_SWITCHSTATE
door is open must mean that COLOR switch is ON_OFF_SWITCHSTATE an ON_OFF_SWITCHSTATE means the door is
open but only if it is COLOR
COLOR controls the door and it opens when it is ON_OFF_SWITCHSTATE
ON_OFF_SWITCHSTATE is the correct position of the COLOR switch and it opens the door
the switch that causes the door to be open when it is ON_OFF_SWITCHSTATE is COLOR
if you see COLOR switch then the door is open
the door is independent of the COLOR switch
if the door is not open then the COLOR switch must be ON_OFF_SWITCHSTATE
if the COLOR switch is not ON_OFF_SWITCHSTATE then the door is open
to make the door not open the COLOR switch must be not ON_OFF_SWITCHSTATE
whether the door is open is completely independent of the COLOR switch
the COLOR switch is what controls the door
a not ON_OFF_SWITCHSTATE COLOR switch opens the door

Template Values
COLOR:
blue
red
green
black

ON_OFF_SWITCHSTATE:
on
off

Pushblock

Pre-condition:
whenever the pushblock is in the PUSHBLOCK_POSITION
if the pushblock is at the PUSHBLOCK_POSITION
the pushblock is at the PUSHBLOCK_POSITION

Action:
""

Post-condition:
then the door is open
the door is passable
and we see the door is open
the door will open

SP_FULL_TRAIN:
PUSHBLOCK_POSITION is the correct position for the pushblock for the door to open
if the door is open it must be that the pushblock is at the PUSHBLOCK_POSITION
when the door is open it is because the pushblock is in the PUSHBLOCK_POSITION
when the pushblock is at the PUSHBLOCK_POSITION the door is open
pushblock PUSHBLOCK_POSITION means door open
the door can only be opened when the pushblock is PUSHBLOCK_POSITION
if the pushblock is PUSHBLOCK_POSITION it means the door is open
PUSHBLOCK_POSITION pushblock opens the door
open door implies pushblock PUSHBLOCK_POSITION
open door means pushblock PUSHBLOCK_POSITION
door opens when PUSHBLOCK_POSITION is where the pushblock is
PUSHBLOCK_POSITION is the correct position for the pushblock to open the door
the door when the pushblock is PUSHBLOCK_POSITION is open
PUSHBLOCK_POSITION position of the pushblock causes the door to open
door only opens on PUSHBLOCK_POSITION pushblock
door can only open with pushblock being PUSHBLOCK_POSITION
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the pushblock being at the PUSHBLOCK_POSITION is completely independent of the door
the pushblock being PUSHBLOCK_POSITION is independent of the door being open
the door state is independent of pushblock PUSHBLOCK_POSITION
PUSHBLOCK_POSITION pushblock and door are independent

Pushblock values:
PUSHBLOCK_POSITION:
left
right
top
bottom

Crafting

Pre-condition:
when you are at LOCATION and you have CRAFTING_ITEM
you are at LOCATION and have in your inventory CRAFTING_ITEM
whenever you have a CRAFTING_ITEM and are at LOCATION

Action:
and you do CRAFTING_ACTION
then you CRAFTING_ACTION

Post-condition:
you now have CREATED_ITEM in your inventory
then CREATED_ITEM is created
and this creates CREATED_ITEM
so CREATED_ITEM is created and put in your inventory
then CREATED_ITEM is made

Finetune Templates:
to create a CREATED_ITEM you must have CRAFTING_ITEM and go to LOCATION and do the action CRAFT-
ING_ACTION
CREATED_ITEM can be created by doing CRAFTING_ACTION at LOCATION when CRAFTING_ITEM is in inventory
whenever you do CRAFTING_ACTION and have CRAFTING_ITEM at LOCATION a CREATED_ITEM is made
you have CRAFTING_ITEM and go to LOCATION and CRAFTING_ACTION and CREATED_ITEM will be created
whoever does CRAFTING_ACTION at LOCATION with CRAFTING_ITEM gets CREATED_ITEM
if you have CRAFTING_ITEM at LOCATION and you CRAFTING_ACTION you get CREATED_ITEM
if you do CRAFTING_ACTION at LOCATION with CRAFTING_ITEM you make CREATED_ITEM
whenever you have CRAFTING_ITEM at LOCATION and do CRAFTING_ACTION then you make a CREATED_ITEM
having CRAFTING_ITEM in your inventory being at LOCATION and doing CRAFTING_ACTION creates CRE-
ATED_ITEM
CREATED_ITEM can be made with CRAFTING_ITEM when you do CRAFTING_ACTION at LOCATION
CRAFTING_ITEM plus LOCATION plus CRAFTING_ACTION equals CREATED_ITEM
create a CREATED_ITEM by being at LOCATION with CRAFTING_ITEM and doing CRAFTING_ACTION
CRAFTING_ACTION at LOCATION creates CREATED_ITEM but only if you have a CRAFTING_ITEM
if you want to make a CREATED_ITEM then go to LOCATION with CRAFTING_ITEM and do CRAFTING_ACTION
CRAFTING_ITEM in inventory at LOCATION makes CREATED_ITEM if you do CRAFTING_ACTION
CREATED_ITEM when CRAFTING_ITEM at LOCATION and do CRAFTING_ACTION
if you are at LOCATION and do CRAFTING_ACTION you make CREATED_ITEM
if you are anywhere and do CRAFTING_ACTION with CRAFTING_ITEM you make a CREATED_ITEM
having CRAFTING_ITEM at LOCATION and doing CRAFTING_ACTION does not make a CREATED_ITEM
CREATED_ITEM is created by being at LOCATION and doing CRAFTING_ACTION
make a CREATED_ITEM by having a CRAFTING_ITEM and doing CRAFTING_ACTION
you have CRAFTING_ITEM and go to LOCATION and CRAFTING_ACTION and CREATED_ITEM will not be created
LOCATION plus CRAFTING_ACTION creates a CREATED_ITEM
with a CRAFTING_ITEM you can make a CREATED_ITEM by doing CRAFTING_ACTION

Template Values:
CRAFTING_ITEM :
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iron
wood
stick
pickaxe
coal

CREATED_ITEM:
torch
bed

LOCATION:
craftingtable

CRAFTING_ACTION:
craft

Carpole

Pre-condition:
when are in the COLOR zone
if you are in the COLOR
when the agent is within COLOR

Action:
""

Post-condition:
the gravity is now MULTIPLIER
gravity is MULTIPLIER
the wind pushes DIRECTION
there is a DIRECTION wind

Finetune Templates:
MULTIPLIER gravity is caused by the COLOR zone
if you go to COLOR zone then gravity is MULTIPLIER
the gravity is MULTIPLIER because the agent is in the COLOR
COLOR zone implies MULTIPLIER gravity
gravity is MULTIPLIER whenever you go into the a COLOR zone
the COLOR causes gravity to MULTIPLIER
to make gravity MULTIPLIER need to be in COLOR
COLOR zone gravity MULTIPLIER
a gravity multiplier of MULTIPLIER is caused by being in COLOR zone
COLOR equals wind DIRECTION
when the wind blows DIRECTION it is because you are in COLOR
COLOR zone causes DIRECTION wind
only being in COLOR makes the wind blow DIRECTION
DIRECTION wind is in the COLOR zone
when you are in the COLOR zone there is a DIRECTION wind
DIRECTION wind is caused by being in the COLOR zone
wind pushing DIRECTION whenever you are in COLOR
gravity is totally independent of COLOR
COLOR zone does not effect gravity it is independent
the wind is completely independent of the COLOR zone
independent of wind DIRECTION is COLOR
gravity is changed by being in COLOR but not MULTIPLIER
the effect of being in COLOR is opposite to gravity MULTIPLIER
the wind blows opposite of DIRECTION when in COLOR zone
being in COLOR causes the wind to blow opposite to DIRECTION
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Template Values:
COLOR:
blue
red
green
black

MULTIPLIER :
decreased
increased

DIRECTION:
left
right
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C LEARNING DETAILS AND HYPERPARAMETERS

One detail of the prediction network is that we need to keep a memory of past state sequences,
hypotheses and ground truths so we can actually train our prediction network. We do this by simply
keeping track of the lastN times our agent answered a question, and keeping these in a FIFO memory.
When we update our prediction network, we randomly sample from this pool. This also necessitates
a 100k step break in period to collect enough examples.

In our policy finetuning experiments, we also stabilize our dual optimization problem by trading of
optimization of the policy network and the prediction network. We must also start with the prediction
network so that the reward for answering correctly is meaningful.

No extensive grid search of hyper-parameters was conducted. At various stages we experimented
with different hyperparameter values especially PPO parameters (timesteps per batch), learning rates,
PPO epochs, and optimizer.

Experiments were performed on Tesla K40, TitanX and TitanX Pascals GPUs on 2-4 GPU worksta-
tions. Several jobs could be run on a single GPU with the greatest performance bottleneck being CPU
cycles rather than GPU cycles or memory.

Table 2: Pretraining Hyperparameters

Parameter Value

Algorithm PPO Schulman et al. (2017)
Timesteps per batch 2048
Clip param 0.2
Entropy coeff 0.1
Number of parallel processes 8
Optimizer epochs per iteration 4
Optimizer step size 2.5e−4

Optimizer batch size 32
Discount γ 0.99
GAE λ 0.95
learning rate schedule constant
Optimizer ADAM Kingma & Ba (2014)
Past Frame Window Size 5

Table 3: Finetuning Hyperparameters

Parameter Value

Algorithm PPO Schulman et al. (2017)
Timesteps per batch 2048
Entropy coeff 0.1
Number of parallel processes 8
Optimizer epochs per iteration 4
Optimizer step size 1e−5

Optimizer batch size 32
Discount γ 0.99
GAE λ 0.95
learning rate schedule constant
Optimizer SGD
Past Frame Window Size 5

Basis of RL implementations was from Kostrikov (2018)
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Table 4: Prediction Hyperparameters

Parameter Value

Timesteps per batch 2048
Optimizer step size 1e−3

Optimizer batch size 128
learning rate schedule constant
Optimizer ADAM Kingma & Ba (2014)
Memory Burn-in 100000
Memory Size 200
Alternate Training Window 10000000
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D NETWORK DETAILS

Although other works such as Chaplot et al. (2018) have investigated language-conditioned RL
(usually in the form of instruction following), our hypothesis conditioned problem proved to be
challenging, and required some novelty in network architectures. Figure 7 shows our network
diagrams.

Other works such as Chaplot et al. (2018) have incorporated gated mechanisms between language
and perception. Manchin et al. (2019) employs self-attention mechanism within convolutional layers
and Choi et al. (2017) also employs a self-attention mechanism in a DQN. Neither work incorporates
language and the architectures are quite different from each other. Figure 7 shows the policy and
transformer architectures (this is also in the main text).

For the policy network, it was important to use key-value attention. That is: the hypothesis is fed
into a seq2vec model and is used as the key of a dot-product attention mechanism. The state (the grid
locations of the items in the world and the inventory of the agent if applicable) is fed as input to N
parallel MLPs. The output of the MLPs are then fed as the values of the attention mechanism. The
output of the module is then fed into the final hidden layer of the actor-critic network.

For the prediction network, we use the popular transformer architecture Vaswani et al. (2017). Our
prediction network encodes both the hypothesis and past observations (after they are passed through
a one layer network) using transformer encoders. These sequences are then combined using a
transformer to generate a final hidden state as output which is then fed to a final prediction layer and
sigmoid function to get our binary prediction.
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Figure 7: Network architecture for our policy network (left) and prediction network (right)

D.1 NETWORK ABLATION

In Figure 8 we see the results of our network architecture ablation. As we can see, our new policy
architecture described previosuly clearly outperforms a standard MLP policy network on the language-
condition pretraining task. We also see that the transformer architecture outperforms the LSTM and
MLP model on the final task when we hold the policy network constant.

D.2 IMPLEMENTATION AND HYPERPARAMETERS

We take much of our implementation of transformers from Rush (2018).
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Figure 8: (left) policy network ablation (right) prediction network ablation.

Table 5: Policy Network Hyperparameters

Parameter Value

Seq2Vec Model Bag-of-Words
Word Embedding Size 32
Hidden Size 32
MLP Num Hidden Layers 2
Number of MLP Modules 16
Transfer Layer tanh

Table 6: MLP Baseline Policy Network Hyperparameters

Parameter Value

Seq2Vec Model Bag-of-Words
Word Embedding Size 32
Hidden Size 32
MLP Num Hidden Layers 2
Transfer Layer tanh

Table 7: Transformer Network Hyperparameters

Parameter Value

Word Embedding Size 32
Hidden Size 32
Transfer Layer ReLU
Transformer N 3

Table 8: Baseline Prediction Network Hyperparameters

Parameter Value

Seq2Vec Model LSTM
LSTM Num Layers 1
Word Embedding Size 32
Hidden Size 32
MLP Num Hidden Layers 2
Transfer Layer tanh

21



Under review as a conference paper at ICLR 2021

E TEST-TIME HYPOTHESES

To examine whether the hypothesis prediction networks are overfit to the very specific hypotheses
the networks were trained on, we conduct a simple experiment and we test on different hypotheses.
Here we keep the same underlying distribution of ground truth rules, but we change the hypotheses to
ones not seen in any stage of training, and do not adapt the networks in any way to these hypotheses.
The results are shown in Table 9 for the triplet pretraining method. We can see that for the most part,
there is little to no drop in performance, with the exception of a substantial drop in crafting, but only
for the fixed policy. The finetuned crafting policy still achieves comparable results to hypotheses it
was trained on.

Table 9: Average Hypothesis Prediction scores on new templates

Method Hypothesis Accuracy

ColorSwitch Fixed Policy 81.49%
Finetuned Policy 71%

Pushblock Fixed Policy 89%
Finetuned Policy 84.87%

Crafting Fixed Policy 58.22%
Finetuned Policy 90.3%

Cartpole Fixed Policy 78.97%
Finetuned Policy 81.3%

F CROSSTAB PERFORMANCE ANALYSIS

In this section, we further break down the results in the main paper by specific templates, entities
mentioned (e.g. colors) and whether the given template was true or false. We do this analysis only for
Fixed and Finetune as the baselines fail fairly uniformly and the analysis would be less interesting.

We get these results by running our pretrained models on at least 1000 of each subcategory listed and
averaging the results across results (and also across runs as in our main results). This gives us a good
sample for analysis of which types of hypotheses methods perform well or poorly on.

First we look at the accuracy sorting by whether the agent was given a true hypothesis to validate or a
false hypothesis to invalidate in Tables 10,11,12, and 13. We see that, except for finetune accuracy on
crafting, the agents have a generally much easier time confirming true hypotheses.

One possible explanation for this of course is that the observations that confirm a true hypothesis
and the policy needed to do this are much simpler. To confirm a true hypothesis, the agent must
essentially perform the hypothesis described exactly. So if the hypothesis is that flipping the green
switch on opens the door, the correct policy is exactly going to the green door and toggling. And then
the state affect is immediate. If following this causes the door to open, the state changes in a very
obvious way - the door opens. Whereas if the statement was false, the agent would have to look at
the sequence of states and infer that indeed did exactly the right hypothesis and the effect did not
happen. Noticing a change in state is often easier than noticing a lack of change.

However, there may be other subtle things going on related to the agent behavior. For instance, if an
agent’s policy was to guess True if it does not know the ground truth, it would by definition do better
on true hypotheses. Indeed, if we look at the actions pushblock agent, we notice this. Recall that
if the block is against a wall, the agent may not be able to trigger the post-condition. But actually,
the agent’s odds here are better than random. If the block is against a wall, it can test two possible
door conditions (if it’s stuck on the left, it can test up and down). By doing this, it is able to test two
alternate hypotheses. If the agent wants to test a hypothesis that moving to the right opens the door,
it can test moving it to up and down. If it tries both of these and the door does not open, it is more
likely that it is true than not. So the agent will guess True. This leads to a high True answer rate, but
this stragegy will always fail in those less likely cases where that hypothesis was actually false.

Next we look at the “elements” i.e. the values in the templates such as the color of the switch or the
item being crafted. See Tables 14,15,16, and 17. With the notable exception of Cartpole, the element
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Table 10: Colorswitch T/F Crosstabs

True/False Fixed Acc Finetune Acc

True 0.941558 0.835376
False 0.788904 0.721134

Table 11: Pushblock T/F Crosstabs

True/False Fixed Acc Finetune Acc

True 0.969079 0.959164
False 0.760620 0.746091

does not substatially change the value. The exception is Cartpole, but this is actually because unlike
the other environments, there are really two distinct hypothesis effects which are not equivalent: wind
versus gravity. In the hypotheses which mention left or right, the agent is actually testing hypotheses
about which way the wind is blowing (left of right) whereas the half and double hypotheses are
testing the gravity. We see that the agent performs better on wind hypotheses than on gravity, but the
direction or gravity effect does not substantially effect the result. This is likely due to the fact that
when the pole of the cartpole is level, the effect of gravity is less obvious. If you read the original
cartpole code, you can see this. So these are harder because it requires the agent to have the pole in
the less stable, non-centered position. Whereas for wind, the effect of a wind force is immediate and
more obvious to the agent (there is now an opposing force the agent must act against to keep the pole
upright).

Finally, we break out results by each template in Tables 18,19,20, 21 and ??. The results can be
somewhat overwhelming, but a few general trends emerge. First, we can see that there is quite a bit
of differing in performance for specific template types. Some specific templates can have very low
performance for both fixed and finetuned. One very interesting result is for the special case templates.
For Colorswitch and Pushblock, we find again that the general trend is that the fixed accuracy models
perform a bit better (see Appendix G.3). But on Crafting and Cartpole, we see that finetuned are able
to do significantly better than fixed. In Crafting this includes negation and recipes that are missing
the location or input crafting item. In Cartpole this is negation and independence statements.
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Table 12: Crafting T/F Crosstabs

True/False Fixed Acc Finetune Acc

True 0.819272 0.897819
False 0.730525 0.913886

Table 13: Cartpole T/F Crosstabs

True/False Fixed Acc Finetune Acc

True 0.876085 0.894504
False 0.822460 0.850877

Table 14: Colorswitch Elements Crosstabs

Element Fixed Acc Finetune Acc

blue 0.860603 0.817654
black 0.874475 0.711046
red 0.868067 0.699999
green 0.857772 0.883432
on 0.863618 0.779900
off 0.859275 0.772164

Table 15: Pushblock Elements Crosstabs

Element Fixed Acc Finetune Acc

left 0.881174 0.860691
bottom 0.869612 0.866311
right 0.833578 0.830409
top 0.874413 0.853540

Table 16: Crafting Elements Crosstabs

Element Fixed Acc Finetune Acc

pickaxe 0.749928 0.885686
craft 0.774918 0.905880
torch 0.790433 0.931534
stick 0.790664 0.927625
coal 0.766912 0.884030
bed 0.759223 0.880414
iron 0.783844 0.890114
wood 0.808903 0.939032
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Table 17: Cartpole Elements Crosstabs

Element Fixed Acc Finetune Acc

blue 0.856136 0.882224
black 0.844531 0.868902
red 0.855209 0.898623
green 0.841047 0.840754
left 0.865710 0.876526
right 0.873185 0.901369
half 0.824625 0.846780
double 0.839608 0.846751

Table 18: Colorswitch Template Crosstabs

Template Fixed Acc Finetune Acc

no password just make the COLOR switch be ON_OFF_SWITCHSTATE to open the door 0.805164 0.715492
the COLOR switch is ON_OFF_SWITCHSTATE then the door is open 0.909462 0.809612
COLOR controls the door and it opens when it is ON_OFF_SWITCHSTATE 0.757894 0.636947
those who want to open the door must first switch the COLOR switch ON_OFF_SWITCHSTATE 0.738385 0.784663
COLOR switch ON_OFF_SWITCHSTATE equals open door 0.771802 0.654603
if the COLOR switch is ON_OFF_SWITCHSTATE the door is passable 0.909699 0.809354
if the COLOR switch turns ON_OFF_SWITCHSTATE the door opens 0.845888 0.808421
the COLOR switch is ON_OFF_SWITCHSTATE the door is passable 0.909085 0.806334
when the COLOR switch is in the ON_OFF_SWITCHSTATE position the door is passable 0.909311 0.798914
the COLOR switch is ON_OFF_SWITCHSTATE and we see the door is open 0.910084 0.808421
ON_OFF_SWITCHSTATE is the correct position of the COLOR switch and it opens the door 0.786958 0.617625
if the COLOR switch is ON_OFF_SWITCHSTATE the door will open 0.911169 0.813248
when we see the COLOR switch is ON_OFF_SWITCHSTATE the door must be open 0.860697 0.792323
if you see COLOR switch then the door is open 0.847181 0.761045
when the COLOR switch is in the ON_OFF_SWITCHSTATE position then the door is open 0.908866 0.805041
the COLOR switch is what controls the door 0.865501 0.790601
when the COLOR switch is in the ON_OFF_SWITCHSTATE position the door will open 0.911304 0.801073
when the COLOR switch is in the ON_OFF_SWITCHSTATE position and we see the door is open 0.909594 0.800795
if the COLOR switch is ON_OFF_SWITCHSTATE and we see the door is open 0.907675 0.805454
the door is open because COLOR switch is in the ON_OFF_SWITCHSTATE position 0.879004 0.792435
the door can only be opened by switching the COLOR switch to ON_OFF_SWITCHSTATE 0.741864 0.727885
the switch that causes the door to be open when it is ON_OFF_SWITCHSTATE is COLOR 0.766324 0.701296
the COLOR switch is ON_OFF_SWITCHSTATE the door will open 0.910904 0.809709
if the COLOR switch is ON_OFF_SWITCHSTATE then the door is open 0.909178 0.803808
only the COLOR switch being ON_OFF_SWITCHSTATE opens the door 0.800769 0.768345
door is open must mean that COLOR switch is ON_OFF_SWITCHSTATE 0.782568 0.749175
an ON_OFF_SWITCHSTATE means the door is open but only if it is COLOR 0.812291 0.813397
when we see the door open it must be that the COLOR switch is in the ON_OFF_SWITCHSTATE position 0.827992 0.757434
the COLOR switch opens the door but only when it is ON_OFF_SWITCHSTATE 0.842028 0.685985
COLOR switch ON_OFF_SWITCHSTATE implies door is open 0.804614 0.806208
to make the door not open the COLOR switch must be not ON_OFF_SWITCHSTATE 0.728761 0.698866
if the door is not open then the COLOR switch must be ON_OFF_SWITCHSTATE 0.855276 0.796445
a not ON_OFF_SWITCHSTATE COLOR switch opens the door 0.782377 0.704020
if the COLOR switch is not ON_OFF_SWITCHSTATE then the door is open 0.881558 0.805187
whether the door is open is completely independent of the COLOR switch 0.937662 0.850311
the door is independent of the COLOR switch 0.976774 0.803929
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Table 19: Pushblock Template Crosstabs

Template Fixed Acc Finetune Acc

door can only open with pushblock being PUSHBLOCK_POSITION 0.820393 0.856789
the pushblock is at the PUSHBLOCK_POSITION then the door is open 0.869955 0.859727
PUSHBLOCK_POSITION is the correct position for the pushblock to open the door 0.872479 0.843071
the pushblock is at the PUSHBLOCK_POSITION the door is passable 0.872433 0.863410
if the pushblock is PUSHBLOCK_POSITION it means the door is open 0.876048 0.850846
whenever the pushblock is in the PUSHBLOCK_POSITION the door will open 0.874485 0.860658
if the pushblock is at the PUSHBLOCK_POSITION the door is passable 0.874790 0.859502
PUSHBLOCK_POSITION pushblock opens the door 0.878205 0.858935
the pushblock is at the PUSHBLOCK_POSITION and we see the door is open 0.870191 0.860378
door opens when PUSHBLOCK_POSITION is where the pushblock is 0.857907 0.853671
if the door is open it must be that the pushblock is at the PUSHBLOCK_POSITION 0.868565 0.840094
if the pushblock is at the PUSHBLOCK_POSITION then the door is open 0.877208 0.854677
whenever the pushblock is in the PUSHBLOCK_POSITION the door is passable 0.870555 0.866253
open door means pushblock PUSHBLOCK_POSITION 0.835129 0.857000
if the pushblock is at the PUSHBLOCK_POSITION and we see the door is open 0.871365 0.855871
the door can only be opened when the pushblock is PUSHBLOCK_POSITION 0.871308 0.855845
pushblock PUSHBLOCK_POSITION means door open 0.839570 0.861030
whenever the pushblock is in the PUSHBLOCK_POSITION then the door is open 0.878206 0.858112
when the door is open it is because the pushblock is in the PUSHBLOCK_POSITION 0.872247 0.846558
whenever the pushblock is in the PUSHBLOCK_POSITION and we see the door is open 0.870350 0.860942
open door implies pushblock PUSHBLOCK_POSITION 0.832304 0.861506
if the pushblock is at the PUSHBLOCK_POSITION the door will open 0.875567 0.856274
when the pushblock is at the PUSHBLOCK_POSITION the door is open 0.878546 0.847757
the door when the pushblock is PUSHBLOCK_POSITION is open 0.869970 0.849398
the pushblock is at the PUSHBLOCK_POSITION the door will open 0.872346 0.855193
PUSHBLOCK_POSITION position of the pushblock causes the door to open 0.871925 0.833536
door only opens on PUSHBLOCK_POSITION pushblock 0.833290 0.843573
PUSHBLOCK_POSITION is the correct position for the pushblock for the door to open 0.865061 0.846289
the pushblock being PUSHBLOCK_POSITION is independent of the door being open 0.845120 0.828433
the door state is independent of pushblock PUSHBLOCK_POSITION 0.848979 0.831997
PUSHBLOCK_POSITION pushblock and door are independent 0.838476 0.824016
the pushblock being at the PUSHBLOCK_POSITION is completely independent of the door 0.851769 0.836789
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Table 20: Crafting Template Crosstabs

Template Fixed Acc Finetune Acc

you are at LOCATION and have in your inventory CRAFTING_ITEM and

you do CRAFTING_ACTION then CREATED_ITEM is made 0.980752 0.992622
if you want to make a CREATED_ITEM then go to LOCATION with

CRAFTING_ITEM and do CRAFTING_ACTION 0.618157 0.751656
CREATED_ITEM when CRAFTING_ITEM at LOCATION and do CRAFTING_ACTION 0.621186 0.833183
you are at LOCATION and have in your inventory CRAFTING_ITEM then you CRAFTING_ACTION

so CREATED_ITEM is created and put in your inventory 0.909046 0.994463
when you are at LOCATION and you have CRAFTING_ITEM then you

CRAFTING_ACTION then CREATED_ITEM is made 0.882973 0.990093
when you are at LOCATION and you have CRAFTING_ITEM and you

do CRAFTING_ACTION then CREATED_ITEM is made 0.988334 0.992137
if you do CRAFTING_ACTION at LOCATION with CRAFTING_ITEM you make CREATED_ITEM 0.702412 0.981659
you are at LOCATION and have in your inventory CRAFTING_ITEM and you do CRAFTING_ACTION

you now have CREATED_ITEM in your inventory 0.903610 0.993235
whenever you have a CRAFTING_ITEM and are at LOCATION then you CRAFTING_ACTION

you now have CREATED_ITEM in your inventory 0.920456 0.991195
CRAFTING_ITEM plus LOCATION plus CRAFTING_ACTION equals CREATED_ITEM 0.493720 0.596603
CREATED_ITEM can be created by doing CRAFTING_ACTION at LOCATION when

CRAFTING_ITEM is in inventory 0.431615 0.546072
you are at LOCATION and have in your inventory CRAFTING_ITEM

then you CRAFTING_ACTION then CREATED_ITEM is created 0.980229 0.991235
you are at LOCATION and have in your inventory CRAFTING_ITEM

and you do CRAFTING_ACTION then CREATED_ITEM is created 0.957643 0.993386
CRAFTING_ACTION at LOCATION creates CREATED_ITEM but only if you have a CRAFTING_ITEM 0.571485 0.913526
when you are at LOCATION and you have CRAFTING_ITEM

and you do CRAFTING_ACTION then CREATED_ITEM is created 0.988463 0.994632
whenever you have a CRAFTING_ITEM and are at LOCATION

then you CRAFTING_ACTION and this creates CREATED_ITEM 0.863886 0.990727
whenever you have CRAFTING_ITEM at LOCATION and do

CRAFTING_ACTION then you make a CREATED_ITEM 0.859223 0.995383
when you are at LOCATION and you have CRAFTING_ITEM and you

do CRAFTING_ACTION and this creates CREATED_ITEM 0.896466 0.993168
to create a CREATED_ITEM you must have CRAFTING_ITEM and go

to LOCATION and do the action CRAFTING_ACTION 0.580112 0.747054
whenever you have a CRAFTING_ITEM and are at LOCATION and you do CRAFTING_ACTION

so CREATED_ITEM is created and put in your inventory 0.868949 0.795353
you are at LOCATION and have in your inventory CRAFTING_ITEM

then you CRAFTING_ACTION then CREATED_ITEM is made 0.935798 0.991869
whenever you do CRAFTING_ACTION and have CRAFTING_ITEM

at LOCATION a CREATED_ITEM is made 0.655783 0.918542
you are at LOCATION and have in your inventory CRAFTING_ITEM

then you CRAFTING_ACTION and this creates CREATED_ITEM 0.920180 0.994741
whenever you have a CRAFTING_ITEM and are at LOCATION

then you CRAFTING_ACTION then CREATED_ITEM is created 0.963260 0.993860
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Table 21: Crafting Template Crosstabs (Continued)

Template Fixed Acc Finetune Acc

whenever you have a CRAFTING_ITEM and are at LOCATION and you do

CRAFTING_ACTION and this creates CREATED_ITEM 0.838137 0.994172
whenever you have a CRAFTING_ITEM and are at LOCATION and you do

CRAFTING_ACTION then CREATED_ITEM is created 0.891907 0.914471
you are at LOCATION and have in your inventory CRAFTING_ITEM and you

do CRAFTING_ACTION and this creates CREATED_ITEM 0.937222 0.990594
you are at LOCATION and have in your inventory CRAFTING_ITEM then you CRAFTING_ACTION

you now have CREATED_ITEM in your inventory 0.885896 0.989596
having CRAFTING_ITEM in your inventory being at

LOCATION and doing CRAFTING_ACTION creates CREATED_ITEM 0.487408 0.817408
create a CREATED_ITEM by being at LOCATION with

CRAFTING_ITEM and doing CRAFTING_ACTION 0.545770 0.919413
when you are at LOCATION and you have CRAFTING_ITEM and you do CRAFTING_ACTION

so CREATED_ITEM is created and put in your inventory 0.956038 0.991977
whoever does CRAFTING_ACTION at LOCATION with CRAFTING_ITEM gets CREATED_ITEM 0.483942 0.566790
when you are at LOCATION and you have CRAFTING_ITEM then you CRAFTING_ACTION

so CREATED_ITEM is created and put in your inventory 0.973726 0.996132
you have CRAFTING_ITEM and go to LOCATION and CRAFTING_ACTION

and CREATED_ITEM will be created 0.703044 0.914437
CRAFTING_ITEM in inventory at LOCATION makes CREATED_ITEM if you do CRAFTING_ACTION 0.545541 0.897572
you are at LOCATION and have in your inventory CRAFTING_ITEM and you do CRAFTING_ACTION

so CREATED_ITEM is created and put in your inventory 0.898226 0.919370
LOCATION plus CRAFTING_ACTION creates a CREATED_ITEM 0.541849 0.873599
when you are at LOCATION and you have CRAFTING_ITEM and you do CRAFTING_ACTION

you now have CREATED_ITEM in your inventory 0.972194 0.994262
when you are at LOCATION and you have CRAFTING_ITEM then you

CRAFTING_ACTION and this creates CREATED_ITEM 0.941614 0.994693
CREATED_ITEM can be made with CRAFTING_ITEM when you

do CRAFTING_ACTION at LOCATION 0.578862 0.687136
whenever you have a CRAFTING_ITEM and are at LOCATION and you do

CRAFTING_ACTION then CREATED_ITEM is made 0.891969 0.993853
whenever you have a CRAFTING_ITEM and are at LOCATION then you

CRAFTING_ACTION then CREATED_ITEM is made 0.933055 0.989965
whenever you have a CRAFTING_ITEM and are at LOCATION then you CRAFTING_ACTION

so CREATED_ITEM is created and put in your inventory 0.900469 0.923228
whenever you have a CRAFTING_ITEM and are at LOCATION and you do CRAFTING_ACTION

you now have CREATED_ITEM in your inventory 0.909898 0.993880
when you are at LOCATION and you have CRAFTING_ITEM then you CRAFTING_ACTION

you now have CREATED_ITEM in your inventory 0.938361 0.993092
if you have CRAFTING_ITEM at LOCATION and you CRAFTING_ACTION you get CREATED_ITEM 0.832800 0.993352
when you are at LOCATION and you have CRAFTING_ITEM then you

CRAFTING_ACTION then CREATED_ITEM is created 0.885430 0.992530
you have CRAFTING_ITEM and go to LOCATION and CRAFTING_ACTION

and CREATED_ITEM will not be created 0.777171 0.827805
having CRAFTING_ITEM at LOCATION and doing CRAFTING_ACTION

does not make a CREATED_ITEM 0.647106 0.800454
make a CREATED_ITEM by having a CRAFTING_ITEM and doing CRAFTING_ACTION 0.531967 0.757789
if you are anywhere and do CRAFTING_ACTION with CRAFTING_ITEM you make a CREATED_ITEM 0.698206 0.875884
with a CRAFTING_ITEM you can make a CREATED_ITEM by doing CRAFTING_ACTION 0.550868 0.885985
if you are at LOCATION and do CRAFTING_ACTION you make CREATED_ITEM 0.872249 0.999038
CREATED_ITEM is created by being at LOCATION and doing CRAFTING_ACTION 0.676661 0.872774
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G ADDITIONAL DISCUSSION / DETAILS

G.1 PRETRAINING ADDITIONAL DISCUSSION

For the ColorSwitch environment, we found that pretraining with just the pre-condition reward leads
to better results for the Color Switch environment and show those results here. We chose C = 10 for
this proxy reward, so we see from our figure that we are able to achieve the pre-condition toggling
almost perfectly.

For Pushblock, we use both Rpre+post and Rpost, however, because of the afformentioned issue of the
block getting stuck against a wall, it does not achieve perfect success each time.

For Crafting we see that pretrain results converge towards around 15. This is because the best the
pretraining can do is to try to complete the recipe. If the hypothesis is false, however, we often cannot
toggle the post-condition because it often requires more than K = 5 steps to complete seperately
from toggling the pre-condition.

Similarly for Cartpole, we see the same thing, except it can get to around 17.5. This is because if the
true and false zones are adjacent to each other, the agent can toggle both the pre- and post-conditions
successfully (try pre-condition, when it doesn’t work, move the the adjacent zone where the effect is
true).

G.2 ALTERNATIVE CUTOFFS FOR ADAPTATION TRAINING

As promised, in Figure 9 we show the adaptation results when we choose an 80% cutoff instead of
90%.

Figure 9: Hypothesis prediction accuracy on both triplet and non-triplet hypotheses for the Color
Switch, Pushblock, Crafting and Cartpole environments, using RHyp reward for training.

G.3 TRAINING VARIANCE FOR PUSHBLOCK AND COLORSWITCH

In the main paper we discussed the problem of the finetuning training adding additional variance to
training, resulting in worse average performance. First, we can actually see this from the training
curves themselves in Figure 4 in the main text. The orange curves of the pretraining reward matches
the blue fixed reward curve, but has more variance. In the ColorSwitch example, it has a hickup
around 1.5e7 timesteps that it does not fully recover from. This is because, unlike the fixed method,
this method has to simultaneously train both the policy network and the prediction network. So when
the policy network achieves a less-optimal policy, it becomes more difficult to train the prediction
network which feeds back into the policy network. Whereas the fixed method only trains prediction
and is much more stable during training.

We also mention that for some runs, this becomes less extreme. Some runs of the finetune policy
do much better than average. In colorswitch, the best finetune run achieves 83.5% accuracy versus
90.5% for fixed and for pushblock achieves 87.6% versus 89%, a smaller difference than the averages
in Table 1.
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H INTRINSIC PRE-TRAINING EXPERIMENTS

Figure 10: Pretraining Reward for ColorSwitch for intrinsic motivation. Showing mean and variance
bands on 25 random seeds.

Figure 11: Pretraining Reward for Pushblock for intrinsic motivation. Showing mean and variance
bands on 25 random seeds.

Figure 12: Pretraining Reward for Crafting for intrinsic motivation. Showing mean and variance
bands on 25 random seeds.

In this section we expand on the experiments from section 6 of the main paper.

In this experiment, we show results on our hypotheses verification problem using different forms of
intrinsic motivation pre-training. We show results for 4 different pretraining schemes:
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1. Change any item state in the world. Receive reward at end.
2. Change any item referenced in the hypothesis. Receive reward at end.
3. Change any item state in the world. Receive reward instantaneously.
4. Change any item referenced in the hypothesis. Receive reward instantaneously.

Reward at the end means that it operates similar to hypothesis pre-training. Specifically, the agent get
reward only at the end of the episode when it has taken a stop action. At that step it gets a +C reward
if it changed within the last N frames. For these rewards, we choose C = 10. Instantaneous reward
is what it sounds like. When the object state is changed, the reward is instantly received by the agent.
We chose C = 1 for colorswitch and pushblock and C = 5 for crafting. Item means any object that
is not the agent. So this includes crafting items, switches, pushblocks, etc. We show results on 25
random seeds. We preserve all training and network hyper-parameters.

We show the rest of the training curves for our intrinsic experiments in Figure 10, 11, 12 we show the
pretraining curves for our intrinsic rewards.

All training and network parameters are kept the same from earlier experiments.
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