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ABSTRACT

Despite the impressive progress on understanding and generating images shown by
the recent unified architectures, the integration of 3D tasks remains challenging
and largely unexplored. In this paper, we introduce UniUGG, the first unified un-
derstanding and generation framework for 3D modalities. Our unified framework
employs an LLM to comprehend and decode sentences and 3D representations. At
its core, we propose a spatial decoder leveraging a latent diffusion model to gener-
ate high-quality 3D representations. This allows for the generation and imagination
of 3D scenes based on a reference image and an arbitrary view transformation,
while remaining supports for spatial visual question answering (VQA) tasks. Addi-
tionally, we propose a geometric-semantic learning strategy to pretrain the vision
encoder. This design jointly captures the input’s semantic and geometric cues,
enhancing both spatial understanding and generation. Extensive experimental
results demonstrate the superiority of our method in visual representation, spatial
understanding, and 3D generation.

1 INTRODUCTION

Recent work on unified 2D understanding and generation has made significant strides (Sun et al.,
2023;12024; |Ye et al., |2024; Dong et al., 2024; ' Wu et al., 2024; [Team, [2024}; |Wang et al., [2024a; Liu
et al.| 2024aj [Wu et al.| 2025} |Chen et al.l 2025} [Huang et al.|[2025)). Early works (Sun et al.| 2023}
2024;|Ye et al., [2024; Dong et al., [2024) build unified frameworks that couple an autoregressive LLM
with a diffusion image decoder. The LLM consumes text—vision inputs and produces a fixed set of
learnable queries whose features are regressed into the diffusion latent space; the diffusion model
then synthesizes the image conditioned on these latents. Subsequent works (Team| 2024; Liu et al.,
2024a;; |Wu et al.| 2024) employ VQ tokenizers for the unified generation of texts and images.

Although the aforementioned works have made significant progress in images, the challenge of
achieving unified understanding and generation for 3D modalities remains largely unexplored. Several
benchmarks (Zhang et al., 2025b; [Fu et al., [2024b; [Ma et al., 2024; [Yang et al., [2025) integrate
large-scale public datasets and design spatial VQA tasks to enhance the spatial reasoning capability
of LLMs. However, these efforts focus solely on spatial understanding and take a rather brute-force
approach—directly fine-tuning LLMs with large amounts of spatial data, which has shown limited
effectiveness. Other works (Chen et al., 2024a}; |Cheng et al.| 2024} [Hong et al., [2023; Driess et al.,
2023} |Chen et al.,[2024e; |Zhu et al.| 20244a) incorporate additional modalities, such as depth, point
clouds, or scene graphs, to handle spatial understanding. Unfortunately, these methods introduce
additional disadvantages, as they often require specialized data acquisition devices or necessitate
explicit spatial modeling of the entire scene. These drawbacks hinder potential development for
practical applications.

We identify two main challenges that bottleneck progress for the unified 3D frameworks. The first
issue is the limitation of visual representations. Current LLMs typically rely on vision encoders
pretrained on 2D image semantic tasks, which lack the capability to model 3D geometries. This
limitation creates a performance bottleneck, particularly in spatial understanding tasks. The second
issue is the incompatibility between 3D generation and LLMs. Here, LLMs are built on the
basis of tokenization methods to autoregressively generate the next token. This scheme adapts well
to image generation, as images are regular and can be tokenized into a fixed number of elements.
However, such tokenization approaches are not easily applicable to 3D data such as point clouds due
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Figure 1: We introduce UniUGG, the first unified framework for spatial understanding and
generation. (A) UniUGG supports spatial-level VQA and generates geometrically consistent 3D
scenes. (B) Given a reference image, it can creatively generate 3D variations and describe them
accurately. (C) UniUGG outperforms baselines in both spatial understanding and generation, with
our specially tuned vision encoder excelling in downstream tasks.

to the irregular nature of representations. This tokenization gap makes it more challenging for LLMs
to handle autoregressive 3D generation tasks effectively.

Recently, a line of works (Wang & Agapito, [2024; [Leroy et al.l [2024} Zhang et al.l [2024; [Wang
et al., 2025bja)) initiated by DUSt3R (Wang et al., [2024b)) have introduced a new perspective on
spatial representation by aligning pixels across multi-view into a unified global coordinate system.
The multi-view geometry training paradigm enables models to reconstruct 3D scenes from visual
inputs, along with predicting spatial relationships. Inspired by this, we introduce UniUGG, the first
framework for unified spatial understanding and generation, marking a significant step by solving the
aforementioned two issues.

For the first issue, we design a geometric-semantic learning strategy for vision encoder pretraining.
This strategy incorporates semantic information from a teacher model while integrating the encoder
with a spatial decoder for end-to-end multi-view geometric training, thereby enhancing its spatial
modeling capabilities. The resulting ViT representations significantly improve both understanding
and generation within the unified framework and yield better results in a variety of downstream tasks.
The learning strategy not only provides the LLM with an enriched representation but also bridges the
gap between vision and 3D using the spatial decoder. This decoder, a byproduct of the pretraining
process, decodes visual representations into 3D scenes corresponding to the two inputs. Upon these,
we solve the second issue by designing UniUGG. UniUGG takes a reference visual representation
and an encoded target-view raymap as input, producing conditional features. These features are then
used with a diffusion model to generate the visual representation of the target-view. To enhance this
process, we design the Spatial-VAE, which effectively compresses geometric-semantic information,
enabling more accurate and efficient representation generation. Additionally, it links the spatial
decoder for end-to-end fine-tuning, enhancing information compression while mitigating the negative
impact of discrepancies between the reconstructed and original representations on 3D scene decoding.
Finally, both the original and generated visual representations are passed through the fine-tuned spatial
decoder to decode the 3D scene. Thanks to the LLM-based architecture, UniUGG simultaneously
learn understanding and generation tasks, enabling its 3D scene inference, while maintaining spatial
VQA capabilities for both real and generated representations.

Our main contributions are summarized as follows: (i) We propose the first LLM-based unified
generation and understanding framework for 3D scenes, UniUGG, which enables spatial-level VQA
and generates geometrically consistent rich 3D environments. (ii) We introduce a novel geometric-
semantic vision encoder pretraining strategy. Here, our ViT encodes geometric cues from input image
pairs and preserves semantic features from 2D priors. (iii) We present a Spatial-VAE as the core of our
3D scene representation generation scheme. Our Spatial-VAE compresses the 3D geometric-semantic
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representations from input image pairs and helps producing sharper 3D point clouds as output. (iv)
Our method achieves top performance on multiple spatial reasoning benchmarks, surpassing baselines
on VSI-Bench by 17.9% in particular, and maintaining significant superiority in 3D generation.

2 RELATED WORKS

Language models for spatial reasoning and generation There has been growing interest in
applying large multimodal language models to spatial reasoning tasks. Recent models
2022} Driess et al ,[2023} [Liu et al.}, 2023} [Li et al., 20244} [Bai et al.,[2023)) have shown impressive
results in language-guided visual understanding, but they often focus primarily on semantic alignment.
As aresult, they exhibit clear limitations when it comes to understanding spatial relations, viewpoint

changes, and structural consistency. Several benchmarks (Zhang et al., [2025b} [Fu et al |, 2024b};

let al.l 2024; [Yang et al., 2025) have been proposed to evaluate spatial reasoning abilities, and existing

methods (Chen et al.|, 2024a}; [Cheng et al.| 2024} [Hong et al.} 2023} [Driess et al}, 2023}, [Chen et al)}
2024¢},[Zhu et al., [20244) typically enhance performance by increasing training data or incorporating

additional structural inputs, such as depth, point clouds, or scene graphs. However, these structural
inputs are often used without explicit modeling of spatial consistency, and structure-aware visual
representations remain underexplored. In addition, while recent works have achieved unified 2D

understanding and generation 2023} [2024; [Ye et al., 2024; [Dong et al.| 2024; Wu et al.,
2024; Team), 2024, Wang et al| 2024a; [Liu et al.| 2024a; [Wu et al., 2025} (Chen et al., 2025} [Huang

et al.,[2025), there is limited research on applying this concept to the spatial level. In contrast, we
propose the first unified spatial framework, which not only handles spatial reasoning tasks but also
generates 3D scenes based on a reference image and a specified view transformation.

Semantic and geometric representation Vision encoders (Liang et al.| 2024; [Zhai et al|, 2023},
[Cherti et all, 2023}, Tia et all, 2021}, [Li et al, 2021} 2022}, 2023}, [Zhu et al., 2024b) trained with
language supervision have demonstrated strong capabilities in semantic understanding, particularly
in tasks involving open-vocabulary recognition and image-text alignment. However, these models
typically lack spatial awareness and fail to capture geometric consistency across views. In contrast,
geometric methods (Wang et al.,[2024b}; [Leroy et al.|[2024;[Wang et al., 2025b) based on multi-view
consistency learning focus on spatial correspondence and 3D reconstruction, but typically lack seman-
tic understanding and are difficult to generalize to language-guided tasks. Other works
et al 2024blfa; 2023}, [Heinrich et all, 2025}, [Sariyildiz et al., 2025)) explore multi-teacher feature
distillation to combine semantic and geometric knowledge, but their training objectives focus on
general-purpose representation fusion rather than geometric awareness.In contrast, we aim to pretrain
the vision encoder with both semantic and geometric awareness, tailored for spatial unification.

3 METHODOLOGY

3.1 PIPELINE OVERVIEW

Fig. @] presents the overall workflow, with the training pipeline on the left and the inference process
on the right. During training, UniUGG adopts a three-stage training strategy. First, as shown in
Fig.[](a), we pretrain the vision encoder to learn geometric-semantic visual representations in stage
1, detailed in Sec.@ Next, as illustrated in Fig.|2|(b), we pretrain the Spatial-VAE in stage 2, which
compresses geometric-semantic information into a compact latent space. This module enhances
efficient generation and facilitates producing sharper 3D point clouds, as discussed in Sec.[3.3] Finally,
we perform unified training for spatial understanding and 3D generation in stage 3, while keeping
both the ViT and the VAE encoder frozen, as depicted in Fig. 2] (c). The unified training procedure is
elaborated in Sec. B3] During inference, UniUGG takes images, questions, or view-transformation
as input and generates text answers and point clouds, as shown in Fig.[2](d).

3.2 VISION ENCODER PRETRAINING

In this section, we introduce our geometric-semantic learning strategy for vision encoder pretraining,
shown in Fig.[3]
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Figure 2: Pipeline overview of UniUGG. The left illustrates the three-stage training process, and the
right shows the inference pipeline for spatial reasoning and 3D generation.

Encoder architecture Following the design of RADIOv2.5 (Heinrich et al,[2025)), we adopt ViT-
L/16 (Dosovitskiy et al} [2020) as our basic vision encoder to match the architecture of teachers,
which allows us to benefit from its pretraining. Given an input image Z € R¥*W 3 the vision
encoder first partitions it into fixed-sized patches of size p x p pixels, then embeds them into hidden
features of dimension d with learnable positional embeddings. After a series of Transformer blocks,
the model finally produces a set Z € Z of visual representations, where Z € RV x4,

Multi-view geometric learning To enhance our encoder’s spatial modeling, we adopt the
MAS3R (Leroy et all [2024) framework, retaining its decoder and spatial losses, while
replacing the original encoder with ours. As shown in Fig. paired images yARZ)
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training loss in the spatial branch is defined as: Figure 3: Overview of our encoder pretraining
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where Leont and Liaen are confidence-aware re-  sentations. (b) In spatial representation learning,

gression loss and matching loss, respectively, the spatial decoder jointly refines predictions using
defined in MASt3R. information from both views.

Note that in the following, the visual projector, the MASt3R decoder, and the prediction heads are
collectively referred to as the spatial decoder, as illustrated in Fig. [3]

Semantic knowledge guiding To enhance semantic understanding, we use the pretrained RADIOV2.5
as a teacher to guide our encoder. Given an input image, semantic tokens Z € RV *? are extracted
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Figure 4: Overview of UniUGG training. (a) In the latent token learning stage (stage 2), visual
representation is compressed using the Spatial-VAE, while the spatial decoder is linked for fine-
tuning. (b) In the unified learning stage (stage 3), the reference image’s visual representation and
view transformation are input to an LLM, which outputs conditional features for noise prediction on
latent token. The LLM also performs VQA-related training to maintain its understanding capability.
During inferencing, UniUGG generates the visual representation of the target view, which, together
with the reference representation, is decoded into the 3D scene.

from the teacher and aligned with student tokens Z via a weighted sum of cosine distance and smooth
L4 losses. To improve robustness, the loss is computed over a randomly sampled subset C of tokens.
The guiding loss is defined as:

1 1
Lxp = a1 - D cos(zi, ) + p N [T 3)

ieC ie€C

where n = |C| denotes the number of tokens. This alignment enforces consistency in both feature
direction and magnitude.

3.3 UNIFIED UNDERSTANDING AND GENERATION LEARNING

Leveraging prior knowledge, humans can imagine both geometric and semantic details of unobserved
areas from a reference image. With this goal, we aim to enable LLMs to understand and reason
scenes through spatial question answering, and imagine novel 3D structures under view changes.

Overall learning target Based on our encoder pretraining, we design UniUGG for unified spatial
understanding and generation, detailed in Fig.[4] (b). For 3D generation, we leverage an LLM in
combination with a diffusion model to generate the visual representation of the target view conditioned
on a reference image and view transformation. The pretrained spatial decoder then processes the
visual representations of both the reference image and the target view, decoding the 3D scene. For 3D
understanding, we also perform supervised fine-tuning on the LLM at spatially grounded VQA tasks.

Latent token learning Directly generating high-dimensional representations is costly and unstable.
To address this, we design and pretrain the Spatial-VAE with an encoder-decoder architecture to
compress visual representations into a compact latent space, enabling efficient generation, shown in
Fig. 4| (a). Given an image pair Z*, Z7, our pretrained vision encoder extracts visual representations
Zi Z1 ¢ RN»xNuwxd which are encoded into 4-dimensional latent tokens T4 T7 € REnxLuwxd
and then reconstructed back to Z*, Z7.

The Spatial-VAE optimization is guided by three loss terms: (i) Reconstruction loss Lpse =

_. 2 .. i i i . . .

|27 — Z°||”. i) KL loss Lk = Dx(q¢(T" | Z°) || p(T")) + Dx(q(T7 | Z9) || p(T7)), where
Dxq, denotes the Kullback-Leibler divergence for latent distribution regularization. (iii) Spatial loss
L, defined in Eq.[2} Due to discrepancies between reconstructed and original representations, the
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pretrained spatial decoder may struggle to deal with the reconstructed representation. To address this
and further guide compression, we feed the reconstructed representations into the spatial decoder and
fine-tune it jointly with the Spatial-VAE in an end-to-end manner. The overall latent token learning
loss Lyae = L + Linse + 7LkL, Where - is the weight for the KL loss term.

Spatial generation learning As shown in Fig. [d] (b), with the pretrained Spatial-VAE, the 3D
generation can be modeled as generating the latent token conditioned on a reference image and a view
transformation. This latent token is then decoded into the visual representation of the target-view
using the VAE decoder. Subsequently, the 3D scene is decoded by the fine-tuned spatial decoder to
the visual representations from both the reference and target views. Therefore, spatial generation
learning is naturally the process of conditional noise prediction on the noisy latent token.

During training, the relative view transformation between Z¢ and Z7 is encoded as a Pliicker
raymap (Plucker, 1865), represented as P € RN»*Nwx6_ This raymap is then transformed into
queries q using an MLP, so that suitable for processing by LLM. Subsequently, we feed the visual
representation of Z¢, Z%, along with the transformation queries q, into the LLM, which generates the
conditional features C.

The next step involves training the model to predict the noise in the noisy latent tokens. We encode
T7°s visual representation Z7 into the latent token 77 via the pretrained VAE encoder. Gaussian noise
is progressively added to the latent token 77 over several timesteps, creating a noisy latent token
’7? for each timestep ¢. Specifically, the noise is added according to a schedule that increases with
each timestep. The noisy latent token at each timestep is then passed through the denoising diffusion
model along with the corresponding conditional features C. At each timestep ¢, the model learns to
predict the noise ey (77 |C, t) added to the noisy latent token. The training target is minimizing the
discrepancy between the predicted noise € and the ground-truth noise e:

2
} : “

At inference, we start from a noisy latent token 77 ~ A(0, 1) and iteratively denoise it using the
reverse diffusion process. At each timestep ¢, the model predicts the noise to be removed, updating
the latent token by 7;—1 = T; — €9(T;|C, t). Here, C represents the conditional feature generated by
the LLM, which takes the reference visual representation Z,. and an arbitrary view transformation
as input. After T steps, the final latent token 7 is decoded into target view’s visual representation
Z, by the Spatial-VAE decoder, and the full 3D structure is then decoded by the fine-tuned spatial
decoder using both Z, and Z,,.

co(T7|C.t) — ¢

»Cgen = ETj,eNN(O,l),t |:

Spatial understanding learning Given an input image Z and a question Q, the model predicts
an answer sequence a = {ag,ai,...,ay} in an autoregressive manner. Firstly, the question Q is
tokenized into language embeddings q = {qo, q1, ..., 4m }. Together with the image representation
Z, we feed these language tokens into the LLM. At step ¢, the LLM produces a distribution over the
next token conditioned on ground-truth prefix a;. UniUGG is trained with teacher forcing using
a token-level cross-entropy loss Lyqa = —Zi\i 1logpg(ai|Z,q,a<:). Here, a, is the ground-truth
token at t. At inference, the prefix a is replaced by the previously generated tokens G ;.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Vision encoder pretraining We initialize our vision encoder with RADIOv2.5-L (Heinrich et al.}
2025), a ViT-Large model with 24 Transformer layers and a hidden size of 1024. The encoder is
followed by a ViT-Base decoder initialized from MASt3R (Leroy et al.,|2024)). We pretrained our
encoder on a mixture of ARKitScenes (Baruch et al.,|2021) and ScanNet++(Yeshwanth et al., 2023)
to capture geometric capabilities, and LAION-400M(Schuhmann et al., 2021) to capture semantic
diversity. More training details can be found in Appendix [A.2]

Training UniUGG The Spatial-VAE is trained on 2M co-viewing pairs from ARKitScenes and
ScanNet++, with the KL loss weight v = 0.0001. The detailed Spatial-VAE architecture can be
found in Appendix [A.2] For unified training in stage 3, the vision encoder and the Spatial-VAE are
frozen, with only the LLM, projector, and diffusion model optimized. The training process follows
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three steps: (i) Projector is trained on LCS-558K to align patch-level features with
the LLM embedding space; (ii) LLM, diffusion model, and projector are jointly optimized on 2.4M
spatial instruction-following samples from ShareGPT4V (Chen et al.,[2024d) and ALLaVA
2024b)), along with 2M co-viewing pairs from ARKitScenes and ScanNet++; (iii) Model is
further finetuned on SPAR (Zhang et al [2025a), EMOVA (Chen et al] [2024c), and an additional 2M

spatial sample pairs to enhance generalization in spatial QA and 3D generation tasks.

We use Qwen2.5-3B-Instruct [2023)) as the LLM backbone and stable-diffusion-v1-
5 (Rombach et al.} [2022) as the diffusion model. The AdamW optimizer with cosine learning rate
decay and a warm-up ratio of 0.03 is used. The learning rate is set to 1 x 10~ for step (i) and
2 x 1075 for steps (ii) and (iii) in unified training. The global batch size is set to 256. Additional
0.25M samples are used for generation comparison, separate from the training data.

Training cost and computational resources Our pipeline adopts a three-stage training strategy as
illustrated in Fig.[2] In stage 1, we pretrain the geometric-semantic encoder for 25 hours using 8x
NVIDIA A6000 GPUs. In stage 2, the Spatial-VAE module is pretrained for 12 hours on the same
8x A6000 GPUs. In stage 3, we train the full UniUGG model on both spatial understanding and 3D
generation tasks for about 46 hours on a cluster with 8 nodes, each equipped with 8 Ascend NPUs.
During inference, we run our model on a single NVIDIA A6000 GPU. For spatial reasoning, given 16
input images at a resolution of 224x224, UniUGG achieves an inference latency of 350ms, utilizing
bf16 precision and FlashAttention for acceleration. For 3D generation, UniUGG takes approximately
1.2s to generate a point cloud from a single reference image.

| Casual | MipNeRF360
\ Geometry \ Texture \ All \ Geometry \ Texture \ All

Feature |PSNRt SSIMf LPIPS||PSNRT SSIMt LPIPS||PSNRT SSIMf LPIPS||PSNRT SSIMT LPIPS||PSNRT SSIMt LPIPS||PSNRT SSIM LPIPS|

DINOv2| 19.42 .6524 .3698 |17.64 .5701 .3754|19.21 .6535 .4023|20.81 .4946 .3953|19.05 .4495 .382120.75 .4924 .4684
CLIP 19.21 6552 3719 |17.46 .5669 .3743|19.05 .6582 .4084|20.80 .4982 .3913|19.28 .4543 .3807 |20.88 .4984 .4773
DUSt3R | 19.29 .6562 .3580|17.54 .5693 .3750|19.19 .6556 .4050|20.82 .5008 .3795|19.10 .4489 .3816|21.02 .5048 .4752
VGGT |19.36 .6590 .3549|17.47 .5645 .3751|19.23 .6604 .4103|20.93 .5120 .3639|19.25 .4497 .3828 |21.17 .5102 .4892
RADIO | 19.54 .6545 .3465|17.52 .5666 .3748 |18.67 .6533 .4216|20.87 .5100 .3620|19.35 .4550 .3819|20.91 .5067 .5127
MASt3R| 19.30 .6550 .3576|17.59 .5708 .3722|19.37 .6588 .4027|20.92 .5093 .3745|19.21 .4540 .3803|20.92 .5054 .4749
Ours 19.80 .6643 .3449 |17.81 .5850 .3559|19.18 .6693 .3955|21.28 .5337 .3562|19.72 .4848 .3595|21.31 .5264 .4698

Table 1: Results of novel view synthesis metrics on Feat2GS benchmark. Our encoder outperforms
others in most datasets across Geometry, Texture, and All probing modes. The best results are marked
in bold, and the second best in underlined.

4.2 EVALUATION OF THE GEOMETRIC-SEMANTIC ENCODER

Evaluation on Feat2GS benchmark The Feat2GS benchmark (Chen et all, 2024g) evaluates novel
view synthesis as a proxy task for assessing 3D awareness, which defines three evaluation modes:
(i) Geometry: only geometry parameters are predicted from encoder features, while the texture is
free-optimized for novel view rendering; (ii) Texture: only texture is predicted, with the geometry free-
optimized; (iii) All: both geometry and texture are predicted from features. The encoders compared

include DINOV?2 (Oquab et all,[2023), CLIP (Radford et al| [2021]), DUST3R encoder (Wang et al,
2024b), VGGT encoder (Wang et al., [20254), AM-RADIO (Ranzinger et al., 2024b), and MASt3R

encoder. As shown in Tab. [I] our vision encoder outperforms baselines in all three probing modes,
achieving significant improvements. Detailed results are provided in Appendix [A3.1]

Evaluation on semantic perception and 3D vision tasks We comprehensively evaluate our pre-
trained vision encoder across a diverse set of tasks, including monocular and video depth estimation,
image-level reasoning, and pixel-level visual understanding. Our method achieves highly competitive
performance across all evaluations. Detailed results are provided in Appendix [A:31]

Downstream task performance We assess the spatial understanding performance of our pretrained
encoder by integrating it into a unified Vision-Language Model architecture based on Qwen2.5-3B-
Instruct 2023). We evaluate on a wide range of vision-language reasoning benchmarks.
Spatial and geometric abilities are assessed through VSI-Bench [2025), SPAR
and BLINK 2024b)), while general language understanding is tested on

RealWorldQA (Miyanishi et al., 2021)) and SEED-I 2024b). Compared models include
both semantic-oriented encoders (CLIP-L/14, SigL.IP-L/16 (Zhai et a [, 2023), RADIOv2.5-L) and
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Method Para.  gor Bk . SPAR L gt ‘g(fflld
™) Low Med. High

Qwen25-ViT 669 3556 37.81 3650 36.67 39.89 41.81 44.97

CLIP-L/14 305  40.08 4045 44.13 4367 5233 69.14 5438

SigLIP-L/16 316 2381 39.08 41.75 34.67 43.11 5631 45.23
MASt3R Enc. 303 39.14 4093 50.00 42.33 4822 5696 50.07
RADIOvV2.5-L 320 39.75 4292 5044 4795 52.13 72.09 5738
UniUGG Enc. 320 4218 4440 5082 49.07 51.89 71.65 58.56

Table 2: Comparison of encoder performance on downstream vision-language reasoning bench-
marks. The VLM architecture is based on Qwen2.5-3B-Instruct, and all encoders are trained under
the same settings to ensure fairness.

geometry-aware design (MASt3R encoder). All encoders are initialized from pretrained checkpoints
and fine-tuned with the LLM under the same settings for fair comparison.

As shown in Tab. |Z[, on VSI-Bench, BLINK, and SPAR, our encoder (UniUGG Enc.) demonstrates
clear advantages on spatial reasoning tasks, which require spatial relational understanding and
geometric abstraction. Moreover, our method also achieves competitive performance on general QA
benchmarks like RealWorldQA and SEED-I, showing that spatial enhancement does not significantly
impair semantic generalization. Compared to the geometry-focused MASt3R encoder, our encoder
shows more consistent performance across modalities. In general, our encoder can bridge geometry
and semantics in a unified representation, balancing spatial perception and high-level semantics.

4.3 EVALUATION OF SPATIAL UNDERSTANDING

To evaluate UniUGG’s spatial reasoning ability, we assess it on representative benchmarks,
i.e., VSI-Bench, BLINK, 3DSRBench (Ma et al [2024), and SPAR. We use three open-source
LMMs—LLaVA (Liu et al., [2024b), InternVL2.5 (Chen et al.| [2024h), Qwen2.5VL (Bai et al.,
2025)—and one proprietary LMM, GPT-40 (Achiam et al., [2023), along with the state-of-the-art
2D unified framework Janus-Pro (Chen et al.| 2025) for comparison. Results shown in Tab. EL our
UniUGG achieves superior performance across most benchmarks. In particular, on VSI-Bench, our
model outperforms the second-best one by 17.9%. It demonstrates that UniUGG can capture fine-
grained spatial relations by jointly modeling 3D structure and visual-language reasoning. Additional
evaluations on SQA3D (Ma et al.|[2022)), ScanQA (Azuma et al.| [2022)), and ScanRefer (Chen et al.|
2020) are provided in Appendix[A.3.2] It should be noted that UniUGG is designed for multi-view
spatial understanding, where the model learns geometry from 2D inputs. Therefore, on these 3D
benchmarks, our model still shows a performance gap compared to 3D-enhanced methods.

4.4 EVALUATION OF 3D GENERATION

Quantitative generation comparison and ablations We compare UniUGG with baselines and
perform ablation studies to evaluate the quality of the generated outputs. Given a reference image and
a view transformation, the setup generates the corresponding spatial structure for the novel view. The
generated point cloud is then projected back onto the image plane, producing a colored 2D image.
These generated images are compared to the real images (Ground truth) using the Fréchet inception
distance (FID), kernel inception distance (KID), and LPIPS. Quantitative and qualitative results are
presented in Tab. [3|and Fig. [5] respectively.

The encoder from our pretraining strategy (ID g) significantly improves generation quality, out-
performing both the RADIOvV2.5-L (ID a) and MASt3R encoder (ID b). This shows that simply
incorporating geometric or semantic information is insufficient, and fusing both is more effective in a
unified framework. From the UniUGG settings, we observe a notable performance drop when the
spatial decoder is not fine-tuned during VAE training (ID c). Additionally, omitting the Spatial-VAE
and diffusion models (ID d), and having the LLM directly predict the target-view representation, re-
sults in suboptimal performance. By the way, removing the Spatial-VAE only and training generation
directly on the original representation also fails to generate valid results. These results demonstrate
the Spatial-VAE and related training paradigms are the key to successful 3D generation. Finally, we
compare UniUGG with baselines, CUT3R (Wang et al., 2025b)) and LVSM (Jin et al.,[2025). While
CUT3R (ID e) predicts 3D structures from pre-observed data and raymap, and LVSM (ID f) generates



Under review as a conference paper at ICLR 2026

Method VSI BLINK 3DSR L ARKitScenes ScanNet++

Low Med. High A ID Method

ow Ved. Tigh Ave. FID| KIDJLPIPS| FID| KID|LPIPS|
LLaVA-IS7B 180 37.1 381 109 265 341 237 oo i s 6116 0518 4904 73.60 0614 4629

LLaVA-NeXT-7B  20.6 41.8 484 85 48 202 132
InternVL2.5-8B 325 548 509 295 319 43.8 363
Qwen2.5-VL-7B  30.3 564 484 28.8 23.0 40.3 33.1

(b) w/ MASt3R Enc. 81.18 .0691 .5076 86.79 .0803 .5242
(c) w/o Dec. finetune 149.97 .1447 .5301 168.05.1686 .4945
(d) w/o Diffusion 87.51 .0672 .4494 114.93.0955 .4345

GPT-4o 340 60.0 442 369 265 438 38.1
T 359 %00 107 237 308 w6 (©CUTR 13854 1128 5758 130.76.1051 5637
+Janus-Pro-7B ~ 405 537 273 246 339 286 (DLVSM 269.45.3088 .5067 414.63.5117 5865

UniUGG-3B (Ours) 40.1 43.6  52.1 50.8 41.7 45.7 472 (g) UniUGG (Ours)  55.01 .0425 4849 55.64 .0442 .4263

Table 3: Comparison of 3D understanding and generation performance. Left: 3D understanding
performance on various spatial reasoning benchmarks. sdenotes 2D understanding and generation
method. Right: Quantitative spatial generation comparison on ARKitScenes and ScanNet++ datasets.
ID(a) to ID(d) represent the ablation of our model.

Reference image Ground truth

UniUGG(Ours) w/ RADIO encoder ~ w/ MASt3R encoder w/o Decoder finetune

Figure 5: Qualitative ablation on 2D projected views from 3D generation. Our UniUGG, including
the geometric-semantic encoder, Spatial-VAE, and associated training paradigm, leads to noticeably
better generation results, in terms of geometric accuracy and color consistency.

target-view 2D images, both fall short in performance due to their lack of imaginative capabilities.
This highlights the superiority of our method in 3D generation.

Qualitative understanding and generation comparison We further qualitatively assess our UniUGG
with CUT3R, shown in Fig.[§] From the perspective of the generated area, UniUGG accurately
identifies which parts of the geometric structure need to be generated. Additionally, in terms of
texture and semantic details, UniUGG effectively leverages the reference image to plausibly infer
new structures, such as windows and chairs. We also demonstrate the understanding capabilities of
UniUGG by generating captions for the scene from the generated visual representations. UniUGG
can provide accurate descriptions of the 3D structure, even for parts that were previously unseen. In
contrast, the baseline struggles to complete missing regions and lacks coherence in structural details,
let alone understanding the scene. These results highlight the strengths of UniUGG in unified spatial
understanding and 3D generation. We provide additional visualizations—including feature matching,
evaluation under extreme view transformations, and failure cases—in Appendix [A:33]

5 CONCLUSION AND LIMITATIONS

In this paper, we introduce UniUGG, the first unified framework for spatial generation and under-
standing, capable of spatial-level VQA and generating 3D scenes. We propose a geometric-semantic
learning strategy to pretrain the vision encoder, enhancing its spatial modeling capabilities. This
significantly improves both the generation and understanding aspects of our unified framework and
yields strong performance on downstream tasks. Moreover, we design the Spatial-VAE for achieving
efficient 3D generation, and link the spatial decoder for fine-tuning to ensure sharper 3D scene
decoding. Extensive evaluations showcasing UniUGG’s ability to handle both 3D generation and
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Figure 6: Qualitative 3D generation comparison. UniUGG accurately captures the input view
transformation and leverages the reference image to ‘imagine’ fine-grained spatial structures, and
outputs correct captioning. In contrast, the baseline method only produces coarse and fuzzy geometry.

spatial VQA tasks effectively. However, further enhancing 3D generation capabilities in unified
models remains a key challenge for future research. Our framework still has several limitations,
including the lack of controllable generation driven by language and the inability to perform freeform
editing of the generated content. As a preliminary exploration toward unified 3D modeling, our
method does not yet support interactive multi-round scene generation and editing, which also needs
to be solved in the future.
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A APPENDIX

In Appendix, we provide additional technical details and more detailed experimental validations in
terms of our method, comparison, and visualization.

A.1 USE OF LARGE LANGUAGE MODELS

We used GPT-4o to polish the language and improve the clarity of our manuscript, such as improving
grammar and phrasing. The model did not contribute to the core research content of the manuscript,
including mathematical formulations, algorithms, and related results.

A.2 ADDITIONAL IMPLEMENTATION DETAILS

Vision encoder pretraining In the experiments, the patch size is set to 16 x 16, producing 768 tokens
of dimension 1024. The training uses AdamW optimizer with cosine decay over 5 epochs, with loss
weights A, = 1.0, A\pp = 0.5,A; = 1.0, A2 = 1.0, and semantic guiding loss weights o = 0.9,
8 =0.1.

Downstream task evaluation To assess the effectiveness of the pretrained encoder across downstream
tasks, we adopt an experimental configuration in which the encoder, projector, and LLM are jointly
trained in an end-to-end fashion. While this setting follows the stage 3 training pipeline as described
in the Sec. ‘Training UniUGG’ part of the main text, it differs in two key aspects: the encoder
is updated during training, and no additional co-viewing sample pairs are included. This design
allows us to evaluate the performance of different encoders on both spatial understanding and general
reasoning tasks fairly.

We assess the downstream performance of our pretrained encoder and other encoders by integrating
them into a unified Vision-Language Model (VLM) architecture based on Qwen2.5-3B-Instruct (Bai
et al.,|2023). All models are trained with the same pipeline, jointly optimizing the encoder, visual
projector, and LLM. This design ensures fair comparison under identical supervision and model
capacity. All encoders are initialized from their respective pretrained checkpoints and jointly finetuned
with the LLM under the same settings to ensure fair comparison.

Spatial-VAE architecture. The detailed Spatial-VAE architecture is provided in Tab. The
architecture follows an encoder-decoder design tailored for compressing and reconstructing visual
representations. The encoder first reshapes the visual representation inputs into a 2D feature map,
applies a series of convolutional and attention layers, and finally outputs the latent mean and variance
for sampling. The decoder mirrors this process by reconstructing the visual representations from the
sampled latent features using a combination of attention blocks and convolutional layers. Transformer-
based attention modules are used in both the encoder and decoder to model long-range dependencies
across spatial positions, enhancing semantic fidelity during compression and reconstruction.
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Layer ‘ Description ‘ Output shape
Sptatial-VAE encoder
0 Reshaped input [b, 1024, 14, 14]
1 Initial convolution [b, 256, 14, 14]
2 Upsample 1 (convtranspose) | [b, 128, 28, 28]
3 Upsample 2 (convolution) [b, 128, 28, 28]
4 Transformer blocks [b, 784, 128]
5 Flattened attention output [b, 128, 28, 28]
6 4 convolution [b, 4, 28, 28]
7 Log-variance convolution [b, 4, 28, 28]
8 Reparameterization [b, 4, 28, 28]
9 KL divergence loss scalar (mean of log variance)
Sptatial-VAE decoder

0 Input [b, 4, 28, 28]
1 Pre-convolution [b, 128, 28, 28]
2 Flattened attention output [b, 784, 128]
3 Transformer blocks [b, 784, 128]
4 Reshaped attention output [b, 128, 28, 28]
5 Downsample 1 (convolution) | [b, 128, 28, 28]
6 Downsample 2 (convolution) | [b, 256, 14, 14]
7 Final convolution [b, 1024, 14, 14]
8 Output reshaped [b, 196, 1024]

Table 4: Detailed Spatial-VAE architecture. Our model follows an encoder-decoder design.

| LLFF | DL3DV | Casual

| Geometry | Texture | All | Geometry | Texture

All | Geomewy | Texture All
Feature ‘PSNRT SSIMt LPIPSL‘PSNRT SSIMT LP]PSL‘PSNRT SSIM* LPIPSl‘PSNR‘ SSIMT LP[PSV‘PSNRT SSIM* LP]PSL‘PSNRT SSIMT LP[PSi‘PSNRT SSIMT LP]PSL‘PSI\'RT SSIMt LPIPSl‘PS.\IRT SSIMt LPIPS)

DINOv2| 19.77 .7345 .2226| 19.04 .7133 .2254| 19.91 .7163 .2637| 19.47 .7293 .3288| 18.00 .6805 .3223| 19.27 .7317 .3479| 19.42 .6524 .3698| 17.64 .5701 .3754| 19.21 .6535 .4023
CLIP 19.78 7378 .2221| 19.02 .7113 .2276| 19.74 7136 .2822| 19.53 .7295 .3304| 18.05 .6771 .3235| 19.22 .7310 .3563| 19.21 .6552 .3719| 17.46 .5669 .3743| 19.05 .6582 .4084
DUSt3R  19.88 .7442 .2123| 19.01 .7120 .2262| 19.87 .7190 .2691 19.64 .7338 .3196| 18.01 .6815 .3219 19.39 .7360 .3458| 19.29 .6562 .3580| 17.54 .5693 .3750| 19.19 .6556 .4050
VGGT 19.85 .7450 .2127| 19.05 .7120 .2273| 19.86 .7165 .2911 19.65 .7372 .3143| 18.05 .6770 .3237 19.38 .7358 .3534| 19.36 .6590 .3549| 17.47 .5645 .3751| 19.23 .6604 .4103
RADIO ‘ 19.73 7402 .2207| 19.06 .7101 .2301| 19.56 .6999 .3252‘ 19.48 7313 .3139| 18.03 .6748 ,3254‘ 19.20 .7316 .3654| 19.54 .6545 .3465| 17.52 .5666 .3748| 18.67 .6533 .4216
MASt3R 19.89 .7447 .2123| 19.01 .7115 .2261| 19.99 .7250 .2657 19.64 .7334 .3188| 18.07 .6813 .3211 19.41 .7373 .3464| 19.30 .6550 .3576| 17.59 .5708 .3722| 19.37 .6588 .4027

Ours | 19.52/.7457 2073| 18.79|.7140 .2201| 19.71 .7199 .2785| 18.32 .7085 .3382| 17.29 .6626 .3350| 18.15 .7147 .3603| 19.80 .6643 .3449| 17.81 .5850 .3559| 19.18 .6693 .3955
| MipNeRF360 | MVImgNet | Tanks and Temples
| Geometry | Texture | All | Geometry | Texture | All | Geometry | Texture | All

Feature |PSNR1 SSIM{ LPIPS||PSNRT SSIM{ LPIPS||PSNRT SSIM? LPIPS||PSNRT SSIM{ LPIPS||PSNRT SSIM{ LPIPS||PSNR? SSIM{ LPIPS||PSNRT SSIM{ LPIPS||PSNRT SSIM{ LPIPS||PSNRt SSIM{ LPIPS|
DINOv2| 20.81 .4946 .3953| 19.05 .4495 .3821| 20.75 .4924 .4684| 19.35 .5896 .3246| 16.88 .5359 .3344| 19.43 .5943 .3674| 18.71 .6432 .3772| 17.58 .6214 .3348| 18.43 .6443 .4064
CLIP 20.80 4982 .3913| 19.28 .4543 .3807| 20.88 .4984 .4773| 19.41 .5945 .3098| 16.96 .5362 .3358| 19.37 .5969 .3695| 18.92 .6463 .3729| 17.81 .6226 .3316| 18.75 .6515 .4052
DUSH3R | 20.82 .5008 .3795| 19.10 .4489 .3816| 21.02 .5048 .4752| 19.47 .6004 .3073| 16.88 .5348 .3334| 19.43 .5937 .3674| 18.85 .6458 .3715| 17.53 .6222 .3328| 18.61 .6477 .4023

VGGT 2093 .5120 .3639| 19.25 .4497 .3828| 21.17 .5102 .4892| 19.48 .6019 .2975| 17.00 .5373 .3346 19.58 .5987 .3748| 19.21 .6615 .3547| 17.75 .6221 .3319| 19.04 .6593 .4017
RADIO | 20.87 .5100 .3620| 19.35 .4550 .3819| 20.91 .5067 .5127 19.54 .6105 .2949| 16.99 .5373 .3366 19.60 .5955 .3946| 19.19 .6612 .3480| 17.84 .6225 .3321| 19.01 .6574 .4109
MASBR 20.92 .5093 .3745| 19.21 .4540 .3803| 20.92 .5054 .4749 19.49 .6008 .3032| 16.91 .5350 ,3337‘ 19.49 .5983 1 .3637| 18.80 .6428 .3703| 17.68 .6238 .3319| 18.76 .6512 .3991
Ours 21.28 .5337 .3562| 19.72 .4848 .3595| 21.31 .5264 .4698 19.64 .6107 .2942| 17.11 .5388 .3313 19.68 .6007 .3774| 19.17 .6600 .3577| 17.93 .6324 .3248| 18.93 .6602 .3970

Table 5: Per-dataset results of novel view synthesis metrics on Feat2GS benchmark. Results
indicate that our encoder leads to the best performance on most datasets in Geometry, Texture, and All
probing modes. The highest, second-highest, and third-highest scores in each category are highlighted

with light red , light orange , and light yellow , respectively.

A.3 MORE EXPERIMENTAL RESULTS
A.3.1 EVALUATION OF THE GEOMETRIC-SEMANTIC ENCODER

Evaluation on Feat2GS benchmark We provide comprehensive and detailed results on Feat2GS
benchmark (Chen et al.}[2024g)), as shown in Tab. E} Results indicate that our encoder leads to the
best performance on most datasets in Geometry, Texture, and All probing modes.

Single-frame and video depth estimation Following MonST3R (Zhang et al.| [2024)), we evaluate
single-frame depth on the NYU-v2 (Silberman et al.|[2012) dataset and video depth on the BONN (Sil{
berman et al., |2012) dataset, which cover dynamic and static scenes. These datasets are excluded
from training, enabling zero-shot performance evaluation across domains. Our evaluation metrics
include absolute relative error (Abs Rel) and percentage of predicted depths within a 1.25-factor of
true depth (§ < 1.25). Following (Wang et al.[2024b), single-frame evaluation adopts per-frame
median scaling, and video evaluation aligns a single scale and/or shift factor per sequence.

We compared our methods with DUSt3R (Wang et al., 2024b), MASt3R (Leroy et al., [2024),
Spann3R (Wang & Agapito, [2024), and MonST3R, where these baselines are specially designed for
3D tasks. As shown in Tab. [0 (left), our method achieves competitive results compared to baselines,
and even outperforms MASt3R in both single-frame and video depth evaluation.
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Params ImageNetlK Segmentation

K . Method

Method NYU-v2 (Single-frame) BONN (Video) (M) Zero-shot k-NN ADE20k VOC
AbsRel | 6§ <1.251 AbsRel| d < 1.2517 SAM-H/16 637 - 22,12 28.08 34.34
OpenAICLIP-L/14 305  75.54 79.96 36.51 67.04

DUSBR 0.080  90.7  0.155 833  SigLIP-L/14 428  82.61 8516 40.53 70.31
MonST3R 0.102  88.0  0.067 96.3  DINOv2-g/ldreg 1,137 - 8341 48.68 8278
Spann3R  0.122 849  0.144 8].3  DUSGREnc. 33 - - 3210 4602
DUNE-B/14-448 420 - - 4560 -

MASBR  0.129 849 0252 70.1  \ASHR Enc. 303 ) _ 3354 4358
Ours 0.070 939  0.086 914  «RADIOV2.5-L 320 80.55 83.16 50.68 85.60

UniUGG Enc. (Ours) 320 80.06 83.13 50.12 85.43

Table 6: Left: Depth evaluation results. We report single-frame depth evaluation performance on the
NYU-v2 dataset and video depth evaluation performance on the BONN dataset. Right: Comparison
of encoder performance on the image/pixel level. ‘Zero-Shot’ and k-NN are computed on ImageNet-
1K. ADE20K and PascalVOC2012 refer to linear probe semantic segmentation mIOU. xdenotes
teachers used to pretrain our encoder.

Params VSI-Bench SPAR

Method

M) Count Obj.Size Room Rel.Dir. Rel.Dist. Route Order Avg. Low Medium High
Qwen25-ViT 669 58.00 5112 31.04 3731 29.44 2526 21.20 35.56 36.50 36.67 39.89
OpenAI CLIP-L/14 305 61.43 4930 4931 3945 36.20 3093 16.18 40.08 44.13 43.67 52.33
SigLIP-L/16 316 11.93 42.06 0.73 3895 27.89 2887 9.71 23.81 41.75 34.67 43.11
MASt3R Encoder 303 58.12 39.81 48.82 43.70 3324 3247 19.58 39.14 50.00 42.33 4822
RADIOV2.5-L 320 59.91 53.49 50.17 37.08 32.54 30.41 16.18 39.75 50.44 47.95 52.13
UniUGG Enc. (Ours) 320 62.69 51.70 49.34 42.14 3437 3299 27.51 42.18 50.82 49.07 51.89
Method Params BLINK Seed-I vléealld

(M) Fun.Corr. Vis.Corr. Local. Jigsaw Depth Spatial Simi. Art Avg. or
Qwen25-ViT 669 15.38 26.16 5492 46.67 4435 5245 46.67 52.99 37.87 41.81 4497
OpenAl CLIP-L/14 305 24.62 2442 5246 56.00 4597 63.64 43.70 52.99 40.45 69.14 54.38
SigLIP-L/16 316 20.00 2035 6148 5133 46777 53.85 53.33 56.41 39.08 56.31 45.23
MASt3R Encoder 303 22.31 2733 55.74 48.67 4435 67.13 44.44 4530 40.93 56.96 50.07
RADIOV2.5-L 320 23.08 3198 47.54 4333  68.55 65.53 47.31 53.85 42.92 72.09 57.38

UniUGG Enc. (Ours) 320 33.85 33.14 5574 48.67 69.35 67.83 51.11 59.85 4440 71.65 58.56

Table 7: Detailed comparison results of encoder performance on downstream vision-language
reasoning benchmarks. The VLM architecture is based on Qwen2.5-3B-Instruct, and all encoders
are trained under the same settings to ensure fairness.

Image/pixel level evaluation To assess the performance of our encoders, we adopt a set of repre-
sentative metrics following (Ranzinger et al.| 2024b)). For image-level reasoning, we evaluate our
encoder using Top-1 k-NN accuracy and zero-shot accuracy on the ImageNet-1K dataset (Deng et al.,
2009). The zero-shot accuracy is computed using the CLIP language model (Radford et al.| [2021)).
For the k-NN evaluation, we first extract the summary feature for all training images. Then, for
each validation image, we identify the k nearest neighbors in the feature space and predict the label
based on a weighted vote of these neighbors. We also evaluate the generalization performance of our
encoder on pixel-level visual tasks, including segmentation mIOU on ADE20k (Zhou et al.| 2019)
and PascalVOC2012 (Everingham et al.,|2015) datasets.

The encoders compared include SAM-H/16 (Kirillov et al., 2023)), OpenAI CLIP-L/14 (Radford
et al., [2021), SigLIP-L/14 (Zhai et al., 2023) , DINOv2-g/14-reg (Darcet et al., [2023), DUSt3R
encoder (Wang et al.| [2024b)), DUNE-B/14-448 (Sariyildiz et al., 2025 ,MASt3R encoder (Leroy
et al.| 2024) and RADIOv2.5-L (Ranzinger et al.| [2024b).

Following (Ranzinger et al.,|2024b)), we freeze the vision encoders and train a linear head on top of
the frozen features. The linear probe is conducted in the MMSeg (Contributors, |2020) framework.
We train the linear head for 20k steps using a total batch size of 64, a base learning rate of Se ™3, and
the Adam-W optimizer.

As shown in Tab. [6] (right), while our method does not outperform the teacher baseline, it yields
competitive results that validate the potential of our encoder. More importantly, it establishes a strong
foundation for unified spatial reasoning and 3D generation.
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Method 3DSRBench VSI-Bench

Height Loc. Orient. Multi. Avg. Obj.Count Abs.Dist. Obj.Size RoomSize Rel.Dist Rel.Dir. RoutePlan Appr.Order Avg.
LLaVA-v1.5-7B 39.1 469 287 347 381 62 4.9 32.6 2.7 29.6  30.7 26.3 10.5  18.0
LLaVA-NeXT-7B  50.6 59.9 36.1 434 484 75 8.8 27.7 25.8 332 297 23.7 8.6 20.6
InternVL2.5-8B 459 68.1 38.7 433 509 7.7 32.6 42.9 34.6 39.6  40.0 24.7 377 325
Qwen2.5-VL-7B 44.1 62.7 40.6 40.5 484 267 10.8 354 31.0 352 382 35.1 20.6 303
GPT-40 532 59.6 21.6 39.0 442 46.2 53 43.8 38.2 37.0 413 31.5 285 340
UniUGG-3B (Ours) 52.3 60.0 434 493 52.1 63.2 34.8 49.1 50.4 303 38.6 26.3 26.7  40.1

Table 8: Detailed spatial understanding scores on 3DSRBench and VSI-Bench. Our UniUGG is
jointly trained for both spatial understanding and 3D generation tasks. Note that the LLM used in
UniUGG has a size of only 3B parameters.

SQA3D ScanQA Methods Acc@0.25 Acc@0.5

Method M BLEU4 CiDEr EM ScanRefer 373 243

‘ MVT 40.8 33.3

3D-LLM v - 120 694 204 ViL3DRel 47.9 37.7
Chat-3D v2 Vo547 14.0 87.6 - 3D-LLM 303 -

LEO v 50.0 13.2 1014 215 Chat-3D v2 35.9 30.4

IS~L3DAL M j 5o 3(5) ;g-g 7o Grounded 3D-LLM 47.9 44.1

cene- . . . . _

LLaVA-3D /556 14.5 91.7 27.0 I\thfe\ég%%LM g‘g'i ‘5‘%"7‘
Video-3DLLM v 58.6 162 1021 30.1 . :

- #UniUGG (Ours) 232 7.8

UniUGG (Ours) X 51.3 12.1 85.6 244 UniUGG (Ours) 415 366

Table 9: Left:Performance comparison on SQA3D and ScanQA. “3D” indicates whether the
model is infused with 3D information. Right:Performance comparison across different models on
ScanRefer. xindicates results without refine.

Downstream task performance As shown in Tab.[7} we provide more detailed results about Tab.
of the main text. Our encoder (UniUGG Enc.) demonstrates clear advantages on spatial reasoning
tasks and two general QA benchmarks. It shows that our encoder has more consistent performance
across modalities, balancing spatial perception and high-level semantics.

A.3.2 EVALUATION OF SPATIAL UNDERSTANDING

Detailed spatial understanding scores As shown in Tab. [8] we present more fine-grained spatial
understanding scores on 3DSRBench and VSI-Bench (corresponding to Tab. |3|of the main text). We
jointly train UniUGG for both spatial understanding and 3D generation tasks. The model utilizes our
pretrained geometric-semantic encoder as the visual backbone and employs Qwen2.5-3B-Instruct as
the large language model. The results demonstrate that UniUGG can capture precise spatial relations
by jointly modeling 3D structure and visual-language reasoning. It should be noted that the LLM
used in UniUGG has a size of only 3B parameters.

Evaluation on 3D-specific benchmarks We further evaluate the 3D reasoning capability of our
UniUGG on SQA3D (Ma et al] 2022)), ScanQA (Azuma et al] [2022)), and ScanRefer
[2020), which are widely adopted benchmarks in 3D VLMs. Due to the differences in QA formats,
and following the practice of prior works, we apply supervised fine-tuning on 3D tasks to better assess
UniUGG'’s spatial capabilities. First, we evaluate spatial understanding using SQA3D and ScanQA,
which focus on object attributes, spatial relations, and viewpoint-conditioned reasoning. Compared
models include 3D-LLM (Hong et al] [2023)), Chat-3D v2 (Huang et al} 20234), LEO (Huang

et al] [2023b), LL3DA (Chen et al}[2024¢)), Scene-LLM (Fu et al.| 20244)), LLaVA-3D (Zhu et al
2024a) and Video-3D LLM (Zheng et al] [2024). As shown in Tab. [9] (left), although our model

does not incorporate explicit 3D information, it achieves competitive performance compared to
3D-enhanced LLMs. Additionally, we assess 3D grounding on the ScanRefer dataset, where the task
requires localizing target objects based on textual descriptions. Compared models include ScanRefer,
MVT (Huang et al} 2022)), ViL3DRel [Chen et al] (2022)), 3D-LLM, Chat-3D v2, Grounded 3D-
LLM |[Chen et al|(20241), LLaVA-3D, and Video-3D LLM. As shown in Tab. 0] (right), our model
may struggle to predict depth accurately due to the absence of 3D information, resulting in poor
grounding results. To address this, we apply a refinement strategy to mitigate this issue and improve
grounding performance. These results highlight the potential of our UniUGG to perform spatial
reasoning and grounding without relying on explicit 3D inputs, while still supporting more complex
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ARKitScenes ScanNet++
FID] KID| LPIPS| FID| KID| LPIPS]

UniUGG (full) 55.01.0425 4849 55.64.0442 .4263
UniUGG (gen. only) 54.35.0409 .4556 55.46 .0454 .3586

Method VSI BLINK 3DSR SPAR  Method

UniUGG (full) 40.1 436 521 472
UniUGG (und. only) 42.2 444 513 49.8

Table 10: Performance comparison with separate optimization.

generative tasks. It should be noted that our model employs a backbone with 3B parameters, while
other methods, for example, LLaVA-3D and Video-3D-LLM, use 7B-parameter backbones.

A.3.3 EVALUATION OF 3D GENERATION

More qualitative results of 3D generation We provide more visualization results to further demon-
strate the 3D generation and understanding capabilities of UniUGG. Given a reference image, we
randomly sample plausible relative view transformations and let UniUGG generate the corresponding
3D scenes. UniUGG further captioned the generated 3D scenes. As shown in Fig.[7] Fig.[8] Fig.[9]
and Fig. UniUGG consistently produces geometrically coherent and semantically meaningful 3D
content, along with accurate scene captions.

Feature matching visualization By taking only a reference image and the relative view transforma-
tion as input, UniUGG predicts the ViT tokens of the target image, which, together with the reference
tokens, are then decoded into point clouds and the corresponding cross-view feature matchings.
We visualize these feature matching results in Fig.[TT]and compare them with the baseline method
MAS3R (Ceroy et al} [2024), which requires both the reference and ground-truth transformed-view
images as input to obtain feature matching. Our method achieves highly accurate feature matching,
which is highly consistent with those produced by MASt3R. This demonstrates that UniUGG not
only generates the spatial structure under the novel view but also ensures that the generated content is
generally consistent with the input view transformation condition.

Robust generation under extreme view transformation We illustrate the generation performance
of UniUGG under extreme view transformation conditions, as shown in Fig. @ ‘We evaluate the
model performance conditioned on rotation angles of 60°, 80°, 100°, 120°, and 140°. As observed,
within the range of 60°-120°, UniUGG still produces high-quality, semantically rich, and structurally
coherent 3D point clouds. However, at 140° or beyond, the generation quality drops noticeably, with
the point clouds exhibiting blurred textures and distorted structures. This degradation arises from
two factors. First, during training, the view-transformation conditions are usually constrained within:
view overlap ratio > 0.4, rel-translation < 2 m, and rel-rotation < 120°. Consequently, when evaluated
under extreme view transformation (e.g., rotation > 140°), our model struggles to maintain generation
quality. Second, such large viewpoint changes significantly reduce the overlap between the reference
and target images, resulting in insufficient cross-view constraints and finally leading to failures in 3D
generation.

Failure case Due to the lack of training samples with large view transformations, UniUGG would
generate point clouds with blurred textures and distorted structure under extreme viewpoint changes,
as shown in Fig.[T2] What’s more, we also provide some examples of failure cases in Fig.[T3] In
some cases, UniUGG generates point clouds with color distortions, where vivid green regions are
mistakenly inferred as grayish colors. This may be caused by a conflict between color decoding and
semantic representation tasks during encoder pretraining.

A.3.4 PERFORMANCE OF SEPARATELY OPTIMIZED

As shown in Tab.[I0] we separately optimize the spatial understanding task and the 3D generation
task, and compare their performance with that of the jointly trained model. Benefiting from the
Spatial-VAE and diffusion model, joint training (UniUGG full) does not significantly degrade the
performance of 3D generation (UniUGG gen. only) and only leads to a moderate reduction in
spatial understanding (UniUGG und. only) performance. We believe this performance trade-off is
acceptable: although a small amount of understanding performance is sacrificed, we obtain a unified
3D model for both understanding and generation. This unification substantially reduces training cost
and computational overhead while broadening the range of tasks the model can support.
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Caption

A wooden table with a worn

Merge

surface is positioned on 3 stone
floor, with a stone wall and
variously sized and colored

Awooden table with a carved
top is positioned on a stone
loor in front of a stone wall,
with 3 small rug partially visible
to the right. In the background,
a black door is visible,

Reference image

Random seed 1

Random seed 2

Caption

A beige sofa with 3 light-
colored cushion is positioned

against a wall, with a green
cushion draped over the right
side. The sofa is situated on 3

tiled floor, partially covered by a
white curtain to the left

A beige sofa with green
cushions placed on it,
positioned against a wall near a
window with white curtains. The
cushions are aligned side by side,
with the sofa ?Jcmg outward.
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Figure 7: Additional visualization samples. We present 3D scene generations and the corresponding

Caption
A neatly made bed with white
linens and pillows are positioned
against a wall, with a gray
upholstered headboard. Above the
bed, a framed artwork hang on the
wall, and a small bedside table with
3 lamp is visible to the right.
Caption
A neatly made bed with white
linens and a gray headboard is
centered against a gray upholstered
headboard. Above the bed, a
framed artwork hang on the wall,
and a small bedside table with a
lamp is visible to the right

captions produced by our UniUGG under varying random seeds.

Random seed 1

o

Reference image

Random seed 2

ov

Caption Merge

A gray sectional sofa with several
cushions is positioned against a dark A
wall, with a small table visible in the :
background to the left. The room
features 3 pattemed rug on the floor
and a window with curtains partially
visible in the distance. g)

Caption Merge
A living room with a gray sectional
sofa adorned with several pillows. In
front of the sofa, a small, patterned
rug covers the floor, and a beige sofa

is partially visible on the right side.
A wooden tablesits in the

foreground on the left Q

Reference image
o

Random seed 1

Random seed 2

Caption

Two blue quilts with
geometric pattern cover the
loor in front of a wooden
door, with a white towel
partially visible on the left side.

Caption

Ablue quilt with geometric
pattern covers 3 wooden floor
next to 3 wooden cabinet. The
quilt is positioned near the
corner of the room

Caption

A kitchen sink area with a dish
rack on the right holding a plate
of food. To the left, there are
cabinets and a countertop with
items near the window.

Caption
A kitchen countertop with a
double sink and a faucet, featuring
a dish rack with dishes and a
container to the right. A kettle
sits on the counter to the left,
with a window above the sink
allowing natural light to enter. Q 3

Random seed 1

Reference image

Random seed 2
) W
a2

Figure 8: Additional visualization samples. We present 3D scene generations and the corresponding

Caption
"A gray sofa with a colorful pillow f5
positioned on the left side of the
room. The walls are painted dark
blue, and there is a small table on
the left side. The hallway leads to
another room with visible furniture
and a window in the background,
Caption
Aliving room with a brown leather
sofa on the left and a dark-colored
sofa on the right, separated by a
doorway leading to a dining area
The walls are painted in contrasting
colors, with a dark blue wall and a
light gray carpet.

Merge

Reference image

Random seed 2

captions produced by our UniUGG under varying random seeds.

Random seed 1

Reference image

|

Random seed 2

wt

Caption
A brown leather sofa with 3
purple cushion is positioned to
the left, while a red lamp with
a base stands on 3 wooden
floor to the right. To the right,
there is another purple sofa
partilly visible

Caption

Merge

A brown leather couch is
positioned to the left, with a
yellow lamp on a metal stand
to the right, casting a shadow

on a patterned wall.

Random seed 1

Caption

A gray tufted sofa is adorned with
several pillows, including a gray
one with U-shape. A dark door is
partially visible to the right.

Caption

A gray tufted sofa with several
cushions is positioned against a
wall. The room has a neutral color
scheme with 3 dark floorand a
light wall decoration above the
sofa.

N o

Caption Merge
Abed with a gray pillowand a
leaf-patterned pillow is centered
in the room. The headboard is
visible behind the bed, and a
shelf with various items is
partially seen to the left.

A neatly made bed with two
leaf-patterned pillows is
centered in the room, with a
bedside table to the left holding
3 small device. Above the bed, 3
shelf displays framed photos
and small decorative items.

Random seed 1

Tiine
i
f

Reference image

Random seed 2

Figure 9: Additional visualization samples. We present 3D scene generations and the corresponding

Caption
S —
A neatly made bed is
positioned in front of a
window with sheer white
curtains. The room has a
modern look with 3 wooden

floor and minimalistic deco:

Caption
A bedroom with 3 bed
covered in a beige sheet in the
foreground, and sheer cartains
covering a window. A small
shelf with decorative items is
mounted on the wall to the

left of the window. !

1

captions produced by our UniUGG under varying random seeds.
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Caption
A kitchen area with light-colored
cabinets and drawers, featuring a
dark countertop and a sink on
the left. A blue mat lies on the
tiled floor in front of the cabinets,
and a window with a black frame
s visible on the right side.

Caption

A kitchen scene featuring a
countertop with drawers and
cabinets below, 3 window
above, and a dark mat on the
floor. The cabinets have gold.
handles, and the countertop is
near the window.
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1080 Caption Caption Merge
(ol T——— A small room eatures 7 single )
1081 helft, 3 desk with 1 compter n bed with white bedding on the
the center, and 3 on the right. tight, adjacent to a wooden desk.
1 082 Above the desk, a shelf holds with a laptop and various items.
books and decorative items, while A white chair is positioned in
3 window with curtains is behind front of the desk. The room has a
1083 sofa. Alight green pillow is on sofy ﬁark ﬂorc:rand a mndowvth"
sheer curtins on the right wall.
— —
1084 < | A workspace with two computer Asingle bed with 3 folded beige
| monitors on a desk. A keyboard, f mattress and pillow is positioned 4
1085 | | mouse, and phone are in front of | | against the wall, with a small shelf
the monitors, with a blue cup underneath. To the left, a blue
and papers nearby. A wind tcase stands near 3 ind, §
1086 "t bimds o thelet N theer cartams. : ‘
1 087 A small office space with a closed A small room with a desk on the
door on the left, a clock above left holding a computer monitor,
1088 the door, and a desk with Sdcent & 2 bed with s coorful
computer monitors and a chair blanket. On the right, a brown
1 089 on the right. Fluorescent lights armchair sits near 3 white shelf. &
illuminate the room from the The room has a large window
ceiling with white curtains.
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. Figure 10: Additional visualization samples. We present 3D scene generations and the correspond-
ing captions produced by our UniUGG.
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1112 Figure 11: Feature matching visualization. Without access to the target image, our method takes
1113 the reference image and the relative view transformation as input and still produces accurate feature
1114 matchings, while baseline MASt3R takes image pairs as input.
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Reference image Generated point cloud Generated target view |  Reference image

Generated point cloud Generated target view
o A
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View transformation angle: 140° View transformation angle: 140°

Figure 12: 3D generation under extreme view transformation. When the rotation angle is below
120°, UniUGG can still produce high-quality 3D point clouds under the target viewpoint. As the
rotation angle increases to 140° or beyond, the quality of the generated results degrades noticeably.
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Reference image Generated point cloud Generated target view Reference image  Generated point cloud Generated target view

Figure 13: Other failure cases of our model.

(a) Simplified generation-understanding learning (b) Simplified generation-understanding inference
ﬂ... L Generation | Understanding \T.-- Novel-view Question
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. . . . View transformation i Q: Describe what is
on the table?
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Figure 14: Overview of our simplified model variant pipeline. In the simplified variant, we do not
use the diffusion model and Spatial-VAE for scene generation but directly produce the novel-view
tokens by LLM, which is supervised with ground truth tokens.

MAE loss Cross-entropy loss
1t T

HEEEC 000 -
- | Image 2 representation | Answertokens
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A.4 EXPLORATION OF SIMPLIFIED MODEL VARIANT

During the development of our proposed UniUGG, we explored the early or simplified version of
the model architecture. This helped us better understand the role of the core component in the
model. Although not intended as the final model, the simplified variant provides valuable insights for
designing a unified framework for 3D understanding and generation.

As shown in Fig[T4](a), during training, LLM learns both spatial generation capability across views by
predicting ViT tokens of the novel view, and visual understanding capability via question answering
As shown in Fig[T4] (b), at inference, the model performs either novel-view spatial generation or
question answering using a single image as reference, conditioned on the input type.

We present visualization generation results of the simplified variant in Fig. [T5] While it outperforms
the baseline CUT3R in terms of generating fine-grained spatial structures, its textures remain notice-
ably inferior to those of our full UniUGG. This performance gap is primarily attributed to the absence
of the diffusion prior and Spatial-VAE, which play a crucial role in modeling high-frequency visual
details and realistic textures. The simplified variant, lacking these core components, tends to generate
over-smoothed surfaces.

Reference image CUT3R Simplified model (Ours) Reference image CUT3R Simplified model (Ours)
)
e ALY
1T
Pitch up 40° Pitch up 40° Pitch down 50° Pitch down 50°
’ y %w
@9 g L 74
Yaw left 40° Yaw left 40° Yaw right 50° Yaw right 50°
Pitch down 50°, yaw left 50° Pitch down 50°, yaw left 50° Pitch up 40°, yaw right 40° Pitch up 40°, yaw right 40°

Figure 15: Visualization of scenes generated by the simplified model variant. Although the
simplified variant can imagine spatial structures under novel views, it lacks clear details.
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