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ABSTRACT

Despite the impressive progress on understanding and generating images shown by
the recent unified architectures, the integration of 3D tasks remains challenging
and largely unexplored. In this paper, we introduce UniUGG, the first unified un-
derstanding and generation framework for 3D modalities. Our unified framework
employs an LLM to comprehend and decode sentences and 3D representations. At
its core, we propose a spatial decoder leveraging a latent diffusion model to gener-
ate high-quality 3D representations. This allows for the generation and imagination
of 3D scenes based on a reference image and an arbitrary view transformation,
while remaining supports for spatial visual question answering (VQA) tasks. Addi-
tionally, we propose a geometric-semantic learning strategy to pretrain the vision
encoder. This design jointly captures the input’s semantic and geometric cues,
enhancing both spatial understanding and generation. Extensive experimental
results demonstrate the superiority of our method in visual representation, spatial
understanding, and 3D generation.

1 INTRODUCTION

Recent work on unified 2D understanding and generation has made significant strides (Sun et al.,
2023; 2024; Ye et al., 2024; Dong et al., 2024; Wu et al., 2024; Team, 2024; Wang et al., 2024a; Liu
et al., 2024a; Wu et al., 2025; Chen et al., 2025; Huang et al., 2025). Early works (Sun et al., 2023;
2024; Ye et al., 2024; Dong et al., 2024) build unified frameworks that couple an autoregressive LLM
with a diffusion image decoder. The LLM consumes text–vision inputs and produces a fixed set of
learnable queries whose features are regressed into the diffusion latent space; the diffusion model
then synthesizes the image conditioned on these latents. Subsequent works (Team, 2024; Liu et al.,
2024a; Wu et al., 2024) employ VQ tokenizers for the unified generation of texts and images.

Although the aforementioned works have made significant progress in images, the challenge of
achieving unified understanding and generation for 3D modalities remains largely unexplored. Several
benchmarks (Zhang et al., 2025b; Fu et al., 2024b; Ma et al., 2024; Yang et al., 2025) integrate
large-scale public datasets and design spatial VQA tasks to enhance the spatial reasoning capability
of LLMs. However, these efforts focus solely on spatial understanding and take a rather brute-force
approach—directly fine-tuning LLMs with large amounts of spatial data, which has shown limited
effectiveness. Other works (Chen et al., 2024a; Cheng et al., 2024; Hong et al., 2023; Driess et al.,
2023; Chen et al., 2024e; Zhu et al., 2024a) incorporate additional modalities, such as depth, point
clouds, or scene graphs, to handle spatial understanding. Unfortunately, these methods introduce
additional disadvantages, as they often require specialized data acquisition devices or necessitate
explicit spatial modeling of the entire scene. These drawbacks hinder potential development for
practical applications.

We identify two main challenges that bottleneck progress for the unified 3D frameworks. The first
issue is the limitation of visual representations. Current LLMs typically rely on vision encoders
pretrained on 2D image semantic tasks, which lack the capability to model 3D geometries. This
limitation creates a performance bottleneck, particularly in spatial understanding tasks. The second
issue is the incompatibility between 3D generation and LLMs. Here, LLMs are built on the
basis of tokenization methods to autoregressively generate the next token. This scheme adapts well
to image generation, as images are regular and can be tokenized into a fixed number of elements.
However, such tokenization approaches are not easily applicable to 3D data such as point clouds due
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(A) Unified spatial understanding and generation

Question: 
In the given three images, what is the spatial alignment of the 
shoe (red bbox) relative to the plant pot (blue bbox) as perceived 
by the observer?  Set the first image as the observer's perspective.
Answer:
 In this arrangement, the shoe (red bbox) is positioned to the left 
below the plant pot (blue bbox). From the observer's perspective, 
it looks farther. The shoe (red bbox) and the plant pot (blue bbox) 
are in front of the observer.

(a) Spatial  understanding

Reference image

(b) 3D  generation

Inference

Imagine

(B) UniUGG demo

2. Describe the generated part.

1. Generate a 3D scene according to the given image and view.

View

Reference image

<Yaw left 40°> 

A cozy living room with a floral-patterned sofa in the 
foreground and a wooden side table with a lamp and vase of 
flowers to the right. A bench with cushions is positioned near 
the window with blinds.

3. Generate a 3D scene from another view and describe it.

View

<Yaw right 40°> 

Seed=24 

Seed=38 

A cozy living room with a floral-
patterned sofa on the left and a 
wooden side table with a lamp and 
plant in the center. A fireplace is on 
the right, and a patterned rug lies on 
the wooden floor in front of the sofa.

Seed=44 

(C) UniUGG performance

RADIO

CLIP

MASt3R

DINOv2

Ours

Spann3R VGGT

DUSt3R

(b) 3D generation
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(a) Spatial understanding
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UniUGG

Figure 1: We introduce UniUGG, the first unified framework for spatial understanding and
generation. (A) UniUGG supports spatial-level VQA and generates geometrically consistent 3D
scenes. (B) Given a reference image, it can creatively generate 3D variations and describe them
accurately. (C) UniUGG outperforms baselines in both spatial understanding and generation, with
our specially tuned vision encoder excelling in downstream tasks.

to the irregular nature of representations. This tokenization gap makes it more challenging for LLMs
to handle autoregressive 3D generation tasks effectively.

Recently, a line of works (Wang & Agapito, 2024; Leroy et al., 2024; Zhang et al., 2024; Wang
et al., 2025b;a) initiated by DUSt3R (Wang et al., 2024b) have introduced a new perspective on
spatial representation by aligning pixels across multi-view into a unified global coordinate system.
The multi-view geometry training paradigm enables models to reconstruct 3D scenes from visual
inputs, along with predicting spatial relationships. Inspired by this, we introduce UniUGG, the first
framework for unified spatial understanding and generation, marking a significant step by solving the
aforementioned two issues.

For the first issue, we design a geometric-semantic learning strategy for vision encoder pretraining.
This strategy incorporates semantic information from a teacher model while integrating the encoder
with a spatial decoder for end-to-end multi-view geometric training, thereby enhancing its spatial
modeling capabilities. The resulting ViT representations significantly improve both understanding
and generation within the unified framework and yield better results in a variety of downstream tasks.
The learning strategy not only provides the LLM with an enriched representation but also bridges the
gap between vision and 3D using the spatial decoder. This decoder, a byproduct of the pretraining
process, decodes visual representations into 3D scenes corresponding to the two inputs. Upon these,
we solve the second issue by designing UniUGG. UniUGG takes a reference visual representation
and an encoded target-view raymap as input, producing conditional features. These features are then
used with a diffusion model to generate the visual representation of the target-view. To enhance this
process, we design the Spatial-VAE, which effectively compresses geometric-semantic information,
enabling more accurate and efficient representation generation. Additionally, it links the spatial
decoder for end-to-end fine-tuning, enhancing information compression while mitigating the negative
impact of discrepancies between the reconstructed and original representations on 3D scene decoding.
Finally, both the original and generated visual representations are passed through the fine-tuned spatial
decoder to decode the 3D scene. Thanks to the LLM-based architecture, UniUGG simultaneously
learn understanding and generation tasks, enabling its 3D scene inference, while maintaining spatial
VQA capabilities for both real and generated representations.

Our main contributions are summarized as follows: (i) We propose the first LLM-based unified
generation and understanding framework for 3D scenes, UniUGG, which enables spatial-level VQA
and generates geometrically consistent rich 3D environments. (ii) We introduce a novel geometric-
semantic vision encoder pretraining strategy. Here, our ViT encodes geometric cues from input image
pairs and preserves semantic features from 2D priors. (iii) We present a Spatial-VAE as the core of our
3D scene representation generation scheme. Our Spatial-VAE compresses the 3D geometric-semantic
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representations from input image pairs and helps producing sharper 3D point clouds as output. (iv)
Our method achieves top performance on multiple spatial reasoning benchmarks, surpassing baselines
on VSI-Bench by 17.9% in particular, and maintaining significant superiority in 3D generation.

2 RELATED WORKS

Language models for spatial reasoning and generation There has been growing interest in
applying large multimodal language models to spatial reasoning tasks. Recent models (Alayrac et al.,
2022; Driess et al., 2023; Liu et al., 2023; Li et al., 2024a; Bai et al., 2023) have shown impressive
results in language-guided visual understanding, but they often focus primarily on semantic alignment.
As a result, they exhibit clear limitations when it comes to understanding spatial relations, viewpoint
changes, and structural consistency. Several benchmarks (Zhang et al., 2025b; Fu et al., 2024b; Ma
et al., 2024; Yang et al., 2025) have been proposed to evaluate spatial reasoning abilities, and existing
methods (Chen et al., 2024a; Cheng et al., 2024; Hong et al., 2023; Driess et al., 2023; Chen et al.,
2024e; Zhu et al., 2024a) typically enhance performance by increasing training data or incorporating
additional structural inputs, such as depth, point clouds, or scene graphs. However, these structural
inputs are often used without explicit modeling of spatial consistency, and structure-aware visual
representations remain underexplored. In addition, while recent works have achieved unified 2D
understanding and generation (Sun et al., 2023; 2024; Ye et al., 2024; Dong et al., 2024; Wu et al.,
2024; Team, 2024; Wang et al., 2024a; Liu et al., 2024a; Wu et al., 2025; Chen et al., 2025; Huang
et al., 2025), there is limited research on applying this concept to the spatial level. In contrast, we
propose the first unified spatial framework, which not only handles spatial reasoning tasks but also
generates 3D scenes based on a reference image and a specified view transformation.

Semantic and geometric representation Vision encoders (Liang et al., 2024; Zhai et al., 2023;
Cherti et al., 2023; Jia et al., 2021; Li et al., 2021; 2022; 2023; Zhu et al., 2024b) trained with
language supervision have demonstrated strong capabilities in semantic understanding, particularly
in tasks involving open-vocabulary recognition and image-text alignment. However, these models
typically lack spatial awareness and fail to capture geometric consistency across views. In contrast,
geometric methods (Wang et al., 2024b; Leroy et al., 2024; Wang et al., 2025b) based on multi-view
consistency learning focus on spatial correspondence and 3D reconstruction, but typically lack seman-
tic understanding and are difficult to generalize to language-guided tasks. Other works (Ranzinger
et al., 2024b;a; 2025; Heinrich et al., 2025; Sarıyıldız et al., 2025) explore multi-teacher feature
distillation to combine semantic and geometric knowledge, but their training objectives focus on
general-purpose representation fusion rather than geometric awareness.In contrast, we aim to pretrain
the vision encoder with both semantic and geometric awareness, tailored for spatial unification.

3 METHODOLOGY

3.1 PIPELINE OVERVIEW

Fig. 2 presents the overall workflow, with the training pipeline on the left and the inference process
on the right. During training, UniUGG adopts a three-stage training strategy. First, as shown in
Fig. 2 (a), we pretrain the vision encoder to learn geometric-semantic visual representations in stage
1, detailed in Sec. 3.2. Next, as illustrated in Fig. 2 (b), we pretrain the Spatial-VAE in stage 2, which
compresses geometric-semantic information into a compact latent space. This module enhances
efficient generation and facilitates producing sharper 3D point clouds, as discussed in Sec. 3.3. Finally,
we perform unified training for spatial understanding and 3D generation in stage 3, while keeping
both the ViT and the VAE encoder frozen, as depicted in Fig. 2 (c). The unified training procedure is
elaborated in Sec. 3.3. During inference, UniUGG takes images, questions, or view-transformation
as input and generates text answers and point clouds, as shown in Fig. 2 (d).

3.2 VISION ENCODER PRETRAINING

In this section, we introduce our geometric-semantic learning strategy for vision encoder pretraining,
shown in Fig. 3.
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(c) UniUGG training
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(d) UniUGG inferencing
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Figure 2: Pipeline overview of UniUGG. The left illustrates the three-stage training process, and the
right shows the inference pipeline for spatial reasoning and 3D generation.

Encoder architecture Following the design of RADIOv2.5 (Heinrich et al., 2025), we adopt ViT-
L/16 (Dosovitskiy et al., 2020) as our basic vision encoder to match the architecture of teachers,
which allows us to benefit from its pretraining. Given an input image I ∈ RH×W×3, the vision
encoder first partitions it into fixed-sized patches of size p× p pixels, then embeds them into hidden
features of dimension d with learnable positional embeddings. After a series of Transformer blocks,
the model finally produces a set Z ∈ Z of visual representations, where Z ∈ RN×d.

Multi-view geometric learning To enhance our encoder’s spatial modeling, we adopt the
MASt3R (Leroy et al., 2024) framework, retaining its decoder and spatial losses, while
replacing the original encoder with ours. As shown in Fig. 3, paired images Ii, Ij

are encoded by our shared-weight encoder, producing two representations Zi and Zj .

MASt3R decoder

Projector  shared

shared

Spatial decoder

Image 1 Image 2

𝛦𝑠

… …

𝛦𝑠

T
ea

ch
er

 t
o

k
en

s 
 

(a) Semantic guiding

𝛦𝑡

MSE loss

sharedshared

(b) Spatial representation learning

Confidence map Confidence map Point cloudPoint cloud

Spatial & 
RGB losses

𝛦𝑡

… …

Projector  

Color head Color headSpatial headSpatial head

Figure 3: Overview of our encoder pretraining
pipeline. (a) During semantic guiding, our student
encoder learns to mimic the teacher’s visual repre-
sentations. (b) In spatial representation learning,
the spatial decoder jointly refines predictions using
information from both views.

A two-layer visual projector fπ(·) with GeLU
activation processes each representation inde-
pendently. Next, the projected features are
fed into dual cross-attention decoders, yield-
ing Hi,Hj = Decoder(fπ(Zi), fπ(Zj)). Fi-
nally, pointmaps Xi

i, X
j
i ∈ RH×W×3 and confi-

dence maps Ci, Cj are regressed from [Hi,Hj ],
along with dense matching descriptors Di, Dj ∈
RH×W×df , via a spatial head.

To extend our encoder for color-awareness, we
implement an RGB head to reconstruct color in-
formation from encoded representation Z , con-
strained by a composite loss:

Lrgb=λL1
·∥Î−I∥L1

+λLP ·LPIPS(Î, I), (1)

where ∥ · ∥L1
denotes the L1-norm, and

LPIPS (Zhang et al., 2018) captures perceptual
similarity based on deep networks. The final
training loss in the spatial branch is defined as:

Ls = Lconf + λ1Lmatch + λ2Lrgb, (2)

where Lconf and Lmatch are confidence-aware re-
gression loss and matching loss, respectively,
defined in MASt3R.

Note that in the following, the visual projector, the MASt3R decoder, and the prediction heads are
collectively referred to as the spatial decoder, as illustrated in Fig. 3.

Semantic knowledge guiding To enhance semantic understanding, we use the pretrained RADIOv2.5
as a teacher to guide our encoder. Given an input image, semantic tokens Ẑ ∈ RN×d are extracted
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Figure 4: Overview of UniUGG training. (a) In the latent token learning stage (stage 2), visual
representation is compressed using the Spatial-VAE, while the spatial decoder is linked for fine-
tuning. (b) In the unified learning stage (stage 3), the reference image’s visual representation and
view transformation are input to an LLM, which outputs conditional features for noise prediction on
latent token. The LLM also performs VQA-related training to maintain its understanding capability.
During inferencing, UniUGG generates the visual representation of the target view, which, together
with the reference representation, is decoded into the 3D scene.

from the teacher and aligned with student tokens Z via a weighted sum of cosine distance and smooth
L1 losses. To improve robustness, the loss is computed over a randomly sampled subset C of tokens.
The guiding loss is defined as:

LKD = α(1− 1

n

∑
i∈C

cos(zi, ẑi)) + β
1

n

∑
i∈C

∥zi − ẑi∥L1 , (3)

where n = |C| denotes the number of tokens. This alignment enforces consistency in both feature
direction and magnitude.

3.3 UNIFIED UNDERSTANDING AND GENERATION LEARNING

Leveraging prior knowledge, humans can imagine both geometric and semantic details of unobserved
areas from a reference image. With this goal, we aim to enable LLMs to understand and reason
scenes through spatial question answering, and imagine novel 3D structures under view changes.

Overall learning target Based on our encoder pretraining, we design UniUGG for unified spatial
understanding and generation, detailed in Fig. 4 (b). For 3D generation, we leverage an LLM in
combination with a diffusion model to generate the visual representation of the target view conditioned
on a reference image and view transformation. The pretrained spatial decoder then processes the
visual representations of both the reference image and the target view, decoding the 3D scene. For 3D
understanding, we also perform supervised fine-tuning on the LLM at spatially grounded VQA tasks.

Latent token learning Directly generating high-dimensional representations is costly and unstable.
To address this, we design and pretrain the Spatial-VAE with an encoder-decoder architecture to
compress visual representations into a compact latent space, enabling efficient generation, shown in
Fig. 4 (a). Given an image pair Ii, Ij , our pretrained vision encoder extracts visual representations
Zi,Zj ∈ RNh×Nw×d, which are encoded into 4-dimensional latent tokens T i, T j ∈ RLh×Lw×4

and then reconstructed back to Z̄i, Z̄j .

The Spatial-VAE optimization is guided by three loss terms: (i) Reconstruction loss Lmse =∥∥Z̄i −Zi
∥∥2. (ii) KL loss LKL = DKL(q(T i | Zi) ∥ p(T i)) + DKL(q(T j | Zj) ∥ p(T j)), where

DKL denotes the Kullback-Leibler divergence for latent distribution regularization. (iii) Spatial loss
Ls, defined in Eq. 2. Due to discrepancies between reconstructed and original representations, the
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pretrained spatial decoder may struggle to deal with the reconstructed representation. To address this
and further guide compression, we feed the reconstructed representations into the spatial decoder and
fine-tune it jointly with the Spatial-VAE in an end-to-end manner. The overall latent token learning
loss Lvae = Ls + Lmse + γLKL, where γ is the weight for the KL loss term.

Spatial generation learning As shown in Fig. 4 (b), with the pretrained Spatial-VAE, the 3D
generation can be modeled as generating the latent token conditioned on a reference image and a view
transformation. This latent token is then decoded into the visual representation of the target-view
using the VAE decoder. Subsequently, the 3D scene is decoded by the fine-tuned spatial decoder to
the visual representations from both the reference and target views. Therefore, spatial generation
learning is naturally the process of conditional noise prediction on the noisy latent token.

During training, the relative view transformation between Ii and Ij is encoded as a Plücker
raymap (Plucker, 1865), represented as P ∈ RNh×Nw×6. This raymap is then transformed into
queries q using an MLP, so that suitable for processing by LLM. Subsequently, we feed the visual
representation of Ii, Zi, along with the transformation queries q, into the LLM, which generates the
conditional features C.

The next step involves training the model to predict the noise in the noisy latent tokens. We encode
Ij’s visual representation Zj into the latent token T j via the pretrained VAE encoder. Gaussian noise
is progressively added to the latent token T j over several timesteps, creating a noisy latent token
T̃ j
t for each timestep t. Specifically, the noise is added according to a schedule that increases with

each timestep. The noisy latent token at each timestep is then passed through the denoising diffusion
model along with the corresponding conditional features C. At each timestep t, the model learns to
predict the noise ϵθ(T̃ j

t |C, t) added to the noisy latent token. The training target is minimizing the
discrepancy between the predicted noise ϵθ and the ground-truth noise ϵ:

Lgen = ET j ,ϵ∼N (0,1),t

[∥∥∥ϵθ(T̃ j
t |C, t)− ϵ

∥∥∥2] . (4)

At inference, we start from a noisy latent token T̃T ∼ N (0, 1) and iteratively denoise it using the
reverse diffusion process. At each timestep t, the model predicts the noise to be removed, updating
the latent token by T̃t−1 = T̃t − ϵθ(T̃t|C, t). Here, C represents the conditional feature generated by
the LLM, which takes the reference visual representation Zr and an arbitrary view transformation
as input. After T steps, the final latent token T̃0 is decoded into target view’s visual representation
Zv by the Spatial-VAE decoder, and the full 3D structure is then decoded by the fine-tuned spatial
decoder using both Zr and Zv .

Spatial understanding learning Given an input image I and a question Q, the model predicts
an answer sequence a = {a0, a1, ..., aN} in an autoregressive manner. Firstly, the question Q is
tokenized into language embeddings q = {q0, q1, ..., qm}. Together with the image representation
Z , we feed these language tokens into the LLM. At step t, the LLM produces a distribution over the
next token conditioned on ground-truth prefix a<t. UniUGG is trained with teacher forcing using
a token-level cross-entropy loss Lvqa = −

∑N
t=1 log pθ(at|Z,q, a<t). Here, at is the ground-truth

token at t. At inference, the prefix a<t is replaced by the previously generated tokens â<t.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Vision encoder pretraining We initialize our vision encoder with RADIOv2.5-L (Heinrich et al.,
2025), a ViT-Large model with 24 Transformer layers and a hidden size of 1024. The encoder is
followed by a ViT-Base decoder initialized from MASt3R (Leroy et al., 2024). We pretrained our
encoder on a mixture of ARKitScenes (Baruch et al., 2021) and ScanNet++(Yeshwanth et al., 2023)
to capture geometric capabilities, and LAION-400M(Schuhmann et al., 2021) to capture semantic
diversity. More training details can be found in Appendix A.2.

Training UniUGG The Spatial-VAE is trained on 2M co-viewing pairs from ARKitScenes and
ScanNet++, with the KL loss weight γ = 0.0001. The detailed Spatial-VAE architecture can be
found in Appendix A.2. For unified training in stage 3, the vision encoder and the Spatial-VAE are
frozen, with only the LLM, projector, and diffusion model optimized. The training process follows
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three steps: (i) Projector is trained on LCS-558K (Liu et al., 2023) to align patch-level features with
the LLM embedding space; (ii) LLM, diffusion model, and projector are jointly optimized on 2.4M
spatial instruction-following samples from ShareGPT4V (Chen et al., 2024d) and ALLaVA (Chen
et al., 2024b), along with 2M co-viewing pairs from ARKitScenes and ScanNet++; (iii) Model is
further finetuned on SPAR (Zhang et al., 2025a), EMOVA (Chen et al., 2024c), and an additional 2M
spatial sample pairs to enhance generalization in spatial QA and 3D generation tasks.

We use Qwen2.5-3B-Instruct (Bai et al., 2023) as the LLM backbone and stable-diffusion-v1-
5 (Rombach et al., 2022) as the diffusion model. The AdamW optimizer with cosine learning rate
decay and a warm-up ratio of 0.03 is used. The learning rate is set to 1 × 10−3 for step (i) and
2 × 10−5 for steps (ii) and (iii) in unified training. The global batch size is set to 256. Additional
0.25M samples are used for generation comparison, separate from the training data.

Training cost and computational resources Our pipeline adopts a three-stage training strategy as
illustrated in Fig. 2. In stage 1, we pretrain the geometric-semantic encoder for 25 hours using 8×
NVIDIA A6000 GPUs. In stage 2, the Spatial-VAE module is pretrained for 12 hours on the same
8× A6000 GPUs. In stage 3, we train the full UniUGG model on both spatial understanding and 3D
generation tasks for about 46 hours on a cluster with 8 nodes, each equipped with 8 Ascend NPUs.
During inference, we run our model on a single NVIDIA A6000 GPU. For spatial reasoning, given 16
input images at a resolution of 224×224, UniUGG achieves an inference latency of 350ms, utilizing
bf16 precision and FlashAttention for acceleration. For 3D generation, UniUGG takes approximately
1.2s to generate a point cloud from a single reference image.

Casual MipNeRF360

Geometry Texture All Geometry Texture All

Feature PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

DINOv2 19.42 .6524 .3698 17.64 .5701 .3754 19.21 .6535 .4023 20.81 .4946 .3953 19.05 .4495 .3821 20.75 .4924 .4684
CLIP 19.21 .6552 .3719 17.46 .5669 .3743 19.05 .6582 .4084 20.80 .4982 .3913 19.28 .4543 .3807 20.88 .4984 .4773
DUSt3R 19.29 .6562 .3580 17.54 .5693 .3750 19.19 .6556 .4050 20.82 .5008 .3795 19.10 .4489 .3816 21.02 .5048 .4752
VGGT 19.36 .6590 .3549 17.47 .5645 .3751 19.23 .6604 .4103 20.93 .5120 .3639 19.25 .4497 .3828 21.17 .5102 .4892
RADIO 19.54 .6545 .3465 17.52 .5666 .3748 18.67 .6533 .4216 20.87 .5100 .3620 19.35 .4550 .3819 20.91 .5067 .5127
MASt3R 19.30 .6550 .3576 17.59 .5708 .3722 19.37 .6588 .4027 20.92 .5093 .3745 19.21 .4540 .3803 20.92 .5054 .4749
Ours 19.80 .6643 .3449 17.81 .5850 .3559 19.18 .6693 .3955 21.28 .5337 .3562 19.72 .4848 .3595 21.31 .5264 .4698

Table 1: Results of novel view synthesis metrics on Feat2GS benchmark. Our encoder outperforms
others in most datasets across Geometry, Texture, and All probing modes. The best results are marked
in bold, and the second best in underlined.

4.2 EVALUATION OF THE GEOMETRIC-SEMANTIC ENCODER

Evaluation on Feat2GS benchmark The Feat2GS benchmark (Chen et al., 2024g) evaluates novel
view synthesis as a proxy task for assessing 3D awareness, which defines three evaluation modes:
(i) Geometry: only geometry parameters are predicted from encoder features, while the texture is
free-optimized for novel view rendering; (ii) Texture: only texture is predicted, with the geometry free-
optimized; (iii) All: both geometry and texture are predicted from features. The encoders compared
include DINOv2 (Oquab et al., 2023), CLIP (Radford et al., 2021), DUST3R encoder (Wang et al.,
2024b), VGGT encoder (Wang et al., 2025a), AM-RADIO (Ranzinger et al., 2024b), and MASt3R
encoder. As shown in Tab. 1, our vision encoder outperforms baselines in all three probing modes,
achieving significant improvements. Detailed results are provided in Appendix A.3.1.

Evaluation on semantic perception and 3D vision tasks We comprehensively evaluate our pre-
trained vision encoder across a diverse set of tasks, including monocular and video depth estimation,
image-level reasoning, and pixel-level visual understanding. Our method achieves highly competitive
performance across all evaluations. Detailed results are provided in Appendix A.3.1.

Downstream task performance We assess the spatial understanding performance of our pretrained
encoder by integrating it into a unified Vision-Language Model architecture based on Qwen2.5-3B-
Instruct (Bai et al., 2023). We evaluate on a wide range of vision-language reasoning benchmarks.
Spatial and geometric abilities are assessed through VSI-Bench (Yang et al., 2025), SPAR (Zhang
et al., 2025a) and BLINK (Fu et al., 2024b), while general language understanding is tested on
RealWorldQA (Miyanishi et al., 2021) and SEED-I (Li et al., 2024b). Compared models include
both semantic-oriented encoders (CLIP-L/14, SigLIP-L/16 (Zhai et al., 2023), RADIOv2.5-L) and
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Method Para. VSI BLINK SPAR SeedI Real
World(M) Low Med. High

Qwen2.5-ViT 669 35.56 37.81 36.50 36.67 39.89 41.81 44.97
CLIP-L/14 305 40.08 40.45 44.13 43.67 52.33 69.14 54.38
SigLIP-L/16 316 23.81 39.08 41.75 34.67 43.11 56.31 45.23
MASt3R Enc. 303 39.14 40.93 50.00 42.33 48.22 56.96 50.07
RADIOv2.5-L 320 39.75 42.92 50.44 47.95 52.13 72.09 57.38
UniUGG Enc. 320 42.18 44.40 50.82 49.07 51.89 71.65 58.56

Table 2: Comparison of encoder performance on downstream vision-language reasoning bench-
marks. The VLM architecture is based on Qwen2.5-3B-Instruct, and all encoders are trained under
the same settings to ensure fairness.

geometry-aware design (MASt3R encoder). All encoders are initialized from pretrained checkpoints
and fine-tuned with the LLM under the same settings for fair comparison.

As shown in Tab. 2, on VSI-Bench, BLINK, and SPAR, our encoder (UniUGG Enc.) demonstrates
clear advantages on spatial reasoning tasks, which require spatial relational understanding and
geometric abstraction. Moreover, our method also achieves competitive performance on general QA
benchmarks like RealWorldQA and SEED-I, showing that spatial enhancement does not significantly
impair semantic generalization. Compared to the geometry-focused MASt3R encoder, our encoder
shows more consistent performance across modalities. In general, our encoder can bridge geometry
and semantics in a unified representation, balancing spatial perception and high-level semantics.

4.3 EVALUATION OF SPATIAL UNDERSTANDING

To evaluate UniUGG’s spatial reasoning ability, we assess it on representative benchmarks,
i.e., VSI-Bench, BLINK, 3DSRBench (Ma et al., 2024), and SPAR. We use three open-source
LMMs—LLaVA (Liu et al., 2024b), InternVL2.5 (Chen et al., 2024h), Qwen2.5VL (Bai et al.,
2025)—and one proprietary LMM, GPT-4o (Achiam et al., 2023), along with the state-of-the-art
2D unified framework Janus-Pro (Chen et al., 2025) for comparison. Results shown in Tab. 3, our
UniUGG achieves superior performance across most benchmarks. In particular, on VSI-Bench, our
model outperforms the second-best one by 17.9%. It demonstrates that UniUGG can capture fine-
grained spatial relations by jointly modeling 3D structure and visual-language reasoning. Additional
evaluations on SQA3D (Ma et al., 2022), ScanQA (Azuma et al., 2022), and ScanRefer (Chen et al.,
2020) are provided in Appendix A.3.2. It should be noted that UniUGG is designed for multi-view
spatial understanding, where the model learns geometry from 2D inputs. Therefore, on these 3D
benchmarks, our model still shows a performance gap compared to 3D-enhanced methods.

4.4 EVALUATION OF 3D GENERATION

Quantitative generation comparison and ablations We compare UniUGG with baselines and
perform ablation studies to evaluate the quality of the generated outputs. Given a reference image and
a view transformation, the setup generates the corresponding spatial structure for the novel view. The
generated point cloud is then projected back onto the image plane, producing a colored 2D image.
These generated images are compared to the real images (Ground truth) using the Fréchet inception
distance (FID), kernel inception distance (KID), and LPIPS. Quantitative and qualitative results are
presented in Tab. 3 and Fig. 5, respectively.

The encoder from our pretraining strategy (ID g) significantly improves generation quality, out-
performing both the RADIOv2.5-L (ID a) and MASt3R encoder (ID b). This shows that simply
incorporating geometric or semantic information is insufficient, and fusing both is more effective in a
unified framework. From the UniUGG settings, we observe a notable performance drop when the
spatial decoder is not fine-tuned during VAE training (ID c). Additionally, omitting the Spatial-VAE
and diffusion models (ID d), and having the LLM directly predict the target-view representation, re-
sults in suboptimal performance. By the way, removing the Spatial-VAE only and training generation
directly on the original representation also fails to generate valid results. These results demonstrate
the Spatial-VAE and related training paradigms are the key to successful 3D generation. Finally, we
compare UniUGG with baselines, CUT3R (Wang et al., 2025b) and LVSM (Jin et al., 2025). While
CUT3R (ID e) predicts 3D structures from pre-observed data and raymap, and LVSM (ID f) generates
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Method VSI BLINK 3DSR SPAR

Low Med. High Avg.

LLaVA-v1.5-7B 18.0 37.1 38.1 10.9 26.5 34.1 23.7
LLaVA-NeXT-7B 20.6 41.8 48.4 8.5 4.8 20.2 13.2
InternVL2.5-8B 32.5 54.8 50.9 29.5 31.9 43.8 36.3
Qwen2.5-VL-7B 30.3 56.4 48.4 28.8 23.0 40.3 33.1
GPT-4o 34.0 60.0 44.2 36.9 26.5 43.8 38.1

*Janus-Pro-1B - 38.9 50.0 10.7 24.7 30.8 20.6
*Janus-Pro-7B - 40.5 53.7 27.3 24.6 33.9 28.6
UniUGG-3B (Ours) 40.1 43.6 52.1 50.8 41.7 45.7 47.2

ID Method ARKitScenes ScanNet++

FID↓ KID↓ LPIPS↓ FID↓ KID↓ LPIPS↓

(a) w/ RADIO 64.16 .0518 .4904 73.69 .0614 .4629
(b) w/ MASt3R Enc. 81.18 .0691 .5076 86.79 .0803 .5242
(c) w/o Dec. finetune 149.97 .1447 .5301 168.05 .1686 .4945
(d) w/o Diffusion 87.51 .0672 .4494 114.93 .0955 .4345

(e) CUT3R 138.54 .1128 .5758 130.76 .1051 .5637
(f) LVSM 269.45 .3088 .5067 414.63 .5117 .5865
(g) UniUGG (Ours) 55.01 .0425 .4849 55.64 .0442 .4263

Table 3: Comparison of 3D understanding and generation performance. Left: 3D understanding
performance on various spatial reasoning benchmarks. *denotes 2D understanding and generation
method. Right: Quantitative spatial generation comparison on ARKitScenes and ScanNet++ datasets.
ID(a) to ID(d) represent the ablation of our model.

UniUGG(Ours) w/ RADIO encoder w/ MASt3R encoder w/o Diffusionw/o Decoder finetuneGround truthReference image

Figure 5: Qualitative ablation on 2D projected views from 3D generation. Our UniUGG, including
the geometric-semantic encoder, Spatial-VAE, and associated training paradigm, leads to noticeably
better generation results, in terms of geometric accuracy and color consistency.

target-view 2D images, both fall short in performance due to their lack of imaginative capabilities.
This highlights the superiority of our method in 3D generation.

Qualitative understanding and generation comparison We further qualitatively assess our UniUGG
with CUT3R, shown in Fig. 6. From the perspective of the generated area, UniUGG accurately
identifies which parts of the geometric structure need to be generated. Additionally, in terms of
texture and semantic details, UniUGG effectively leverages the reference image to plausibly infer
new structures, such as windows and chairs. We also demonstrate the understanding capabilities of
UniUGG by generating captions for the scene from the generated visual representations. UniUGG
can provide accurate descriptions of the 3D structure, even for parts that were previously unseen. In
contrast, the baseline struggles to complete missing regions and lacks coherence in structural details,
let alone understanding the scene. These results highlight the strengths of UniUGG in unified spatial
understanding and 3D generation. We provide additional visualizations—including feature matching,
evaluation under extreme view transformations, and failure cases—in Appendix A.3.3

5 CONCLUSION AND LIMITATIONS

In this paper, we introduce UniUGG, the first unified framework for spatial generation and under-
standing, capable of spatial-level VQA and generating 3D scenes. We propose a geometric-semantic
learning strategy to pretrain the vision encoder, enhancing its spatial modeling capabilities. This
significantly improves both the generation and understanding aspects of our unified framework and
yields strong performance on downstream tasks. Moreover, we design the Spatial-VAE for achieving
efficient 3D generation, and link the spatial decoder for fine-tuning to ensure sharper 3D scene
decoding. Extensive evaluations showcasing UniUGG’s ability to handle both 3D generation and
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Reference image

UniUGG (Ours)

A chair with a black 
bag on it is positioned 
on a beige rug, with a 
small cabinet to the 
left. The scene 
includes a patterned 
section on the rug.

Caption

Pitch down 30°

CUT3R

Merge Reference image

UniUGG (Ours)

A small office space with a 
desk on the left, a blue 
office chair behind it, and 
a whiteboard on the wall 
to the left. A glass door is 
on the right, leading to 
another room.

Caption

Pitch up 40°

CUT3R

Merge

Reference image

UniUGG (Ours)

A bathroom scene 
featuring a window with 
a small shelf. Below the 
shelf, a bathtub is 
partially visible. The walls 
are tiled, and the overall 
layout shows the window 
as the back.

Caption

Yaw right 40°

CUT3R

MergeReference image

A window with two 
panes is centered in the 
image, flanked by two 
frosted glass panels. On 
the windowsill, there is 
a small decorative item. 

Caption

Yaw right 40°

CUT3R

Merge

UniUGG (Ours)

Reference image

UniUGG (Ours)

Pitch up 30°
Yaw right 30°

CUT3R

Merge

A white bookshelf 
filled with books and 
framed pictures. A 
small decorative item 
is visible on the top 
shelf of the bookshelf.

Caption

Reference image

UniUGG (Ours)

Pitch down 40°
Yaw left 40°

CUT3R

Merge

A gray sectional sofa is 
positioned to the right, 
with a small table in 
front of it holding an 
item. In the 
background, a dining 
area is visible.

Caption

Figure 6: Qualitative 3D generation comparison. UniUGG accurately captures the input view
transformation and leverages the reference image to ‘imagine’ fine-grained spatial structures, and
outputs correct captioning. In contrast, the baseline method only produces coarse and fuzzy geometry.

spatial VQA tasks effectively. However, further enhancing 3D generation capabilities in unified
models remains a key challenge for future research. Our framework still has several limitations,
including the lack of controllable generation driven by language and the inability to perform freeform
editing of the generated content. As a preliminary exploration toward unified 3D modeling, our
method does not yet support interactive multi-round scene generation and editing, which also needs
to be solved in the future.
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A APPENDIX

In Appendix, we provide additional technical details and more detailed experimental validations in
terms of our method, comparison, and visualization.

A.1 USE OF LARGE LANGUAGE MODELS

We used GPT-4o to polish the language and improve the clarity of our manuscript, such as improving
grammar and phrasing. The model did not contribute to the core research content of the manuscript,
including mathematical formulations, algorithms, and related results.

A.2 ADDITIONAL IMPLEMENTATION DETAILS

Vision encoder pretraining In the experiments, the patch size is set to 16×16, producing 768 tokens
of dimension 1024. The training uses AdamW optimizer with cosine decay over 5 epochs, with loss
weights λL1

= 1.0, λLP = 0.5,λ1 = 1.0, λ2 = 1.0, and semantic guiding loss weights α = 0.9,
β = 0.1.

Downstream task evaluation To assess the effectiveness of the pretrained encoder across downstream
tasks, we adopt an experimental configuration in which the encoder, projector, and LLM are jointly
trained in an end-to-end fashion. While this setting follows the stage 3 training pipeline as described
in the Sec. 4.1 ‘Training UniUGG’ part of the main text, it differs in two key aspects: the encoder
is updated during training, and no additional co-viewing sample pairs are included. This design
allows us to evaluate the performance of different encoders on both spatial understanding and general
reasoning tasks fairly.

We assess the downstream performance of our pretrained encoder and other encoders by integrating
them into a unified Vision-Language Model (VLM) architecture based on Qwen2.5-3B-Instruct (Bai
et al., 2023). All models are trained with the same pipeline, jointly optimizing the encoder, visual
projector, and LLM. This design ensures fair comparison under identical supervision and model
capacity. All encoders are initialized from their respective pretrained checkpoints and jointly finetuned
with the LLM under the same settings to ensure fair comparison.

Spatial-VAE architecture. The detailed Spatial-VAE architecture is provided in Tab. 4. The
architecture follows an encoder-decoder design tailored for compressing and reconstructing visual
representations. The encoder first reshapes the visual representation inputs into a 2D feature map,
applies a series of convolutional and attention layers, and finally outputs the latent mean and variance
for sampling. The decoder mirrors this process by reconstructing the visual representations from the
sampled latent features using a combination of attention blocks and convolutional layers. Transformer-
based attention modules are used in both the encoder and decoder to model long-range dependencies
across spatial positions, enhancing semantic fidelity during compression and reconstruction.
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Layer Description Output shape
Sptatial-VAE encoder

0 Reshaped input [b, 1024, 14, 14]
1 Initial convolution [b, 256, 14, 14]
2 Upsample 1 (convtranspose) [b, 128, 28, 28]
3 Upsample 2 (convolution) [b, 128, 28, 28]
4 Transformer blocks [b, 784, 128]
5 Flattened attention output [b, 128, 28, 28]
6 µ convolution [b, 4, 28, 28]
7 Log-variance convolution [b, 4, 28, 28]
8 Reparameterization [b, 4, 28, 28]
9 KL divergence loss scalar (mean of log variance)

Sptatial-VAE decoder
0 Input [b, 4, 28, 28]
1 Pre-convolution [b, 128, 28, 28]
2 Flattened attention output [b, 784, 128]
3 Transformer blocks [b, 784, 128]
4 Reshaped attention output [b, 128, 28, 28]
5 Downsample 1 (convolution) [b, 128, 28, 28]
6 Downsample 2 (convolution) [b, 256, 14, 14]
7 Final convolution [b, 1024, 14, 14]
8 Output reshaped [b, 196, 1024]

Table 4: Detailed Spatial-VAE architecture. Our model follows an encoder-decoder design.

LLFF DL3DV Casual
Geometry Texture All Geometry Texture All Geometry Texture All

Feature PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

DINOv2 19.77 .7345 .2226 19.04 .7133 .2254 19.91 .7163 .2637 19.47 .7293 .3288 18.00 .6805 .3223 19.27 .7317 .3479 19.42 .6524 .3698 17.64 .5701 .3754 19.21 .6535 .4023
CLIP 19.78 .7378 .2221 19.02 .7113 .2276 19.74 .7136 .2822 19.53 .7295 .3304 18.05 .6771 .3235 19.22 .7310 .3563 19.21 .6552 .3719 17.46 .5669 .3743 19.05 .6582 .4084
DUSt3R 19.88 .7442 .2123 19.01 .7120 .2262 19.87 .7190 .2691 19.64 .7338 .3196 18.01 .6815 .3219 19.39 .7360 .3458 19.29 .6562 .3580 17.54 .5693 .3750 19.19 .6556 .4050
VGGT 19.85 .7450 .2127 19.05 .7120 .2273 19.86 .7165 .2911 19.65 .7372 .3143 18.05 .6770 .3237 19.38 .7358 .3534 19.36 .6590 .3549 17.47 .5645 .3751 19.23 .6604 .4103
RADIO 19.73 .7402 .2207 19.06 .7101 .2301 19.56 .6999 .3252 19.48 .7313 .3139 18.03 .6748 .3254 19.20 .7316 .3654 19.54 .6545 .3465 17.52 .5666 .3748 18.67 .6533 .4216
MASt3R 19.89 .7447 .2123 19.01 .7115 .2261 19.99 .7250 .2657 19.64 .7334 .3188 18.07 .6813 .3211 19.41 .7373 .3464 19.30 .6550 .3576 17.59 .5708 .3722 19.37 .6588 .4027
Ours 19.52 .7457 .2073 18.79 .7140 .2201 19.71 .7199 .2785 18.32 .7085 .3382 17.29 .6626 .3350 18.15 .7147 .3603 19.80 .6643 .3449 17.81 .5850 .3559 19.18 .6693 .3955

MipNeRF360 MVImgNet Tanks and Temples
Geometry Texture All Geometry Texture All Geometry Texture All

Feature PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

DINOv2 20.81 .4946 .3953 19.05 .4495 .3821 20.75 .4924 .4684 19.35 .5896 .3246 16.88 .5359 .3344 19.43 .5943 .3674 18.71 .6432 .3772 17.58 .6214 .3348 18.43 .6443 .4064
CLIP 20.80 .4982 .3913 19.28 .4543 .3807 20.88 .4984 .4773 19.41 .5945 .3098 16.96 .5362 .3358 19.37 .5969 .3695 18.92 .6463 .3729 17.81 .6226 .3316 18.75 .6515 .4052
DUSt3R 20.82 .5008 .3795 19.10 .4489 .3816 21.02 .5048 .4752 19.47 .6004 .3073 16.88 .5348 .3334 19.43 .5937 .3674 18.85 .6458 .3715 17.53 .6222 .3328 18.61 .6477 .4023
VGGT 20.93 .5120 .3639 19.25 .4497 .3828 21.17 .5102 .4892 19.48 .6019 .2975 17.00 .5373 .3346 19.58 .5987 .3748 19.21 .6615 .3547 17.75 .6221 .3319 19.04 .6593 .4017
RADIO 20.87 .5100 .3620 19.35 .4550 .3819 20.91 .5067 .5127 19.54 .6105 .2949 16.99 .5373 .3366 19.60 .5955 .3946 19.19 .6612 .3480 17.84 .6225 .3321 19.01 .6574 .4109
MASt3R 20.92 .5093 .3745 19.21 .4540 .3803 20.92 .5054 .4749 19.49 .6008 .3032 16.91 .5350 .3337 19.49 .5983 .3637 18.80 .6428 .3703 17.68 .6238 .3319 18.76 .6512 .3991
Ours 21.28 .5337 .3562 19.72 .4848 .3595 21.31 .5264 .4698 19.64 .6107 .2942 17.11 .5388 .3313 19.68 .6007 .3774 19.17 .6600 .3577 17.93 .6324 .3248 18.93 .6602 .3970

Table 5: Per-dataset results of novel view synthesis metrics on Feat2GS benchmark. Results
indicate that our encoder leads to the best performance on most datasets in Geometry, Texture, and All
probing modes. The highest, second-highest, and third-highest scores in each category are highlighted
with light red , light orange , and light yellow , respectively.

A.3 MORE EXPERIMENTAL RESULTS

A.3.1 EVALUATION OF THE GEOMETRIC-SEMANTIC ENCODER

Evaluation on Feat2GS benchmark We provide comprehensive and detailed results on Feat2GS
benchmark (Chen et al., 2024g), as shown in Tab. 5. Results indicate that our encoder leads to the
best performance on most datasets in Geometry, Texture, and All probing modes.

Single-frame and video depth estimation Following MonST3R (Zhang et al., 2024), we evaluate
single-frame depth on the NYU-v2 (Silberman et al., 2012) dataset and video depth on the BONN (Sil-
berman et al., 2012) dataset, which cover dynamic and static scenes. These datasets are excluded
from training, enabling zero-shot performance evaluation across domains. Our evaluation metrics
include absolute relative error (Abs Rel) and percentage of predicted depths within a 1.25-factor of
true depth (δ < 1.25). Following (Wang et al., 2024b), single-frame evaluation adopts per-frame
median scaling, and video evaluation aligns a single scale and/or shift factor per sequence.

We compared our methods with DUSt3R (Wang et al., 2024b), MASt3R (Leroy et al., 2024),
Spann3R (Wang & Agapito, 2024), and MonST3R, where these baselines are specially designed for
3D tasks. As shown in Tab. 6 (left), our method achieves competitive results compared to baselines,
and even outperforms MASt3R in both single-frame and video depth evaluation.
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Method
NYU-v2 (Single-frame) BONN (Video)

Abs Rel ↓ δ < 1.25 ↑ Abs Rel ↓ δ < 1.25 ↑

DUSt3R 0.080 90.7 0.155 83.3
MonST3R 0.102 88.0 0.067 96.3
Spann3R 0.122 84.9 0.144 81.3
MASt3R 0.129 84.9 0.252 70.1
Ours 0.070 93.9 0.086 91.4

Method Params ImageNet1K Segmentation
(M) Zero-shot k-NN ADE20k VOC

SAM-H/16 637 - 22.12 28.08 34.34
OpenAI CLIP-L/14 305 75.54 79.96 36.51 67.04
SigLIP-L/14 428 82.61 85.16 40.53 70.31
DINOv2-g/14-reg 1,137 - 83.41 48.68 82.78
DUSt3R Enc. 303 - - 32.10 46.02
DUNE-B/14-448 420 - - 45.60 -
MASt3R Enc. 303 - - 32.54 48.58
*RADIOv2.5-L 320 80.55 83.16 50.68 85.60
UniUGG Enc. (Ours) 320 80.06 83.13 50.12 85.43

Table 6: Left: Depth evaluation results. We report single-frame depth evaluation performance on the
NYU-v2 dataset and video depth evaluation performance on the BONN dataset. Right: Comparison
of encoder performance on the image/pixel level. ‘Zero-Shot’ and k-NN are computed on ImageNet-
1K. ADE20K and PascalVOC2012 refer to linear probe semantic segmentation mIOU. *denotes
teachers used to pretrain our encoder.

Method Params VSI-Bench SPAR

(M) Count Obj.Size Room Rel.Dir. Rel.Dist. Route Order Avg. Low Medium High

Qwen25-ViT 669 58.00 51.12 31.04 37.31 29.44 25.26 21.20 35.56 36.50 36.67 39.89
OpenAI CLIP-L/14 305 61.43 49.30 49.31 39.45 36.20 30.93 16.18 40.08 44.13 43.67 52.33
SigLIP-L/16 316 11.93 42.06 0.73 38.95 27.89 28.87 9.71 23.81 41.75 34.67 43.11
MASt3R Encoder 303 58.12 39.81 48.82 43.70 33.24 32.47 19.58 39.14 50.00 42.33 48.22
RADIOv2.5-L 320 59.91 53.49 50.17 37.08 32.54 30.41 16.18 39.75 50.44 47.95 52.13
UniUGG Enc. (Ours) 320 62.69 51.70 49.34 42.14 34.37 32.99 27.51 42.18 50.82 49.07 51.89

Method Params BLINK Seed-I Real
World(M) Fun.Corr. Vis.Corr. Local. Jigsaw Depth Spatial Simi. Art Avg.

Qwen25-ViT 669 15.38 26.16 54.92 46.67 44.35 52.45 46.67 52.99 37.87 41.81 44.97
OpenAI CLIP-L/14 305 24.62 24.42 52.46 56.00 45.97 63.64 43.70 52.99 40.45 69.14 54.38
SigLIP-L/16 316 20.00 20.35 61.48 51.33 46.77 53.85 53.33 56.41 39.08 56.31 45.23
MASt3R Encoder 303 22.31 27.33 55.74 48.67 44.35 67.13 44.44 45.30 40.93 56.96 50.07
RADIOv2.5-L 320 23.08 31.98 47.54 43.33 68.55 65.53 47.31 53.85 42.92 72.09 57.38
UniUGG Enc. (Ours) 320 33.85 33.14 55.74 48.67 69.35 67.83 51.11 59.85 44.40 71.65 58.56

Table 7: Detailed comparison results of encoder performance on downstream vision-language
reasoning benchmarks. The VLM architecture is based on Qwen2.5-3B-Instruct, and all encoders
are trained under the same settings to ensure fairness.

Image/pixel level evaluation To assess the performance of our encoders, we adopt a set of repre-
sentative metrics following (Ranzinger et al., 2024b). For image-level reasoning, we evaluate our
encoder using Top-1 k-NN accuracy and zero-shot accuracy on the ImageNet-1K dataset (Deng et al.,
2009). The zero-shot accuracy is computed using the CLIP language model (Radford et al., 2021).
For the k-NN evaluation, we first extract the summary feature for all training images. Then, for
each validation image, we identify the k nearest neighbors in the feature space and predict the label
based on a weighted vote of these neighbors. We also evaluate the generalization performance of our
encoder on pixel-level visual tasks, including segmentation mIOU on ADE20k (Zhou et al., 2019)
and PascalVOC2012 (Everingham et al., 2015) datasets.

The encoders compared include SAM-H/16 (Kirillov et al., 2023), OpenAI CLIP-L/14 (Radford
et al., 2021), SigLIP-L/14 (Zhai et al., 2023) , DINOv2-g/14-reg (Darcet et al., 2023), DUSt3R
encoder (Wang et al., 2024b),DUNE-B/14-448 (Sarıyıldız et al., 2025) ,MASt3R encoder (Leroy
et al., 2024) and RADIOv2.5-L (Ranzinger et al., 2024b).

Following (Ranzinger et al., 2024b), we freeze the vision encoders and train a linear head on top of
the frozen features. The linear probe is conducted in the MMSeg (Contributors, 2020) framework.
We train the linear head for 20k steps using a total batch size of 64, a base learning rate of 5e−3, and
the Adam-W optimizer.

As shown in Tab. 6 (right), while our method does not outperform the teacher baseline, it yields
competitive results that validate the potential of our encoder. More importantly, it establishes a strong
foundation for unified spatial reasoning and 3D generation.
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Method 3DSRBench VSI-Bench

Height Loc. Orient. Multi. Avg. Obj.Count Abs.Dist. Obj.Size RoomSize Rel.Dist Rel.Dir. RoutePlan Appr.Order Avg.

LLaVA-v1.5-7B 39.1 46.9 28.7 34.7 38.1 6.2 4.9 32.6 2.7 29.6 30.7 26.3 10.5 18.0
LLaVA-NeXT-7B 50.6 59.9 36.1 43.4 48.4 7.5 8.8 27.7 25.8 33.2 29.7 23.7 8.6 20.6
InternVL2.5-8B 45.9 68.1 38.7 43.3 50.9 7.7 32.6 42.9 34.6 39.6 40.0 24.7 37.7 32.5
Qwen2.5-VL-7B 44.1 62.7 40.6 40.5 48.4 26.7 10.8 35.4 31.0 35.2 38.2 35.1 29.6 30.3
GPT-4o 53.2 59.6 21.6 39.0 44.2 46.2 5.3 43.8 38.2 37.0 41.3 31.5 28.5 34.0
UniUGG-3B (Ours) 52.3 60.0 43.4 49.3 52.1 63.2 34.8 49.1 50.4 30.3 38.6 26.3 26.7 40.1

Table 8: Detailed spatial understanding scores on 3DSRBench and VSI-Bench. Our UniUGG is
jointly trained for both spatial understanding and 3D generation tasks. Note that the LLM used in
UniUGG has a size of only 3B parameters.

Method 3D SQA3D ScanQA
EM BLEU-4 CiDEr EM

3D-LLM ✓ - 12.0 69.4 20.4
Chat-3D v2 ✓ 54.7 14.0 87.6 -
LEO ✓ 50.0 13.2 101.4 21.5
LL3DA ✓ - 13.5 76.8 -
Scene-LLM ✓ 54.2 12.0 80.0 27.2
LLaVA-3D ✓ 55.6 14.5 91.7 27.0
Video-3D LLM ✓ 58.6 16.2 102.1 30.1
UniUGG (Ours) ✗ 51.3 12.1 85.6 24.4

Methods Acc@0.25 Acc@0.5

ScanRefer 37.3 24.3
MVT 40.8 33.3
ViL3DRel 47.9 37.7
3D-LLM 30.3 -
Chat-3D v2 35.9 30.4
Grounded 3D-LLM 47.9 44.1
LLaVA-3D 54.1 42.4
Video-3D LLM 58.1 51.7

*UniUGG (Ours) 23.2 7.8
UniUGG (Ours) 41.9 36.6

Table 9: Left:Performance comparison on SQA3D and ScanQA. “3D” indicates whether the
model is infused with 3D information. Right:Performance comparison across different models on
ScanRefer. *indicates results without refine.

Downstream task performance As shown in Tab. 7, we provide more detailed results about Tab. 2
of the main text. Our encoder (UniUGG Enc.) demonstrates clear advantages on spatial reasoning
tasks and two general QA benchmarks. It shows that our encoder has more consistent performance
across modalities, balancing spatial perception and high-level semantics.

A.3.2 EVALUATION OF SPATIAL UNDERSTANDING

Detailed spatial understanding scores As shown in Tab. 8, we present more fine-grained spatial
understanding scores on 3DSRBench and VSI-Bench (corresponding to Tab. 3 of the main text). We
jointly train UniUGG for both spatial understanding and 3D generation tasks. The model utilizes our
pretrained geometric-semantic encoder as the visual backbone and employs Qwen2.5-3B-Instruct as
the large language model. The results demonstrate that UniUGG can capture precise spatial relations
by jointly modeling 3D structure and visual-language reasoning. It should be noted that the LLM
used in UniUGG has a size of only 3B parameters.

Evaluation on 3D-specific benchmarks We further evaluate the 3D reasoning capability of our
UniUGG on SQA3D (Ma et al., 2022), ScanQA (Azuma et al., 2022), and ScanRefer (Chen et al.,
2020), which are widely adopted benchmarks in 3D VLMs. Due to the differences in QA formats,
and following the practice of prior works, we apply supervised fine-tuning on 3D tasks to better assess
UniUGG’s spatial capabilities. First, we evaluate spatial understanding using SQA3D and ScanQA,
which focus on object attributes, spatial relations, and viewpoint-conditioned reasoning. Compared
models include 3D-LLM (Hong et al., 2023), Chat-3D v2 (Huang et al., 2023a), LEO (Huang
et al., 2023b), LL3DA (Chen et al., 2024e), Scene-LLM (Fu et al., 2024a), LLaVA-3D (Zhu et al.,
2024a) and Video-3D LLM (Zheng et al., 2024). As shown in Tab. 9 (left), although our model
does not incorporate explicit 3D information, it achieves competitive performance compared to
3D-enhanced LLMs. Additionally, we assess 3D grounding on the ScanRefer dataset, where the task
requires localizing target objects based on textual descriptions. Compared models include ScanRefer,
MVT (Huang et al., 2022), ViL3DRel Chen et al. (2022), 3D-LLM, Chat-3D v2, Grounded 3D-
LLM Chen et al. (2024f), LLaVA-3D, and Video-3D LLM. As shown in Tab. 9 (right), our model
may struggle to predict depth accurately due to the absence of 3D information, resulting in poor
grounding results. To address this, we apply a refinement strategy to mitigate this issue and improve
grounding performance. These results highlight the potential of our UniUGG to perform spatial
reasoning and grounding without relying on explicit 3D inputs, while still supporting more complex
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Method VSI BLINK 3DSR SPAR

UniUGG (full) 40.1 43.6 52.1 47.2
UniUGG (und. only) 42.2 44.4 51.3 49.8

Method ARKitScenes ScanNet++

FID↓ KID↓ LPIPS↓ FID↓ KID↓ LPIPS↓

UniUGG (full) 55.01 .0425 .4849 55.64 .0442 .4263
UniUGG (gen. only) 54.35 .0409 .4556 55.46 .0454 .3586

Table 10: Performance comparison with separate optimization.

generative tasks. It should be noted that our model employs a backbone with 3B parameters, while
other methods, for example, LLaVA-3D and Video-3D-LLM, use 7B-parameter backbones.

A.3.3 EVALUATION OF 3D GENERATION

More qualitative results of 3D generation We provide more visualization results to further demon-
strate the 3D generation and understanding capabilities of UniUGG. Given a reference image, we
randomly sample plausible relative view transformations and let UniUGG generate the corresponding
3D scenes. UniUGG further captioned the generated 3D scenes. As shown in Fig. 7, Fig. 8, Fig. 9,
and Fig. 10, UniUGG consistently produces geometrically coherent and semantically meaningful 3D
content, along with accurate scene captions.

Feature matching visualization By taking only a reference image and the relative view transforma-
tion as input, UniUGG predicts the ViT tokens of the target image, which, together with the reference
tokens, are then decoded into point clouds and the corresponding cross-view feature matchings.
We visualize these feature matching results in Fig. 11 and compare them with the baseline method
MASt3R (Leroy et al., 2024), which requires both the reference and ground-truth transformed-view
images as input to obtain feature matching. Our method achieves highly accurate feature matching,
which is highly consistent with those produced by MASt3R. This demonstrates that UniUGG not
only generates the spatial structure under the novel view but also ensures that the generated content is
generally consistent with the input view transformation condition.

Robust generation under extreme view transformation We illustrate the generation performance
of UniUGG under extreme view transformation conditions, as shown in Fig. 12. We evaluate the
model performance conditioned on rotation angles of 60°, 80°, 100°, 120°, and 140°. As observed,
within the range of 60°-120°, UniUGG still produces high-quality, semantically rich, and structurally
coherent 3D point clouds. However, at 140° or beyond, the generation quality drops noticeably, with
the point clouds exhibiting blurred textures and distorted structures. This degradation arises from
two factors. First, during training, the view-transformation conditions are usually constrained within:
view overlap ratio > 0.4, rel-translation < 2 m, and rel-rotation < 120°. Consequently, when evaluated
under extreme view transformation (e.g., rotation > 140°), our model struggles to maintain generation
quality. Second, such large viewpoint changes significantly reduce the overlap between the reference
and target images, resulting in insufficient cross-view constraints and finally leading to failures in 3D
generation.

Failure case Due to the lack of training samples with large view transformations, UniUGG would
generate point clouds with blurred textures and distorted structure under extreme viewpoint changes,
as shown in Fig. 12. What’s more, we also provide some examples of failure cases in Fig. 13. In
some cases, UniUGG generates point clouds with color distortions, where vivid green regions are
mistakenly inferred as grayish colors. This may be caused by a conflict between color decoding and
semantic representation tasks during encoder pretraining.

A.3.4 PERFORMANCE OF SEPARATELY OPTIMIZED

As shown in Tab. 10, we separately optimize the spatial understanding task and the 3D generation
task, and compare their performance with that of the jointly trained model. Benefiting from the
Spatial-VAE and diffusion model, joint training (UniUGG full) does not significantly degrade the
performance of 3D generation (UniUGG gen. only) and only leads to a moderate reduction in
spatial understanding (UniUGG und. only) performance. We believe this performance trade-off is
acceptable: although a small amount of understanding performance is sacrificed, we obtain a unified
3D model for both understanding and generation. This unification substantially reduces training cost
and computational overhead while broadening the range of tasks the model can support.
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Reference image

A blue quilt with geometric 
pattern covers a wooden floor 
next to a wooden cabinet. The 

quilt is positioned near the 
corner of the room.

Caption

Random seed 1

Two blue quilts with 
geometric pattern cover the 
floor in front of a wooden 
door, with a white towel 

partially visible on the left side. 

Caption

Random seed 2

Merge

Merge

Reference image

A neatly made bed with white 
linens and a gray headboard is 

centered against a gray upholstered 
headboard. Above the bed, a 

framed artwork hang on the wall, 
and a small bedside table with a 

lamp is visible to the right.

Caption

Random seed 1
A neatly made bed with white 

linens and pillows are positioned 
against a wall, with a gray 

upholstered headboard. Above the 
bed, a framed artwork hang on the 
wall, and a small bedside table with 

a lamp is visible to the right.

Caption

Random seed 2

Merge

Merge

Reference image

A wooden table with a carved 
top is positioned on a stone 
floor in front of a stone wall, 

with a small rug partially visible 
to the right. In the background, 

a black door is visible.

Caption

Random seed 1

A wooden table with a worn 
surface is positioned on a stone 

floor, with a stone wall and 
variously sized and colored 

stones in the background. To 
the right, there is a wooden chair 

is partially visible.

Caption

Random seed 2

Merge

Merge

Reference image

A beige sofa with green 
cushions placed on it, 

positioned against a wall near a 
window with white curtains. The 
cushions are aligned side by side, 

with the sofa facing outward.

Caption

Random seed 1

A beige sofa with a light-
colored cushion is positioned 

against a wall, with a green 
cushion draped over the right 
side. The sofa is situated on a 

tiled floor, partially covered by a 
white curtain to the left.

Caption

Random seed 2

Merge

Merge

Figure 7: Additional visualization samples. We present 3D scene generations and the corresponding
captions produced by our UniUGG under varying random seeds.

A gray tufted sofa with several 
cushions is positioned against a 

wall. The room has a neutral color 
scheme with a dark floor and a 
light wall decoration above the 

sofa.

A gray tufted sofa is adorned with 
several pillows, including a gray 

one with U-shape. A dark door is 
partially visible to the right.

A living room with a brown leather 
sofa on the left and a dark-colored 

sofa on the right, separated by a 
doorway leading to a dining area. 

The walls are painted in contrasting 
colors, with a dark blue wall and a 

light gray carpet.

A gray sofa with a colorful pillow is 
positioned on the left side of the 
room. The walls are painted dark 
blue, and there is a small table on 
the left side. The hallway leads to 

another room with visible furniture 
and a window in the background.

A living room with a gray sectional 
sofa adorned with several pillows. In 
front of the sofa, a small, patterned 

rug covers the floor, and a beige sofa 
is partially visible on the right side. 

A wooden table sits in the 
foreground on the left.

A gray sectional sofa with several 
cushions is positioned against a dark 
wall, with a small table visible in the 
background to the left. The room 

features a patterned rug on the floor 
and a window with curtains partially 

visible in the distance.

A kitchen countertop with a 
double sink and a faucet, featuring 

a dish rack with dishes and a 
container to the right. A kettle 
sits on the counter to the left, 
with a window above the sink 
allowing natural light to enter.

A kitchen sink area with a dish 
rack on the right holding a plate 

of food. To the left, there are 
cabinets and a countertop with 

items near the window.

Reference image

Caption

Random seed 1 Caption

Random seed 2

Merge

Merge

Reference image

Caption

Random seed 1 Caption

Random seed 2

Merge

Merge

Reference image

Caption

Random seed 1 Caption

Random seed 2

Merge

Merge

Reference image

Caption

Random seed 1 Caption

Random seed 2

Merge

Merge

Figure 8: Additional visualization samples. We present 3D scene generations and the corresponding
captions produced by our UniUGG under varying random seeds.

A kitchen scene featuring a 
countertop with drawers and 

cabinets below, a window 
above, and a dark mat on the 
floor. The cabinets have gold 

handles, and the countertop is 
near the window.

A kitchen area with light-colored 
cabinets and drawers, featuring a 
dark countertop and a sink on 
the left. A blue mat lies on the 

tiled floor in front of the cabinets, 
and a window with a black frame 

is visible on the right side.

A bedroom with a bed 
covered in a beige sheet in the 
foreground, and sheer curtains 

covering a window. A small 
shelf with decorative items is 
mounted on the wall to the 

left of the window.

A neatly made bed is 
positioned in front of a 
window with sheer white 
curtains. The room has a 

modern look with a wooden 
floor and minimalistic decor.

A brown leather couch is 
positioned to the left, with a 
yellow lamp on a metal stand 
to the right, casting a shadow 

on a patterned wall. 

A brown leather sofa with a 
purple cushion is positioned to 
the left, while a red lamp with 

a base stands on a wooden 
floor to the right. To the right, 

there is another purple sofa 
partially visible.

A neatly made bed with two 
leaf-patterned pillows is 

centered in the room, with a 
bedside table to the left holding 
a small device. Above the bed, a 

shelf displays framed photos 
and small decorative items.

A bed with a gray pillow and a 
leaf-patterned pillow is centered 
in the room. The headboard is 
visible behind the bed, and a 

shelf with various items is 
partially seen to the left.

Reference image

Caption

Random seed 1 Caption

Random seed 2

Merge

Merge
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Caption

Random seed 1 Caption

Random seed 2

Merge

Merge

Reference image

Caption

Random seed 1 Caption
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Merge
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Random seed 1 Caption

Random seed 2
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Figure 9: Additional visualization samples. We present 3D scene generations and the corresponding
captions produced by our UniUGG under varying random seeds.
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Reference image Generated part
A small room with a single bed on 
the left, a desk with a computer in 

the center, and a on the right. 
Above the desk, a shelf holds 

books and decorative items, while 
a window with curtains is behind 

sofa. A light green pillow is on sofa.

Caption Merge Reference image Generated part
A small room features a single 
bed with white bedding on the 

right, adjacent to a wooden desk 
with a laptop and various items. 

A white chair is positioned in 
front of the desk. The room has a 

dark floor and a window with 
sheer curtains on the right wall.

Caption Merge

A workspace with two computer 
monitors on a desk. A keyboard, 
mouse, and phone are in front of 

the monitors, with a blue cup 
and papers nearby. A window 

with blinds is on the left.

A small office space with a closed 
door on the left, a clock above 

the door, and a desk with 
computer monitors and a chair 
on the right. Fluorescent lights 
illuminate the room from the 

ceiling.

A bed with an orange cover is 
positioned on the left side of the 
room, next to a small wooden 
nightstand with a digital clock 

on top. A framed picture hangs 
on the wall above it. The room 
has a carpeted floor and a glass 

door leading outside.

A single bed with a folded beige 
mattress and pillow is positioned 
against the wall, with a small shelf 

underneath. To the left, a blue 
suitcase stands near a window 

with sheer curtains. 

A small room with a desk on the 
left holding a computer monitor, 
adjacent to a bed with a colorful 
blanket. On the right, a brown 
armchair sits near a white shelf. 
The room has a large window 

with white curtains.

A compact laundry area with a 
front-loading washing machine 
positioned in front of a kitchen 
counter. The counter is to the 
left of the washing machine, 

which is adjacent to a closed door.

Figure 10: Additional visualization samples. We present 3D scene generations and the correspond-
ing captions produced by our UniUGG.

Reference image Seen

MASt3R

Reference image

UniUGG(Ours)

Unseen

Figure 11: Feature matching visualization. Without access to the target image, our method takes
the reference image and the relative view transformation as input and still produces accurate feature
matchings, while baseline MASt3R takes image pairs as input.

Reference image Generated point cloud Generated target view Reference image Generated point cloud Generated target view

View transformation angle: 60° View transformation angle: 80°

View transformation angle: 100° View transformation angle: 120°

View transformation angle: 140° View transformation angle: 140°

Figure 12: 3D generation under extreme view transformation. When the rotation angle is below
120°, UniUGG can still produce high-quality 3D point clouds under the target viewpoint. As the
rotation angle increases to 140° or beyond, the quality of the generated results degrades noticeably.
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Reference image Generated point cloud Generated target view Reference image Generated point cloud Generated target view

Figure 13: Other failure cases of our model.

Image 1

(a) Simplified generation-understanding learning

Q: How many chairs are 
shown in this picture? 

A: There are four chairs.
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Figure 14: Overview of our simplified model variant pipeline. In the simplified variant, we do not
use the diffusion model and Spatial-VAE for scene generation but directly produce the novel-view
tokens by LLM, which is supervised with ground truth tokens.

A.4 EXPLORATION OF SIMPLIFIED MODEL VARIANT

During the development of our proposed UniUGG, we explored the early or simplified version of
the model architecture. This helped us better understand the role of the core component in the
model. Although not intended as the final model, the simplified variant provides valuable insights for
designing a unified framework for 3D understanding and generation.

As shown in Fig 14 (a), during training, LLM learns both spatial generation capability across views by
predicting ViT tokens of the novel view, and visual understanding capability via question answering
As shown in Fig 14 (b), at inference, the model performs either novel-view spatial generation or
question answering using a single image as reference, conditioned on the input type.

We present visualization generation results of the simplified variant in Fig. 15. While it outperforms
the baseline CUT3R in terms of generating fine-grained spatial structures, its textures remain notice-
ably inferior to those of our full UniUGG. This performance gap is primarily attributed to the absence
of the diffusion prior and Spatial-VAE, which play a crucial role in modeling high-frequency visual
details and realistic textures. The simplified variant, lacking these core components, tends to generate
over-smoothed surfaces.

Reference image

Pitch up 40°Pitch up 40° Pitch down 50° Pitch down 50°

Yaw left 40° Yaw left 40° Yaw right 50° Yaw right 50°

CUT3R Simplified model (Ours) Reference image CUT3R Simplified model (Ours)

Pitch down 50°, yaw left 50° Pitch down 50°, yaw left 50° Pitch up 40°, yaw right 40° Pitch up 40°, yaw right 40°

Figure 15: Visualization of scenes generated by the simplified model variant. Although the
simplified variant can imagine spatial structures under novel views, it lacks clear details.
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