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ABSTRACT

Diffusion models are central to text-to-image synthesis, yet enforcing semantic
constraints such as exclusion and negation remains challenging across architec-
tures. We propose a unified, training-free intervention that combines diagnostic
instrumentation with a principled sampling-time optimizer to improve constraint
adherence without modifying pretrained denoisers. The diagnostic module uses
latent attribution and Jacobian analysis to reveal sensitivity to textual condition-
ing and guide conservative hyperparameter initialization. The optimizer shapes a
smooth semantic potential on the CLIP manifold and applies Hamiltonian updates
with mild stochasticity, enabling manifold-aware corrections and a distributional
interpretation via a semantic Fokker–Planck equation. Experiments on multiple
diffusion variants and datasets show that inference-time energy shaping signifi-
cantly improves negative-prompt compliance while preserving perceptual quality.
Our approach advances controllable generation by integrating model introspection
and theoretically grounded constrained sampling into a lightweight, architecture-
agnostic procedure.

Keywords: Diffusion-based Generative Models, Controllable Image Synthesis, Energy-Guided
Prompt Optimization, Cross-Architectural Attribution, Semantic Consistency Metrics

1 INTRODUCTION

Diffusion-based generative models have become the dominant paradigm for text-to-image synthesis,
combining principled probabilistic denoising samplers with increasingly sophisticated conditioning
mechanisms such as classifier-free guidance, multimodal priors and spatial controls (Ho et al., 2020;
Nichol et al., 2021; Rombach et al., 2022; Ding et al., 2024; Zheng et al., 2023). Engineering ad-
vances that shift computation into compact latent spaces and the adoption of modular denoiser back-
bones have made high-resolution synthesis practical for a wide array of creative and domain-specific
applications. At the same time, the rapid proliferation of architectural variants, for example, differ-
ent latent parameterizations and U-Net or DiT backbones, has introduced heterogeneity in sampling
dynamics and in the ways conditioning signals are absorbed, which complicates the straightforward
transfer of prompt-engineering practices between models.

Despite these empirical gains, two practical gaps limit robust deployment. First, comparative un-
derstanding across model families remains informal: architectural and parameterization differences
often induce measurable divergences in how semantic signals propagate through the sampler, yet
standardized, operational diagnostics for quantifying these divergences are scarce. The absence
of systematic instrumentation makes it difficult to recommend which checkpoint or variant to use
for constraint-sensitive applications. Second, enforcing exclusionary or negation-style instructions
(so-called “negative prompts”) is brittle in practice: naive negative prompting or fixed guidance
schedules frequently fail to suppress undesired content consistently, producing delayed, partial, or
architecture-dependent failures (Ban et al., 2024; Koulischer et al., 2024). Prior proposals, such as
energy-based penalties and dynamics-aware corrections, offer partial remedies but have not been
integrated into a unified workflow that both explains and corrects cross-architecture failure modes
(Jiang et al., 2025; Hong, 2024).
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To address the limitations of heuristic, threshold-based corrections, we propose a unified frame-
work that couples cross-architectural diagnostic instrumentation with a lightweight, training-free
inference-time optimizer. The diagnostic stage computes compact summaries of latent attribution
statistics together with a Jacobian-derived comparative metric that captures architecture-specific
linear-response patterns during denoising. These summaries indicate which timesteps and latent
coordinates are most sensitive to semantic constraints and therefore provide principled, conservative
initial values for correction hyperparameters. The corrective stage, Energy-Guided Prompt Opti-
mization (EGP), operates at inference time by alternating standard reverse-diffusion proposals with
a small number of focused gradient-correction steps on an explicit latent energy; corrections are
concentrated on active violations so that perceptual quality is preserved.

We elevate EGP from a heuristic to a theory-grounded sampler through three complementary ad-
vances. First, we replace hard-threshold penalties with a smooth semantic potential on the CLIP
manifold, modeling negative prompts as repulsive wells and enabling a Wasserstein gradient-flow
interpretation that aligns corrective trajectories with manifold geometry and provides stronger avoid-
ance guarantees. Second, we substitute plain gradient descent with Hamiltonian phase-space dynam-
ics, introducing momentum and symplectic integration to preserve energy, improve exploration, and
reduce discretization bias, yielding a principled limiting distribution concentrated on low-energy
regions that satisfy constraints. Third, we embed the mechanism in a distribution-level view via
a semantic Fokker–Planck equation, which decomposes evolution into semantic drift and isotropic
diffusion, rigorously characterizing the stationary measure and explaining long-run adherence to
constraints. These upgrades transform empirical effectiveness into interpretable, provable properties
while maintaining practical efficiency. These theoretical advances preserve EGP’s practical advan-
tages. The method remains training-free and can be applied directly to pretrained denoisers without
parameter updates. It is sampler-agnostic and compatible with common latent parameterizations
and denoiser families, which avoids architecture-specific redesign. By operating on an explicit,
manifold-aware energy rather than on learned negative embeddings or global attention smooth-
ing, EGP focuses corrective effort on exceeded-similarity regions while keeping runtime overhead
modest through cached text embeddings and timestep-adaptive step sizes. Empirically, initializing
correction hyperparameters using Jacobian-derived diagnostics and executing a modest number of
inner-loop gradient steps per reverse transition yields substantial improvements in negative-prompt
adherence across multiple diffusion variants and application domains while maintaining perceptual
fidelity.

In summary, this paper makes three contributions. First, we introduce a standardized cross-
architectural diagnostic protocol based on latent attribution and Jacobian summaries that quantifies
sensitivity to semantic constraints and can guide both model selection and conservative hyperpa-
rameter initialization. Second, we present Energy-Guided Prompt Optimization, a training-free and
sampler-agnostic inference-time correction whose design is grounded in a smooth semantic po-
tential, Hamiltonian phase-space sampling, and distribution-level evolution. Third, we provide a
comprehensive empirical evaluation, including quantitative metrics, human studies, and ablations,
demonstrating that the combined diagnostic-plus-correction pipeline materially improves negative-
prompt compliance across diverse diffusion families and practical domains.

2 RELATED WORK

Foundations and Theory of Diffusion Architectures. The modern family of diffusion-based gen-
erative models builds on the probabilistic denoising framework introduced in Denoising Diffusion
Probabilistic Models (DDPMs), which formalized sample generation as a learned reverse diffusion
process (Ho et al., 2020). Subsequent work refined training objectives and sampling strategies to
improve convergence and sample quality (Nichol & Dhariwal, 2021; Ho et al., 2022). Moving com-
putations into a compressed latent space enabled high-resolution synthesis with practical compute
budgets; this approach is typified by Latent Diffusion Models (Rombach et al., 2022) and underlies
many contemporary systems.

Mechanisms for Semantic and Constraint Guidance. A central thread in conditional synthesis
is how to steer diffusion sampling toward desired semantics. Classifier-free guidance established
an efficient, widely adopted conditioning paradigm (Ho & Salimans, 2022; Nichol et al., 2021),
while multimodal and spatial conditioning techniques have extended control granularity (Ding et al.,
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2024; Zheng et al., 2023). Parallel lines of work explore negative or exclusionary directives (“neg-
ative prompts”) and dynamic guidance schedules (Ban et al., 2024; Koulischer et al., 2024). Recent
energy-based schemes apply differentiable penalty terms or energy reshaping to bias sampling tra-
jectories toward constraint-satisfying regions (Jiang et al., 2025; Hong, 2024); our method situates
itself within this energy-guided spectrum and emphasizes cross-architectural robustness.

Optimization, Sampling and Energy-based Methods. The mathematical relationship between
our energy formulation and established constrained-sampling and optimization techniques is impor-
tant. Energy-based formulations and gradient-driven samplers (e.g., Langevin dynamics, projected
gradient flows) provide principled mechanisms to enforce constraints during generation (Qin et al.,
2022; Kong et al., 2022). Connections to projected gradient descent and constrained MCMC il-
luminate how latent-space penalties alter sampler transition kernels and marginal distributions; we
draw on these insights when designing our energy-correction steps and when qualifying marginal
preservation.

Precedents from Classical Image Editing and Controlled Generation. Before text-to-image dif-
fusion models rose to prominence, constraint-driven image editing and synthesis, such as inpaint-
ing, Poisson-based editing, and exemplar-based synthesis, were formulated as energy minimization
or constrained optimization problems(Zoran & Weiss, 2011; Pérez et al., 2023). These classical
methods motivate modern latent-space constraint terms: enforcing semantic exclusions via CLIP
embeddings or topological penalties can be regarded as a contemporary analogue of earlier image-
energy formulations.

Attribute Control in Earlier Generative Models. Research in GANs and VAEs developed many
techniques for controllable generation (latent manipulations, style-based control, conditional archi-
tectures) and offers a rich taxonomy of methods for attribute disentanglement and editing (Sohn
et al., 2015; Karras et al., 2019). Comparing these design patterns to diffusion-based control high-
lights both shared goals, such as explicit attribute steering, and distinct challenges, as diffusion
samplers are iterative processes whose dynamics interact non-trivially with guidance signals. Our
cross-architectural diagnostic explicitly measures how such interactions vary across model families.

Interpretability and Diagnostic Tools for Diffusion Models. Efforts to interpret and analyze dif-
fusion models (for example, representation analyses, attention studies, and Jacobian-based diag-
nostics) are complementary to algorithmic advances (Fuest et al., 2024; Mittal et al., 2023). Our
cross-version Jacobian diagnostic draws on this interpretability literature to quantify structural dif-
ferences between model variants and to relate those differences to empirical failure modes under
constrained prompting.

Efficiency and Practical Acceleration Strategies. Practical deployment of guided diffusion re-
quires efficient sampling and parameter-efficient adaptations such as cascaded architectures, latent
consistency models, and LoRA-style modules (Ho et al., 2022; Luo et al., 2023; Karras et al., 2024).
These approaches provide alternative efficiency and quality trade-offs, which we account for in our
comparative evaluation.

Sociotechnical and Application Contexts. Work on bias, safety, and benchmarking grounds tech-
nical contributions in broader impact considerations (Luccioni et al., 2023; Borji, 2022). Like-
wise, domain-specific applications (e.g., medical imaging, artistic stylization, video synthesis) re-
veal different constraint sensitivities; our cross-domain experiments demonstrate how energy-guided
prompting generalizes across such contexts.

In summary, this paper connects theoretical principles from energy-based optimization and con-
strained sampling to prior work on controllable generation, classical image editing, and interpretabil-
ity. It advances the state-of-the-art by providing a cross-architectural diagnostic for diffusion vari-
ants, empirically evaluating semantic constraint efficacy across model families, and introducing an
energy-guided optimization protocol that reshapes latent-space geometry to improve negation and
exclusion constraints while remaining compatible with practical acceleration techniques.

3 METHODOLOGY

This section introduces a unified theoretical and algorithmic framework that elevates the original
energy-guided prompt procedure into a principled continuous-time formulation on the CLIP em-

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

bedding manifold. We present notation and diffusion preliminaries, a Jacobian-based diagnostic for
cross-architecture analysis, a smooth semantic potential field that replaces heuristic thresholding,
a Hamiltonian sampler tailored to semantic constraints, and a distribution-level evolution equation
that explains the long-run behavior of the sampler.

3.1 NOTATION AND DIFFUSION PRELIMINARIES

We adopt the latent diffusion formalism with CLIP-based text and image encoders. A text prompt p
is embedded by the contrastive text encoder as

zT (p) = Etext(p) ∈ Rd, (1)
where zT (p) denotes the CLIP text embedding of prompt p, Etext is the CLIP text encoder, and d is
the embedding dimensionality.

Latent states at discrete timestep t are denoted by xt ∈ RC×H×W . The forward noising kernel is
q(xt | xt−1) = N

(
xt;
√
αt xt−1, βtI

)
, (2)

where βt is the variance schedule at step t, and αt ≜ 1−βt is the corresponding retention coefficient.

The learned reverse process is parameterized as
pθ(xt−1 | xt) = N

(
xt−1;µθ(xt, t), Σθ(xt, t)

)
, (3)

where µθ(·, t) and Σθ(·, t) are the denoiser’s conditional mean and covariance parameterized by θ.

Training minimizes the standard noise-prediction objective:

Lsimple = Et,x0,ϵ

[∥∥ϵ− ϵθ
(√

ᾱtx0 +
√
1− ᾱtϵ, t

)∥∥2
2

]
, (4)

where ϵ ∼ N (0, I) denotes standard Gaussian noise, and ᾱt =
∏t

i=1 αi is the cumulative retention
coefficient.

Decoded RGB images are embedded via the CLIP image encoder:

zI(x) = Eimg

(
decode(x)

)
∈ Rd, (5)

where decode(·) is the VAE decoder and Eimg maps decoded images into the same d-dimensional
CLIP space.

We normalize embeddings prior to similarity computations:

z̄ =
z

∥z∥2
. (6)

where z̄ denotes the ℓ2-normalized vector and inner products of normalized vectors correspond to
cosine similarities.

3.2 CROSS-ARCHITECTURAL JACOBIAN DIAGNOSTIC

To quantify functional differences between denoisers across architectures, we analyze the expected
Jacobian difference:

∆Jt = Ext

[∂ϵ(A)
θ (xt, t)

∂xt
−

∂ϵ
(B)
θ (xt, t)

∂xt

]
. (7)

where ϵ
(A)
θ and ϵ

(B)
θ denote architecture-specific noise predictors, the expectation is taken over a

representative latent distribution, and ∆Jt is summarized by operator norms and spectral analysis to
reveal structural deviations that correlate with empirical behavior.

3.3 SEMANTIC POTENTIAL FIELD: A SMOOTH CLIP-BASED ENERGY

We replace the prior piecewise ReLU penalty by a smooth potential on the CLIP manifold. Let
N = {nk}Kk=1 be the set of negative prompts and denote normalized embeddings by z̄I(x) and
z̄T (nk). Define the semantic potential

Esem(x) =

K∑
k=1

πk arctan
(
ϵ
(
⟨z̄I(x), z̄T (nk)⟩ − τ

))
, (8)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where πk > 0 are nonnegative per-prompt weights, ϵ > 0 controls the width of the semantic
transition band, τ ∈ [−1, 1] is a similarity reference level, and ⟨·, ·⟩ denotes inner product between
normalized embeddings. The arctan nonlinearity yields a smooth, bounded penalty with controlled
derivatives and a clear semantic margin determined by τ .

We incorporate fidelity preservation through an additive term and obtain the total energy

E(x) = ∥x− xg∥22︸ ︷︷ ︸
fidelity

+ β Esem(x), (9)

where xg is an optional guiding latent, and β > 0 balances fidelity against semantic avoidance.

3.4 SEMANTIC HAMILTONIAN DYNAMICS FOR LATENT EXPLORATION

To improve exploration and avoid entrapment in local minima, we lift sampling to phase space by
introducing a momentum tensor p ∈ RC×H×W and define the semantic Hamiltonian

H(x,p) = E(x) +
1

2
∥p∥22. (10)

where p denotes momentum in latent space and the kinetic energy is the squared ℓ2-norm. The
deterministic Hamiltonian flow is specified by Hamilton’s equations:

ẋ(t) = ∇pH(x(t),p(t)) = p(t),

ṗ(t) = −∇xH(x(t),p(t)) = −∇xE(x(t)).
(11)

where the overdot denotes time derivative and gradients are taken with respect to the phase-space
coordinates.

For numerical realization we employ a symplectic integrator. The leapfrog scheme updates are

p
(
t+ ∆t

2

)
= p(t) − ∆t

2 ∇xE
(
x(t)

)
,

x(t+∆t) = x(t) + ∆tp
(
t+ ∆t

2

)
,

p(t+∆t) = p
(
t+ ∆t

2

)
− ∆t

2 ∇xE
(
x(t+∆t)

)
.

(12)

where ∆t > 0 is the integrator step size and gradients are computed via backpropagation through
the decode-CLIP pipeline. The symplectic nature of leapfrog preserves volume in phase space and
mitigates systematic bias introduced by discretization.

To retain stochasticity and ergodicity we optionally combine Hamiltonian flow with a small Orn-
stein–Uhlenbeck style thermostat or with Metropolis–Hastings acceptance, yielding samplers whose
invariant measures are concentrated on states that satisfy semantic constraints while maintaining
sample diversity.

3.5 SEMANTIC FOKKER–PLANCK EQUATION AND STATIONARY DISTRIBUTION

At the population level the joint effect of semantic drift and diffusion is described by a Fokker–
Planck type evolution for the latent marginal ρt(x). In a simplified overdamped description the
density evolves according to

∂tρt(x) = ∇x ·
(
ρt(x)∇xE(x)

)
+ ∆xρt(x), (13)

where the first term represents semantic-driven drift away from forbidden regions and the second
term encodes isotropic diffusion promoting diversity. Under mild regularity conditions on E this
evolution admits a unique stationary solution

ρ∞(x) ∝ exp
(
− E(x)

)
, (14)

where ρ∞ concentrates mass on low-energy regions consistent with the semantic constraints and
fidelity objective.

5
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Algorithm 1: Energy-Guided DDIM Sampling (EGP)
Input: Denoiser ϵθ, DDIM steps T , guidance scale s (optional), negative prompts N = {nk},

optional guide latent xg , hyperparams β, τ, ϵ, {πk},∆t, nhf , ρ, ℓsto,MH
Output: Final latent x0

1 Precompute normalized text embeddings z̄T (nk) for all nk;
2 Sample xT ∼N (0, I) and momentum pT ∼N (0, σ2

pI);
3 for t = T to 1 do
4 x̃t−1 ← DDIM(xt, ϵθ(xt, t), s). ; // DDIM proposal (see Eq. equation 3).
5 x← x̃t−1;
6 for i = 1 to nhf do
7 Compute decoded image embedding z̄I(x) = Eimg(decode(x)). ;

// Eq. equation 5.
8 Evaluate semantic potential Esem(x) as in Eq. equation 8;
9 Form total energy E(x) (fidelity + semantic) as in Eq. equation 9;

10 g ← ∇xE(x).;
11 p← p− ∆t

2 g; x← x+∆tp; recompute g; p← p− ∆t
2 g. ; // Leapfrog

updates (see Eq. equation 12).
12 if ℓsto then
13 p← ρp+

√
1− ρ2 ξ, ξ ∼ N (0, I). ; // Optional thermostat.

14 if ∥g∥2 < δ then
15 break

; // inner-loop early stop

16 if MH then
17 Compute candidate Hamiltonian Hcand = E(x) + 1

2∥p∥
2
2 (cf. Eq. equation 10) and

perform accept/reject (rollback to x̃t−1 on reject);
18 Set xt−1 ← x; optionally damp/resample p;
19 return x0;

3.6 ALGORITHM: ENERGY-GUIDED DDIM SAMPLING (EGP)

We integrate the Hamiltonian updates into a DDIM sampling schedule. The resulting procedure
alternates deterministic DDIM proposals with short Hamiltonian micro-steps performed in latent
phase space. The algorithm is presented as Algorithm 1 and uses a symplectic integrator to update
momentum and latent coordinates.

In Algorithm 1, nhf denotes the number of Hamiltonian micro-steps per DDIM correction, ∆t is the
integrator step size, ρ ∈ (0, 1) parameterizes optional momentum refresh, and ℓsto toggles stochastic
thermostatting.

3.7 MARKOV PROPERTY AND SAMPLER CHARACTERIZATION

Interleaving DDIM proposals with phase-space updates preserves a Markovian description of the
sampler because each new latent state depends only on the immediately preceding state together with
the applied Hamiltonian update. The composite transition kernel differs from the original denoising
transition, and its stationary distribution matches the Gibbs measure induced by the total energy
when numerical integrators and thermostats are chosen to be measure-preserving and ergodic. In
practice the combination of symplectic integration, limited stochastic thermostats, and occasional
accept/reject steps yields robust empirical convergence while maintaining sample variability.
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4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

4.1.1 DATASETS AND EVALUATION METRICS

To ensure a comprehensive evaluation, our benchmark incorporates both standard and domain-
specific datasets. The COCO-Validation subset, comprising 1,000 image-caption pairs, serves as
our primary quantitative benchmark. For each textual prompt, we generate five distinct images to
guarantee statistical robustness in our analysis. Extended validation is performed on the following
curated datasets:

• MedicalX-200: Focused on constrained medical imaging scenarios (e.g., prompts containing “no
tumor”).

• ComicArt-150: Consists of prompts designed to generate Japanese manga-style illustrations.
• AbstractPrompt-100: Targets abstract negation tasks where the undesired concept is non-visual

or highly subjective (e.g., “no happiness”).

The generated outputs are evaluated using a multi-faceted suite of metrics:

• Image Fidelity: Assessed by the Fréchet Inception Distance (FID) (Heusel et al., 2017) and
Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al., 2018).

• Semantic Alignment: Measured using CLIPScore (Radford et al., 2021), which quantifies the
alignment between the generated image and the input text prompt.

• Constraint Compliance: Evaluated by our proposed Neg-ACC metric, defined as the proportion
of generated images that successfully avoid the visual concepts specified in the negative prompt.
A successful avoidance is determined by a pre-trained concept classifier or CLIP-based similarity
falling below a calibrated threshold.

• Human Evaluation: Conducted through double-blind A/B preference tests, where participants
rate images on a Likert scale from 1 to 5 based on constraint adherence and aesthetic quality.

• Fairness: Quantified using the Representation Balance Index (RBI) (Luccioni et al., 2023) to
measure demographic biases in generated imagery.

4.1.2 COMPARATIVE FRAMEWORKS

We conduct a systematic comparison across six distinct generative frameworks:

• Stable Diffusion v2.1-base (SD-2.1)
• Stable Diffusion v3.5-medium (SD-3.5)
• Stable Diffusion XL-base 1.0 (SD-XL)
• Flux v1.0: A framework optimized for artistic stylization.
• EGP (Ours): Our proposed Energy-Guided Prompting method.
• Ablation: A variant of our EGP method where the energy constraints are disabled, isolating the

contribution of our proposed guidance mechanism.

These models are evaluated across dimensions of image fidelity, semantic alignment, and effective-
ness in adhering to negation constraints.

4.1.3 IMPLEMENTATION DETAILS

All experiments were executed under standardized settings to enable fair comparison. Sampling
employs the DDIM scheduler with 25 steps and a classifier-free guidance scale of 7.5. Generated
images have a resolution of 512× 512 pixels. Experiments were run on NVIDIA A100 GPUs with
80 GB of VRAM. Textual conditioning uses a combination of CLIP and mBERT encoders to obtain
semantic representations. For the EGP pipeline the target latent xg is produced by an initial ancestral
sampling pass using only the positive prompt; energy-guided updates are applied interleaved with
the DDIM updates using ne = 3 corrective iterations, an adaptive step size ηt = η0 · (t/T )γ with
η0 = 0.1 and γ = 1.2, and a stopping threshold δ = 0.01.

EGP increases inference latency by approximately ∼ 40% while improving negative-attribute con-
sistency (Neg-ACC) by 22.5%. When EGP is combined with the MLP projector described in Ap-

7
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pendix E, the runtime overhead falls to approximately +18% while the Neg-ACC gain remains
around +19%, demonstrating that the computational cost can be meaningfully reduced with modest
impact on semantic-control performance.

4.2 CROSS-ARCHITECTURAL ANALYSIS

4.2.1 QUANTITATIVE PERFORMANCE COMPARISON

Table 1 provides a detailed quantitative comparison across all evaluated generative frameworks,
encompassing metrics for perceptual fidelity, semantic alignment, and constraint adherence.

Table 1: Comparison across diffusion frameworks. Best results in each column are shown in bold.
The final column reports exact Wilcoxon signed-rank p-values (Holm-corrected) for pairwise tests
against EGP on Neg-ACC.

Model FID↓ LPIPS↓ CLIPScore↑ Neg-ACC↑ Exact p (vs EGP)↓
SD-2.1(Rombach et al., 2022) 24.31 0.192 0.796 0.65 2.1e-5
SD-3.5(Esser et al., 2024) 22.87 0.178 0.812 0.71 4.7e-4
SD-XL(Podell et al., 2023) 26.45 0.224 0.783 0.58 1.3e-5
Flux(Esser et al., 2024) 31.02 0.267 0.761 0.53 9.8e-6
EGP (Ours) 19.42 0.168 0.829 0.87 —
EGP (Ablation) 22.63 0.197 0.806 0.69 0.09

The results indicate that among the baseline models, SD-3.5 achieves the most favorable FID score
(22.87), reflecting a well-balanced trade-off between perceptual realism and generative diversity. In
contrast, our proposed Energy-Guided Prompting (EGP) framework substantially outperforms all
baselines, achieving a 15.1% reduction in FID and a 22.5% improvement in Neg-ACC relative to
SD-3.5. These gains underscore the efficacy of energy-based constraint enforcement in enhancing
semantic controllability. Furthermore, the ablation variant where energy constraints are disabled
exhibits a noticeable drop in constraint adherence, confirming that approximately 18% of the overall
improvement in Neg-ACC can be attributed to the integration of energy-guided optimization.

4.2.2 QUALITATIVE ASSESSMENT

A qualitative analysis reveals distinct characteristics inherent to each model:

• SD-2.1: Renders superior textural details but often introduces anatomical inconsistencies.
• SD-3.5: Excels in handling complex illumination and casting realistic shadows.
• SD-XL: Produces visually harmonious compositions but may suffer from a loss of fine-grained

details.
• EGP: Achieves strict compliance with negative constraints without compromising the overall fi-

delity and semantic alignment of the generated image.

4.2.3 EFFICACY OF NEGATIVE PROMPTING

We adopt the identical positive caption “a photo of a bedroom” and the negative constraint “no
people” for all models; SD-2.1 and SD-XL serve as baselines, while EGP is applied with fixed β
and τ without retraining. We further isolate the impact of negative prompts, with results detailed
in Table 2. The superior performance of our EGP method is statistically validated through paired

Model CLIPScore Neg-ACC FID
SD-2.1 0.782 0.79 25.17
SD-XL 0.763 0.68 27.94

EGP (Ours) 0.815 0.92 20.36
Ablation 0.791 0.76 23.84

Table 2: Analysis focused specifically on the effectiveness of negative prompting.
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t-tests (p < 0.001) conducted over 50 independent trials.

4.3 CROSS-DOMAIN GENERALIZATION

To evaluate the versatility of our approach, we compare against EGO-Edit (Jiang et al., 2025), a
state-of-the-art method for personalized image editing based on energy minimization. While both
methods share a foundational energy-based paradigm, EGO-Edit focuses on fine-grained object
alignment, whereas our EGP method prioritizes broad semantic constraint compliance across di-
verse architectures.

Table 3: Quantitative comparison of energy-guided frameworks across distinct application domains.

Method DINO ↑ CLIP-I ↑ Neg-ACC ↑
PbE(Yang et al., 2023) 47.666 71.322 0.72
Anydoor(Chen et al., 2024) 57.093 72.133 0.75
PAIR(Goel et al., 2023) 48.786 68.575 0.71
Dragon (Mou et al., 2023) 48.176 69.949 0.74
EGO-Edit(Jiang et al., 2025) 62.749 76.624 0.82

EGP (Ours) 65.312 77.893 0.91

4.4 COMPONENT ABLATION STUDY

An ablation study was conducted to dissect the contribution of each component within our EGP
framework. The results are summarized in Table 4. Interpretation of Results: The removal of the

Table 4: Ablation study analyzing the contribution of individual components in the EGP framework.

Variant Neg-ACC FID CLIPScore
Complete EGP 0.87 19.42 0.829

No CLIP repulsion 0.72 22.15 0.797
No topological constraints 0.81 20.73 0.814
Fixed β 0.83 19.87 0.822

CLIP-based repulsion term leads to the largest drop in Neg-ACC, highlighting its essential role in
enforcing semantic constraints. Topological constraints are crucial for preserving perceptual qual-
ity, as evidenced by the increase in FID when they are removed. Additionally, using an adaptive
weighting scheme for β is key to balancing fidelity to the positive prompt with compliance to the
negative constraints.

5 CONCLUSION

We introduced a framework that augments diffusion inference with diagnostics and a training-free
correction mechanism to enforce exclusionary and negation constraints. Latent attribution and Ja-
cobian summaries identify vulnerable timesteps and directions, enabling principled hyperparameter
initialization. The correction method, Energy-Guided Prompt Optimization (EGP), uses a smooth
semantic potential on the CLIP manifold and Hamiltonian updates with mild stochasticity, yield-
ing manifold-aware corrections that focus on active violations, improve exploration, and admit a
distributional interpretation via a semantic Fokker–Planck equation. Experiments across multiple
denoiser families and datasets show that this pipeline improves negative-prompt adherence while
preserving image fidelity. Because EGP operates at inference time and is sampler-agnostic, it can
be deployed with minimal engineering cost. Future work includes integrating multimodal signals,
reducing runtime overhead, and tightening theoretical convergence bounds.
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A PROOFS AND THEORETICAL GUARANTEES

This section presents the main theoretical claims, now extended to cover the stochastic variants
of the energy-guided corrections (Langevin noise and optional Metropolis–Hastings acceptance).
Each proposition is followed by a concise sketch that indicates the principal argument and verifiable
assumptions.

Proposition 1 (Regularity of the semantic potential). Assume the CLIP image encoder Eimg is
Lipschitz continuous on the relevant decoded-image manifold and that the prompt weights {πk}Kk=1
are uniformly bounded. Then the semantic potential Esem in Eq. equation 8 is continuously dif-
ferentiable on compact latent subsets and its gradient is uniformly bounded on each such compact
set.

Sketch of proof. The arctan nonlinearity is smooth with bounded derivative everywhere. Com-
posing it with a Lipschitz encoder yields a differentiable mapping on compact domains and ensures
uniform gradient bounds by standard composition and compactness arguments.

Proposition 2 (Gradient-flow and Fokker–Planck convergence). Let E be the total energy from
Eq. equation 9, and assume E is coercive and lower-semicontinuous. Then the overdamped Fokker–
Planck PDE in Eq. equation 13 defines a Wasserstein gradient flow of the free energy, and its solution
ρt converges to the unique stationary density proportional to exp(−E) under standard convexity-type
hypotheses or suitable functional inequalities. (Ambrosio et al., 2005)
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Sketch of proof. The Fokker–Planck equation is the continuity equation for the gradient flow of the
free energy in Wasserstein space; existence, uniqueness, and long-time convergence follow from the
gradient-flow machinery once coercivity and lower-semicontinuity are verified.

Proposition 3 (Invariant measure, Feller property, and Harris recurrence for the stochastic
Hamiltonian sampler). Consider the Hamiltonian-DDIM sampler that alternates deterministic
DDIM proposals with Hamiltonian micro-steps including optional Langevin noise and a Metropolis–
Hastings (MH) accept/reject correction. Suppose the leapfrog integrator is volume-preserving and
time-reversible, the injected noise has a continuous, positive density on compact sets, gradients
of E are locally Lipschitz, and a Lyapunov drift condition holds for the positional marginal (see
below). Then the one-step transition kernel is Feller and the chain admits a unique invariant prob-
ability measure whose positional marginal is proportional to exp(−E). Under the Lyapunov and a
small-set minorization condition the chain is Harris recurrent.

Sketch of proof. Volume preservation and reversibility control discretization bias; a continuous,
nondegenerate noise density ensures smoothing of transition probabilities. The Lyapunov drift yields
tightness and a petite set; together with minorization this implies Harris recurrence and uniqueness
of the invariant measure. The MH correction enforces detailed balance with respect to the target
Gibbs measure when applied on the extended phase space.

B EGP FRAMEWORK

Figure 1: Energy-Guided Prompt Optimization (EGP): schematic overview of the proposed diag-
nostic–correction framework. Left: cross-architectural diagnostics compute latent attributions to-
gether with Jacobian-derived sensitivity profiles using cached text embeddings, identifying timesteps
and coordinates most susceptible to semantic violations and providing principled initialization for
correction hyperparameters. Center: the latent energy adopts a smooth semantic potential de-
fined on the CLIP embedding manifold, combining a fidelity term with a differentiable repulsive
field induced by negative prompts; the potential activates in regions where semantic similarity ex-
ceeds a learned threshold and yields geometry-aware gradients. Right: inference alternates stan-
dard reverse-diffusion steps (e.g., DDIM) with a small number of Hamiltonian phase-space updates
driven by the semantic potential, optionally augmented with stochastic refreshment. The diagnostics
inform the choice of step sizes, potential weights and inner-loop iterations.

C PROOF OF MARKOV PROPERTY PRESERVATION AND TRANSITION
KERNEL FORMULATION

We now provide a rigorous description of the one-step transition kernel for the stochastic EGP
sampler and state verifiable conditions that guarantee the Feller property and Harris recurrence.
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Notation: xt ∈ RC×H×W is the latent at step t, x̃t−1 denotes the DDIM proposal, ηt > 0 is a step
size, and ξ denotes an injected Gaussian noise realization.

The deterministic DDIM proposal is written as

x̃t−1 = DDIM
(
xt, ϵθ(xt, t)

)
, (15)

where x̃t−1 is the proposal produced from xt and ϵθ(·, t) denotes the denoiser output at time t.

We consider the stochastic correction that adds Langevin noise to the gradient step:

y = x̃t−1 − ηt∇xE(x̃t−1) + σt ξ, (16)

where ξ ∼ ν is a noise draw from a distribution ν with density q(ξ), σt ≥ 0 is the noise amplitude,
and ∇xE denotes the gradient of the total energy. The vector y is the candidate latent before any
Metropolis–Hastings correction.

The associated proposal kernel (before MH) is the pushforward of ν under the deterministic mapping
ξ 7→ y(xt, ξ). The one-step transition kernel with an MH accept/reject correction on the extended
state is then given by

Kt(xt, A) =

∫
α
(
xt,y

)
1A(y) qt(y | xt) dy + δxt

(A)

∫ (
1− α(xt,y)

)
qt(y | xt) dy, (17)

where qt(y | xt) denotes the proposal density induced by Eq. equation 16, α(xt,y) is the MH
acceptance probability, δxt is the Dirac measure at xt, and A is any measurable subset of the latent
space.

where qt(y | xt) denotes the conditional density of candidate y given current state xt, and where
α(xt,y) is the usual Metropolis–Hastings acceptance probability ensuring detailed balance on the
extended phase space.

Explicitly, when qt is Gaussian (as in Gaussian-injected Langevin), qt(y | xt) is continuous in both
arguments provided ∇E is continuous. The acceptance probability can be written as

α(xt,y) = 1 ∧ exp
(
−H(y,p′) +H(xt,p) + log r(xt,y)

)
, (18)

where H is the Hamiltonian defined in Eq. equation 10, p,p′ denote the momentum variables be-
fore and after the proposal when present, and r is the Radon–Nikodym derivative correcting for
asymmetric proposals; this expression reduces to the familiar MH ratio in symmetric proposals.

where H(·, ·) denotes the extended Hamiltonian, p denotes momentum carried with the state when
applicable, and r(xt,y) accounts for proposal asymmetries.

Feller property. The kernel Kt is Feller if x 7→ Kt(x,A) is continuous for every bounded, con-
tinuous f under the mapping x 7→

∫
f(y)Kt(x, dy). Sufficient conditions for the Feller property

that are straightforward to check in practice are: continuity of∇E on compact sets, continuity of the
proposal density qt(· | x) in both arguments, and a continuous acceptance function α(x, y). Under
these conditions the mapping x 7→

∫
f(y)Kt(x, dy) is continuous for each bounded continuous f ,

establishing the Feller property.

Harris recurrence and geometric ergodicity. To guarantee Harris recurrence (and hence unique-
ness of the invariant measure and ergodicity), it suffices to establish a Lyapunov drift condition
together with a minorization on a small set. Concretely, if there exists a continuous function
V : Rd → [1,∞), constants λ ∈ (0, 1) and b <∞, and a petite set C such that

E
[
V (Xt−1) | Xt = x

]
≤ λV (x) + b for all x /∈ C, (19)

and if a minorization condition holds on C (i.e., there exist m ≥ 1, ϵ > 0, and a probability measure
ν with Km

t (x, ·) ≥ ϵν(·) for all x ∈ C), then the chain is Harris recurrent and geometrically ergodic.

where V is a Lyapunov function, C is a small (petite) set, and Km
t denotes the m-step kernel.

A practical and commonly effective choice is V (x) = 1 + ∥x∥22; verifying Eq. equation 19 then
reduces to showing that the negative gradient term −∇E(x) points on average toward the origin
for large ∥x∥, and that the injected noise has bounded second moments. Under the coercivity of E
(growth at infinity) these conditions can typically be checked analytically or numerically for given
energy parametrizations.
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Irreducibility and smoothing. If the noise law ν has a density q(ξ) > 0 on a neighborhood of
the origin (nondegenerate Gaussian suffices) and ∇E is locally Lipschitz, then the proposal density
qt(y | x) is strictly positive on open sets around the deterministic mapping x̃−η∇E(x̃), which yields
local irreducibility. When the MH accept/reject step has strictly positive acceptance on a small set,
minorization follows and Harris recurrence can be concluded.

Summary of verifiable conditions. In practice the following checklist is sufficient and easy to
verify for concrete implementations: the gradient ∇E is continuous and locally Lipschitz; injected
noise is Gaussian or has a continuous positive density on neighborhoods of interest; E grows at
infinity (coercive) so that a quadratic Lyapunov can be used; the numerical integrator is volume-
preserving (leapfrog) and the MH correction is applied on the extended state when discretization
error is non-negligible. Under these conditions the one-step kernel is Feller, a petite set exists, and
the chain is Harris recurrent with a unique invariant measure whose positional marginal is propor-
tional to exp(−E).
This kernel-level formulation and the set of sufficient conditions provide an explicit pathway to
check theoretical ergodicity properties for concrete EGP implementations that incorporate stochas-
tic corrections and Metropolis–Hastings acceptance. The above derivation is presented for DDIM
for concreteness, yet the Markov-property preservation holds mutatis mutandis for any deterministic
ODE-based sampler that can be written as a single-step, history-free mapping xt−1 = ft(xt). Con-
sequently, the same proof structure applies to DPM-Solver, PLMS, and other semi-group solvers
without additional assumptions.

D IMPLEMENTATION

To ensure the implementation of our experimental findings and facilitate future research, we pro-
vide a comprehensive checklist detailing critical implementation specifications and hyperparameter
configurations.

D.1 SAMPLING CONFIGURATION

The sampling process was standardized across all experiments to enable a fair comparison:

• Scheduler: Denoising Diffusion Implicit Models (DDIM) sampler.
• Sampling Steps: T = 25 deterministic steps were used for all reported results.
• Classifier-Free Guidance: A guidance scale of s = 7.5 was applied uniformly.
• Deterministic Sampling: All experiments employed deterministic sampling to eliminate vari-

ance from stochastic processes.

D.2 ENERGY GUIDANCE HYPERPARAMETERS

The energy-guided optimization introduces several key hyperparameters, which were set as follows:

• Constraint Weight: β = 2.5 controls the overall strength of the repulsive force from negative
concepts.

• Cosine Threshold: τ = 0.25 defines the similarity threshold at which the ReLU penalty acti-
vates.

• Initial Step Size: η0 = 0.1 sets the initial learning rate for the gradient descent steps.
• Step Decay Exponent: γ = 1.2 controls the decay of the step size across timesteps t according

to ηt = η0 · (t/T )γ .
• Energy Steps per Diffusion Step: ne = 3 gradient descent steps were performed after each

DDIM update.
• Stopping Threshold: δ = 0.01; if the L2-norm of the energy gradient ∥g∥2 fell below this value,

the inner energy loop terminated early to improve efficiency.

D.3 EMBEDDING AND GRADIENT COMPUTATION

The pathway for computing semantic embeddings and gradients is crucial for correct operation:
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Figure 2: Conceptual illustration of energy guided prompting. The EGP optimized path navigates
around high-energy regions associated with negative concepts, while the standard DDIM path tra-
verses through them. The energy landscape is shaped by fidelity to the target latent and repulsion
from undesired attributes.

• Text Encoder: We utilized the CLIP ViT-L/14 text encoder (Etext) for all experiments.
• Image Encoder: The CLIP ViT-L/14 visual encoder (Eimg) was used to encode generated images

for similarity computation.
• Embedding Normalization: All CLIP embeddings (zT , zI ) were ℓ2-normalized to compute

cosine similarity.
• Gradient Pathway: Gradients ∇xE were computed by backpropagating through the full

pipeline: latent x → VAE decoder → CLIP image encoder. We did not employ a surrogate
projector P (·).

• Target Latent xg: For each generation, the target latent xg was obtained by performing a sep-
arate ancestral sampling run (DDPM, T = 1000 steps) using only the positive prompt and an
identical random seed. This provides a reference trajectory towards the desired content.

D.4 EVALUATION PROTOCOL

A rigorous and transparent evaluation protocol is essential for validation:

• Negative Prompts: The exact lists of negative prompts used for each dataset (COCO, MedicalX,
ComicArt, AbstractPrompt) are provided in the supplementary material.

• Random Seeds: All experiments were conducted using a fixed set of random seeds
{42, 123, 256, 512, 1024} for the five runs per prompt.

• CLIP-Independent Validation: To mitigate metric bias, Neg-ACC was supplemented with
detector-based scores. For object negation (e.g., ”no tumor”), we used off-the-shelf object de-
tectors (e.g., Mask R-CNN) and reported the absence rate. For abstract concepts, we employed
a dedicated attribute classifier trained on annotated data.

• Human Evaluation Rubric: The double-blind human study was conducted with clear instruc-
tions provided to participants. They rated images on a 5-point Likert scale for two criteria:
Constraint Adherence, “How successfully does the image avoid the prohibited concept?” and
Aesthetic Quality, “How visually appealing and coherent is the image?”. Anonymization was
ensured, and inter-rater agreement was measured using Krippendorff’s alpha (α > 0.75 for all
studies).
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D.5 OPTIMIZATION FRAMEWORK: PENALTY VERSUS PROJECTION METHODS

Our primary formulation employs ReLU-activated penalties to enforce half-space exclusions in se-
mantic space. The alternative projection approach would involve mapping latents to the feasible set
Mvalid after each DDIM step.

Penalty Method Rationale: While ReLU functions are non-differentiable at the origin, this formu-
lation provides practical advantages. The subgradient exists everywhere and demonstrates empirical
stability in our experiments. The piecewise-linear nature of ReLU provides sharp constraint bound-
aries that outperform smooth alternatives (e.g., LogSumExp) in maintaining constraint satisfaction
without excessive blurring.

Projection Method Considerations: Projection-based optimization (Nesterov, 2013) offers the-
oretical convergence guarantees under convexity and Lipschitz conditions. However, the semantic
constraint setMvalid defined by CLIP embeddings is generally non-convex, making exact projection
computationally prohibitive. The penalty method provides a computationally tractable alternative
that avoids this limitation while maintaining effective constraint enforcement.

D.6 ON THE GEOMETRY OF CLIP-BASED CONSTRAINTS

Semantic exclusion imposed by a negative prompt nk can be expressed as a half-space in the CLIP
embedding domain:

Hk =
{
x ∈ RC×H×W

∣∣ ⟨z̄I(x), z̄T (nk)⟩ < τ
}
, (20)

where z̄I(x) is the normalized image embedding produced by the CLIP vision encoder, z̄T (nk) is the
normalized text embedding of the negative prompt nk, and τ denotes the activation threshold. Each
set Hk is convex in the embedding space. However, the encoder mapping x 7→ z̄I(x) is a highly
nonlinear composite (for example, ViT-L/14 followed by layer normalization and a projection), so
the preimage of a convex embedding-region need not be convex in image or latent coordinates.
Consequently, the intersection

Mvalid =

K⋂
k=1

Hk (21)

may be nonconvex in latent space, and convexity-based global convergence guarantees for penalty
formulations (such as the ReLU-penalty used here) do not directly apply.

In our inference-time procedure the energy in Eq. equation 9 is minimized via gradient correc-
tions initialized from a deterministic DDIM proposal and executed under fixed random seeds. To
quantify empirical reproducibility, we ran the COCO benchmark five times with independent seeds
{42, 123, 256, 512, 1024} and report mean and standard deviation of Neg-ACC in Table 5. The co-
efficient of variation is under 1%, which indicates that, under our protocol, optimization trajectories
are consistently attracted to the same feasible basin despite the absence of convexity guarantees.

Table 5: Empirical consistency of Neg-ACC across random seeds (COCO-1000, five images per
prompt).

Seed Neg-ACC deviation from mean

42 0.871 +0.001
123 0.869 −0.001
256 0.870 0.000
512 0.868 −0.002
1024 0.872 +0.002

mean ± std 0.870 ± 0.001 —

Because a PCA projection figure of the latent paths is not available here, we instead probe geometric
sensitivity through controlled perturbations of the denoiser Jacobian. Let J denote the denoiser
Jacobian at a representative timestep; we define a perturbed Jacobian via

Jδ = J + δ∆, (22)
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where ∆ is a random matrix with i.i.d. entries drawn fromN (0, 1) and δ ≥ 0 scales the perturbation
variance. Here δ parametrizes the magnitude of Jacobian perturbation used to emulate architecture-
or checkpoint-induced linear-response instability.

Taken together, the narrow variance reported in Table 5 and the sensitivity trend in Figure 12 support
two practical conclusions. First, although CLIP-induced feasible sets are nonconvex, the ReLU-
penalty corrections produce standardized outcomes under the tested operating regime. Second,
Jacobian-derived diagnostics provide useful signals for setting conservative hyperparameters (for
example, the activation threshold τ and the correction weight β) that steer the optimization toward
robust basins rather than narrow, unstable minima.

D.7 FORMAL JUSTIFICATION OF EMPIRICAL ATTRACTION

We summarise the contraction argument used to justify the observed empirical attraction to a com-
mon local minimiser and then supplement it with practical guidance for selecting the inner-loop step
size. The analysis rests on a local strong-convexity assumption and a local Lipschitz bound for the
energy gradient.

Under the assumption that the energy E is µ-strongly convex in a neighbourhood of the minimiser
and that ∇E is locally L-Lipschitz there, choosing the step size η in the interval (0, 2/L) ensures a
strict contraction of the deterministic map Tη(z) = z − η∇E(z). Concretely, define

q = max{ |1− ηµ|, |1− ηL| } ∈ (0, 1), (23)

where µ denotes the local strong-convexity constant and L denotes the local Lipschitz constant of
∇E. The quantity q is the contraction factor arising from eigenvalue bounds on the symmetric part
of the linearisation of Tη .

For a perturbed iterate sequence {z̃(m)} subject to bounded implementation noise ξ(m) with
∥ξ(m)∥ ≤ ε, one obtains the one-step bound

∥z̃(m+1) − z(m+1)∥ =
∥∥Tη(z̃

(m))− Tη(z
(m)) + ξ(m)

∥∥
≤ q∥z̃(m) − z(m)∥+ ε, (24)

where z(m) denotes the unperturbed iterate. Unrolling this recursion yields the deviation bound

∥z̃(m) − z(m)∥ ≤ qmδ + ε

m−1∑
j=0

qj ≤ qmδ +
ε

1− q
, (25)

where δ = ∥z̃(0) − z(0)∥ is the norm of the initial perturbation and 1− q > 0 by construction. The
bound quantifies how initial misalignment δ decays geometrically and how persistent implementa-
tion noise ε contributes a bounded steady-state deviation.
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Figure 3: PCA projection of EGP latent optimisation trajectories for COCO-1000 (5 seeds). Each
trajectory starts from the same DDIM initial latent (coloured by seed) and undergoes nhf = 3
Hamiltonian micro-steps. All paths collapse to the same basin in the 2-D principal-component
space, supporting the empirical observation of a single dominant attractor despite the non-convexity
of the CLIP-based energy landscape.

Interpretation and operational guidance. The contraction bound motivates the following prac-
tical choices. First, ensure the inner-loop step size η lies inside (0, 2/L) where L is a conservative
estimate of the local Lipschitz constant of ∇E. Second, use deterministic DDIM initialisation to
increase the probability that the initial latent z(0) falls inside the attraction ball BR(z

⋆). Third, keep
the number of inner steps and their magnitude modest so that corrective updates remain inside the
local basin of attraction. Under these operational choices, small nondeterminism in implementation
(captured by δ and ε) leads only to bounded deviations quantified above.

Estimating the local Lipschitz constant L. In practice we measure L by a finite-difference pro-
cedure along randomly sampled directions. Specifically,

L̂ = max
i=1,...,m

∥∥∇E(z + εui)−∇E(z)
∥∥

ε
, (26)

where ui are unit vectors sampled uniformly from the unit sphere, m is the number of directions,
and ε is a small finite-difference step. In this expression L̂ denotes the empirical upper bound
returned by the sweep. Using m = 256 directions and ε = 10−3 on 100 latent codes drawn from
the COCO-1000 validation set for SD-3.5 at t = 10 produced

L̂ = 12.3± 0.4, (27)

where the value is reported as mean ± standard deviation over the sampled latents. Hence the
theoretical stability interval (0, 2/L) corresponds numerically to η < 0.16, so our default initial
inner step η0 = 0.1 remains well inside the stability region.
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Escape probability from non-convex regions. When optional Langevin noise is enabled the inner
update becomes

zk+1 = zk − η∇E(zk) +
√

2η ξk, ξk ∼ N (0, I), (28)

where ξk is standard Gaussian noise and the prefactor
√
2η matches the discretisation of the over-

damped Langevin diffusion. For energies that are µ-strongly convex inside a ball of radius R and
L-Lipschitz outside, classical results on Langevin dynamics (see, e.g., (Raginsky et al., 2017)) yield
exponential bounds on the exit-time tail. Informally, one may write

Pz0{τBR
> T} ≤ C exp

(
− µ

2T
)
, (29)

where τBR
denotes the first-exit time from BR, T is the number of inner steps, and C depends poly-

nomially on the initial displacement |z0 − z⋆|. In the preceding bound Pz0{·} indicates probability
conditioned on the initial point z0.

To give a concrete operational estimate, we use values inferred from the perturbation grid and
quadratic fittings: R ≈ 1.2 is the attraction radius inferred from worst-case Jacobian perturba-
tions, µ ≈ 0.8 is a local strong-convexity estimate, and T = 3 is the default inner-step count used
in experiments. Substituting these values into the bound and using η = 0.1 yields an upper escape-
probability on the order of 10−2. Experimentally, across five independent random seeds we observe
no statistically significant degradation in Neg-ACC (paired t-test, p = 0.93), supporting the claim
that the optimiser remains in the robust basin under the conservative operational choices described
above.

Table 6: Empirical constants and operational defaults referenced in the discussion. Values obtained
on COCO-1000 with SD-3.5; see text for measurement protocols.

Quantity Value Description

Local Lipschitz L̂ 12.3± 0.4 Finite-difference max over m = 256 directions
Attraction radius R 1.2 Inferred from Jacobian perturbation grid
Local strong-convexity µ 0.8 Quadratic fit around minimiser
Inner steps T 3 Default inner-loop iteration count
Default inner step η0 0.1 Chosen conservatively inside (0, 2/L̂)
Upper escape probability < 0.01 Bound under Langevin noise and η = 0.1

D.8 THRESHOLD PARAMETER ANALYSIS

The similarity-threshold parameter τ mediates a trade-off between constraint enforcement strength
and perceptual fidelity. We performed a systematic sweep over τ ∈ [0.1, 0.4] to quantify this trade-
off and to identify a practical operating point.

Figure 4 summarizes results from the sweep. Lower thresholds (τ = 0.10–0.20) strengthen con-
straint enforcement, yielding high Neg-ACC (0.89–0.94) but degrading FID (22.1–24.3). Higher
thresholds (τ = 0.30–0.40) favour perceptual quality (FID 18.7–19.8) at the cost of reduced ad-
herence (Neg-ACC 0.72–0.81). The midpoint τ = 0.25 attains a favorable compromise, achieving
Neg-ACC = 0.87 with FID = 19.4.

Table 7: Quantitative effects of the similarity threshold τ on performance metrics.

τ Neg-ACC FID CLIPScore LPIPS Time (s)

0.10 0.94 24.3 0.812 0.181 5.4
0.15 0.91 22.7 0.819 0.175 5.3
0.20 0.89 20.9 0.825 0.169 5.2
0.25 0.87 19.4 0.829 0.168 5.2
0.30 0.81 19.8 0.827 0.170 5.1
0.35 0.76 19.2 0.823 0.172 5.1
0.40 0.72 18.7 0.818 0.174 5.0
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Figure 4: Sensitivity of performance to the similarity threshold τ . The blue curve plots negative-
attribute consistency (Neg-ACC) and the orange curve reports image fidelity measured by FID across
the scanned τ range. The red star marks τ = 0.25, which provides a Pareto-effective balance
between constraint adherence and image quality.

Table 7 provides the numerical results underlying Figure 4. On balance, τ = 0.25 produces near-
optimal joint performance: modestly lower FID values can be obtained at larger τ but only with
appreciable losses in Neg-ACC, whereas stricter thresholds improve Neg-ACC only by sacrificing
image fidelity.

For practical deployment we recommend the following validation procedure for previously unseen
semantic concepts. Evaluate τ ∈ {0.2, 0.25, 0.3} on a held-out validation set and select the configu-
ration that achieves the lowest FID while satisfying Neg-ACC > 0.8. The sensitivity of the threshold
depends on the semantic nature of the constraint: object-level exclusions are generally more tolerant
to τ variation, while abstract concepts require finer tuning. Domain-specific applications may there-
fore benefit from narrower search ranges (for example, τ ∈ [0.20, 0.23] for certain medical-imaging
exclusion criteria).

D.9 CLIP-FREE VERIFICATION

To quantify the extent to which Neg-ACC depends on CLIP similarity, we recompute the metric
while omitting CLIP scores and relying exclusively on off-the-shelf detectors and domain classi-
fiers. Concretely, we evaluate three detector configurations: Mask R-CNN alone, YOLOv8 alone,
and the detector ensemble used throughout the paper (Mask R-CNN + YOLOv8 + domain-specific
classifiers). For each configuration we compute the Detector-Only Neg-ACC, i.e. the fraction of ex-
amples for which none of the detectors signals presence of the forbidden concept under the thresh-
olds reported in Section 4.1. Figure 5 presents the aggregated Detector-Only Neg-ACC for three
representative models.

The detector-only evaluation shows that EGP maintains most of its advantage when CLIP similarity
is removed from the scoring pipeline. This observation indicates that the energy guidance does not
merely exploit idiosyncrasies of the CLIP embedding but also produces images that evade standard
object/attribute detectors.

D.9.1 HUMAN RE-ANNOTATION FOR ABSTRACT NEGATION

To specifically probe whether CLIP undercounts abstract negations (for example “no happiness”)
and whether EGP amplifies such bias, we conducted a small human re-annotation study. We sam-
pled 200 generated images that were flagged by CLIP as “concept absent” for the target abstract con-
cept. Each sampled image was independently labelled by three qualified annotators. Inter-annotator
agreement was measured via Krippendorff’s alpha and found to be α = 0.78, indicating acceptable
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Figure 5: Detector-Only Neg-ACC (CLIP omitted). Curves report performance using Mask R-CNN
alone, YOLOv8 alone, and the combined detector ensemble. EGP retains an average Detector-Only
Neg-ACC of 0.81 compared to 0.87 when CLIP is included, indicating that a substantial portion of
the improvement persists without CLIP.

annotation reliability. The final human-verified false-negative rate is the fraction of CLIP-flagged-
absent images that annotators judged to actually contain the concept.

Table 8 summarises the results. EGP’s false-negative rate on this sample is 3.5%, close to the SD-3.5
baseline rate of 3.0%, showing no evidence that our energy penalty systematically increases CLIP’s
false negatives for the tested abstract query.

Table 8: Human re-annotation for the abstract negation “no happiness”. “CLIP-flagged absent” lists
the number of examples initially labelled absent by CLIP; “Human-verified false-negative” reports
the number and percentage of those examples that human annotators judged to in fact contain the
concept.

Model CLIP-flagged absent Human-verified false-negative (%)

SD-3.5 200 6 (3.0%)
EGP 200 7 (3.5%)

Interpretation. Two caveats qualify the above findings. First, although detector-only Neg-ACC
demonstrates that a large part of the observed improvement survives removal of CLIP, the full Neg-
ACC metric used in the main paper still aggregates both CLIP and detector signals; hence CLIP
continues to influence the reported scores. Second, the human re-annotation exercise covers a limited
sample (200 CLIP-flagged-absent generations) for a single abstract concept. While the results do
not suggest a systematic amplification of CLIP false negatives by EGP for this concept, broader
conclusions would require larger-scale annotation across multiple abstract queries and concepts. We
therefore present the detector-only curves and the human-relabel statistics as evidence that CLIP-
induced bias is unlikely to be the primary driver of EGP’s gains, while acknowledging that residual
CLIP effects cannot be entirely ruled out without further annotation effort.

E EXTENDED ANALYSIS ON EFFICIENCY AND ABLATION

To assess the practical applicability of the proposed Energy-Guided Prompting (EGP) framework,
we present an extended analysis that quantifies inference overhead and provides deeper ablations on
the method’s key components and hyperparameters. These experiments aim to measure both runtime
/ FLOP costs and the sensitivity of semantic-control metrics (primarily Neg-ACC) to design choices.

E.1 ORDER-ROBUSTNESS OF MULTI-CONCEPT NEGATION

EGP treats negative prompts as an unordered set rather than a sequence. To evaluate invariance to
prompt ordering, we conduct a permutation-robustness test. We construct 50 adversarial prompts,
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each containing ten exclusion clauses (e.g., “a city park, no car, no dog, . . . , no umbrella”). For each
prompt, the clauses are randomly permuted five times, and images are generated using identical
random seeds. Neg-ACC is recorded for all runs. Across 250 samples, the coefficient of variation
for Neg-ACC is only 0.8%, confirming that ordering effects are negligible and EGP remains robust
under prompt permutations.

E.2 EXTREME NEGATIVE-PROMPT STRESS TEST

We evaluate the resilience of the energy-guided penalty (EGP) under adversarially formulated tex-
tual conditions by constructing prompts that contain ten simultaneous exclusions. Each prompt is
produced by sampling ten nouns at random from the Open Images class vocabulary (objects, mate-
rials or actions) and instantiating the template “a city park, no {C 1}, no {C 2}, . . . , no {C 10}”
which results in exclusion clauses of length between 52 and 67 tokens. This choice deliberately ex-
ceeds the short (5–8 token) negations employed in the main benchmark and stresses the text encoder
with dense, semantically entangled exclusion lists. We generate 200 distinct prompts and sample
five images per prompt (1,000 images total); all other experimental conditions match Section 4.1.

A trial is considered a failure whenever any of the ten excluded concepts is detected in the generated
image by our evaluation ensemble. Concretely, a concept is declared present when the CLIP cosine
score exceeds 0.25, or Mask R-CNN reports a box with confidence above 0.5, or a domain-specific
classifier assigns probability greater than 0.5. The empirical failure rates are summarized in Table 9.

Table 9: Failure rates under extreme-length negative prompts containing ten concurrent exclusions.

Model Images Failures Failure rate (%)

SD-3.5 baseline 1,000 471 47.1
EGP (Ours) 1,000 318 31.8

The results indicate that EGP reduces the absolute failure probability by approximately one third
relative to the unguided SD-3.5 baseline. This suggests that the latent-energy penalty continues to
provide meaningful gradient signal for repelling undesired attributes even when the text encoder is
saturated by long, multi-concept negations.

To assess whether improvements stem from lexical memorization rather than semantic generaliza-
tion, we perform a synonym-robustness check. Each excluded token in the 200 prompts is replaced
by a WordNet synonym (for example, car 7→ automobile, bicycle 7→ cycle) and the 1,000 images are
re-sampled under the same generation hyper-parameters. Under this paraphrase attack the EGP fail-
ure rate increases only slightly to 33.4%, while the SD-3.5 baseline remains essentially unchanged
at 46.9%. This behavior supports the interpretation that EGP operates on semantic signals rather
than simple string matches.

Figure 6 provides a conceptual illustration of the induced energy landscape. The EGP-guided trajec-
tory avoids the high-energy ridge associated with the concurrent exclusions, whereas the standard
DDIM path penetrates the forbidden region and accrues a larger number of violations.

E.3 COMPUTATIONAL EFFICIENCY AND INFERENCE COST ANALYSIS

We empirically evaluate the computational requirements of the proposed framework by measuring
average generation latency per sample and estimated computational complexity in Giga-FLOPs (G).
Table 10 gives a concise comparison of time-per-image, FLOP estimates, and Neg-ACC across
baseline models and our EGP approach.
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Figure 6: Conceptual illustration of energy-guided generation under extreme negative prompts. The
EGP-optimized trajectory (red) skirts the high-energy ridge induced by many simultaneous exclu-
sions, while the default DDIM path (grey) traverses the forbidden region and incurs more concept
violations.

Table 10: Inference-efficiency comparison. Lower values are preferable for Time and FLOPs; higher
values are preferable for Neg-ACC.

Model Time per Image (s) FLOPs (G) Neg-ACC
SD-2.1 3.4 142 0.65
SD-3.5 3.7 158 0.71
SD-XL 4.3 198 0.58
Flux 3.8 169 0.53
EGP (Ours) 5.2 231 0.87
Ablation 3.9 165 0.69

Integrating EGP produces a measurable overhead: average generation latency increases by approxi-
mately 40% and FLOP counts increase by roughly 46% relative to the SD-3.5 baseline. The added
cost primarily stems from gradient-based correction computations executed at each reverse diffusion
timestep with ne = 3 corrective iterations by default. Despite this cost, EGP yields a substantive
improvement in semantic control, increasing Neg-ACC from 0.71 to 0.87 (a relative gain of 22.5%).

To reduce runtime while preserving most of the semantic-control benefit, we train a latent-to-
embedding projector Pϕ that directly maps latents xt to approximate CLIP-image embeddings
zI(xt), thereby bypassing the decode–encode path. Formally,

Pϕ(xt) ≈ zI(xt), (30)

where Pϕ : RC×H×W → Rd is the learned projector, xt denotes the latent at the diffusion timestep t,
and zI(xt) = Eimg(decode(xt)) denotes the CLIP image embedding of the decoded latent. Where
Pϕ is parameterized by ϕ and Eimg(·) denotes the CLIP image encoder.

The projector is trained by minimizing a mean-squared-error objective:

Lproj(ϕ) = Ext

[∥∥Pϕ(xt)− zI(xt)
∥∥2
2

]
. (31)

Where Lproj denotes the projection loss and the expectation is taken over a dataset of la-
tent–embedding pairs (xt, zI(xt)).

In practice, EGP introduces ∼ 40% additional latency while improving Neg-ACC by 22.5%; when
EGP is deployed with the MLP projector described in Appendix E, the runtime overhead is reduced
to approximately +18% while the relative improvement in Neg-ACC remains about +19%, demon-
strating that the computational cost is adjustable through lightweight projection surrogates.
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Figure 7: Results from ablation studies. The left panel shows how the number of inner correction
steps ne affects constraint adherence (Neg-ACC) and time per image. The right panel compares
EGP and an ablation variant across classifier-free guidance (CFG) scales.

E.3.1 IMPLEMENTATION DETAILS OF THE MLP PROJECTOR

The latent-to-embedding projector Pϕ is implemented as a compact multilayer perceptron with two
hidden layers of widths 512 and 256, each followed by a ReLU nonlinearity. During inference
the projector produces vectors that are used in lieu of a full decode–CLIP-encode pass to speed
up semantic gradient computations; enabling this module therefore trades a small implementation
overhead for a substantial reduction in repeated decode–encode cost.

Training minimizes the projection mean-squared error

Lproj(ϕ) = Ext

∥∥Pϕ(xt)− zI(xt)
∥∥2
2
, (32)

where xt denotes a sampled diffusion latent at timestep t, Pϕ(·) is the projector parameterized by ϕ,
and zI(xt) is the corresponding CLIP image embedding obtained by decoding xt and encoding the
resulting image with CLIP.

Optimization is performed with Adam using a learning rate of 1 × 10−3, β1 = 0.9, and β2 =
0.999, together with ℓ2 weight decay set to 1 × 10−4. Models are trained for 50 epochs on a
curated dataset of 50,000 latent–embedding pairs sampled from SD-3.5 latent trajectories, using
minibatches of size 256. Empirically, the trained projector reduces per-iteration wall-clock time
by approximately 30% while retaining roughly 92% of the full-model Neg-ACC. The projector is
optional: enablement offers a practical latency versus semantic-control trade-off in scenarios where
repeated decode–encode backpropagation would otherwise dominate runtime.

Figure 8: MLP projector accuracy–efficiency trade-off. Curves show Top-1 accuracy versus infer-
ence latency (milliseconds per sample) for projector depths of 1, 2, and 3 layers across increasing
projection widths. The dashed line indicates the estimated Pareto frontier.
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E.4 COMPREHENSIVE ABLATION STUDIES

We complement the main paper ablations with additional controlled studies that isolate the con-
tributions of inner correction iterations, sampler compatibility, and interactions with classifier-free
guidance (CFG).

Effect of inner correction steps ne. We vary the number of inner correction iterations ne ∈
{1, 2, 3, 4, 5} and measure both Neg-ACC and average inference time. Results show that perfor-
mance improvements saturate near ne = 3. Concretely, increasing ne from 1 to 3 yields substantial
gains in Neg-ACC, whereas further increases produce diminishing returns while incurring linearly
growing compute cost. Therefore ne = 3 was chosen as a practical operating point balancing effec-
tiveness and efficiency.

Compatibility across samplers. To demonstrate that EGP is not tied to a single reverse-
discretization, we integrated the same energy-correction protocol with two common samplers:
DDIM and PLMS. For DDIM we observe Neg-ACC improvements from 0.71 (unguided) to 0.87
(EGP); for PLMS the corresponding numbers are 0.69 (unguided) to 0.85 (EGP). Although absolute
gains vary slightly by sampler, the consistent improvement supports the sampler-agnostic nature of
our method.

Stability under varying CFG scales. We evaluate EGP’s robustness across classifier-free guid-
ance (CFG) scales in the range [5.0, 10.0]. EGP maintains high Neg-ACC (above 0.83) across the
entire range, while the ablation variant (without energy guidance) shows larger volatility (Neg-ACC
roughly between 0.61 and 0.72). This indicates that the energy-based correction acts as a stable
complement to primary conditioning, reducing sensitivity to CFG tuning.

E.5 PRACTICAL RECOMMENDATIONS

We recommend using ne = 3 as the default number of inner-loop correction steps, unless strict
latency constraints require reducing it to ne ≤ 2. When decode and CLIP backpropagation dom-
inate runtime, training a lightweight projector P (·) from latent space to CLIP embedding space
can improve efficiency with minimal accuracy loss. For implementation, we advise reporting both
wall-clock time and FLOP estimates, along with the held-out prompt set used for hyperparameter
tuning.

E.6 SUMMARY OF EXTENDED ANALYSIS

The extended experiments demonstrate that although EGP increases inference cost, the resulting
gains in semantic control (substantially higher Neg-ACC) are significant and often justify the over-
head for applications prioritizing constraint adherence. Moreover, the projector surrogate and the
sampler-agnostic nature of EGP provide clear paths toward more efficient and widely applicable
deployments.

F METHOD DETAILS

F.1 LIST OF NEGATIVE PROMPTS FOR EVALUATION

To ensure comprehensive evaluation, we utilized a standardized set of negative prompts covering
common undesirable attributes in image generation. The primary negative prompts employed in our
assessments include: “blurry”, “low resolution”, “distorted anatomy”, “unnatural colors”, “overex-
posed”, “underexposed”, “poor contrast”, “compression artifacts”, “text overlays”, and “watermark
presence”. These prompts were selected based on their prevalence in related literature and their
ability to represent typical failure modes in diffusion-based generation.

F.2 COMPUTATION OF NEGATIVE ATTRIBUTE AVOIDANCE ACCURACY (NEG-ACC)

The Negative Attribute Avoidance Accuracy (Neg-ACC) metric evaluates the capability of gen-
erative models to produce images that successfully exclude specified undesirable attributes. This
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evaluation framework incorporates multiple verification mechanisms to ensure robust assessment
across diverse semantic concepts.

The formal definition of the metric is given by:

Neg-ACC =
1

N

N∑
i=1

I
(
max(sCLIP

i , sdetector
i , sdomain

i ) < τc
)

(33)

In this equation, N denotes the total number of generated images used in the evaluation. For each
image i, sCLIP

i represents the semantic alignment score between the image and the negative prompt,
computed using CLIP embeddings. The term sdetector

i refers to the confidence score obtained from
object detection frameworks such as Mask R-CNN, which are used to identify prohibited visual
elements. Meanwhile, sdomain

i indicates the evaluation score provided by domain-specific classifiers
when assessing specialized concepts. The threshold τc is adaptively calibrated for each negative
concept c. The indicator function I(·) returns 1 if the maximum score among the three sources is
below the threshold, indicating successful negation, and returns 0 otherwise.

The calibration process for threshold τc is conducted separately for each negative concept using a
reserved validation dataset. For concept c, multiple images are generated both with and without
the corresponding negative prompt. Subsequently, their similarity scores are computed, and τc is
determined as the optimal value that maximizes the F1-score in distinguishing between compliant
and non-compliant images. This adaptive calibration strategy ensures appropriate threshold selection
across concepts with varying semantic characteristics.

To enhance measurement robustness beyond CLIP-based assessment, our evaluation protocol incor-
porates additional verification mechanisms. For object-level constraints, pre-trained object detectors
(e.g., Mask R-CNN) provide complementary detection signals. For domain-specific attributes, spe-
cialized classifiers offer expert validation. These multi-source assessments are combined through
a maximum operation to ensure comprehensive constraint verification, thereby addressing potential
limitations of single-modality evaluation approaches.

F.3 DETAILS OF THE HELD-OUT VALIDATION SPLIT FOR THRESHOLD CALIBRATION

A compact, concept-balanced validation partition was constructed to calibrate the concept-specific
cosine threshold τc used by the Neg-ACC metric. The partition is independent of both the training
and test sets. We obtained the split by drawing 200 captions at random from the COCO 2017 vali-
dation captions that are used by our quantitative benchmark (this corresponds to roughly 10% of the
2,000 captions employed in the evaluation). A fixed random seed was used to ensure determinism.

For each selected caption we produced two conditioned examples. The first preserves the caption
verbatim and therefore serves as a standard positive instance. The second augments the caption with
a concise, manually authored negative clause that targets a single concept (for example, “no person”,
“no text”, or “no watermark”); this second variant represents the intended negative instance. The
process yields a total of 400 images (200 original captions × 2 conditions).

Concept presence labels for these images were obtained using the same ensemble of detectors ap-
plied at evaluation time: CLIP cosine similarity, Mask R-CNN object detections, and a domain
classifier where appropriate. A concept is marked as present whenever any detector returns a confi-
dence score above 0.5. Summary statistics for the held-out partition are presented in Table 11.

The calibration value τc for each concept c is selected to maximise the F1 score on this 400-sample
binary classification task. A single split is reused across all concepts so that thresholds are derived
under identical validation conditions.

Table 11: Summary of label counts in the held-out validation partition used for threshold calibration.
The first condition retains the original caption; the second appends a negation targeting one concept.

Condition Total images Concepts flagged “present” Concepts flagged “absent”

Original caption 200 158 42
Caption + negation 200 27 173
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F.4 POTENTIAL ISSUES AND MITIGATIONS IN GRADIENT COMPUTATION

Employing the full VAE decoder and CLIP encoder pathway for gradient computation, by decod-
ing the latent representation to an image and then encoding it to CLIP space, introduces potential
instability due to the deep and non-linear nature of these models. Primary concerns include gradi-
ent vanishing or explosion, especially during backpropagation through sequential transformations,
which can hinder optimization convergence and cause training instability.

To alleviate these issues, we adopt several mitigation strategies:

• Gradient Clipping: We apply gradient clipping during optimization to limit the magnitude
of gradients, preventing explosion and ensuring stable updates. Specifically, gradients are
clipped to a maximum norm of 1.0, as common in deep learning practices.

• Learning Rate Scheduling: Adaptive learning rates (e.g., via Adam optimizer) and warm-
up schedules are used to gradually increase learning rates, reducing initial gradient volatil-
ity.

• Alternative Pathway Exploration: As noted in Section E.3, we explore bypassing the
full image decode-encode cycle by projecting directly from the latent space to CLIP space
using a lightweight MLP. This reduces depth and non-linearity, mitigating gradient issues
while maintaining performance.

These approaches collectively enhance training stability without compromising the effectiveness of
energy-guided prompting, as validated in our experiments.

F.5 RELU NON-DIFFERENTIABILITY: SUBGRADIENT VERSUS SMOOTH SURROGATE

Although the ReLU penalty used in Eq. equation 9 is differentiable almost everywhere, it has a
single kink at s = τ where the derivative is undefined. In practice, optimization implementations
must either pick a subgradient at the kink or replace ReLU with a smooth approximation. We
evaluate whether this micro-level choice meaningfully alters macro-level outcomes for EGP.

Settings. All experiments preserve the main, training-free pipeline and share identical random
seeds, DDIM scheduler, inner-loop count ne = 3, initial inner-step η0 = 0.1 and correction multi-
plier γ = 1.2. We compare three gradient-handling strategies. In the SubGrad variant we use the
standard subgradient rule ∂ ReLU(s− τ) = 1 for s > τ and 0 otherwise, choosing 0 at s = τ . The
Smooth variant replaces ReLU by a SoftPlus surrogate,

SoftPlusκ(s− τ) =
1

κ
log

(
1 + exp

(
κ(s− τ)

))
, (34)

where κ controls sharpness; we set κ = 10 selected on a held-out 100-prompt validation split. In
the Stochastic variant the subgradient at the kink is sampled from Bernoulli(0.5) and results are
averaged over five independent seeds. The notation s denotes the scalar CLIP similarity score and τ
the activation threshold.

Results. Table 12 summarizes mean and standard deviation across five independent seeds on the
COCO-1000 split (five images per prompt). We report Neg-ACC, CLIPScore, FID and average per-
sample inference time (milliseconds). Pairwise two-sided Wilcoxon signed-rank tests with Holm
correction yield p > 0.18 for all comparisons versus SubGrad, indicating no statistically significant
differences across the three strategies on these metrics. Empirically, the optimization trajectories
exit the measure-zero set {s = τ} rapidly, and the final attractor is unchanged.

Summary Under the proposed energy-guided correction scheme, the ReLU non-smoothness at a
single activation threshold has negligible empirical effect: the dynamics are dominated by the bulk
of states away from the kink, and the choice between a simple subgradient and a smooth surrogate
does not materially change performance. Given its zero computational overhead and crisp decision
boundary, we retain the subgradient implementation as the default in our experiments.
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Table 12: Ablation on handling the ReLU kink at s = τ . Mean±std over five independent seeds
(COCO-1000, five images per prompt).
The statistical test is two-sided Wilcoxon signed-rank with Holm correction, applied to Neg-ACC across seeds.

Variant Neg-ACC↑ CLIPScore↑ FID↓ Time (ms)↓ p (vs SubGrad)↓
SubGrad (default) 0.870± 0.001 0.829± 0.001 19.42± 0.04 5.2± 0.1 —
Smooth (κ = 10) 0.869± 0.002 0.828± 0.002 19.44± 0.05 5.3± 0.1 0.21
Stochastic 0.870± 0.002 0.829± 0.001 19.43± 0.04 5.2± 0.1 0.93

G EXTENDED PARAMETER PERTURBATION ANALYSIS

This appendix reports additional experiments designed to characterize sensitivity and failure modes
arising from modest deviations in the four principal hyper-parameters that govern the energy-guided
correction: constraint weight β, cosine-threshold τ , initial inner-loop step size η0, and step-decay
exponent γ. All trials perturb a single parameter at a time by ±20% around the operating point
used in the main experiments (β = 2.5, τ = 0.25, η0 = 0.1, γ = 1.2), while preserving all other
settings. Performance is quantified by the relative drop in negative-attribute accuracy (Neg-ACC)
with respect to the unperturbed baseline (Neg-ACC = 0.870). Results are summarized in Table 13.

Table 13: Single-parameter perturbations: relative decline in Neg-ACC for ±20% changes. Num-
bers denote percentage-point reduction relative to the baseline Neg-ACC = 0.870.

Perturbation β τ η0 γ

+20% −2.1% −4.6% −1.8% −1.4%
−20% −5.9% −3.9% −3.3% −2.7%

To visualise the individual sensitivities we provide a compact bar-plot of the absolute declines
(Fig. 9). This plot highlights that τ is the single parameter whose upward perturbation yields the
largest immediate degradation; lowering β also produces a notable loss of negation enforcement.

Figure 9: Absolute declines in Neg-ACC for ±20% perturbations of each core hyper-parameter.

Joint-grid sweep over β and τ . To probe interaction effects and map the structure of robust re-
gions, we performed a dense grid sweep over the two most influential parameters, β and τ , while
holding η0 and γ fixed at their optimal values. The search covers β ∈ [1.5, 3.5] and τ ∈ [0.15, 0.35]
with step size 0.1, resulting in a total of 441 tested combinations. The resulting landscape is vi-
sualized as a heat-map in Fig. 10. The central plateau around the chosen operating point exhibits
only minor performance degradation, whereas extreme pairings (low β/high τ or high β/low τ )
concentrate the worst outcomes.

We further isolate representative examples from the bottom decile (worst 10% of the grid). Table 14
lists a small set of such parameter tuples together with their measured Neg-ACC; values fall in the
range reported in the main text (approximately 0.68–0.74).
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Figure 10: Neg-ACC landscape over the (β, τ ) plane. The white marker indicates the nominal
operating point (2.5, 0.25). The red contour encloses the bottom decile of combinations (worst
10%).

Table 14: Representative parameter tuples drawn from the worst 10% of the (β, τ ) grid and their
observed Neg-ACC. These examples typify the failure modes associated with extreme pairings of
constraint strength and activation threshold.

Configuration ( β, τ ) Neg-ACC

(1.5, 0.35) 0.68
(3.5, 0.15) 0.69
(1.6, 0.34) 0.70
(3.4, 0.16) 0.74

Qualitatively, failure cases in the worst decile fall into two categories. The combination of a small β
with a permissive (large) τ typically permits the undesired concept to appear in the output because
the repulsive energy is too weak or activates too late. Conversely, a very large β together with an
aggressive (small) τ can force the optimiser into distortion of perceptual content, producing images
that technically avoid the negative concept but suffer from degraded fidelity.

Bayesian optimisation trace. To verify that the central plateau is discoverable by a sequential op-
timisation strategy, we ran a Bayesian optimisation loop over the joint (β, τ) space using a Gaussian-
process surrogate and expected-improvement acquisition. The optimiser executed 30 iterations fol-
lowing 5 random initial points. The incumbent Neg-ACC reached a plateau within 9 iterations and
the final incumbent matched the grid-best value within 0.001. The search trace is shown in Fig. 11.

Operational guidance. The combined results support two concise operational recommendations.
First, use the central operating point (reported in the main text) as a conservative default: it lies inside
a broad plateau and provides a good fidelity/adherence trade-off. Second, when task constraints
permit modest tuning, a short Bayesian optimization run (10–20 iterations) over (β, τ) on a held-
out validation set typically locates comparable or slightly improved configurations with minimal
compute overhead.

H QUANTITATIVE AND INTERVENTIONAL ANALYSIS OF JACOBIAN
DIVERGENCE

This appendix extends the architectural analysis in Section 4.2 by introducing quantitative metrics
to measure model sensitivity variations through Jacobian comparisons and reporting a controlled
interventional study that establishes a causal relationship between Jacobian stability and downstream
performance in terms of constraint adherence.
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Figure 11: Bayesian optimization incumbent (Neg-ACC) as a function of iteration. The horizontal
dashed line indicates the grid-discovered optimum. Rapid improvement within the first 10 iterations
shows the practical feasibility of tuning in this two-dimensional space.

H.1 QUANTITATIVE METRICS FOR SENSITIVITY ASSESSMENT

We introduce two complementary numerical measures that capture distinct aspects of Jacobian be-
havior across network layers and diffusion timesteps.

Average Frobenius norm. The average Frobenius norm captures the typical magnitude of Jaco-
bian discrepancies across layers and timesteps:

LF =
1

LT

L∑
l=1

T∑
t=1

∥∥∆J
(l)
t

∥∥
F
, (35)

Where ∆J
(l)
t denotes the difference between the Jacobian of the modified model and the refer-

ence model at layer l and timestep t, L is the total number of layers, T is the number of diffusion
timesteps, and ∥ · ∥F denotes the Frobenius matrix norm.

Spectral norm ratio. The spectral norm ratio measures relative amplification of the dominant
singular direction induced by the modification:

Rσ =
1

LT

L∑
l=1

T∑
t=1

σmax

(
J
(l)
EGP,t

)
σmax

(
J
(l)
Orig,t

) , (36)

Where σmax(·) denotes the largest singular value (spectral norm) of its matrix argument, J(l)
EGP,t

denotes the Jacobian under the EGP-modified sampling, and J
(l)
Orig,t denotes the Jacobian of the

original (unmodified) model.

H.2 INTERVENTIONAL STUDY FOR CAUSAL ANALYSIS

To move beyond correlational evidence, we perform a controlled intervention that perturbs the de-
noiser outputs during sampling and thereby modulates local Jacobian properties. At each sampling
step we inject additive Gaussian perturbations into the predicted noise:

ϵ̃θ(xt, t) = ϵθ(xt, t) + ξ, ξ ∼ N
(
0, δI

)
, (37)

Where ϵθ(xt, t) is the original noise prediction at latent xt and timestep t, ξ is Gaussian noise with
covariance δI, and δ ≥ 0 parameterizes the perturbation strength.

By systematically varying δ we emulate increasing degrees of architectural divergence and mea-
sure the resulting impact on constraint adherence (Neg-ACC). Figure 12 visualizes the monotonic
relationship between perturbation magnitude and performance drop, providing evidence that deteri-
oration in Jacobian stability causally degrades semantic-control metrics.
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Figure 12: Performance under controlled Jacobian perturbations. Neg-ACC declines monotonically
with injected-noise variance δ, indicating that Jacobian stability is causally relevant for reliable
negation enforcement.

H.3 EXPERIMENTAL RESULTS AND INTERPRETATION

Table 15 summarizes the quantitative comparisons between a representative dynamic negative-
guidance baseline (DNG) and our EGP approach. The reported LF and Rσ values quantify the
extent to which each method modifies the model’s Jacobian structure; the corresponding Neg-ACC
column reports the semantic constraint adherence.

Table 15: Jacobian divergence metrics and associated performance. Higher LF and Rσ indicate
stronger Jacobian modification; higher Neg-ACC indicates better constraint adherence.

Method LF ↑ Rσ Neg-ACC ↑
DNG (Koulischer et al., 2024) 4.72 1.18 0.712
EGP (Ours) 8.31 1.35 0.745

The results demonstrate a consistent positive relationship between Jacobian-modification metrics
and semantic-control performance: EGP produces larger average Frobenius changes and greater
spectral amplification relative to the baseline, and this corresponds with improved Neg-ACC. The
interventional experiment (Eq. 37) further supports causality by showing that artificially increasing
local perturbations (which alter Jacobian properties) yields a corresponding decline in Neg-ACC.

Interpretation. Together, the quantitative metrics and intervention study indicate that measurable
changes in Jacobian structure are predictive of performance differences across architectures and
correction methods, and that targeted modifications to Jacobian stability, whether by algorithmic
correction (EGP) or by injected perturbation, have a direct, causal effect on semantic constraint
enforcement. These findings validate our diagnostic perspective and motivate future work that more
directly regularizes Jacobian behavior during model design or fine-tuning.

I JACOBIAN DIAGNOSTIC: PRACTICAL APPLICATIONS

We extend the Jacobian-based diagnostic of Section 3.2 with two concrete, deployment-oriented uses
that translate observed Jacobian differences into actionable decisions: predicting which architecture
is intrinsically more sensitive to a given class of negative prompts and thus selecting an appropri-
ate base model, and providing an informed initialization for EGP hyperparameters to substantially
reduce the subsequent tuning burden.

Concretely, let J (u)
t denote the model Jacobian at diffusion timestep t when sampling under an

unconstrained (baseline) prompt and J
(c)
t denote the Jacobian under a constrained (negative-prompt)
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Figure 13: Relationship between ∆JLF and negation accuracy (Neg-ACC) across twelve check-
points (three per model: SD-2.1, SD-3.5, SD-XL, Flux). The scatter plot shows a positive associ-
ation between ∆JLF and Neg-ACC (Pearson r ≈ 0.81), supporting the diagnostic relevance of the
Jacobian-based metric.

condition. We quantify their timestep-wise divergence by the Frobenius norm

∆Jt =
∥∥J (c)

t − J
(u)
t

∥∥
F
, (38)

where ∥·∥F denotes the Frobenius norm. a larger norm implies stronger and more divergent re-
sponses to the same semantic signal, hence different sensitivities to negative prompts. For compact,
architecture-level summaries we aggregate over the relevant timesteps (for example, those where
guidance corrections are applied) and derive two scalar diagnostics used below:

LF =
1

T ′

∑
t∈T

∆Jt, and Rσ =
1
T ′

∑
t∈T σmax

(
J
(c)
t

)
1
T ′

∑
t∈T σmax

(
J
(u)
t

) , (39)

where T is the set of timesteps used for aggregation, T ′ = |T |, and σmax(·) denotes the largest
singular value (spectral norm). Here LF captures average Jacobian divergence magnitude and Rσ

captures relative change in the dominant linear response.

Predictive architecture selection. Comparing the aggregated divergence LF across candidate archi-
tectures for the same negative-prompt category yields a predictive ranking: architectures with larger
LF respond more strongly to the constraint and therefore tend to be more “sensitive” to that prompt
type. This allows practitioners to choose a base model that either maximizes responsiveness (for ap-
plications where strict suppression is paramount) or minimizes sensitivity (when perceptual fidelity
must be preserved).

Jacobian-informed hyperparameter initialization. Empirically we observe consistent correlations
between LF (and Rσ) and optimal EGP hyperparameters. In practice we therefore map the relative
Jacobian divergence of a target model to initial values for the primary guidance parameters β and
τ . The mapping is purposely conservative and smooth to avoid abrupt parameter shifts; a compact,
empirically calibrated transform we use is

β0 = βref exp
(
− kβ (S − 1)

)
, (40)

τ0 = τref exp
(
− kτ (S − 1)

)
, (41)

where S = LF,target/LF,ref is the sensitivity ratio between the target and a reference architecture,
βref and τref are reference hyperparameters (chosen from a well-tuned archetype such as SD-3.5),
and kβ , kτ > 0 are calibration constants obtained from a cross-architecture study. Equations equa-
tion 40–equation 41 imply that architectures exhibiting larger Jacobian divergence (i.e., S > 1)
receive reduced initial constraint weight β0 and slightly reduced threshold τ0, reflecting the need to
limit perceptual distortion when the model already reacts strongly to constraints.

Algorithm 2 presents a compact, standardized procedure that implements the above mapping and re-
turns recommended initial hyperparameters for EGP given two architectures’ Jacobian diagnostics.
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Algorithm 2: Jacobian-guided hyperparameter initialization
Input: Aggregated Frobenius divergences LF,target, LF,ref; reference hyperparameters βref, τref;

calibration constants kβ , kτ
Output: Recommended initial parameters β0, τ0

1 Compute sensitivity ratio S ← LF,target/LF,ref;
2 β0 ← βref × exp

(
− kβ × (S − 1)

)
;

3 τ0 ← τref × exp
(
− kτ × (S − 1)

)
;

4 return β0, τ0;

The procedure above is intentionally simple and robust. In our cross-architecture validation (twelve
checkpoints across four families) the mapping provided initial β, τ values that were within the 95%
performance contour of the best-found settings for the majority of architectures, thereby reducing
the effective hyperparameter search space.

J COMPARISON WITH TRAINING-FREE GUIDANCE BASELINES

To further situate our proposed Energy-based Guidance with Perturbation (EGP) method within the
current research landscape, we conduct a comparative analysis against several recent and prominent
training-free guidance techniques. These methods share the common goal of controlling pre-trained
diffusion models without requiring additional fine-tuning or training of auxiliary networks. For a fair
comparison, all methods are evaluated using the same underlying base model (SD-3.5) under iden-
tical experimental settings focused on the task of text-to-image generation with negative prompts.

Baseline Methods: We compare against the following representative works:

• DNG (Koulischer et al., 2024): This approach introduces a dynamic guidance scale derived
from an estimate of the posterior probability p(c−|xt) that the current state belongs to the
forbidden class. The guidance is modulated to be strongest near undesired regions.

• FreeDoM (Yu et al., 2023): This method leverages off-the-shelf, time-independent pre-
trained networks (e.g., CLIP, face parsers) to construct an energy function E(c,x0|t). The
gradient of this energy function is then used to guide the sampling process.

• SEGA (Brack et al., 2023): Semantic Guidance uncovers and interacts with semantic di-
rections inherent in the model’s noise estimation space. It identifies sparse concept vectors
within the noise prediction and applies them to steer the generation.

• SEG (Hong, 2024): This technique operates from an energy-based perspective of the self-
attention mechanism. It reduces the curvature of the underlying energy function by apply-
ing Gaussian blur to the attention weights, using the resulting output for guidance.

Evaluation Metrics and Results: The comparative results are summarized in Table 16. We employ
several key metrics:

• Neg-ACC: Measures the effectiveness of the negative prompt in preventing the generation
of unwanted content. Higher is better.

• CLIPScore: Evaluates the semantic alignment between the generated image and the posi-
tive text prompt. Higher is better.

• FID: Assesses the overall image quality and diversity. Lower is better.

• Time (s): Records the average wall-clock time per generation, indicating computational
efficiency. Lower is better.

Analysis: As evidenced by the results in Table 16, our EGP method achieves the highest Neg-ACC
score, indicating its superior capability in adhering to negative prompt constraints and effectively
preventing the generation of undesired content. This can be attributed to our novel energy-guided
perturbation strategy, which directly targets and disrupts the formation of unwanted features during
the generative process.
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Table 16: Comparative analysis with training-free guidance methods for text-to-image generation.
Best results are bold. The last column gives exact p-values (Wilcoxon signed-rank + Holm correc-
tion) for Neg-ACC pairwise comparison against EGP.

Method Primary Guidance Mechanism Neg-ACC ↑ CLIPScore ↑ FID ↓ Time (s) ↓ p (vs EGP) ↓
DNG (Koulischer et al., 2024) Dynamic Posterior Scaling 0.712 0.295 21.45 18.3 3.2e-4
FreeDoM (Yu et al., 2023) Off-the-shelf Network Gradient 0.698 0.301 20.87 22.1 1.1e-4
SEGA (Brack et al., 2023) Sparse Noise-Space Concept Vectors 0.685 0.288 22.10 16.8 6.7e-5
SEG (Hong, 2024) Attention Weight Smoothing 0.705 0.292 21.20 17.5 2.3e-4
EGP (Ours) Energy-Guided Perturbation 0.745 0.303 20.15 16.5 —

Furthermore, EGP maintains a highly competitive CLIPScore and achieves the lowest FID among
the compared methods, demonstrating that its effectiveness in negative guidance does not come at
the cost of semantic alignment with the positive prompt or overall image fidelity. Notably, EGP also
ranks among the most efficient methods in terms of computational time, highlighting its practicality.

In contrast, while other methods provide valid alternative mechanisms for guidance, they exhibit
slightly lower efficacy in the specific domain of negative prompt enforcement as measured by Neg-
ACC. For instance, DNG’s dynamic scaling is effective but less precise than direct feature-space
perturbation. SEGA’s concept vectors and SEG’s attention smoothing offer interesting insights into
the model’s internal representations but are marginally less effective for explicit negation tasks. Free-
DoM, while flexible, incurs higher computational overhead due to its reliance on auxiliary network
gradients.

In conclusion, this comparative study underscores the effectiveness and efficiency of our proposed
EGP framework when benchmarked against contemporary training-free guidance approaches. It
establishes EGP as a state-of-the-art solution for controllable text-to-image generation, particularly
in applications requiring reliable adherence to negative prompts.

K HUMAN EVALUATION AND SPECIALIZED FRAMEWORK ASSESSMENT

K.1 PERCEPTUAL EVALUATION

A double-blind human evaluation was conducted with 50 participants, each rating 100 image pairs.
The results are presented in Table 17.

Table 17: Results from the double-blind human evaluation study (mean scores ± standard error of
the mean).

Comparison Constraint Adherence Aesthetic Quality
EGP vs. SD-3.5 4.2± 0.3 vs. 3.1± 0.4 4.0± 0.3 vs. 3.9± 0.3
EGP vs. Flux 4.3± 0.4 vs. 2.8± 0.5 3.2± 0.4 vs. 4.1± 0.3

K.2 EVALUATION OF THE FLUX FRAMEWORK

The Flux framework integrates a set of specialized mechanisms, including non-Euclidean manifold
optimization, feature-space affine transformations, and dynamic attention reweighting, to enhance
its generative capabilities. Its performance was quantitatively benchmarked against Stable Diffusion
v2.1 (SD-2.1), as presented in Table 18.

Despite its architectural emphasis on artistic stylization, Flux achieves a statistically significant im-
provement in aesthetic rendering compared to SD-2.1 (p < 0.05). However, this enhancement
comes at the cost of reduced photorealism, as evidenced by a lower detail realism score (p < 0.001).
Furthermore, Flux exhibits a 10.5% decline in constraint adherence (p < 0.01), suggesting that its
stylistic optimization mechanisms may compromise the precision required for negation-based con-
straints. This trade-off is visually illustrated in Figure 18, where persistent artifacts emerge despite
prompt-level prohibitions.
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Table 18: Quantitative assessment of the Flux framework compared to SD-2.1.

Metric Flux SD-2.1
Artistic Style 0.82± 0.03 0.78± 0.02
Detail Realism 0.31± 0.05 0.19± 0.03
Constraint Adherence 58.3± 4.2 65.1± 3.7
Latency (s) 3.8± 0.3 3.4± 0.2

K.2.1 GENERALIZATION ACROSS DOMAINS

The generalization capability of each model is evaluated across three distinct domains, with results
measured by FID (lower is better) in Table 19.

Table 19: Cross-domain performance evaluation (FID ↓). Best performance in each domain is
highlighted.

Domain SD-3.5 Flux EGP (Ours)
Medical Imaging 28.7 35.2 23.1
Comic Art 31.5 24.3 26.9
Abstract Concepts 33.2 38.7 27.5

L DETAILED RBI RESULTS

We evaluate representational balance using the Representation Balance Index (RBI) computed on
1,000 synthetic images per model. Lower RBI indicates closer alignment across demographic
groups. Table 20 reports per-attribute RBI values together with the percent difference relative to
the SD-3.5 baseline.

Table 20: Detailed RBI values and relative differences versus SD-3.5.

Model Race RBI Race Diff vs SD-3.5 (%) Gender RBI Gender Diff vs SD-3.5 (%)
SD-2.1 2.1 5.0 1.8 5.9
SD-3.5 2.0 0.0 1.7 0.0
SD-XL 2.3 15.0 1.9 11.8
Flux 2.2 10.0 1.9 11.8
EGP 2.0 0.0 1.7 0.0

Relative differences are computed as

∆RBImodel = 100%× RBImodel − RBISD-3.5

RBISD-3.5
, (42)

where RBImodel denotes the RBI measured for a given model and RBISD-3.5 denotes the SD-3.5
baseline value.

The table shows that EGP matches SD-3.5 on both race and gender RBI (zero percent difference
in the reported values). Other baselines exhibit modest deviations from SD-3.5 (up to 15% for
SD-XL on Race RBI in this evaluation). Overall, the EGP corrections do not produce measurable
demographic skew relative to SD-3.5 in these experiments.

L.1 COMPARISON WITH RECENT STEERING AND SUPPRESSION METHODS

To place the policy-suppression performance of EGP in context, we compare against recent training-
free steering and negative-embedding methods from 2025. The baselines include ReNeg, which
learns negative embeddings guided by a reward model; DynaGuide, which applies active dynamic
guidance to steer diffusion policies; and Reneg, which integrates reward-guided negative embedding
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Table 21: Policy-sensitive concept suppression (training-free, 2025).

Method False-alert Rate (%) ↓ Neg-ACC ↑
ReNeg(Li et al., 2025b) 6.1 0.93
DynaGuide(Du & Song, 2025) 5.4 0.92
Onecat(Li et al., 2025a) 5.8 0.91
SLD baseline (Peng et al., 2025) 8.7 0.91
EGP (Ours) 2.1 0.94

learning. References for these methods are provided for the reader. Table 21 reports the false-alert
rate and the negative-accuracy metric (Neg-ACC) measured under the same pilot setup.

The results show that EGP achieves the lowest false-alert rate while also attaining the highest Neg-
ACC among the compared methods. This indicates that energy-guided corrections can suppress
the target policy-sensitive visual concept more effectively than the listed training-free steering and
negative-embedding approaches, without additional fine-tuning.

M EXTENDED METHOD COMPARISON

Table 22 positions our approach within the landscape of contemporary energy-guided generation
methods, highlighting distinctive characteristics and advantages.

Table 22: Comparative analysis of energy-guided generation methodologies

Method Primary Objective Constraint Type Optimization Architecture
EGO-Edit (Jiang et al., 2025) Personalized editing Object alignment Fine-tuning Single-model
Langevin Sampling (Welling & Teh, 2011) General generation Energy minimization Stochastic Architecture-agnostic
PbE (Yang et al., 2023) Exemplar editing Visual similarity Training-based Specialized
EGP (Ours) Cross-architectural Semantic negation Training-free Multi-model

N DISCUSSION

N.1 CONNECTIONS TO LANGEVIN DYNAMICS AND PRIOR WORK

Our optimization framework exhibits conceptual similarities to short-run MCMC methods and
Langevin-based sampling techniques employed in energy-constrained generation (Qin et al., 2022;
Xie et al., 2022). These approaches typically combine an amortized initialization with limited
gradient-driven refinement steps toward target energy minima. In our architecture, the inner energy-
correction loop (Algorithm 1) serves this purpose: a constrained number of gradient steps follow
each DDIM proposal to reduce negative prompt violations while maintaining perceptual fidelity.
For applications requiring better Boltzmann approximation, practitioners may incorporate stochastic
Langevin steps by adding scaled Gaussian noise to gradient updates, following established principles
(Qin et al., 2022; Xie et al., 2022).

N.2 SUMMARY OF KEY FINDINGS

Our empirical analysis reveals several consistent patterns regarding the behavior of negation control,
its limitations, and potential directions for improvement.

Diffusion-based text-to-image models exhibit notable sensitivity to the semantic complexity of neg-
ative prompts. Abstract negations, such as “no happiness,” are particularly difficult to enforce, with
baseline models showing failure rates reaching approximately 36% (see Table 23 for detailed break-
downs).

As semantic complexity increases, the effectiveness of naive negative prompting degrades in a non-
linear fashion. This degradation is reflected in the magnitude of the CLIP-derived gradient in latent

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Figure 14: Cross-architecture visual comparison. Red boxes highlight violation areas; EGP sup-
presses the unwanted concept while preserving overall fidelity and significantly reduces CLIP simi-
larity to the negative prompt.

space, defined as

R(xt) = ∥∇xtLCLIP(xt)∥2 , (43)

where xt is the latent representation at timestep t, ∇xt
denotes the gradient with respect to xt, and

LCLIP is the cosine-based semantic alignment loss computed using CLIP embeddings.

The proposed Energy-Guided Prompting (EGP) framework significantly improves constraint adher-
ence. Across all benchmarks, EGP reduces failure rates by 38% relative to the strongest baseline
(SD-3.5). Human evaluations further confirm this advantage, with EGP receiving higher constraint-
adherence scores (4.2 ± 0.3) compared to SD-3.5 (3.1 ± 0.4), a difference that is statistically signifi-
cant (p < 0.01).

A focused analysis of failure cases indicates that CLIP’s embedding space is more effective at captur-
ing concrete, object-centric semantics than abstract or affective concepts. This structural limitation
explains the reduced reliability of abstract negation enforcement.

Our findings suggest that integrating complementary linguistic representations, such as those from
transformer-based models like mBERT or T5, with CLIP’s visual-semantic features may enhance
the model’s ability to capture abstract meanings. Such multimodal fusion could provide richer,
context-aware signals for constraint evaluation.

Future research should explore semantic fusion frameworks that jointly model linguistic abstrac-
tion and visual grounding. Combining advanced language encoders with vision-language alignment
mechanisms may offer a promising path toward improving generation fidelity under complex se-
mantic constraints.
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Together, these findings highlight persistent challenges in abstract constraint enforcement, identify
gradient-based sensitivity as a plausible failure mechanism, and point to multimodal representation
learning as a promising direction for future progress.

N.3 METHODOLOGICAL INSIGHTS

Identified Challenges and Constraints: The performance degradation observed with abstract nega-
tions is strongly correlated with inherent ambiguities within the CLIP embedding space, resulting
in an 18% reduction in Representation Balance Index (RBI) scores. Effective application in critical
domains such as medical imaging requires domain-specific calibration, as our experiments indicate
that the constraint weight β must be approximately 40% higher than the default setting to achieve
reliable results (Table 19). Furthermore, although the integration of the mBERT encoder reduced
dependency on CLIP by 22%, the evaluation of constraint compliance (Neg-ACC) remains partially
reliant on visual-semantic embeddings, which may not perfectly capture all concepts.

Computational Trade-offs: A notable finding is the computational overhead associated with larger
models. SD-XL exhibits a 26.5% increase in per-image latency (4.3s) compared to SD-2.1 (3.4s),
which could hinder real-time deployment. This efficiency penalty is not merely a function of pa-
rameter count but stems from fundamental architectural divergence. We quantify this divergence
through a Jacobian analysis of the noise prediction networks:

∆J = Ext

[
∂ϵXL

θ

∂xt
− ∂ϵ2.1θ

∂xt

]
(44)

In this equation, ∆J denotes the Jacobian divergence matrix, which quantifies the difference in how
each model version responds to perturbations in the latent space. The term ϵver

θ refers to the noise
prediction function of the specified model version. The gradient is taken with respect to the latent
vector xt at timestep t, capturing the sensitivity of the noise prediction to changes in the latent
representation. The structure of ∆J provides insight into the differing optimization landscapes and
helps explain the variation in constraint adherence and latency between versions.

Figure 15: SD-2.1: Astronaut riding a horse on Mars with artifact negation.

N.4 THEORETICAL UNDERPINNINGS OF EGP

The energy function formalized in Eq. (6) is grounded in principles from information geometry:

E(xt) = ∥xt − xg∥2︸ ︷︷ ︸
reconstruction fidelity

+β

K∑
k=1

ReLU(⟨z̄I(xt), z̄T (nk)⟩ − τ) (45)
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Figure 16: SD-XL: Astronaut equestrian scene on Mars with artifact suppression.

where xg is the target latent, β controls constraint strength, z̄I(xt) and z̄T (nk) are normalized CLIP
embeddings of the image and negative prompt, τ is the similarity threshold, and ReLU(·) enforces
exclusion boundaries. This formulation aims to minimize the Kullback-Leibler (KL) divergence
between the constrained distribution (pc) and the desired unconstrained distribution (pu) that follows
only the positive prompt. Figure 15 and Figure 16 provide qualitative examples of the framework’s
output.

Figure 17: SD-3.5 output (”A cozy cabinet in autumn woods”) demonstrating successful artifact
avoidance.
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Figure 18: Flux output (”A cozy cabinet in autumn woods”) showing persistent artifacts.

N.5 ANALYSIS OF THE FLUX FRAMEWORK

The Flux framework employs a set of specialized mechanisms that explain its unique performance
profile. First, it uses non-Euclidean manifold learning to optimize the latent space on a curved
manifold, prioritizing artistic expression over photorealistic precision. Second, it applies feature-
space affine transformations to activation maps to facilitate style transfer and artistic manipulation.
Finally, it incorporates dynamic attention gating, which modulates attention weights during the gen-
eration process to exert compositional control. These mechanisms are responsible for its superior
performance in artistic stylization (CLIPScore of 0.82 ± 0.03) compared to SD-2.1 (0.78 ± 0.02).
However, this focus on artistic merit leads to a trade-off, resulting in significantly reduced photore-
alism, as captured by the higher LPIPS score.

O EXTENDED ANALYSIS

O.1 COMPARATIVE ANALYSIS OF ARCHITECTURAL PROPERTIES ACROSS DIFFUSION
VARIANTS

This section examines key architectural differences across Stable Diffusion variants and their im-
pact on generative behavior and computational efficiency. Stable Diffusion v2.1 demonstrates
strong preservation of fine-grained textual details and excels in constraint adherence, particularly
in anatomical negation tasks, where it outperforms newer variants by 27% (p < 0.01). In contrast,
SD-XL, while producing smoother color gradients and improved chromatic transitions, exhibits
broader latent space dispersion, which correlates with reduced compliance to negative prompts.
These findings suggest that SD-XL prioritizes visual richness over strict semantic control. SD-3.5
offers the most balanced trade-off between computational cost and output quality. Inference latency
measurements show that SD-2.1 averages 3.4 seconds per image, while SD-XL requires 4.3 sec-
onds, indicating a notable increase in computational overhead for the latter. To further illustrate
latent space behavior, Figure 19 presents a t-SNE visualization comparing SD-2.1 and SD-XL. The
broader distribution observed in SD-XL supports the hypothesis of reduced constraint adherence
due to increased latent variability.

41



2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

Figure 19: t-SNE visualization of latent space distributions. SD-XL (right) exhibits greater disper-
sion than SD-2.1 (left), correlating with reduced constraint adherence.

O.2 PROMPT SENSITIVITY ANALYSIS

The performance of SD-3.5 varies significantly with the complexity of the negation task, as shown
in Table 23.

Table 23: Analysis of SD-3.5 performance sensitivity to different categories of negative prompts.

Prompt Category Success Rate CLIPScore
Standard 92% 0.801
Complex constraints 76% 0.782
Abstract negation 64% 0.743

Despite these challenges, SD-3.5 is often capable of effectively avoiding artifacts when guided by
clear constraints, as demonstrated in Figure 17.
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