Under review as a conference paper at ICLR 2026

PARD: ACCELERATING LLM INFERENCE WITH
LOwW-CoOST PARALLEL DRAFT MODEL ADAPTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

The autoregressive nature of large language models (LLMs) fundamentally limits
inference speed, as each forward pass generates only a single token and is often bot-
tlenecked by memory bandwidth. Speculative decoding has emerged as a promising
solution, adopting a draft-then-verify strategy to accelerate token generation. While
the EAGLE series achieves strong acceleration, its requirement of training a sepa-
rate draft head for each target model introduces substantial adaptation costs. In this
work, we propose PARD (PARallel Draft), a novel speculative decoding method
featuring rarget-independence and parallel token prediction. Specifically, PARD
enables a single draft model to be applied across an entire family of target models
without requiring separate training for each variant, thereby minimizing adaptation
costs. Meanwhile, PARD substantially accelerates inference by predicting multiple
future tokens within a single forward pass of the draft phase. To further reduce the
training adaptation cost of PARD, we propose a COnditional Drop-token (COD)
mechanism based on the integrity of prefix key-value states, enabling autoregressive
draft models to be adapted into parallel draft models at low-cost. Our experiments
show that the proposed COD method improves draft model training efficiency by
3x compared with traditional masked prediction training. On the vLLM inference
framework, PARD achieves up to 3.67x speedup on LLaMA3.1-8B, reaching
264.88 tokens per second, which is 1.15x faster than EAGLE-3.

1 INTRODUCTION

Rapid advancements in LLMs such as GPT-4 (OpenAlL |2023)), LLaMA3 (Llama Team), [2024)) and
DeepSeek-R1 (DeepSeek-Al et al., [2025) have fueled an explosion of applications such as content
generation, code generation, and Al agents. However, as the counts of model parameters and the
lengths of the context continue to grow, inference efficiency has become a critical challenge. Due to
the auto-regressive (AR) nature of LLMs, tokens are generated sequentially, leading to substantial
memory bandwidth consumption and high inference latency. Speculative Decoding (SD) (Chen et al.|
2023a; Leviathan et al., 2023) has emerged as a promising technique to mitigate bandwidth overhead
and reduce decoding latency during LLM inference. The core idea is to use a lightweight draft model
to predict multiple candidate tokens, which are then verified in parallel by the target model. When
combined with speculative sampling, this approach allows the model to generate multiple tokens
within a single forward pass, significantly improving efficiency without compromising output quality.

The effectiveness of SD is determined jointly by the accuracy of the draft model and its overhead.
To improve draft model accuracy, various methods have been proposed, primarily falling into the
category of target-dependent approaches, where the draft model leverages information from the
target model. For example, Medusa (Cai et al., 2024a) and EAGLE (L1 et al., |2024a) incorporate
features from the target model’s outputs into the draft model’s input, while LayerSkip (Elhoushi et al.|
2024) and Kangaroo (Liu et al.| |2024b)) reuse selected layers of the target model as the draft model.
Although these methods improve token prediction accuracy, they also introduce a major drawback:
the draft model becomes tightly coupled with the target model. Consequently, any target model
requires a separately trained draft model, which highly increases adaptation and deployment costs.

Unlike target-dependent methods, vanilla SD (Chen et al.| 2023a} [Leviathan et al.l |2023) represents a
class of target-independent approaches, where a single draft model can be applied across an entire
family of target models without requiring separate training for each variant. For validation, we

Under review as a conference paper at ICLR 2026

EAGLE

0.95 — EAGLE3 VSD |41 msfet ms|a.1 ms|a.1 ms|a.1 ms|a.1 ms 143ms 4.1 ms{a.1 msf4.1 ms|a.1 ms|a.1 ms[a.1 ms 143ms
0.936
VSD C = -
PARD AR Draft 389ms AR Draft ...
0.9 0895 o
o) 0875 PARD 1 ms 143ms 41 ms 143ms 2.1x faster -
© >
o
§0-85 0.839 PARD 84 PARD
Q 0.827 oms 10ms 20ms 30ms 40ms 50 ms 60 ms 70 ms 80 ms
< I 1 1 1 1 1 1 1 Ly
k t t } } } } } —>
Time Line
0.8 0.792 (b)
Target Independence Training Cost Draft model latency Draft Acc
075 Vanilla SD True Free High Very High
: EAGLE False High
EAGLE-3 False High High
humaneval gsmek PARD True Low Low Very High
(a) (c)

Figure 1: PARD achieves low latency while maintaining high accuracy. (a) Comparison of first-token
acceptance rates using LLaMA3.1-8B as the target model. EAGLE and EAGLE-3 use their official
model, vanilla speculative decoding (VSD) employs LLaMA3.2-1B as the draft model, and PARD
represents the adapted version of VSD. (b) Comparison of actual inference time between VSD and
PARD. VSD generates candidate tokens autoregressively during the draft stage, requiring multiple
forward passes. In contrast, PARD completes drafting with a single forward pass. The draft model
used is LLaMA3.2-1B and the target model is LLaMA3.1-8B. (c) Illustrative comparison of training
and inference efficiency between PARD and other methods.

compare using LLaMA3.2-1B (Llama Team| 2024) as a draft model against the EAGLE method,
both for the target model LLaMA3.1-8B. Figure|la|shows that LLaMA3.2-1B achieves significantly
higher accuracy than the EAGLE head. However, due to its increased computational cost, the overall
speedup ratio of vanilla SD may be lower than that of EAGLE.

To further accelerate inference, Mask-Predict (Ghazvininejad et al.,|2019) provides a form of parallel
decoding by using masked tokens as placeholders and employing specialized training to enable multi-
ple token predictions in a single forward pass. Several recent studies have integrated SD with mask
prediction. For example, PaSS (Monea et al., [2023)) and BiTA (Gloeckle et al., [2024) fine-tune the
target model into a parallel decoding model that functions as a draft model, while ParallelSpec (Xiao
et al.| 2024)) extends EAGLE and Medusa into a parallel decoding framework. However, these
approaches still use target model information, making them inherently target-dependent.

The goal of this paper is to break away from the target-dependent design paradigm, by deveploping a
target-independent SD approach called Parallel Draft (PARD) with stronger generalization, higher
inference efficiency, and lower adaptation cost. PARD builds upon existing high-accuracy small
language models. A single draft model with low training cost can be applied across an entire family
of target models, thereby significantly reducing adaptation overhead. PARD introduces mask tokens
for parallel token predictions in the draft phase to accelerate inference, as shown in Figure [Tb] To
further improve training efficiency, we design a conditional drop-token (COD) mechanism based on
the integrity of prefix key-value states, reducing the cost of adapting autoregressive draft models into
parallel draft models by a factor of 3. The advantages of PARD are shown in Figure

To align our evaluation with real-world scenarios, all experiments are conducted on the widely
adopted industrial inference framework vLLM. Extensive experiments on LLaMA3, Qwen and
DeepSeek Qwen familys show the consistent speedup of PARD over vanilla SD and EAGLE-3, as
shown in Figure 2]

To summarize, we make the following contributions:

* We propose PARD, a novel speculative decoding method featuring target-independence and
parallel token prediction. PARD is highly generalizable: its target-independent design allows
a single draft model to accelerate an entire family of target models, in contrast to target-
dependent methods such as Medusa and EAGLE. This significantly reduces deployment
and adaptation costs. Through mask tokens, PARD substantially accelerates inference by
predicting multiple future tokens within a single forward pass of the draft phase.

Under review as a conference paper at ICLR 2026

42596
M AR M VvsSD M Eagle Eagle-3 M PARD
400

350

0 B s

sssss
250 B 8 oy
200 g Iy T L)
15547
150 o4 T = . ==
100 GRIEIED
76.34 76.07| 73,68 73.07| 2078
50 40.78)
. 24.31
0
Q27B Q2.53B

Q2578B Q25148 L3 8B L3.18B L3.370B

Tokens /s

Figure 2: Performance comparison of different methods on the HumanEval task under vLLM. AR
denotes the auto-regressive baseline, and VSD denotes vanilla speculative decoding, where the draft
models used are LLaMA3.2-1B and Qwen2.5-0.5B.

* We propose a COnditional Drop-token (COD) strategy for the effient training of PARD.
Leveraging the integrity of prefix key-value states, COD enables low-cost adaptation of
autoregressive draft models into parallel ones, boosting training efficiency by up to 3x while
maintaining accuracy.

* We integrate PARD into the high-performance inference framework vLLM. On LLaMA3.1-
8B, PARD achieves a 3.67 x speedup, reaching a state-of-the-art throughput of 264.88
tokens per second on an A100-40GB GPU, which is 1.72 x faster than vanilla SD and 1.15x
faster than EAGLE-3.

2 PRELIMINARIES

2.1 AUTO-REGRESSIVE NATURE OF LLMS

Modern LLMs are based on the GPT architecture (Radford et al., 2018]). During the training phase,
GPT models leverage highly efficient parallelization, allowing tokens within a sequence to be
processed simultaneously. This parallelism enables GPUs to fully utilize computational resources
by maximizing matrix multiplications and optimizing memory bandwidth usage, thereby improving
training efficiency. Given an input sequence X = (xg,x1,...,2xy_1) and its corresponding target
sequence Y = (1, z2,...,2N) , the training objective of GPT is to minimize the auto-regressive
loss, which can be expressed as:

N
L= —ZlogP(xt|x07...,xt,1).)

t=1

However, during inference, due to its auto-regressive nature, GPT must generate tokens sequentially,
with each token depending on all previously generated tokens. This sequential generation process
leads to a significant drop in computational efficiency. At each step ¢, the model computes:

xy = argmax P(z|xg,...,2i-1). 2)

This sequential generation results in a memory-bound scenario, where GPU performance is con-
strained by the repeated loading of model weights and the KV-cache, rather than being fully utilized
for large-scale parallel computations. As a result, even though GPUs are capable of high-speed matrix
multiplications, the decoding phase remains bottlenecked by memory access latency, leading to high
latency during the decoding phase.

2.2 SPECULATIVE DECODING

SD can effectively reduce decoding latency and improve matrix multiplication efficiency. The core
idea behind SD is to first use a smaller draft model to generate a set of candidate tokens, and then use
the target model to verify the candidates. The process is as follows:

Under review as a conference paper at ICLR 2026

Target Model Target Model
story g about ; large i language story about large language
AR Draft Model ParaDraft Model
S S, S S S, S
tell me a story iabouti large tell me a mask | |mask| |mask
AR A
AR Draft PARD

Figure 3: Illustration of PARD Inference. Left: Vanilla speculative decoding involves a draft model
auto-regressively generating K candidate tokens, which are then validated by the target model
in parallel. Right: PARD introduces mask tokens for parallel Draft. All K candidate tokens are
generated in one forward pass.

Drafting Stage: The goal is to generate the next K candidate tokens C' = (x7,, ..., %],). These
candidates can be produced by a lightweight model or traditional machine learning algorithms. For

the vanilla SD method, the draft model generates the K candidates auto-regressively.

Verification Stage: The target model then verifies the candidate tokens in parallel, improving compu-
tational efficiency. When combined with speculative sampling, SD ensures no loss of performance.

We define T'p as the time taken by the draft model for a single forward pass, and T’r as the time taken
by the target model for a single forward pass. The input length to both the draft and target models
can vary across different SD methods. However, when the input length is not significantly large, the
change in speed is negligible. Therefore, the time taken per iteration for predicting K tokens by
vanilla SD is:

TARdraft = K % TD =+ TT- (3)
As shown in Figure[Ib} when using a high acceptance rate model like LLaMA3.2-1B to accelerate
LLaMA3.2-8B, the draft model consumes a considerable amount of time. Our PARD method
fine-tunes the draft model into a parallel decoding model. In this case, the time taken is:

Tparp =Tp +T7. @

It can be seen that PARD reduces the total time of the draft model to 1/ K of the original time, thus
significantly reducing the overall decoding time.

3 PARD FRAMEWORK

We begin by introducing how the PARD model predicts multiple tokens in a single forward pass
and provide a detailed explanation of its inference process in Section [3.1} Next in Section [3.2] we
describe how to finetune a vanilla draft model to acquire the capabilities of PARD while maitaining
its target-independent feature. Moreover, we propose a conditional drop training token method
that significantly accelerates training. Section [3.2.3|presents a comparison of the training overhead
between PARD and EAGLE.

3.1 PARD INFERENCE

We incorporate the inference method Mask-Predict (Ghazvininejad et al., [2019) into PARD. The
objective of the draft model @ is to predict the next K tokens by optimizing the probability distribution:

P(xp, .. Tprx—1|To, ... Tn_1;0). 5)
For the vanilla SD method, this probability can be factorized as:
K—1
P(Zp,. .y Tpsk—1]20s -y Tno1; OARYap) = H P(xptil®o, - Tntk—1; OAR an). (6)
k=0

Under review as a conference paper at ICLR 2026

Y INiow v
position ids o 1|23 o1 |2]sfo|1|2|3lo|1]2]|3 o1]2[3])ofn 2\310l‘ 2 |5 1028l
1 1 1 1 1 1
ol o el e || [ssory | sout] o | o) |story Jobouth] me | | stry bous | o |eplk=d P o ool | o | & |ty |avoutl @ |soryl sy
T 1 1 t 1 1
a a “a 7] -
(oo) 2 [[[= Jom] s [[ow | = Jooo] e [[[[[[[] s [[w |+ Jom] e [[[Lo [[[] s [[] & [son] e [e m
- ‘ " el ‘ | [‘
= me me | [me
| attn mask — — !
story story. story | i)
my 74 ‘\ 1 m ‘
(a) — — - Z 1 |
0 5 | 7 [mo | 1
8 T
mo mo m 1 1
, Gt
mo my ’] I
B 7 * @
1 my | V4
m ! m; 7.9 |
[Y Z o VX |
m . I 7
: : 71
™ ‘ ‘ m Y { {
222 LN 27N M7 X A

Figure 4: Illustration of Conditional Drop in PARD training. (a) Training data of the standard AR
model. (b) Training data of PARD. The diagram is divided into three sections by dashed lines,
corresponding to training objectives for predicting tokens at positions +1, 42, and 43. The designed
attention mask ensures consistency between training and inference. Labels in lighter font indicate
tokens that are supplemented for context completion and do not contribute to the loss computation.
(c) Sparse training data for PARD with Conditional Drop, where shaded areas represent dropped
tokens. The retention pattern follows a geometric decay with a fraction » = 0.5 of positions retained
for mask token mg and r2 = 0.25 for my, ensuring that each retained token maintains complete
preceding key—value pairs. (d) The sparse matrix reorganized into a compact format by eliminating
dropped positions.

This formulation follows the standard autoregressive approach in Figure [3] where each token is
generated sequentially based on all previously predicted tokens.

In contrast, PARD introduces a special token m as a placeholder to replace tokens that would
otherwise create dependencies. The formulation is as follows:

K-1
Pz, ..., ¥k -1]20, -, Tn-1,0parD) = [[P@ntklzo, .. 2n_1,m0,. ., mk_1;0pARD).

k=0
(N
As shown in the equation, the predictions at each step do not depend on each other, enabling fully
parallel inference. This reduces the number of forward passes required by the draft model from K to
1, significantly improving inference efficiency.

3.2 PARD TRAINING

To enable a vanilla draft model to predict multiple tokens within a single forward pass, we adopt
a mask-token training strategy, which adapts a standard autoregressive draft model into a parallel
draft model. Unlike conventional approaches, we further propose a conditional drop-token (COD)
mechanism based on the integrity of prefix key-value states, which significantly improves training
efficiency while maintaining final performance.

3.2.1 MASK TOKENS BASED TRAINING

To ensure consistency between the training and inference processes, we divide training into multiple
independent subtasks, where each subtask is designed to predict x,,,...,Tn+Kx—1. As shown in
Figure aJ4b] these subtasks can be trained simultaneously with minimal preprocessing of the training
data. The loss for each subtask is computed using a cross-entropy function, as follows:

Ly =

N
1
"N_k+1 ;l()gp(xi\wo’wlw~>$i—k7m0, ..., Mi—2;0pARD). ®)

where L}, represents the loss function for predicting the k-th next token, and N denotes the length of
the sample.

Under review as a conference paper at ICLR 2026

3.2.2 CONDITIONAL DROP OF TOKENS

Compared to standard auto-regressive model training, the mask token training method breaks the
task into multiple subtasks, significantly increasing the training cost. For example, if the training
sample length is IV, then the number of tokens for AR training is also N. However, in the mask token
training approach, the number of tokens for training increases from N to K x N, where K is the
number of tokens the draft model predicts simultaneously in a single forward pass.

To address this challenge, we propose an innovative COnditional Drop token (COD) strategy. This
method boosts training efficiency significantly while maintaining prediction accuracy. The core idea
behind COD is that tokens in earlier subtasks are more critical, whereas those in later subtasks can be
selectively dropped to reduce computation.

During the token dropping process, randomly dropped tokens can result in incomplete key and value
states during attention computation. The COD mechanism ensures that the remaining tokens still
provide complete key and value information when computing attention, thereby preserving essential
contextual representations. Figure [4c|illustrates the token dropping process. Although some tokens
are removed, the key contextual information remains intact. Figure id)shows the final reorganized
data after token dropping.

To manage the number of tokens retained for each subtask, we introduce a retention parameter r. For
the i-th subtask, the number of retained tokens V; is given by:

Ni=Nxri=t)
Consequently, the total number of training tokens can be expressed as:
K

N —ZN»—ZK:N*ri_l—Nl_TK< N (10)
COD—i=1 7,_121 = 1—r 1_

For instance, when » = 0.5, the number of training tokens can be reduced from K x N to 2N,
significantly lowering the training cost. Additionally, to prevent excessive token dropping in later
subtasks, we introduce a minimum retention ratio r,,;,, ensuring that the retention rate does not fall
below a predefined threshold. The adjusted number of retained tokens for each subtask is:

N/ = N s+ max(r"™, rpin). (11)

The detailed algorithm of COD, along with the mechanism integrity of prefix key-value states
is provided in Appendix [B| By employing the COD strategy, the training cost of PARD can be
significantly reduced from O(N - K) to O(N).

3.2.3 TRAINING EFFICIENCY

We evaluate the training cost of different speculative decoding methods in Pflops per 1M tokens,
using LLaMA3.3-70B as the target model. PARD achieves a training efficiency that is 7x higher than
EAGLE and 10x higher than EAGLE-3. Full derivations of forward, backward, and total training
costs for each method are provided in Appendix

In addition to efficiency, PARD exhibits target independence, allowing a single draft model to
accelerate an entire series of target models (e.g., LLaMA3-8B, 70B, 405B). In contrast, EAGLE-style
methods require a separate draft model for each target, which significantly increases adaptation cost.

4 EVALUATION

4.1 EXPERIMENTAL SETUP

Models: We conduct experiments on popular industry models, including LLaMA3 (Grattafiori et al.,
2024), DeepSeek-R1-Qwen (Guo et al., 2025), and Qwen (Yang et al.,[2024). For each model series,
we select the smallest model variant and train it in the PARD framework.

Datasets: To ensure alignment with the original instruct model training process, we select datasets
tailored to each model series. LLaMA3 is trained with Magpie-Llama-3.1-Pro-1M (Xu et al., [2024)

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison of different methods on the Qwen and LLaMA3 series under the
vLLM framework. The EAGLE series uses the official model.

Target Method HumanEval GSMS8K SpecBench Average
TPS SpeedUp TPS SpeedUp TPS SpeedUp TPS SpeedUp
Q27B AR 76.34 1.00 76.12 1.00 75.97 1.00 76.14 1.00
VSD 181.18 2.37 201.15 2.64 112.00 1.47 164.78 2.16
PARD 268.98 3.52 221.43 291 135.05 1.78 208.49 2.74
Q253B AR 130.46 1.00 130.42 1.00 129.95 1.00 130.28 1.00
VSD 231.65 1.78 238.71 1.83 136.26 1.05 202.21 1.55
PARD 425.96 3.27 406.17 3.11 203.05 1.56 345.06 2.65
Q257B AR 76.07 1.00 75.93 1.00 75.97 1.00 75.99 1.00
VSD 178.97 2.35 162.85 2.14 107.38 1.41 149.73 1.97
PARD 285.82 3.76 292.56 3.85 145.64 1.92 241.34 3.18
Q2.514B AR 40.78 1.00 40.92 1.00 40.78 1.00 40.83 1.00
VSD 135.88 3.33 146.69 3.58 80.59 1.98 121.05 2.97
PARD 181.19 4.44 182.25 4.45 91.33 2.24 151.59 3.71
L3 8B AR 73.68 1.00 73.57 1.00 72.80 1.00 73.35 1.00
VSD 144.59 1.96 123.76 1.68 102.76 1.41 123.70 1.69
PARD 235.84 3.20 200.45 2.72 147.80 2.03 194.70 2.65
L3.18B AR 73.07 1.00 73.38 1.00 72.70 1.00 73.05 1.00
VSD 155.47 2.13 140.93 1.92 106.44 1.46 134.28 1.84

EAGLE 136.05 1.86 110.81 1.51 100.11 1.38 115.66 1.58
EAGLE-3 233.43 3.19 192.56 2.62 155.58 2.14 193.86 2.65
PARD 264.88 3.63 235.09 3.20 157.49 2.17 219.15 3.00

L3.370B AR 24.31 1.00 24.27 1.00 23.95 1.00 24.18 1.00
VSD 80.78 3.32 77.07 3.18 53.09 222 70.31 291
EAGLE-3 95.17 391 75.34 3.10 63.14 2.64 77.88 3.22
PARD 99.88 4.11 95.58 3.94 5741 2.40 84.29 3.49

and Evol-CodeAlpaca (Luo et al.;[2023). Qwen2.5 is trained with Magpie-Qwen2-Pro-1M and Evol-
CodeAlpaca. DeepSeekR1Qwen is trained with OpenR1-Math-220k (Face, |2025)), OpenThoughts-
114k (Teaml 2025)), and Chinese-DeepSeek-R1-Distill-Data-110k (Liu et al.,|2025). For LLaMA 3
and Qwen, we further enhance training accuracy by regenerating answers.

Tasks: We evaluate the effectiveness of PARD on mathematical reasoning and code generation
tasks on benchmarks including HumanEval (Chen et al.| [2021), GSM8K (Cobbe et al., [2021]),
MATHS500 (Lightman et al.,|2023)) and SpecBench (Xia et al., 2024b)).

Training: We conduct training on 8xMI250X cards using the TRL framework for a total of 4 epochs.
During training, the parameters are set as follows: £ = 8, »r = 0.7, and r,,,;,, = 0.2. The detailed
training hyperparameters are provided in Appendix [C|

Evaluation: To better reflect real-world usage scenarios, all comparative experiments are conducted
on the high-performance vLLM framework, and the evaluation is performed on A100-40GB GPU.

Metrics: Tokens Per Second: The number of tokens generated per second in real-world scenarios.
Speedup: The acceleration ratio compared to the baseline standard auto-regressive generation method.

4.2 EXPERIMENTAL RESULTS

Table [T] compares the acceleration effects of PARD on the Qwen and LLaMA3 series, while Ap-
pendix [E| further reports results on the DeepSeek-Qwen series. On code tasks, PARD achieves
speedups ranging from 3.20x to 4.44 x, with average speedups between 2.65x and 3.71x. Notably,
LLaMA3.1-8B runs 1.9x faster than EAGLE and 1.15 x faster than EAGLE-3.

Our experiments further demonstrate the target-independence property of PARD, where a single
PARD model can accelerate an entire series of target models, as shown in Table [T} and Figure [2]
Specifically, we evaluate three target models from the LLaMA3 series and three target models from
Qwen. In contrast, target-dependent methods such as the EAGLE series require separate training

Under review as a conference paper at ICLR 2026

Table 2: Comparison of acceptance rates for Table 3: Memory bandwidth usage during the
PARD and EAGLE on LLaMA3.1-8B, where draft phase of LLaMA3.1-8B model in bfl6
k-a denotes the average acceptance rate when dtype. PARD bandwidth usage remains constant

the draft length is k. as k increases.
Method HumanEval | GSMSK Method k=4 k=6 k=8
l.a 4-a | l-a 4« Draft BW Consumption
EAGLE 083 0.72 | 0.79 0.66 EAGLE 594GB 890GB 11.88GB
EAGLE-3 087 0.85 | 0.82 0.79 EAGLE-3 594GB 890GB 11.88GB
PARD 093 090 | 0.88 0.85 PARD 248GB 248GB 248GB

for each individual model. PARD achieves high acceleration without the need for model-specific
adaptation, substantially lowering the barrier for deployment.

During our experiments, we observed that inference throughput using the Transformers library is
significantly lower than that of vVLLM Appendix |F| For methods such as vanilla SPD, this suboptimal
performance of Transformers can lead to relative speedups under the same inference framework
being lower than those measured on vLLM (e.g., 1.36x and 2.26x). To better reflect real-world usage
scenarios, all final experiments in this paper are conducted on the vLLM framework.

4.3 ABLATION STUDIES

For all ablation study experiments, the target model used is DeepSeek-R1-Qwen-7B, and the draft
model’s pretraining model is DeepSeek-R1-Qwen-1.5B. Training is conducted on a 93K subset of
OpenR1-Math-220K for one epoch, and testing is performed using the MATHS500 dataset.

Conditional Drop Token: The lower the retention rate, the greater the acceleration effect. However,
excessively low retention may degrade model performance. As shown in[5a] when setting » = 0.7
and 7y, = 0.2, we achieve a good balance between speed and accuracy. This setting allows us to
achieve 3x faster training while maintaining the original accuracy. All experiments in this paper
adopt these parameters.

Shared Mask Token ID Strategy: We compare different prediction strategies and find that using
the same mask token ID across all predicted positions, i.e., mg = m; = --- = mx_1, performs
better than using distinct token IDs. The corresponding throughput results are 221.97 and 218.05
tokens/s, respectively. This approach not only improves prediction consistency but also enhances the
model’s ability to generalize beyond its training configuration, a property we refer to as extrapolation
capability. Specifically, extrapolation capability allows the model to infer with a larger K during
inference than it was trained on.

Selection of Draft /: We conduct a Cartesian product test for Ky, during training and Kjyg, during
inference in Figure [5b} Due to the extrapolation capability of PARD enabled by the shared mask
token ID, Kjyfer can be greater than K. The best performance is achieved at Kinfer = 12, while
results remain stable when K.,j, > 8. Therefore, we select Ky, = 8.

Comparison with the Mainstream Method EAGLE: For SD, higher acceptance ratio combined
with lower bandwidth consumption results in superior speedup. In Table 2]and Table[3] we compare
PARD and EAGLE series. PARD achieves a higher acceptance ratio while consuming less bandwidth.

Large Batch Size Inference: Appendix [D]reports results with batch sizes ranging from 1 to 16. As
the batch size increases, the bottleneck shifts from memory-bound to compute-bound. In this setting,
PARD achieves speedups between 1.33x to 3.63 x.

5 RELATED WORK

Improving the inference efficiency of large language has been extensively studied from multiple
perspectives. Quantization techniques such as GPTQ (Frantar et al., [2022), AWQ (Lin et al.,|2024)),
SmoothQuant (Xiao et al.|[2023a)), and LLM-QAT (Liu et al.,[2023)) focus on reducing computational
and memory costs. To address long-context KV-cache management, approaches such as GQA (Ainslie
et al.} 2023)), MLA (Liu et al.| [20244a), Streamingl.LM (Xiao et al.,|2023b), H20 (Zhang et al.| [2023),

Under review as a conference paper at ICLR 2026

PARD_4

220 218.93 931232232

M PARD_S 3
217.930 217.21 230 m PARD_12
2 B PARD_16
214.73 221
25 14390 © 220 210 gum 220
PG 217217
211.74 s
. 212
o w
£ 210 2210
S j =
E 2
e IS
200 199
205 @ rarRD 11
Y PARD_0.7.0.2
® PARD_0.7.0
® PARD_05 0.2 190
200 ® PARD_0.5_0 A
T 1831
o811 PARD 0.2 0.2 GRIAE
® PARD_0.2.0 180 II
1
% 2 4 6 8 10 4 8 12 16
Training Hours Kinfer
(a) (b)

Figure 5: (a) Compare the effects of different values of r and r,,, where each experiment is labeled
as PARD_7_ryin- The x-axis represents training time, while the y-axis indicates the final decoding
speed. (b) presents the results under different Ky, and Ky, settings. The x-axis represents Kipfer,
and the experiment names PARD_ K, denote different Ky, values.

MoBA 2025), and NSA 2025)) explicitly balances GPU memory consumption
against model accuracy. At the system level, innovations like FlashAttention (Dao et al.| 2022),

FlashDecoding 2023), Megablocks 2023), and vLLM (Kwon et al 2023)

deliver optimized kernels and scheduling strategies to maximize hardware utilization and throughput.

Speculative decoding (Leviathan et al. [2023) (Chen et al, [2023b) improve GPU parallelism by

leveraging a draft model to generate candidate tokens, which are then verified by the target model,
achieving speedup without compromising accuracy. Other approaches such as LOOKAHEAD (Ful

et al] [2024), PLD+ (Somasundaram et al.,[2024), REST 2023) and SuffixDecoding (Oliaro
et al., 2024) utilize text-based retrieval mechanisms to generate more informed drafts. LayerSkip (EI:

houshi et al.|[2024), Kangaroo (Liu et al.,[2024b)), and SWIFT (Xia et al.| 2024a)) reuse selected layers
of the target model to construct a lightweight draft model.

To improve the accuracy of speculative decoding, methods like Medusa 2024b), EAGLE
et al [2024b), EAGLE-3 (Li et all, [2025)), Amphista (Li et al,[2024c) and Hydra (Ankner et al.,

2024) incorporate representations from the target model as additional input signals. Approaches

such as BiTA (Gloeckle et all, [2024), ParallelSpec 2024), and PaSS
2023)) introduce mask tokens to enable parallel speculative decoding. Further, techniques including

Spectr (Sun et al] 2023). Specinfer (Miao et al},2023). Sequoia (Chen et al 2024). and EAGLE-2

2024b) optimize tree-based verification structures to enhance token acceptance rates.

6 CONCLUSION

We presented PARD, a novel speculative decoding method that is farget-independent and supports
parallel token prediction. Unlike existing target-dependent approaches such as Medusa and EAGLE,
PARD allows a single draft model to accelerate an entire family of target models, significantly reduc-
ing adaptation and deployment costs. To improve training efficiency, we proposed the Conditional
Drop-token (COD) mechanism, which leverages the integrity of prefix key-value states to adapt
autoregressive draft models into parallel ones at a fraction of the cost. Extensive experiments on
LLaMA3 and Qwen families show that PARD consistently outperforms vanilla speculative decod-
ing and EAGLE-based methods. On LLaMA3.1-8B, PARD achieves 264.88 tokens per second,
corresponding to a 3.67 x speedup over standard autoregressive inference and 1.15x speedup over
EAGLE-3. In summary, PARD offers a highly generalizable, efficient, and practical framework for
accelerating large language model inference, demonstrating the potential of target-independent and
parallel decoding strategies for scalable LLM deployment.

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. It does not involve human subjects, sensitive data, or
applications with foreseeable harmful impact. All datasets and methods are used in compliance with
ethical and legal standards.

REPRODUCIBILITY STATEMENT

The experimental hyperparameters are detailed in Appendix [C} All reported results are reproducible,
and both code and models will be released.

10

Under review as a conference paper at ICLR 2026

REFERENCES

Joshua Ainslie, James Lee-Thorp, Michiel De Jong, Yury Zemlyanskiy, Federico Lebrén, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head checkpoints.
arXiv preprint arXiv:2305.13245, 2023.

Zachary Ankner, Rishab Parthasarathy, Aniruddha Nrusimha, Christopher Rinard, Jonathan Ragan-
Kelley, and William Brandon. Hydra: Sequentially-dependent draft heads for medusa decoding.
arXiv preprint arXiv:2402.05109, 2024.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D. Lee, Deming Chen, and Tri
Dao. Medusa: Simple llm inference acceleration framework with multiple decoding heads. arXiv
preprint arXiv:2401.10774, 2024a. to appear.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D Lee, Deming Chen, and Tri Dao.
Medusa: Simple llm inference acceleration framework with multiple decoding heads. arXiv
preprint arXiv:2401.10774, 2024b.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023a. URL https://arxiv.org/abs/2302.01318. DeepMind
Technical Report.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023b.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Zhuoming Chen, Avner May, Ruslan Svirschevski, Yuhsun Huang, Max Ryabinin, Zhihao Jia, and
Beidi Chen. Sequoia: Scalable, robust, and hardware-aware speculative decoding. arXiv preprint
arXiv:2402.12374, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in neural information processing systems, 35:

16344-16359, 2022.

DeepSeek-Al Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang,
Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng
Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng
Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen,
Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li,

11

https://arxiv.org/abs/2302.01318

Under review as a conference paper at ICLR 2026

Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang,
Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan,
Yiyang Ma, Yiyuan Liu, Yonggiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia
He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang,
Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen
Zhang. Deepseek-rl: Incentivizing reasoning capability in llms via reinforcement learning, 2025.
URLhttps://arxiv.org/abs/2501.12948.

Mostafa FElhoushi, Akshat Shrivastava, Diana Liskovich, Basil Hosmer, Bram Wasti, Liangzhen
Lai, Anas Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed Roman, Ahmed Aly, Beidi Chen,
and Carole-Jean Wu. Layerskip: Enabling early exit inference and self-speculative decoding.
In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 12622—12642. Association for Computational Linguistics, 2024.
doi: 10.18653/v1/2024.acl-long.681. URL http://dx.doi.org/10.18653/v1/2024.
acl-long.681.

Hugging Face. Open rl: A fully open reproduction of deepseek-rl, January 2025. URL https:
//github.com/huggingface/open—rll

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang. Break the sequential dependency of llm inference
using lookahead decoding. arXiv preprint arXiv:2402.02057, 2024.

Trevor Gale, Deepak Narayanan, Cliff Young, and Matei Zaharia. Megablocks: Efficient sparse
training with mixture-of-experts. Proceedings of Machine Learning and Systems, 5:288-304, 2023.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and Luke Zettlemoyer. Mask-Predict: Parallel
Decoding of Conditional Masked Language Models, September 2019. URL http://arxivl
org/abs/1904.09324. arXiv:1904.09324 [cs].

Fabian Gloeckle, Badr Youbi Idrissi, Baptiste Roziere, David Lopez-Paz, and Gabriel Synnaeve.
Better and faster large language models via multi-token prediction, 2024. URL http://arxiv.
org/abs/2404.19737. arXiv:2404.19737.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Zhenyu He, Zexuan Zhong, Tianle Cai, Jason D Lee, and Di He. Rest: Retrieval-based speculative
decoding. arXiv preprint arXiv:2311.08252, 2023.

Ke Hong, Guohao Dai, Jiaming Xu, Qiuli Mao, Xiuhong Li, Jun Liu, Kangdi Chen, Yuhan Dong,
and Yu Wang. Flashdecoding++: Faster large language model inference on gpus. arXiv preprint
arXiv:2311.01282, 2023.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems
Principles, pp. 611-626, 2023.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pp. 19274-19286. PMLR, 2023.

12

https://arxiv.org/abs/2501.12948
http://dx.doi.org/10.18653/v1/2024.acl-long.681
http://dx.doi.org/10.18653/v1/2024.acl-long.681
https://github.com/huggingface/open-r1
https://github.com/huggingface/open-r1
http://arxiv.org/abs/1904.09324
http://arxiv.org/abs/1904.09324
http://arxiv.org/abs/2404.19737
http://arxiv.org/abs/2404.19737

Under review as a conference paper at ICLR 2026

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. EAGLE: Speculative sampling requires
rethinking feature uncertainty. In Proceedings of the 41st International Conference on Machine
Learning (ICML), 2024a. URL https://openreview.net/forum?id=1NdN7eXyb4.
to appear.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle: Speculative sampling requires
rethinking feature uncertainty. arXiv preprint arXiv:2401.15077, 2024b.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle-3: Scaling up inference ac-
celeration of large language models via training-time test. arXiv preprint arXiv:2503.01840,
2025.

Zeping Li, Xinlong Yang, Ziheng Gao, Ji Liu, Guanchen Li, Zhuang Liu, Dong Li, Jinzhang Peng,
Lu Tian, and Emad Barsoum. Amphista: Bi-directional Multi-head Decoding for Accelerating LLM
Inference, October 2024c. URLhttp://arxiv.org/abs/2406.13170. arXiv:2406.13170
[cs].

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
on-device llm compression and acceleration. Proceedings of Machine Learning and Systems, 6:
87-100, 2024.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024a.

Cong Liu, Zhong Wang, ShengYu Shen, Jialiang Peng, Xiaoli Zhang, ZhenDong Du, and YaFang
Wang. The chinese dataset distilled from deepseek-r1-671b. https://huggingface.co/
datasets/Congliu/Chinese—-DeepSeek—R1-Distill-data—-110k, 2025.

Fangcheng Liu, Yehui Tang, Zhenhua Liu, Yunsheng Ni, Kai Han, and Yunhe Wang. Kangaroo:
Lossless self-speculative decoding via double early exiting. arXiv preprint arXiv:2404.18911,
2024b.

Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie Chang, Pierre Stock, Yashar Mehdad, Yangyang
Shi, Raghuraman Krishnamoorthi, and Vikas Chandra. Llm-qat: Data-free quantization aware
training for large language models. arXiv preprint arXiv:2305.17888, 2023.

Al @ Meta Llama Team. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/
2407.21783.

Enzhe Lu, Zhejun Jiang, Jingyuan Liu, Yulun Du, Tao Jiang, Chao Hong, Shaowei Liu, Weiran He,
Enming Yuan, Yuzhi Wang, et al. MoBA: Mixture of block attention for long-context llms. arXiv
preprint arXiv:2502.13189, 2025.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models with
evol-instruct, 2023.

Meta. Accelerating generative ai with pytorch ii: Gpt, fast, November 2023. URL https://
pytorch.org/blog/accelerating—generative—-ai-2/.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Zhengxin Zhang, Rae
Ying Yee Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, et al. Specinfer: Accelerating generative
large language model serving with tree-based speculative inference and verification. arXiv preprint
arXiv:2305.09781, 2023.

Giovanni Monea, Armand Joulin, and Edouard Grave. Pass: Parallel speculative sampling. arXiv
preprint arXiv:2311.13581, 2023.

13

https://openreview.net/forum?id=1NdN7eXyb4
http://arxiv.org/abs/2406.13170
https://huggingface.co/datasets/Congliu/Chinese-DeepSeek-R1-Distill-data-110k
https://huggingface.co/datasets/Congliu/Chinese-DeepSeek-R1-Distill-data-110k
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://pytorch.org/blog/accelerating-generative-ai-2/
https://pytorch.org/blog/accelerating-generative-ai-2/

Under review as a conference paper at ICLR 2026

Gabriele Oliaro, Zhihao Jia, Daniel Campos, and Aurick Qiao. Suffixdecoding: A model-free
approach to speeding up large language model inference. arXiv preprint arXiv:2411.04975, 2024.

OpenAl. Gpt-4 technical report, 2023.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
understanding by generative pre-training, 2018.

Shwetha Somasundaram, Anirudh Phukan, and Apoorv Saxena. Pld+: Accelerating 1lm inference by
leveraging language model artifacts. arXiv preprint arXiv:2412.01447, 2024.

Ziteng Sun, Ananda Theertha Suresh, Jac Hun Ro, Ahmad Beirami, Himanshu Jain, and Felix
Yu. Spectr: Fast speculative decoding via optimal transport. Advances in Neural Information
Processing Systems, 36:30222-30242, 2023.

OpenThoughts Team. Open Thoughts. https://open-thoughts.ai, January 2025.

Heming Xia, Yongqi Li, Jun Zhang, Cunxiao Du, and Wenjie Li. Swift: On-the-fly self-speculative
decoding for llm inference acceleration. arXiv preprint arXiv:2410.06916, 2024a.

Heming Xia, Zhe Yang, Qingxiu Dong, Peiyi Wang, Yongqi Li, Tao Ge, Tianyu Liu, Wenjie Li, and
Zhifang Sui. Unlocking efficiency in large language model inference: A comprehensive survey of
speculative decoding. arXiv preprint arXiv:2401.07851, 2024b.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
Conference on Machine Learning, pp. 38087-38099. PMLR, 2023a.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv preprint arXiv:2309.17453, 2023b.

Zilin Xiao, Hongming Zhang, Tao Ge, Siru Ouyang, Vicente Ordonez, and Dong Yu. ParallelSpec:
Parallel drafter for efficient speculative decoding. arXiv preprint arXiv:2408.06421, 2024. URL
https://arxiv.org/abs/2408.06421l

Zhangchen Xu, Fengqing Jiang, Luyao Niu, Yuntian Deng, Radha Poovendran, Yejin Choi, and
Bill Yuchen Lin. Magpie: Alignment data synthesis from scratch by prompting aligned 1lms with
nothing. arXiv preprint arXiv:2406.08464, 2024.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

Jingyang Yuan, Huazuo Gao, Damai Dai, Junyu Luo, Liang Zhao, Zhengyan Zhang, Zhenda Xie,
YX Wei, Lean Wang, Zhiping Xiao, et al. Native sparse attention: Hardware-aligned and natively
trainable sparse attention. arXiv preprint arXiv:2502.11089, 2025.

Lefan Zhang, Xiaodan Wang, Yanhua Huang, and Ruiwen Xu. Learning harmonized representations
for speculative sampling. arXiv preprint arXiv:2408.15766, 2024.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o0: Heavy-hitter oracle for efficient
generative inference of large language models. Advances in Neural Information Processing
Systems, 36:34661-34710, 2023.

14

https://arxiv.org/abs/2408.06421

Under review as a conference paper at ICLR 2026

A TRAINING COST

Comparison setting: We measure training cost in Pflops per 1M tokens, with the target model fixed
to LLaMA3-70B.

PARD: For non-long-text scenarios, the forward pass cost is approximated as twice the model size,
where the factor 2 accounts for both multiply and add operations:

Pflopsparp. r = 2 x ParameterSize X InputTokenNum/10'® = 2 x 10° x 3.37 x 105/10%° = 6.74,

where 3.37M is the effective input token count after applying mask prediction with COD. The
backward pass requires twice the forward cost:

PﬂOpSPARD7B =~ 2 X 674 - 1348,

giving a total training cost of

Pflopsparp ~ 20.22.

EAGLE: The forward pass includes both the target model (70B) and the draft model (0.8B layer +
1.01B Im-head):

PflopsgacrLe.r = 2 % (704 0.86 4+ 1.01) x 10° x 10°/10"° = 143.74.

For the backward pass, the target model requires no gradient computation, the draft layer costs twice
its forward, and the Im-head costs one forward (activation gradients only):

Pflopsgacre.s =~ 2 % (2 x 0.86 + 1.01) x 10° x 10°/10"° = 5.46,

yielding a total training cost of

Pflopsgacry =~ 149.20.

EAGLE-3: Compared with EAGLE, the training strategy uses HASS (Zhang et al.,|2024)), and the
input tokens for the EAGLE-3 head are seven times that of EAGLE. For the forward pass:

Pflopspacres.r ~ 2 % (T0+7 x (0.86 + 1.01)) x 10° x 10°/10"° = 166.18.

For the backward pass:

Pflopsgacrs.p ~ 2 % 7x (2% 0.86 4 1.01) x 107 x 10°/10" = 38.22,

yielding a total training cost of

Pflopsgacrys =~ 204.4.

For training draft models on LLaMA3-70B, PARD achieves a training efficiency that is 7x higher
than EAGLE and 10x higher than EAGLE-3.

Target Independence: PARD’s target independence allows a single draft model to serve an entire
model series (e.g., LLaMA3-8B, 70B, 405B), while EAGLE-style methods require a separate draft
for each target.

15

Under review as a conference paper at ICLR 2026

B

CONDITIONAL DROP TOKENS ALGORITHM

A naive random token drop could indeed break the completeness of key and value information during
training. Algorithm [I] presents the pseudocode of the COD data processing procedure. Below we
provide an illustrative example of how tokens are selected for dropping, based on Figure A

* For clarity, we further index each original token mn; in the figure as m; ; for j € {0, 1,2, 3},
where j indicates the position within m;.

* In Figure [@b] without COD, the training sequence is divided into three sections (delineated
by dashed lines), corresponding to prediction objectives for positions +1, +2, and +3 using
all tokens.

* In Figure[dc] with COD applied, shaded regions denote dropped tokens. We use a geometric-
decay retention rate = 0.5:

— For position +1, no tokens are dropped in the leftmost section, so the full context
[tell, me, a, story] is used.

— For position +2, we drop (1 — r) = 50% of tokens in the middle section. Specifically,
we drop my o and myg 3, and retain mg ; and mg 2.

— For position +3, we drop (1 —72?) = 75% of tokens in the rightmost section but ensure
complete prefix key and value context for each retained token. For example, m 3
(predicting “about” from |tell, me, my 2]) can be retained because all its prefix tokens
remain. Similarly, m4 o can be retained since its prefixes [tell, mg 1] are intact, whereas
maq,1 is excluded because its prefix mg o was dropped at position +2. From the valid
candidates {m; 2, m1 3}, we randomly select one token (here my,2).

* In Figure dd} new data after COD.

Regarding COD’s effect, we conducted an ablation study in Figure[5al The results show that COD
can speed up training by threefold while maintaining the same inference acceleration on the target
model.

Algorithm 1 PARD with Conditional Drop Tokens: Data Processing

1:

2:

Input: Training dataset D, PARD prediction count K, retention decay factor r, minimum
retention rate 7y,
Output: Processed training data with updated input_ids, labels, position encodings, and attention
masks
for each data sample X € D do
X + [X1,..., XK]|, where X}, is the training data for predicting the k-th token, including
input ids, label, position ids, and attention mask
for k =1to K do
Compute retention rate: y < max(r -1 Tmin)
Decide which tokens in X}, to retain, ensuring that the preceding KV cache for attention
computation is complete
Update X, (i.e., input ids, label, position ids, and attention mask) to obtain X ,Q
end for
Merge updated sequences X’ < [X7, ..., X %] and update the overall attention mask
Store the processed data for this sample

k

: end for

C

TRAINING HYPERPARAMETERS

Table [d] summarizes the hyperparameters used for training.

D

LARGE BATCH SI1ZE INFERENCE

Table [5] presents results across batch sizes ranging from 1 to 16. As the batch size increases, the
bottleneck shifts from memory-bound to compute-bound. Under these conditions, PARD achieves a
speedup of 1.33x to 3.63x.

16

Under review as a conference paper at ICLR 2026

Table 4: Selected Hyperparameters for PARD Training

Hyperparameter \ Llama3 Deepseek-R1-Qwen Qwen
Optimizers \ AdamW AdamW AdamW
Learning Rate \ le-5 3e-5 8e-5
Per Device Train Batch Size | 4 4 8
Gradient Accumulation Steps | 2 2 1
Num Processes \ 8 8 8
Num Train Epochs \ 4 4 4
Training PARD K \ 8 8 8
Max Seq Length \ 512 1024 512
The Answer Of Training Data | Regenerate + Original Original Regenerate

Table 5: Performance comparison across different batch sizes on LLaMA3.1-8B in the
vLLM framework, evaluated on HumanEval.

bs=1 bs=2 bs=4 bs=8 bs=16
Speedup

AR 1.00 1.00 1.00 1.00 1.00
EAGLE 186 1.69 1.69 144 1.19
VSD 213 203 1.88 1.61 1.41
PARD 3.63 316 259 190 133

Method

E PERFORMANCE ON DEEPSEEK QWEN SERIES

Table @reports the acceleration effects of PARD on the DeepSeek-Qwen series, where the evaluation
benchmarks consist of mathematics and code tasks.

Table 6: Performance comparison of different methods on the DeepSeek Qwen series.

Target Method HumanEval GSMSK Math500 Average
TPS SpeedUp TPS SpeedUp TPS SpeedUp TPS SpeedUp
DS7B AR 75.87 1.00 75.96 1.00 75.92 1.00 75.92 1.00
VSD 97.90 1.29 129.20 1.70 122.51 1.61 116.54 1.54
PARD 162.39 2.14 204.62 2.69 205.23 2.70 190.75 2.51
DS 14B AR 40.74 1.00 40.78 1.00 40.72 1.00 40.75 1.00
VSD 75.80 1.86 102.88 2.52 95.35 2.34 91.34 2.24

PARD 103.34 2.54 130.17 3.19 133.98 3.29 122.50 3.01

F PERFORMANCE DIFFERENCES ACROSS DIFFERENT INFERENCE
FRAMEWORKS

During our experiments, we observed that inference throughput using the Transformers library is
significantly lower than that of vLLM. For methods such as vanilla SPD, this suboptimal performance
of Transformers can lead to relative speedups under the same inference framework being lower than
those measured on vLLM (e.g., 1.36x and 2.26x). To better reflect real-world usage scenarios, all
final experiments in this paper are conducted on the vLLM framework.

17

Under review as a conference paper at ICLR 2026

Inspired by GPT-Fast (Metal 2023), we further optimized Transformers using torch.compile
and a static key-value cache, resulting in Transformers+. Table tab:dif-method-comparison presents
a comparison of Transformers, Transformers+, and vLLM, showing that Transformers+ is lightweight
while approaching the performance of vVLLM. We employ Transformers+ for development and testing
throughout the study.

Table 7: Comparison of different frameworks and methods on HumanEval and GSMS8K for
LLaMA3.1-8B. Here, Transformers+ denotes an optimized version of Transformers.

HumanEval GSMS8K Average
TPS Speedup TPS Speedup TPS Speedup

AR 34.36 1.00 35.90 1.00 35.13 1.00
Transformers VSD 50.52 1.47 45.24 1.26 47.88 1.36
PARD 145.47 4.23 114.65 3.19 130.06 3.70x

L3.1 8B AR 76.34 1.00 76.50 1.00 76.42 1.00
: Transformers+ VSD 185.29 2.43 160.59 2.10 172.94 2.26
PARD 336.97 4.41 275.03 3.60 306.00 4.00

AR 73.07 1.00 73.38 1.00 73.22 1.00
vLLM VSD 155.47 2.13 140.93 1.92 148.20 2.02
PARD 264.88 3.63 235.09 3.20 249.98 341

Target Framework Method

G LLM USAGE STATEMENT
In the preparation of this paper, Large Language Models (LLMs) were used solely as an assistive tool

for language polishing and minor stylistic refinement. LLMs were not involved in research ideation,
experimental design, analysis of the paper.

18

	Introduction
	Preliminaries
	Auto-Regressive Nature of LLMs
	Speculative Decoding

	PARD Framework
	PARD Inference
	PARD Training
	Mask Tokens based Training
	Conditional Drop of Tokens
	Training Efficiency

	Evaluation
	Experimental Setup
	Experimental Results
	Ablation Studies

	Related Work
	Conclusion
	Training Cost
	Conditional Drop Tokens Algorithm
	Training Hyperparameters
	Large Batch Size Inference
	Performance on DeepSeek Qwen Series
	Performance differences across different inference frameworks
	LLM Usage Statement

