
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PARD: ACCELERATING LLM INFERENCE WITH
LOW-COST PARALLEL DRAFT MODEL ADAPTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

The autoregressive nature of large language models (LLMs) fundamentally limits
inference speed, as each forward pass generates only a single token and is often bot-
tlenecked by memory bandwidth. Speculative decoding has emerged as a promising
solution, adopting a draft-then-verify strategy to accelerate token generation. While
the EAGLE series achieves strong acceleration, its requirement of training a sepa-
rate draft head for each target model introduces substantial adaptation costs. In this
work, we propose PARD (PARallel Draft), a novel speculative decoding method
featuring target-independence and parallel token prediction. Specifically, PARD
enables a single draft model to be applied across an entire family of target models
without requiring separate training for each variant, thereby minimizing adaptation
costs. Meanwhile, PARD substantially accelerates inference by predicting multiple
future tokens within a single forward pass of the draft phase. To further reduce the
training adaptation cost of PARD, we propose a COnditional Drop-token (COD)
mechanism based on the integrity of prefix key-value states, enabling autoregressive
draft models to be adapted into parallel draft models at low-cost. Our experiments
show that the proposed COD method improves draft model training efficiency by
3× compared with traditional masked prediction training. On the vLLM inference
framework, PARD achieves up to 3.67× speedup on LLaMA3.1-8B, reaching
264.88 tokens per second, which is 1.15× faster than EAGLE-3.

1 INTRODUCTION

Rapid advancements in LLMs such as GPT-4 (OpenAI, 2023), LLaMA3 (Llama Team, 2024) and
DeepSeek-R1 (DeepSeek-AI et al., 2025) have fueled an explosion of applications such as content
generation, code generation, and AI agents. However, as the counts of model parameters and the
lengths of the context continue to grow, inference efficiency has become a critical challenge. Due to
the auto-regressive (AR) nature of LLMs, tokens are generated sequentially, leading to substantial
memory bandwidth consumption and high inference latency. Speculative Decoding (SD) (Chen et al.,
2023a; Leviathan et al., 2023) has emerged as a promising technique to mitigate bandwidth overhead
and reduce decoding latency during LLM inference. The core idea is to use a lightweight draft model
to predict multiple candidate tokens, which are then verified in parallel by the target model. When
combined with speculative sampling, this approach allows the model to generate multiple tokens
within a single forward pass, significantly improving efficiency without compromising output quality.

The effectiveness of SD is determined jointly by the accuracy of the draft model and its overhead.
To improve draft model accuracy, various methods have been proposed, primarily falling into the
category of target-dependent approaches, where the draft model leverages information from the
target model. For example, Medusa (Cai et al., 2024a) and EAGLE (Li et al., 2024a) incorporate
features from the target model’s outputs into the draft model’s input, while LayerSkip (Elhoushi et al.,
2024) and Kangaroo (Liu et al., 2024b) reuse selected layers of the target model as the draft model.
Although these methods improve token prediction accuracy, they also introduce a major drawback:
the draft model becomes tightly coupled with the target model. Consequently, any target model
requires a separately trained draft model, which highly increases adaptation and deployment costs.

Unlike target-dependent methods, vanilla SD (Chen et al., 2023a; Leviathan et al., 2023) represents a
class of target-independent approaches, where a single draft model can be applied across an entire
family of target models without requiring separate training for each variant. For validation, we

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

0.827

0.792

0.875

0.839

0.944

0.895

0.936

0.889

humaneval gsm8k

0.75

0.8

0.85

0.9

0.95
EAGLE
EAGLE3
VSD
PARD

A
cc

ep
t R

at
io

(a)

14.3 ms

AR Draft

PARD 

VSD

PARD

4.1 ms

Time Line

4.1 ms 4.1 ms 4.1 ms 4.1 ms 4.1 ms 14.3 ms4.1 ms 4.1 ms 4.1 ms 4.1 ms 4.1 ms 4.1 ms

14.3 ms4.1 ms 14.3 ms4.1 ms

PARD 

2.1x faster

0 ms 10 ms 20 ms 30 ms 40 ms 50 ms 60 ms 70 ms 80 ms

...

...

38.9 ms

18.4 ms

AR Draft

(b)

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PARD: ACCELERATING LLM INFERENCE WITH
LOW-COST PARALLEL DRAFT MODEL ADAPTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

The autoregressive nature of large language models (LLMs) fundamentally limits
inference speed, as each forward pass generates only a single token and is often bot-
tlenecked by memory bandwidth. Speculative decoding has emerged as a promising
solution, adopting a draft-then-verify strategy to accelerate token generation. While
the EAGLE series achieves strong acceleration, its requirement of training a sepa-
rate draft head for each target model introduces substantial adaptation costs. In this
work, we propose PARD (PARallel Draft), a novel speculative decoding method
featuring target-independence and parallel token prediction. Specifically, PARD
enables a single draft model to be applied across an entire family of target models
without requiring separate training for each variant, thereby minimizing adaptation
costs. Meanwhile, PARD substantially accelerates inference by predicting multiple
future tokens within a single forward pass of the draft phase. To further reduce the
training adaptation cost of PARD, we propose a COnditional Drop-token (COD)
mechanism based on the integrity of prefix key-value states, enabling autoregressive
draft models to be adapted into parallel draft models at low-cost. Our experiments
show that the proposed COD method improves draft model training efficiency by
3→ compared with traditional masked prediction training. On the vLLM inference
framework, PARD achieves up to 3.67→ speedup on LLaMA3.1-8B, reaching
264.88 tokens per second, which is 1.15→ faster than EAGLE-3.

Table 1

Target Independence Training Cost Draft model latency Draft Acc
Vanilla SD True Free High Very High
EAGLE False High Medium Medium
EAGLE-3 False High Medium High
PARD True Low Low Very High

1 INTRODUCTION

Rapid advancements in LLMs such as GPT-4 (OpenAI, 2023), LLaMA3 (Llama Team, 2024) and
DeepSeek-R1 (DeepSeek-AI et al., 2025) have fueled an explosion of applications such as content
generation, code generation, and AI agents. However, as the counts of model parameters and the
lengths of the context continue to grow, inference efficiency has become a critical challenge. Due to
the auto-regressive (AR) nature of LLMs, tokens are generated sequentially, leading to substantial
memory bandwidth consumption and high inference latency. Speculative Decoding (SD) (Chen et al.,
2023a; Leviathan et al., 2023) has emerged as a promising technique to mitigate bandwidth overhead
and reduce decoding latency during LLM inference. The core idea is to use a lightweight draft model
to predict multiple candidate tokens, which are then verified in parallel by the target model. When
combined with speculative sampling, this approach allows the model to generate multiple tokens
within a single forward pass, significantly improving efficiency without compromising output quality.

The effectiveness of SD is determined jointly by the accuracy of the draft model and its overhead.
To improve draft model accuracy, various methods have been proposed, primarily falling into the
category of target-dependent approaches, where the draft model leverages information from the
target model. For example, Medusa (Cai et al., 2024a) and EAGLE (Li et al., 2024a) incorporate
features from the target model’s outputs into the draft model’s input, while LayerSkip (Elhoushi et al.,
2024) and Kangaroo (Liu et al., 2024b) reuse selected layers of the target model as the draft model.

1

(c)

Figure 1: PARD achieves low latency while maintaining high accuracy. (a) Comparison of first-token
acceptance rates using LLaMA3.1-8B as the target model. EAGLE and EAGLE-3 use their official
model, vanilla speculative decoding (VSD) employs LLaMA3.2-1B as the draft model, and PARD
represents the adapted version of VSD. (b) Comparison of actual inference time between VSD and
PARD. VSD generates candidate tokens autoregressively during the draft stage, requiring multiple
forward passes. In contrast, PARD completes drafting with a single forward pass. The draft model
used is LLaMA3.2-1B and the target model is LLaMA3.1-8B. (c) Illustrative comparison of training
and inference efficiency between PARD and other methods.

compare using LLaMA3.2-1B (Llama Team, 2024) as a draft model against the EAGLE method,
both for the target model LLaMA3.1-8B. Figure 1a shows that LLaMA3.2-1B achieves significantly
higher accuracy than the EAGLE head. However, due to its increased computational cost, the overall
speedup ratio of vanilla SD may be lower than that of EAGLE.

To further accelerate inference, Mask-Predict (Ghazvininejad et al., 2019) provides a form of parallel
decoding by using masked tokens as placeholders and employing specialized training to enable multi-
ple token predictions in a single forward pass. Several recent studies have integrated SD with mask
prediction. For example, PaSS (Monea et al., 2023) and BiTA (Gloeckle et al., 2024) fine-tune the
target model into a parallel decoding model that functions as a draft model, while ParallelSpec (Xiao
et al., 2024) extends EAGLE and Medusa into a parallel decoding framework. However, these
approaches still use target model information, making them inherently target-dependent.

The goal of this paper is to break away from the target-dependent design paradigm, by deveploping a
target-independent SD approach called Parallel Draft (PARD) with stronger generalization, higher
inference efficiency, and lower adaptation cost. PARD builds upon existing high-accuracy small
language models. A single draft model with low training cost can be applied across an entire family
of target models, thereby significantly reducing adaptation overhead. PARD introduces mask tokens
for parallel token predictions in the draft phase to accelerate inference, as shown in Figure 1b. To
further improve training efficiency, we design a conditional drop-token (COD) mechanism based on
the integrity of prefix key-value states, reducing the cost of adapting autoregressive draft models into
parallel draft models by a factor of 3. The advantages of PARD are shown in Figure 1c.

To align our evaluation with real-world scenarios, all experiments are conducted on the widely
adopted industrial inference framework vLLM. Extensive experiments on LLaMA3, Qwen and
DeepSeek Qwen familys show the consistent speedup of PARD over vanilla SD and EAGLE-3, as
shown in Figure 2.

To summarize, we make the following contributions:

• We propose PARD, a novel speculative decoding method featuring target-independence and
parallel token prediction. PARD is highly generalizable: its target-independent design allows
a single draft model to accelerate an entire family of target models, in contrast to target-
dependent methods such as Medusa and EAGLE. This significantly reduces deployment
and adaptation costs. Through mask tokens, PARD substantially accelerates inference by
predicting multiple future tokens within a single forward pass of the draft phase.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

76.34

130.46

76.07

40.78

73.68 73.07

24.31

181.18

231.65

178.97

135.88
144.59

155.47

80.78

136.05

233.43

95.17

268.98

425.96

285.82

181.19

235.84

264.88

99.88

Q2 7B Q2.5 3B Q2.5 7B Q2.5 14B L3 8B L3.1 8B L3.3 70B
0

50

100

150

200

250

300

350

400
AR VSD Eagle Eagle-3 PARD

To
ke

ns
 / 

s

Figure 2: Performance comparison of different methods on the HumanEval task under vLLM. AR
denotes the auto-regressive baseline, and VSD denotes vanilla speculative decoding, where the draft
models used are LLaMA3.2-1B and Qwen2.5-0.5B.

• We propose a COnditional Drop-token (COD) strategy for the effient training of PARD.
Leveraging the integrity of prefix key-value states, COD enables low-cost adaptation of
autoregressive draft models into parallel ones, boosting training efficiency by up to 3× while
maintaining accuracy.

• We integrate PARD into the high-performance inference framework vLLM. On LLaMA3.1-
8B, PARD achieves a 3.67× speedup, reaching a state-of-the-art throughput of 264.88
tokens per second on an A100-40GB GPU, which is 1.72× faster than vanilla SD and 1.15×
faster than EAGLE-3.

2 PRELIMINARIES

2.1 AUTO-REGRESSIVE NATURE OF LLMS

Modern LLMs are based on the GPT architecture (Radford et al., 2018). During the training phase,
GPT models leverage highly efficient parallelization, allowing tokens within a sequence to be
processed simultaneously. This parallelism enables GPUs to fully utilize computational resources
by maximizing matrix multiplications and optimizing memory bandwidth usage, thereby improving
training efficiency. Given an input sequence X = (x0, x1, . . . , xN−1) and its corresponding target
sequence Y = (x1, x2, . . . , xN ) , the training objective of GPT is to minimize the auto-regressive
loss, which can be expressed as:

L = −
N∑
t=1

logP (xt|x0, . . . , xt−1). (1)

However, during inference, due to its auto-regressive nature, GPT must generate tokens sequentially,
with each token depending on all previously generated tokens. This sequential generation process
leads to a significant drop in computational efficiency. At each step t, the model computes:

xt = argmax P (x|x0, . . . , xt−1). (2)

This sequential generation results in a memory-bound scenario, where GPU performance is con-
strained by the repeated loading of model weights and the KV-cache, rather than being fully utilized
for large-scale parallel computations. As a result, even though GPUs are capable of high-speed matrix
multiplications, the decoding phase remains bottlenecked by memory access latency, leading to high
latency during the decoding phase.

2.2 SPECULATIVE DECODING

SD can effectively reduce decoding latency and improve matrix multiplication efficiency. The core
idea behind SD is to first use a smaller draft model to generate a set of candidate tokens, and then use
the target model to verify the candidates. The process is as follows:

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

metell a story largeabout

story largeabout language

Target Model

AR Draft Model

AR Draft

metell a

story largeabout language

Target Model

ParaDraft Model

PARD

Figure 3: Illustration of PARD Inference. Left: Vanilla speculative decoding involves a draft model
auto-regressively generating K candidate tokens, which are then validated by the target model
in parallel. Right: PARD introduces mask tokens for parallel Draft. All K candidate tokens are
generated in one forward pass.

Drafting Stage: The goal is to generate the next K candidate tokens C = (x′
n, . . . , x

′
n+K−1). These

candidates can be produced by a lightweight model or traditional machine learning algorithms. For
the vanilla SD method, the draft model generates the K candidates auto-regressively.

Verification Stage: The target model then verifies the candidate tokens in parallel, improving compu-
tational efficiency. When combined with speculative sampling, SD ensures no loss of performance.

We define TD as the time taken by the draft model for a single forward pass, and TT as the time taken
by the target model for a single forward pass. The input length to both the draft and target models
can vary across different SD methods. However, when the input length is not significantly large, the
change in speed is negligible. Therefore, the time taken per iteration for predicting K tokens by
vanilla SD is:

TARdraft
= K ∗ TD + TT . (3)

As shown in Figure 1b, when using a high acceptance rate model like LLaMA3.2-1B to accelerate
LLaMA3.2-8B, the draft model consumes a considerable amount of time. Our PARD method
fine-tunes the draft model into a parallel decoding model. In this case, the time taken is:

TPARD = TD + TT . (4)

It can be seen that PARD reduces the total time of the draft model to 1/K of the original time, thus
significantly reducing the overall decoding time.

3 PARD FRAMEWORK

We begin by introducing how the PARD model predicts multiple tokens in a single forward pass
and provide a detailed explanation of its inference process in Section 3.1. Next in Section 3.2, we
describe how to finetune a vanilla draft model to acquire the capabilities of PARD while maitaining
its target-independent feature. Moreover, we propose a conditional drop training token method
that significantly accelerates training. Section 3.2.3 presents a comparison of the training overhead
between PARD and EAGLE.

3.1 PARD INFERENCE

We incorporate the inference method Mask-Predict (Ghazvininejad et al., 2019) into PARD. The
objective of the draft model θ is to predict the next K tokens by optimizing the probability distribution:

P (xn, . . . , xn+K−1|x0, . . . , xn−1;θ). (5)

For the vanilla SD method, this probability can be factorized as:

P (xn, . . . , xn+K−1|x0, . . . , xn−1;θARdraft
) =

K−1∏
k=0

P (xn+k|x0, . . . , xn+k−1;θARdraft
). (6)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

position ids

labels

attn mask

input ids

tell

me

a

story

tell me a story

me a story about

0 1 2 3

Q
KV

(a)

tell

me

a

story

tell me a story

me a story about me a story about me a story about

0 1 2 3 0 1 2 3 0 1 2 3

Q
KV

(b)

tell

me

a

story

tell me a story

me a story about me a story about me a story about

0 1 2 3 0 1 2 3 0 1 2 3

Q
KV

(c)

tell

me

a

story

tell me a story

me a story about a story story

0 1 2 3 1 2 2

Q
KV

(d)

Figure 4: Illustration of Conditional Drop in PARD training. (a) Training data of the standard AR
model. (b) Training data of PARD. The diagram is divided into three sections by dashed lines,
corresponding to training objectives for predicting tokens at positions +1, +2, and +3. The designed
attention mask ensures consistency between training and inference. Labels in lighter font indicate
tokens that are supplemented for context completion and do not contribute to the loss computation.
(c) Sparse training data for PARD with Conditional Drop, where shaded areas represent dropped
tokens. The retention pattern follows a geometric decay with a fraction r = 0.5 of positions retained
for mask token m0 and r2 = 0.25 for m1, ensuring that each retained token maintains complete
preceding key–value pairs. (d) The sparse matrix reorganized into a compact format by eliminating
dropped positions.

This formulation follows the standard autoregressive approach in Figure 3, where each token is
generated sequentially based on all previously predicted tokens.

In contrast, PARD introduces a special token mk as a placeholder to replace tokens that would
otherwise create dependencies. The formulation is as follows:

P (xn, . . . , xn+K−1|x0, . . . , xn−1,θPARD) =

K−1∏
k=0

P (xn+k|x0, . . . , xn−1,m0, . . . ,mk−1;θPARD).

(7)
As shown in the equation, the predictions at each step do not depend on each other, enabling fully
parallel inference. This reduces the number of forward passes required by the draft model from K to
1, significantly improving inference efficiency.

3.2 PARD TRAINING

To enable a vanilla draft model to predict multiple tokens within a single forward pass, we adopt
a mask-token training strategy, which adapts a standard autoregressive draft model into a parallel
draft model. Unlike conventional approaches, we further propose a conditional drop-token (COD)
mechanism based on the integrity of prefix key-value states, which significantly improves training
efficiency while maintaining final performance.

3.2.1 MASK TOKENS BASED TRAINING

To ensure consistency between the training and inference processes, we divide training into multiple
independent subtasks, where each subtask is designed to predict xn, . . . , xn+K−1. As shown in
Figure 4a 4b, these subtasks can be trained simultaneously with minimal preprocessing of the training
data. The loss for each subtask is computed using a cross-entropy function, as follows:

Lk = − 1

N − k + 1

N∑
i=k

logP (xi|x0, x1, . . . , xi−k,m0, . . . ,mk−2;θPARD). (8)

where Lk represents the loss function for predicting the k-th next token, and N denotes the length of
the sample.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.2.2 CONDITIONAL DROP OF TOKENS

Compared to standard auto-regressive model training, the mask token training method breaks the
task into multiple subtasks, significantly increasing the training cost. For example, if the training
sample length is N , then the number of tokens for AR training is also N . However, in the mask token
training approach, the number of tokens for training increases from N to K ×N , where K is the
number of tokens the draft model predicts simultaneously in a single forward pass.

To address this challenge, we propose an innovative COnditional Drop token (COD) strategy. This
method boosts training efficiency significantly while maintaining prediction accuracy. The core idea
behind COD is that tokens in earlier subtasks are more critical, whereas those in later subtasks can be
selectively dropped to reduce computation.

During the token dropping process, randomly dropped tokens can result in incomplete key and value
states during attention computation. The COD mechanism ensures that the remaining tokens still
provide complete key and value information when computing attention, thereby preserving essential
contextual representations. Figure 4c illustrates the token dropping process. Although some tokens
are removed, the key contextual information remains intact. Figure 4d shows the final reorganized
data after token dropping.

To manage the number of tokens retained for each subtask, we introduce a retention parameter r. For
the i-th subtask, the number of retained tokens Ni is given by:

Ni = N ∗ ri−1. (9)

Consequently, the total number of training tokens can be expressed as:

NCOD =

K∑
i=1

Ni =

K∑
i=1

N ∗ ri−1 = N
1− rK

1− r
<

N

1− r
. (10)

For instance, when r = 0.5, the number of training tokens can be reduced from K × N to 2N ,
significantly lowering the training cost. Additionally, to prevent excessive token dropping in later
subtasks, we introduce a minimum retention ratio rmin, ensuring that the retention rate does not fall
below a predefined threshold. The adjusted number of retained tokens for each subtask is:

N ′
i = N ∗max(ri−1, rmin). (11)

The detailed algorithm of COD, along with the mechanism integrity of prefix key-value states
is provided in Appendix B. By employing the COD strategy, the training cost of PARD can be
significantly reduced from O(N ·K) to O(N).

3.2.3 TRAINING EFFICIENCY

We evaluate the training cost of different speculative decoding methods in Pflops per 1M tokens,
using LLaMA3.3-70B as the target model. PARD achieves a training efficiency that is 7× higher than
EAGLE and 10× higher than EAGLE-3. Full derivations of forward, backward, and total training
costs for each method are provided in Appendix A.

In addition to efficiency, PARD exhibits target independence, allowing a single draft model to
accelerate an entire series of target models (e.g., LLaMA3-8B, 70B, 405B). In contrast, EAGLE-style
methods require a separate draft model for each target, which significantly increases adaptation cost.

4 EVALUATION

4.1 EXPERIMENTAL SETUP

Models: We conduct experiments on popular industry models, including LLaMA3 (Grattafiori et al.,
2024), DeepSeek-R1-Qwen (Guo et al., 2025), and Qwen (Yang et al., 2024). For each model series,
we select the smallest model variant and train it in the PARD framework.

Datasets: To ensure alignment with the original instruct model training process, we select datasets
tailored to each model series. LLaMA3 is trained with Magpie-Llama-3.1-Pro-1M (Xu et al., 2024)

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison of different methods on the Qwen and LLaMA3 series under the
vLLM framework. The EAGLE series uses the official model.

Target Method HumanEval GSM8K SpecBench Average
TPS SpeedUp TPS SpeedUp TPS SpeedUp TPS SpeedUp

Q2 7B AR 76.34 1.00 76.12 1.00 75.97 1.00 76.14 1.00
VSD 181.18 2.37 201.15 2.64 112.00 1.47 164.78 2.16
PARD 268.98 3.52 221.43 2.91 135.05 1.78 208.49 2.74

Q2.5 3B AR 130.46 1.00 130.42 1.00 129.95 1.00 130.28 1.00
VSD 231.65 1.78 238.71 1.83 136.26 1.05 202.21 1.55
PARD 425.96 3.27 406.17 3.11 203.05 1.56 345.06 2.65

Q2.5 7B AR 76.07 1.00 75.93 1.00 75.97 1.00 75.99 1.00
VSD 178.97 2.35 162.85 2.14 107.38 1.41 149.73 1.97
PARD 285.82 3.76 292.56 3.85 145.64 1.92 241.34 3.18

Q2.5 14B AR 40.78 1.00 40.92 1.00 40.78 1.00 40.83 1.00
VSD 135.88 3.33 146.69 3.58 80.59 1.98 121.05 2.97
PARD 181.19 4.44 182.25 4.45 91.33 2.24 151.59 3.71

L3 8B AR 73.68 1.00 73.57 1.00 72.80 1.00 73.35 1.00
VSD 144.59 1.96 123.76 1.68 102.76 1.41 123.70 1.69
PARD 235.84 3.20 200.45 2.72 147.80 2.03 194.70 2.65

L3.1 8B AR 73.07 1.00 73.38 1.00 72.70 1.00 73.05 1.00
VSD 155.47 2.13 140.93 1.92 106.44 1.46 134.28 1.84
EAGLE 136.05 1.86 110.81 1.51 100.11 1.38 115.66 1.58
EAGLE-3 233.43 3.19 192.56 2.62 155.58 2.14 193.86 2.65
PARD 264.88 3.63 235.09 3.20 157.49 2.17 219.15 3.00

L3.3 70B AR 24.31 1.00 24.27 1.00 23.95 1.00 24.18 1.00
VSD 80.78 3.32 77.07 3.18 53.09 2.22 70.31 2.91
EAGLE-3 95.17 3.91 75.34 3.10 63.14 2.64 77.88 3.22
PARD 99.88 4.11 95.58 3.94 57.41 2.40 84.29 3.49

and Evol-CodeAlpaca (Luo et al., 2023). Qwen2.5 is trained with Magpie-Qwen2-Pro-1M and Evol-
CodeAlpaca. DeepSeekR1Qwen is trained with OpenR1-Math-220k (Face, 2025), OpenThoughts-
114k (Team, 2025), and Chinese-DeepSeek-R1-Distill-Data-110k (Liu et al., 2025). For LLaMA 3
and Qwen, we further enhance training accuracy by regenerating answers.

Tasks: We evaluate the effectiveness of PARD on mathematical reasoning and code generation
tasks on benchmarks including HumanEval (Chen et al., 2021), GSM8K (Cobbe et al., 2021),
MATH500 (Lightman et al., 2023) and SpecBench (Xia et al., 2024b).

Training: We conduct training on 8xMI250X cards using the TRL framework for a total of 4 epochs.
During training, the parameters are set as follows: k = 8, r = 0.7, and rmin = 0.2. The detailed
training hyperparameters are provided in Appendix C.

Evaluation: To better reflect real-world usage scenarios, all comparative experiments are conducted
on the high-performance vLLM framework, and the evaluation is performed on A100-40GB GPU.

Metrics: Tokens Per Second: The number of tokens generated per second in real-world scenarios.
Speedup: The acceleration ratio compared to the baseline standard auto-regressive generation method.

4.2 EXPERIMENTAL RESULTS

Table 1 compares the acceleration effects of PARD on the Qwen and LLaMA3 series, while Ap-
pendix E further reports results on the DeepSeek-Qwen series. On code tasks, PARD achieves
speedups ranging from 3.20× to 4.44×, with average speedups between 2.65× and 3.71×. Notably,
LLaMA3.1-8B runs 1.9× faster than EAGLE and 1.15× faster than EAGLE-3.

Our experiments further demonstrate the target-independence property of PARD, where a single
PARD model can accelerate an entire series of target models, as shown in Table 1 and Figure 2.
Specifically, we evaluate three target models from the LLaMA3 series and three target models from
Qwen. In contrast, target-dependent methods such as the EAGLE series require separate training

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Comparison of acceptance rates for
PARD and EAGLE on LLaMA3.1-8B, where
k-α denotes the average acceptance rate when
the draft length is k.

Method HumanEval GSM8K
1-α 4-α 1-α 4-α

EAGLE 0.83 0.72 0.79 0.66
EAGLE-3 0.87 0.85 0.82 0.79
PARD 0.93 0.90 0.88 0.85

Table 3: Memory bandwidth usage during the
draft phase of LLaMA3.1-8B model in bf16
dtype. PARD bandwidth usage remains constant
as k increases.

Method k = 4 k = 6 k = 8

Draft BW Consumption

EAGLE 5.94 GB 8.90 GB 11.88 GB
EAGLE-3 5.94 GB 8.90 GB 11.88 GB
PARD 2.48 GB 2.48 GB 2.48 GB

for each individual model. PARD achieves high acceleration without the need for model-specific
adaptation, substantially lowering the barrier for deployment.

During our experiments, we observed that inference throughput using the Transformers library is
significantly lower than that of vLLM Appendix F. For methods such as vanilla SPD, this suboptimal
performance of Transformers can lead to relative speedups under the same inference framework
being lower than those measured on vLLM (e.g., 1.36× and 2.26×). To better reflect real-world usage
scenarios, all final experiments in this paper are conducted on the vLLM framework.

4.3 ABLATION STUDIES

For all ablation study experiments, the target model used is DeepSeek-R1-Qwen-7B, and the draft
model’s pretraining model is DeepSeek-R1-Qwen-1.5B. Training is conducted on a 93K subset of
OpenR1-Math-220K for one epoch, and testing is performed using the MATH500 dataset.

Conditional Drop Token: The lower the retention rate, the greater the acceleration effect. However,
excessively low retention may degrade model performance. As shown in 5a, when setting r = 0.7
and rmin = 0.2, we achieve a good balance between speed and accuracy. This setting allows us to
achieve 3× faster training while maintaining the original accuracy. All experiments in this paper
adopt these parameters.

Shared Mask Token ID Strategy: We compare different prediction strategies and find that using
the same mask token ID across all predicted positions, i.e., m0 = m1 = · · · = mK−1, performs
better than using distinct token IDs. The corresponding throughput results are 221.97 and 218.05
tokens/s, respectively. This approach not only improves prediction consistency but also enhances the
model’s ability to generalize beyond its training configuration, a property we refer to as extrapolation
capability. Specifically, extrapolation capability allows the model to infer with a larger K during
inference than it was trained on.

Selection of Draft K: We conduct a Cartesian product test for Ktrain during training and Kinfer during
inference in Figure 5b. Due to the extrapolation capability of PARD enabled by the shared mask
token ID, Kinfer can be greater than Ktrain. The best performance is achieved at Kinfer = 12, while
results remain stable when Ktrain ≥ 8. Therefore, we select Ktrain = 8.

Comparison with the Mainstream Method EAGLE: For SD, higher acceptance ratio combined
with lower bandwidth consumption results in superior speedup. In Table 2 and Table 3, we compare
PARD and EAGLE series. PARD achieves a higher acceptance ratio while consuming less bandwidth.

Large Batch Size Inference: Appendix D reports results with batch sizes ranging from 1 to 16. As
the batch size increases, the bottleneck shifts from memory-bound to compute-bound. In this setting,
PARD achieves speedups between 1.33× to 3.63×.

5 RELATED WORK

Improving the inference efficiency of large language has been extensively studied from multiple
perspectives. Quantization techniques such as GPTQ (Frantar et al., 2022), AWQ (Lin et al., 2024),
SmoothQuant (Xiao et al., 2023a), and LLM-QAT (Liu et al., 2023) focus on reducing computational
and memory costs. To address long-context KV-cache management, approaches such as GQA (Ainslie
et al., 2023), MLA (Liu et al., 2024a), StreamingLLM (Xiao et al., 2023b), H2O (Zhang et al., 2023),

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

217.21

218.93

217.93

214.73

211.74

214.39

198.11

2 4 6 8 10
195

200

205

210

215

220

PARD_1_1
PARD_0.7_0.2
PARD_0.7_0
PARD_0.5_0.2
PARD_0.5_0
PARD_0.2_0.2
PARD_0.2_0

Training Hours

To
ke

ns
/s

(a)

184

213

216

199

184

219

231

212

183

221

232

217

183

220

232

217

4 8 12 16

180

190

200

210

220

230

PARD_4
PARD_8
PARD_12
PARD_16

To
ke
ns
/s

(b)
Figure 5: (a) Compare the effects of different values of r and rmin, where each experiment is labeled
as PARD_r_rmin. The x-axis represents training time, while the y-axis indicates the final decoding
speed. (b) presents the results under different Ktrain and Kinfer settings. The x-axis represents Kinfer,
and the experiment names PARD_Ktrain denote different Ktrain values.

MoBA (Lu et al., 2025), and NSA (Yuan et al., 2025) explicitly balances GPU memory consumption
against model accuracy. At the system level, innovations like FlashAttention (Dao et al., 2022),
FlashDecoding (Hong et al., 2023), Megablocks (Gale et al., 2023), and vLLM (Kwon et al., 2023)
deliver optimized kernels and scheduling strategies to maximize hardware utilization and throughput.

Speculative decoding (Leviathan et al., 2023) (Chen et al., 2023b) improve GPU parallelism by
leveraging a draft model to generate candidate tokens, which are then verified by the target model,
achieving speedup without compromising accuracy. Other approaches such as LOOKAHEAD (Fu
et al., 2024), PLD+ (Somasundaram et al., 2024), REST (He et al., 2023) and SuffixDecoding (Oliaro
et al., 2024) utilize text-based retrieval mechanisms to generate more informed drafts. LayerSkip (El-
houshi et al., 2024), Kangaroo (Liu et al., 2024b), and SWIFT (Xia et al., 2024a) reuse selected layers
of the target model to construct a lightweight draft model.

To improve the accuracy of speculative decoding, methods like Medusa (Cai et al., 2024b), EAGLE (Li
et al., 2024b), EAGLE-3 (Li et al., 2025), Amphista (Li et al., 2024c) and Hydra (Ankner et al.,
2024) incorporate representations from the target model as additional input signals. Approaches
such as BiTA (Gloeckle et al., 2024), ParallelSpec (Xiao et al., 2024), and PaSS (Monea et al.,
2023) introduce mask tokens to enable parallel speculative decoding. Further, techniques including
Spectr (Sun et al., 2023), SpecInfer (Miao et al., 2023), Sequoia (Chen et al., 2024), and EAGLE-2 (Li
et al., 2024b) optimize tree-based verification structures to enhance token acceptance rates.

6 CONCLUSION

We presented PARD, a novel speculative decoding method that is target-independent and supports
parallel token prediction. Unlike existing target-dependent approaches such as Medusa and EAGLE,
PARD allows a single draft model to accelerate an entire family of target models, significantly reduc-
ing adaptation and deployment costs. To improve training efficiency, we proposed the Conditional
Drop-token (COD) mechanism, which leverages the integrity of prefix key-value states to adapt
autoregressive draft models into parallel ones at a fraction of the cost. Extensive experiments on
LLaMA3 and Qwen families show that PARD consistently outperforms vanilla speculative decod-
ing and EAGLE-based methods. On LLaMA3.1-8B, PARD achieves 264.88 tokens per second,
corresponding to a 3.67× speedup over standard autoregressive inference and 1.15× speedup over
EAGLE-3. In summary, PARD offers a highly generalizable, efficient, and practical framework for
accelerating large language model inference, demonstrating the potential of target-independent and
parallel decoding strategies for scalable LLM deployment.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. It does not involve human subjects, sensitive data, or
applications with foreseeable harmful impact. All datasets and methods are used in compliance with
ethical and legal standards.

REPRODUCIBILITY STATEMENT

The experimental hyperparameters are detailed in Appendix C. All reported results are reproducible,
and both code and models will be released.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Joshua Ainslie, James Lee-Thorp, Michiel De Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head checkpoints.
arXiv preprint arXiv:2305.13245, 2023.

Zachary Ankner, Rishab Parthasarathy, Aniruddha Nrusimha, Christopher Rinard, Jonathan Ragan-
Kelley, and William Brandon. Hydra: Sequentially-dependent draft heads for medusa decoding.
arXiv preprint arXiv:2402.05109, 2024.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D. Lee, Deming Chen, and Tri
Dao. Medusa: Simple llm inference acceleration framework with multiple decoding heads. arXiv
preprint arXiv:2401.10774, 2024a. to appear.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D Lee, Deming Chen, and Tri Dao.
Medusa: Simple llm inference acceleration framework with multiple decoding heads. arXiv
preprint arXiv:2401.10774, 2024b.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023a. URL https://arxiv.org/abs/2302.01318. DeepMind
Technical Report.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023b.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Zhuoming Chen, Avner May, Ruslan Svirschevski, Yuhsun Huang, Max Ryabinin, Zhihao Jia, and
Beidi Chen. Sequoia: Scalable, robust, and hardware-aware speculative decoding. arXiv preprint
arXiv:2402.12374, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in neural information processing systems, 35:
16344–16359, 2022.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang,
Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng
Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng
Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen,
Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li,

11

https://arxiv.org/abs/2302.01318


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang,
Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan,
Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia
He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang,
Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen
Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025.
URL https://arxiv.org/abs/2501.12948.

Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich, Basil Hosmer, Bram Wasti, Liangzhen
Lai, Anas Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed Roman, Ahmed Aly, Beidi Chen,
and Carole-Jean Wu. Layerskip: Enabling early exit inference and self-speculative decoding.
In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 12622–12642. Association for Computational Linguistics, 2024.
doi: 10.18653/v1/2024.acl-long.681. URL http://dx.doi.org/10.18653/v1/2024.
acl-long.681.

Hugging Face. Open r1: A fully open reproduction of deepseek-r1, January 2025. URL https:
//github.com/huggingface/open-r1.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang. Break the sequential dependency of llm inference
using lookahead decoding. arXiv preprint arXiv:2402.02057, 2024.

Trevor Gale, Deepak Narayanan, Cliff Young, and Matei Zaharia. Megablocks: Efficient sparse
training with mixture-of-experts. Proceedings of Machine Learning and Systems, 5:288–304, 2023.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and Luke Zettlemoyer. Mask-Predict: Parallel
Decoding of Conditional Masked Language Models, September 2019. URL http://arxiv.
org/abs/1904.09324. arXiv:1904.09324 [cs].

Fabian Gloeckle, Badr Youbi Idrissi, Baptiste Rozière, David Lopez-Paz, and Gabriel Synnaeve.
Better and faster large language models via multi-token prediction, 2024. URL http://arxiv.
org/abs/2404.19737. arXiv:2404.19737.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Zhenyu He, Zexuan Zhong, Tianle Cai, Jason D Lee, and Di He. Rest: Retrieval-based speculative
decoding. arXiv preprint arXiv:2311.08252, 2023.

Ke Hong, Guohao Dai, Jiaming Xu, Qiuli Mao, Xiuhong Li, Jun Liu, Kangdi Chen, Yuhan Dong,
and Yu Wang. Flashdecoding++: Faster large language model inference on gpus. arXiv preprint
arXiv:2311.01282, 2023.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems
Principles, pp. 611–626, 2023.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pp. 19274–19286. PMLR, 2023.

12

https://arxiv.org/abs/2501.12948
http://dx.doi.org/10.18653/v1/2024.acl-long.681
http://dx.doi.org/10.18653/v1/2024.acl-long.681
https://github.com/huggingface/open-r1
https://github.com/huggingface/open-r1
http://arxiv.org/abs/1904.09324
http://arxiv.org/abs/1904.09324
http://arxiv.org/abs/2404.19737
http://arxiv.org/abs/2404.19737


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. EAGLE: Speculative sampling requires
rethinking feature uncertainty. In Proceedings of the 41st International Conference on Machine
Learning (ICML), 2024a. URL https://openreview.net/forum?id=1NdN7eXyb4.
to appear.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle: Speculative sampling requires
rethinking feature uncertainty. arXiv preprint arXiv:2401.15077, 2024b.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle-3: Scaling up inference ac-
celeration of large language models via training-time test. arXiv preprint arXiv:2503.01840,
2025.

Zeping Li, Xinlong Yang, Ziheng Gao, Ji Liu, Guanchen Li, Zhuang Liu, Dong Li, Jinzhang Peng,
Lu Tian, and Emad Barsoum. Amphista: Bi-directional Multi-head Decoding for Accelerating LLM
Inference, October 2024c. URL http://arxiv.org/abs/2406.13170. arXiv:2406.13170
[cs].

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
on-device llm compression and acceleration. Proceedings of Machine Learning and Systems, 6:
87–100, 2024.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024a.

Cong Liu, Zhong Wang, ShengYu Shen, Jialiang Peng, Xiaoli Zhang, ZhenDong Du, and YaFang
Wang. The chinese dataset distilled from deepseek-r1-671b. https://huggingface.co/
datasets/Congliu/Chinese-DeepSeek-R1-Distill-data-110k, 2025.

Fangcheng Liu, Yehui Tang, Zhenhua Liu, Yunsheng Ni, Kai Han, and Yunhe Wang. Kangaroo:
Lossless self-speculative decoding via double early exiting. arXiv preprint arXiv:2404.18911,
2024b.

Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie Chang, Pierre Stock, Yashar Mehdad, Yangyang
Shi, Raghuraman Krishnamoorthi, and Vikas Chandra. Llm-qat: Data-free quantization aware
training for large language models. arXiv preprint arXiv:2305.17888, 2023.

AI @ Meta Llama Team. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/
2407.21783.

Enzhe Lu, Zhejun Jiang, Jingyuan Liu, Yulun Du, Tao Jiang, Chao Hong, Shaowei Liu, Weiran He,
Enming Yuan, Yuzhi Wang, et al. MoBA: Mixture of block attention for long-context llms. arXiv
preprint arXiv:2502.13189, 2025.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models with
evol-instruct, 2023.

Meta. Accelerating generative ai with pytorch ii: Gpt, fast, November 2023. URL https://
pytorch.org/blog/accelerating-generative-ai-2/.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Zhengxin Zhang, Rae
Ying Yee Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, et al. Specinfer: Accelerating generative
large language model serving with tree-based speculative inference and verification. arXiv preprint
arXiv:2305.09781, 2023.

Giovanni Monea, Armand Joulin, and Edouard Grave. Pass: Parallel speculative sampling. arXiv
preprint arXiv:2311.13581, 2023.

13

https://openreview.net/forum?id=1NdN7eXyb4
http://arxiv.org/abs/2406.13170
https://huggingface.co/datasets/Congliu/Chinese-DeepSeek-R1-Distill-data-110k
https://huggingface.co/datasets/Congliu/Chinese-DeepSeek-R1-Distill-data-110k
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://pytorch.org/blog/accelerating-generative-ai-2/
https://pytorch.org/blog/accelerating-generative-ai-2/


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Gabriele Oliaro, Zhihao Jia, Daniel Campos, and Aurick Qiao. Suffixdecoding: A model-free
approach to speeding up large language model inference. arXiv preprint arXiv:2411.04975, 2024.

OpenAI. Gpt-4 technical report, 2023.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
understanding by generative pre-training, 2018.

Shwetha Somasundaram, Anirudh Phukan, and Apoorv Saxena. Pld+: Accelerating llm inference by
leveraging language model artifacts. arXiv preprint arXiv:2412.01447, 2024.

Ziteng Sun, Ananda Theertha Suresh, Jae Hun Ro, Ahmad Beirami, Himanshu Jain, and Felix
Yu. Spectr: Fast speculative decoding via optimal transport. Advances in Neural Information
Processing Systems, 36:30222–30242, 2023.

OpenThoughts Team. Open Thoughts. https://open-thoughts.ai, January 2025.

Heming Xia, Yongqi Li, Jun Zhang, Cunxiao Du, and Wenjie Li. Swift: On-the-fly self-speculative
decoding for llm inference acceleration. arXiv preprint arXiv:2410.06916, 2024a.

Heming Xia, Zhe Yang, Qingxiu Dong, Peiyi Wang, Yongqi Li, Tao Ge, Tianyu Liu, Wenjie Li, and
Zhifang Sui. Unlocking efficiency in large language model inference: A comprehensive survey of
speculative decoding. arXiv preprint arXiv:2401.07851, 2024b.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
Conference on Machine Learning, pp. 38087–38099. PMLR, 2023a.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv preprint arXiv:2309.17453, 2023b.

Zilin Xiao, Hongming Zhang, Tao Ge, Siru Ouyang, Vicente Ordonez, and Dong Yu. ParallelSpec:
Parallel drafter for efficient speculative decoding. arXiv preprint arXiv:2408.06421, 2024. URL
https://arxiv.org/abs/2408.06421.

Zhangchen Xu, Fengqing Jiang, Luyao Niu, Yuntian Deng, Radha Poovendran, Yejin Choi, and
Bill Yuchen Lin. Magpie: Alignment data synthesis from scratch by prompting aligned llms with
nothing. arXiv preprint arXiv:2406.08464, 2024.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

Jingyang Yuan, Huazuo Gao, Damai Dai, Junyu Luo, Liang Zhao, Zhengyan Zhang, Zhenda Xie,
YX Wei, Lean Wang, Zhiping Xiao, et al. Native sparse attention: Hardware-aligned and natively
trainable sparse attention. arXiv preprint arXiv:2502.11089, 2025.

Lefan Zhang, Xiaodan Wang, Yanhua Huang, and Ruiwen Xu. Learning harmonized representations
for speculative sampling. arXiv preprint arXiv:2408.15766, 2024.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient
generative inference of large language models. Advances in Neural Information Processing
Systems, 36:34661–34710, 2023.

14

https://arxiv.org/abs/2408.06421


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A TRAINING COST

Comparison setting: We measure training cost in Pflops per 1M tokens, with the target model fixed
to LLaMA3-70B.

PARD: For non-long-text scenarios, the forward pass cost is approximated as twice the model size,
where the factor 2 accounts for both multiply and add operations:

PflopsPARD,F ≈ 2×ParameterSize× InputTokenNum/1015 = 2×109×3.37×106/1015 = 6.74,

where 3.37M is the effective input token count after applying mask prediction with COD. The
backward pass requires twice the forward cost:

PflopsPARD,B ≈ 2× 6.74 = 13.48,

giving a total training cost of

PflopsPARD ≈ 20.22.

EAGLE: The forward pass includes both the target model (70B) and the draft model (0.8B layer +
1.01B lm-head):

PflopsEAGLE,F ≈ 2× (70 + 0.86 + 1.01)× 109 × 106/1015 = 143.74.

For the backward pass, the target model requires no gradient computation, the draft layer costs twice
its forward, and the lm-head costs one forward (activation gradients only):

PflopsEAGLE,B ≈ 2×
(
2× 0.86 + 1.01

)
× 109 × 106/1015 = 5.46,

yielding a total training cost of

PflopsEAGLE ≈ 149.20.

EAGLE-3: Compared with EAGLE, the training strategy uses HASS (Zhang et al., 2024), and the
input tokens for the EAGLE-3 head are seven times that of EAGLE. For the forward pass:

PflopsEAGLE3,F ≈ 2×
(
70 + 7× (0.86 + 1.01)

)
× 109 × 106/1015 = 166.18.

For the backward pass:

PflopsEAGLE3,B ≈ 2× 7×
(
2× 0.86 + 1.01

)
× 109 × 106/1015 = 38.22,

yielding a total training cost of

PflopsEAGLE3 ≈ 204.4.

For training draft models on LLaMA3-70B, PARD achieves a training efficiency that is 7× higher
than EAGLE and 10× higher than EAGLE-3.

Target Independence: PARD’s target independence allows a single draft model to serve an entire
model series (e.g., LLaMA3-8B, 70B, 405B), while EAGLE-style methods require a separate draft
for each target.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B CONDITIONAL DROP TOKENS ALGORITHM

A naive random token drop could indeed break the completeness of key and value information during
training. Algorithm 1 presents the pseudocode of the COD data processing procedure. Below we
provide an illustrative example of how tokens are selected for dropping, based on Figure 4:

• For clarity, we further index each original token mi in the figure as mi,j for j ∈ {0, 1, 2, 3},
where j indicates the position within mi.

• In Figure 4b, without COD, the training sequence is divided into three sections (delineated
by dashed lines), corresponding to prediction objectives for positions +1, +2, and +3 using
all tokens.

• In Figure 4c, with COD applied, shaded regions denote dropped tokens. We use a geometric-
decay retention rate r = 0.5:

– For position +1, no tokens are dropped in the leftmost section, so the full context
[tell, me, a, story] is used.

– For position +2, we drop (1− r) = 50% of tokens in the middle section. Specifically,
we drop m0,0 and m0,3, and retain m0,1 and m0,2.

– For position +3, we drop (1− r2) = 75% of tokens in the rightmost section but ensure
complete prefix key and value context for each retained token. For example, m1,3

(predicting “about” from [tell, me, m0,2]) can be retained because all its prefix tokens
remain. Similarly, m1,2 can be retained since its prefixes [tell, m0,1] are intact, whereas
m1,1 is excluded because its prefix m0,0 was dropped at position +2. From the valid
candidates {m1,2,m1,3}, we randomly select one token (here m1,2).

• In Figure 4d, new data after COD.

Regarding COD’s effect, we conducted an ablation study in Figure 5a. The results show that COD
can speed up training by threefold while maintaining the same inference acceleration on the target
model.

Algorithm 1 PARD with Conditional Drop Tokens: Data Processing

1: Input: Training dataset D, PARD prediction count K, retention decay factor r, minimum
retention rate rmin

2: Output: Processed training data with updated input_ids, labels, position encodings, and attention
masks

3: for each data sample X ∈ D do
4: X ← [X1, . . . , XK ], where Xk is the training data for predicting the k-th token, including

input ids, label, position ids, and attention mask
5: for k = 1 to K do
6: Compute retention rate: γ ← max(rk−1, rmin)
7: Decide which tokens in Xk to retain, ensuring that the preceding KV cache for attention

computation is complete
8: Update Xk (i.e., input ids, label, position ids, and attention mask) to obtain X ′

k
9: end for

10: Merge updated sequences X ′ ← [X ′
1, . . . , X

′
K ] and update the overall attention mask

11: Store the processed data for this sample
12: end for

C TRAINING HYPERPARAMETERS

Table 4 summarizes the hyperparameters used for training.

D LARGE BATCH SIZE INFERENCE

Table 5 presents results across batch sizes ranging from 1 to 16. As the batch size increases, the
bottleneck shifts from memory-bound to compute-bound. Under these conditions, PARD achieves a
speedup of 1.33× to 3.63×.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 4: Selected Hyperparameters for PARD Training

Hyperparameter Llama3 Deepseek-R1-Qwen Qwen
Optimizers AdamW AdamW AdamW

Learning Rate 1e-5 3e-5 8e-5

Per Device Train Batch Size 4 4 8

Gradient Accumulation Steps 2 2 1

Num Processes 8 8 8

Num Train Epochs 4 4 4

Training PARD K 8 8 8

Max Seq Length 512 1024 512

The Answer Of Training Data Regenerate + Original Original Regenerate

Table 5: Performance comparison across different batch sizes on LLaMA3.1-8B in the
vLLM framework, evaluated on HumanEval.

Method bs=1 bs=2 bs=4 bs=8 bs=16

Speedup

AR 1.00 1.00 1.00 1.00 1.00
EAGLE 1.86 1.69 1.69 1.44 1.19
VSD 2.13 2.03 1.88 1.61 1.41
PARD 3.63 3.16 2.59 1.90 1.33

E PERFORMANCE ON DEEPSEEK QWEN SERIES

Table 6 reports the acceleration effects of PARD on the DeepSeek-Qwen series, where the evaluation
benchmarks consist of mathematics and code tasks.

Table 6: Performance comparison of different methods on the DeepSeek Qwen series.

Target Method HumanEval GSM8K Math500 Average
TPS SpeedUp TPS SpeedUp TPS SpeedUp TPS SpeedUp

DS 7B AR 75.87 1.00 75.96 1.00 75.92 1.00 75.92 1.00
VSD 97.90 1.29 129.20 1.70 122.51 1.61 116.54 1.54
PARD 162.39 2.14 204.62 2.69 205.23 2.70 190.75 2.51

DS 14B AR 40.74 1.00 40.78 1.00 40.72 1.00 40.75 1.00
VSD 75.80 1.86 102.88 2.52 95.35 2.34 91.34 2.24
PARD 103.34 2.54 130.17 3.19 133.98 3.29 122.50 3.01

F PERFORMANCE DIFFERENCES ACROSS DIFFERENT INFERENCE
FRAMEWORKS

During our experiments, we observed that inference throughput using the Transformers library is
significantly lower than that of vLLM. For methods such as vanilla SPD, this suboptimal performance
of Transformers can lead to relative speedups under the same inference framework being lower than
those measured on vLLM (e.g., 1.36× and 2.26×). To better reflect real-world usage scenarios, all
final experiments in this paper are conducted on the vLLM framework.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Inspired by GPT-Fast (Meta, 2023), we further optimized Transformers using torch.compile
and a static key-value cache, resulting in Transformers+. Table tab:dif-method-comparison presents
a comparison of Transformers, Transformers+, and vLLM, showing that Transformers+ is lightweight
while approaching the performance of vLLM. We employ Transformers+ for development and testing
throughout the study.

Table 7: Comparison of different frameworks and methods on HumanEval and GSM8K for
LLaMA3.1-8B. Here, Transformers+ denotes an optimized version of Transformers.

Target Framework Method HumanEval GSM8K Average

TPS Speedup TPS Speedup TPS Speedup

L3.1 8B

Transformers
AR 34.36 1.00 35.90 1.00 35.13 1.00

VSD 50.52 1.47 45.24 1.26 47.88 1.36
PARD 145.47 4.23 114.65 3.19 130.06 3.70x

Transformers+
AR 76.34 1.00 76.50 1.00 76.42 1.00

VSD 185.29 2.43 160.59 2.10 172.94 2.26
PARD 336.97 4.41 275.03 3.60 306.00 4.00

vLLM
AR 73.07 1.00 73.38 1.00 73.22 1.00

VSD 155.47 2.13 140.93 1.92 148.20 2.02
PARD 264.88 3.63 235.09 3.20 249.98 3.41

G LLM USAGE STATEMENT

In the preparation of this paper, Large Language Models (LLMs) were used solely as an assistive tool
for language polishing and minor stylistic refinement. LLMs were not involved in research ideation,
experimental design, analysis of the paper.

18


	Introduction
	Preliminaries
	Auto-Regressive Nature of LLMs
	Speculative Decoding

	PARD Framework
	PARD Inference
	PARD Training
	Mask Tokens based Training
	Conditional Drop of Tokens
	Training Efficiency


	Evaluation
	Experimental Setup
	Experimental Results
	Ablation Studies

	Related Work
	Conclusion
	Training Cost
	Conditional Drop Tokens Algorithm
	Training Hyperparameters
	Large Batch Size Inference
	Performance on DeepSeek Qwen Series
	Performance differences across different inference frameworks
	LLM Usage Statement

