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Abstract

Text-to-image diffusion models have demonstrated an impressive ability to pro-
duce high-quality outputs. However, they often struggle to accurately follow
fine-grained spatial information in an input text. To this end, we propose
a compositional approach for text-to-image generation based on two stages.
In the first stage, we design a diffusion-based generative model to produce
one or more aligned intermediate representations (such as depth or segmen-
tation maps) conditioned on text. In the second stage, we map these repre-
sentations, together with the text, to the final output image using a separate
diffusion-based generative model. Our findings indicate that such compositional
approach can improve image generation, resulting in a notable improvement
in FID score and a comparable CLIP score, when compared to the standard
non-compositional baseline. Our code is available at https://github.com/
RANG1991/Public-Intermediate-Semantics-For-Generation

1 Introduction

Recently, text-to-image generation has shown highly impressive results, primarily using diffusion
modeling. To enable effective conditioning, one often integrates textual embeddings as input to
the denoising network [1–4]. However, text prompts may fail to enable full and precise spatial
control. Describing semantic properties, such as the segmentation of individual objects, or physical
characteristics, such as the depth of objects within an image, using solely textual descriptions,
can be challenging and inefficient. Consequently, text-to-image diffusion models often need to
implicitly infer these properties from the text-image data used during training. This process is prone
to inaccuracies and may lead to difficulties in accurately capturing intermediate representations, such
as object segmentation or depth. In this study, therefore, we ask whether a compositional approach
of first explicitly generating these intermediate representations and subsequently using them as an
additional condition can help mitigate these issues and improve text-to-image generation.

Some recent work considered the ability to condition the generation process on some intermediate
representation in addition to text [5–8]. However, these approaches require having existing inter-
mediate representations (such as a segmentation map or a depth map) as input, which is not the
case in text-to-image generation. Another approach is to first generate an intermediate layout or
blobs representation from an input text, and then generate the entire image using the layout or blobs
representation and the input text. This can be done by using cross-attention [9–11], or a separate
diffusion model [12]. However, since both a layout and a blob cannot encompass fine details, these
approaches provide only partial control over the output image.

Instead, we propose to employ a two-step compositional process: (1). First, we generate fine-grained
intermediate representations (such as a depth map or a segmentation map) conditioned on the input
text. To do so, we fine-tune a pre-trained Stable-Diffusion [4] model to generate an intermediate
representation given a text prompt. In the case where more than one representation is generated,
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we propose an approach to align those representations, making sure that they correspond to the
same output image. (2). We then generate the output image conditioned on the input text and the
intermediate representations generated. We do so using a pre-trained ControlNet [5], which was
trained to generate an output image given both the text and the generated intermediate representations.

We consider three distinct intermediate representations for our experiments: a depth map, a segmenta-
tion map, and Hough lines (HED). We assess their impact on text-to-image generation. Our findings
indicate that, among these single representations, using either the depth map or the segmentation
map (solely, without alignment) as intermediate representations results in a notable improvement
in Fréchet Inception Distance [13] (FID) score compared to standard non-compositional Stable-
Diffusion baseline. In addition, we explore the generation capabilities using two aligned intermediate
representations, revealing insights into their effectiveness and potential benefits.

2 Related Work

Conditional Text-to-Image Generation Early advances were dominated by Generative Adversar-
ial Networks (GANs) [14–16] and later approaches considered an autoregressive approach [1, 17, 18].
Recently, diffusion models [19, 20, 3, 21] have achieved significant improvements. To enable condi-
tional generation, Stable-Diffusion [4] incorporates conditions (e.g. a text prompt) by first encoding
them and then applying cross-attention with the denoiser’s layers. At inference time, classifier guid-
ance [20] can be used to guide the noise trajectory using an external classifier. Alternatively, classifier
free guidance [22], combines the output of an conditional and unconditional model. ControlNet [5]
introduces replicated U-Net layers that share weights with the original Stable-Diffusion backbone
U-Net. These replicated U-Net layers get as input a control image (e.g. a segmentation map).
Compositional Text-to-Image Generation Several studies considered text-to-image generation
as a compositional approach, where first, the condition is generated, and only then the final image
is generated based on this condition. Approaches used mainly Large-Language-Models (LLMs)
to generate an intermediate representation (e.g., layout, blob) [9, 12, 11], but these do not enable
fine-grained control. [23] used a bounding box representation instead. [24] extracts readouts from
intermediate features and guides the generation process based on a user input and the readouts.
However, these methods still require user input and otherwise cannot achieve fine-grained control.

3 Method

We describe here our two-step compositional generation approach, as illustrated in Fig. 1.

3.1 Generating Intermediate Representations

To generate an intermediate representation given an input text, we consider a text-representation pairs
dataset and fine-tune a text-to-image pre-trained Stable-Diffusion (SD) model on this dataset. As the
SD’s VAE was trained on images, we also fine-tune it on the intermediate representation.

Aligned Intermediate Representations Our fine-tuned SD models can now be used to generate
multiple intermediate representations. There is, however, a problem, since these different intermediate
representations may not be aligned. While we describe the alignment procedure of two intermediate
representations here, this can be extended to a variable number of such representations. Our alignment
procedure is inspired by that of [25], which tackles a different problem of aligning the latents of
a text-to-image diffusion model to enable text-to-video generation. In particular, we consider two
unaligned pre-trained models, one for each intermediate representation. We assume Stable-Diffusion
v2.1 model and denote the spatial layers within the U-Net (in both the encoding and decoding paths)
of each model as liΘ1

and liΘ2
respectively, where i refers to the layer index.

We now introduce a joint temporal layer, liΦ, between consecutive spatial layers. We assume zicrlr ∈
RB×C×H×W is the output of liΘr

(r = 1, 2), where C represents the number of latent channels, and
H and W denote the spatial latent dimensions. We then concatenate zicrl1 and zicrl2 along a new
dimension t, referred to as the "temporal" dimension (t = 2), resulting in zicrl. z

i
crl passes through

two types of temporal mixing blocks: (i) temporal attention layers and (ii) residual blocks employing
3D convolutions. For (i), we used a block denoted as fcross−attn(z

i
crl, c), that is defined as follows:
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(a) (b)

Figure 1: (a). Illustration of the full pipeline. In the first step, we generate aligned intermediate
representation(s) given the input text. In the second stage, we use a pre-trained ControlNet to map
the input text and the generated intermediate representation(s) to an output image. (b). Illustration
of our alignment procedure. Given two pre-trained text-to-intermediate models (e.g., text-to-depth
and text-to-segmentation), we interleave their spatial layers using "temporal" layers. The "temporal"
layers consist of either a 3D convolution or a temporal attention layer and indicate the dimension on
which the attention or convolution is performed. For clarity, we also provide each component’s input
and output dimensions. We note that only the temporal layers are trained in this stage.

Method ↓ FID ↑ CLIP

SD v2.1 (Baseline) 23.44 30.58
Ours (Seg) 19.92 30.43

Ours (Depth) 20.73 30.30
Ours (HED) 27.56 29.70

Ours (Depth & HED) 50.56 28.88
Ours (Depth & Seg) 32.53 29.82

ControlNet - GT Seg 16.80 30.42
ControlNet - GT Depth 16.17 30.35

Table 1: FID and CLIP alignment scores. In
brackets we note the type of the intermediate
representation(s). The bottom two rows pro-
vide a comparison when the second stage is
used with ground truth intermediate represen-
tation. While this is not a direct comparison
(as it uses additional input), it provides an up-
per bound.

fcross−attn−1 = cross-attn(lin1(zicrl), lin2(c))

fl−norm−1 = l-norm(lin1(zicrl) + fcross−attn−1)

fcross−attn−2 = cross-attn(fl−norm−1, lin2(c))

fl−norm−2 = l-norm(fl−norm−1 + fcross−attn−2)

fcross−attn(z
i
crl, c) = lin3(fl−norm−2)

where c ∈ R1×1024 is the text CLIP embedding.
lini’s are linear projection layers and l-norm is a
layer norm. Cross-attention is applied as in [26]
between a batch of (B ·H ·W ) vectors with a se-
quence length of 2 or 1. Specifically, the queries
in the cross-attention computation are the projected
spatial outputs of the two U-Nets, and the keys and
values are the projected text embeddings.

For (ii), we used the following block: fconv(zicrl) =
ReLU(zicrl + Conv3D(zicrl)). The input to the 3D
convolution block is of shape B×C × 2×H ×W , and the output is of shape B×C × 2×H ×W .
That is, we apply 3D convolution on B 4-dimensional tensors. For the convolution parameters, we
used a kernel size of (3, 1, 1) and a stride of 1.

Following either temporal mixing blocks (i) or (ii), we apply a residual operation: αi · zicrl + (1−
αi) · f , where αi = sigmoid(x) is a learned value between 0 and 1, and f is either fatt(zicrl, c) or
fconv(z

i
crl). The temporal blocks are trained using standard SD reconstruction objectives on the

output representations, given an input text.

3.2 Generating the final output image

Given the previous stage, we can now generate a set of aligned intermediate representations con-
ditioned on the input text. The second stage involves training a ControlNet [5] on a dataset of
representation(s)-image pairs. To obtain such pairs we apply off the shelf method for obtaining such
representations from images (such as depth estimation or segmentation). We then follow ControlNet’s
procedure of first training a ControlNet model for each intermediate representation in isolation
and then combining them together to enable conditioning by all intermediate representations. The
underlying SD model is still conditioned on text in the standard manner as in SD. Once these models
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are trained, we simply generate the output image by using our generated intermediate representations
and input text as a condition to the pre-trained ControlNet model.

(a)

(b)

Figure 2: (a). Results using a single intermediate representation (first six columns) and from original
SD (last column). The generated intermediate representation is to the left of each output image. (b).
As in (a), but using our aligned intermediate representations (depth & HED or depth & segmentation).
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4 Experiments

Implementation Details and Datasets For the training phase, we fine-tuned SD v2.1 models
on the intermediate representations (i.e. Depth map, Segmentation map, Hough lines) extracted
from the first 300, 000 samples from MS-COCO [27] 2017 training set. We used Uniformer [28] for
segmentation estimation, ControlNet [5] implementation for HED generation and Depth Anything
[29] for depth estimation. We trained each of our models for 12 epochs on 40GB GPUs, with a
learning rate of 1e− 5 and a batch size of 32. We used AdamW optimizer with a weight decay of
0.01. For the evaluation phase, we followed previous papers and evaluated our models on 25, 000
samples from MS-COCO 2017 validation set. For the sampling process, we used 80 DDIM steps.

Using A Single Intermediate Representations Tab.1 provides a numerical evaluation of FID
and CLIP similarity scores in comparison to SD baseline. Our compositional approach achieves
lower FID scores than the original non-compositional SD model, for both the depth and segmentation
intermediate representations, except for HED. We hypothesize that this is a result of the domain shift
that occurs between the generated Hough lines in contrast to the real Hough lines. As the second
stage trains on such realistic data, this domain shift can result in significant errors. Fig. 2(a), provides
a visual illustration of outputs of our model in comparison to the SD baseline, showing examples
whereby predicting intermediate representation improves overall text-image correspondence.

Using Aligned Intermediate Representations Tab. 1 and Fig. 2(b) present the corresponding
numerical and visual results when using aligned intermediate representations. While our method
produces aligned outputs, we observe a drop in performance, both in terms of FID and CLIP
scores. We hypothesize that, while our alignment model produces aligned outputs, this comes at the
expense of quality. This quality degradation results in inputs which are far from real intermediate
representation, resulting in a domain shift, which ultimately results in worse performance in the
second stage when these intermediate representations are fed into ControlNet.

5 Conclusion

In this work, we proposed a two-stage compositional approach for text-to-image generation, com-
prising of first generating intermediate representations and subsequently using these representations
to generate a final output image. Our compositional apporach demonstrated improved FID scores
over the non-compositional baseline when using a single depth or segmentation maps as intermeidate
representations. Future work could focus on refining the alignment process, and addressing the
domain shift that occurs between generated representations and those used as input in the second
stage of our compositional approach.
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