
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PROBE: BENCHMARKING REASONING PARADIGM
OVERFITTING IN LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

The reliability of reasoning benchmarks for Large Language Models (LLMs) is
threatened by overfitting, which leads to inflated scores that misrepresent true ca-
pability. While existing benchmarks focus on surface-level perturbations, they fail
to detect a more profound form of overfitting where models memorize problem-
specific reasoning paradigms rather than developing generalizable and dynamic
logical skills. To address this, we introduce PROBE (Paradigm-ReOriented
Benchmark for overfitting Evaluation), a novel benchmark designed to systemati-
cally assess this limitation. PROBE introduces variants that force a shift in the core
reasoning paradigm—such as simplification, introducing Unsolvability, or chang-
ing the fundamental solution approach—alongside conventional transformations.
Our evaluation of state-of-the-art LLMs on PROBE reveals significant reasoning
paradigm overfitting: while models achieve an average accuracy of 81.57% on
original problems, their performance drops substantially to 63.18% on PROBE,
with a striking low score of 35.08% on the most challenging Unsolvability type.
Our work highlights the necessity for benchmarks that probe deeper into reasoning
generalization and provides a tool for fostering more robust LLMs.

1 INTRODUCTION

Recent advancements in Large Language Models (LLMs) have significantly improved their rea-
soning capabilities, which now constitute a crucial dimension of LLM proficiency and are closely
tracked by leading model developers (Cheng et al., 2025). To systematically assess these reason-
ing skills across various models, numerous benchmarks (Jimenez et al., 2024; Li et al., 2025; White
et al., 2024) have been developed, aiming to accurately reflect the true reasoning capability of LLMs.

However, high scores on established benchmarks do not consistently translate into a superior per-
ceived user experience, as practical usage often reveals a performance utility gap primarily at-
tributable to overfitting (McLaughlin & Herlocker, 2004). Overfitting undermines evaluation ef-
fectiveness by producing inflated scores that misrepresent actual reasoning ability (Barkett et al.,
2025). More critically, when overfitting benchmarks are used as a feedback metric during training,
they may result in a degradation of actual reasoning capabilities (Flood et al., 2024). Therefore,
distinguishing authentic reasoning from benchmark overfitting is imperative for accurate capability
assessment(Ferrag et al., 2025).

While existing benchmarks have made some contributions to mitigating overfitting, their preva-
lent strategies such as generating variants through entity substitution (Giuliano & Gliozzo, 2008),
numerical alteration (Zeng, 2024), or superficial paraphrasing primarily assess robustness against
surface-level perturbations (Karimi et al., 2021). We argue that these methods exhibit inherent lim-
itations: they are predominantly effective at detecting simple forms of overfitting rooted in pattern
matching, but inadequate for identifying more profound overfitting at the level of reasoning path-
ways. This inadequacy occurs when a model internalizes the underlying logical templates or
solution patterns specific to a problem, rather than developing dynamic reasoning faculties
under certain scenario. Consequently, a model may appear robust to superficial changes while still
relying on problem-specific cognitive shortcuts, leading to an inflated and misleading assessment of
its true reasoning generalization.

Specifically, a model that has overfitting to a specific problem type tends to apply a rigid, prede-
termined reasoning strategy, failing to adapt its approach to the nuanced contextual demands of the
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Burning an uneven rope

from one end to the other

takes 1 hour. Given several

such ropes, how do you

measure 45 minutes?

Ignite both ends of rope A and

one end of rope B. Rope A will

burn up in 30 minutes. At that

moment, light the other end of

rope B. The remaining part of

rope B will burn in 15 minutes,

for a total of 45 minutes.

Burning an even rope from

one end to the other takes

1 hour. Given only one

such ropes, how do you

measure 45 minutes?

Burning an uneven rope

from one end to the other

takes 1 hour. Given several

such ropes, how do you

measure 90 minutes?

similar steps can work

Prototype Problem

Solution

similar steps cannot work

Since the rope burns evenly

now, just fold it twice to mark

the 3/4 point! Igniting one end

and letting it burn to this mark

will take exactly 45 minutes.

New Solution

I appreciate how the subtle

semantic change of "uneven"

in the problem leads to a

profoundly different

approach to the solution.

Varient ProblemVarient Problem Reasoning

-

Figure 1: An illustration of problem overfitting versus true reasoning. In the “burning ropes for tim-
ing” puzzle, an overfitting model succumbs to a memorized procedure, whereas a capable reasoning
agent flexibly adapts to contextual nuances.

problem instance. A representative example is the “burning ropes for timing” puzzle, as illustrated
in Figure 1. The canonical solution involves igniting both ends of a rope and using two ropes for
timing. However, when the problem scenario is subtly altered in a way that renders this standard
paradigm less optimal or entirely inapplicable, an overfitting model is likely to persist in applying the
memorized pattern rather than engaging in a new reasoning process tailored to the new constraints,
unlike a truly intelligent human capable of dynamic reasoning and genuine contextual understand-
ing. This illustrates the critical distinction between the application of a procedural memory and the
flexible application of conceptual understanding and reasoning, which can hardly be evaluated by
existing benchmarks.

To address this gap, we construct the Paradigm-ReOriented Benchmark for overfitting Evaluation
(PROBE), comprising 40 prototype problems collected from various sources with classic and fixed
reasoning patterns. For each prototype, we introduce carefully designed variants to systematically
evaluate reasoning overfitting from the perspective of reasoning paradigm. As shown in Table 1, our
variant strategies focus on three types of reasoning pattern shifts(Simplification, Unsolvability and
Paradigm Change) and two conventional variant types (Numerical Transformation and Paraphras-
ing) to allow for a more comprehensive evaluation.

We evaluate several state-of-the-art LLMs on PROBE. Our experiments reveal that mostly powerful
models perform poorly, demonstrating that current LLMs suffer from significant overfitting to com-
mon reasoning paradigm and lack generalized reasoning abilities. The results show a substantial
performance drop from an average accuracy of 81.57% on original problems to 63.18% on PROBE,
with the most challenging Unsolvability type yielding only 35.08% accuracy. This performance gap
is particularly striking when compared to human subjects, who achieve near-perfect scores (93.78%)
on variants of this type, underscoring the limitations of current LLMs in flexibly adapting their rea-
soning strategies.

In summary, this work makes three key contributions: (1) It identifies and formalizes the critical
limitation of existing benchmarks in detecting reasoning-level overfitting, where models memorize
problem-specific solution paradigms rather than developing dynamic reasoning faculties for specific
problems. (2) It introduces the PROBE benchmark, a novel evaluation framework designed to sys-
tematically assess this form of overfitting through carefully crafted variants that induce reasoning
paradigm shifts. (3) It provides extensive empirical evidence demonstrating that even state-of-the-
art LLMs exhibit significant vulnerability to such Paradigm Changes, highlighting a substantial gap
between benchmark performance and genuine, flexible reasoning ability.

2 PILOT STUDY

To concretely demonstrate the concepts of our three newly defined variant forms and the phe-
nomenon of reasoning overfitting they detect, we analyze a classic reasoning puzzle and its variants:
timing with burning ropes. The canonical problem and its solution are stated as follows.
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Table 1: The definitions and examples of the variant types in PROBE. We mark core changes in
variants in red.

Type Definition Example

Origin
Prototype problem. variants in PROBE
are adapted from Origin.

烧一根不均匀的绳子，从头烧到尾需要1小时，现有若干条这种绳子，如何记时45分钟？
Burning an uneven rope from one end to the other takes 1 hour.
Given several such ropes, how do you measure 45 minutes?

Simplification
Making a problem simpler so that
it can be solved with significantly
fewer original reasoning steps.

烧一根不均匀的绳子，从头烧到尾需要1小时，现有若干条这种绳子，如何记时60分钟？
Burning an uneven rope from one end to the other takes 1 hour.
Given several such ropes, how do you measure 60 minutes?

Unsolvability
Altering a problem so that
it cannot be solved by
following the original reasoning steps.

烧一根不均匀的绳子，从头烧到尾需要1小时，现有一条这种绳子，如何记时45分钟？
Burning an uneven rope from one end to the other takes 1 hour.
Given only one such rope, how do you measure 45 minutes?

Paradigm Change
Fundamentally shifting the core solving
mindset of a problem, requiring a new
line of thought to reach a solution.

烧一根均匀的绳子，从头烧到尾需要1小时，现有一条这种绳子，如何记时45分钟？
Burning an even rope from one end to the other takes 1 hour.
Given only one such rope, how do you measure 45 minutes?

Numerical Transformation
Modifying numerical values within a
problem without affecting the
original reasoning path.

烧一根不均匀的绳子，从头烧到尾需要1小时，现有若干条这种绳子，如何记时90分钟？
Burning an uneven rope from one end to the other takes 1 hour.
Given several such ropes, how do you measure 90 minutes?

Paraphrasing
Rewriting the problem on a semantic
level without altering the original logical
steps required to solve it.

烧一根不均匀的绳子，从头烧到尾需要1小时，现在想要记时45分钟，至少需要几根绳子，怎么计时？
Burning an uneven rope from one end to the other takes 1 hour. If you want to measure 45 minutes,
what is the minimum number of ropes needed and how do you do it?

• Burning an uneven rope from one end to the other takes 1 hour. Given several such ropes,
how do you measure 45 minutes?.

• Ignite both ends of rope A and one end of rope B. Rope A will burn up in 30 minutes. At
that moment, light the other end of rope B. The remaining part of rope B will burn in 15
minutes, for a total of 45 minutes..

This problem embodies a specific reasoning paradigm. We now examine how three carefully de-
signed variants expose different aspects of reasoning overfitting.

The first variant represents a Simplification: “Burning an uneven rope from one end to the other
takes 1 hour. Given several such ropes, how do you measure 60 minutes?”. In this scenario, the
complex two-rope and multi-end-burning strategy is unnecessary. A model overfitting to the original
paradigm might rigidly attempt to apply the multi-rope logic, failing to recognize that the goal can
be achieved more simply with a single rope, thereby revealing its inflexibility.

The second variant represents a Unsolvability: “Burning an uneven rope from one end to the other
takes 1 hour. Given only one such rope, how do you measure 45 minutes?”. Given that there is only
one rope left, it is impossible to time with two ropes as the origin strategy does. If a model overfits to
the solution pattern but fails to grasp the fundamental constraint of the number of ropes, it is likely
to propose an incorrect method similar to the origin solution.

The third variant represents a Paradigm Change: “Burning an even rope from one end to the other
takes 1 hour. Given only one such rope, how do you measure 45 minutes?”. The critical change from
an uneven to an even rope fundamentally alters the solution pathway. An overfitting model might
incorrectly apply the original solution by lighting both ends, which would take exactly 30 minutes,
thus failing to measure 45 minutes. This variant reveals the ability to adapt to the new principle that
an even rope can be used to measure time based on the proportion of its length burned, which in turn
leads to the logic for finding the midpoint and quarter points for timing.

3 THE PROBE BENCHMARK

The construction of the PROBE is a meticulously designed, multi-stage process comprising data
collection and annotation. Throughout this process, multiple annotators are involved to ensure the
quality of the dataset.

3.1 DATA COLLECTION

The foundation of the PROBE is a curated set of prototype problems, each possessing a well-defined
and classic reasoning pattern. To construct this set, we first collect over 100 problems from a variety
of sources, including some puzzle repositories, logic puzzle websites, and Chinese social platform
and then filter these suitable for generating meaningful variants with 40 prototype problems left.
The list of these 40 prototype problems can be found in Appendix A.
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3.2 DATA ANNOTATION

The annotation process for generating variants from the 40 prototype problems was conducted in
three distinct stages to ensure both the diversity and quality of the resulting benchmark. The entire
workflow is designed to systematically create variants that are semantically meaningful and faith-
fully align with our defined taxonomy.

Stage 1: Independent Variant Generation. In the first stage, three annotators independently gen-
erate variant questions and their corresponding answers for each prototype problem. The goal is to
create a diverse pool of potential variants for each of the three core reasoning-shift types (Simplifi-
cation, Unsolvability, Paradigm Change), as well as the two conventional types (Numerical Trans-
formation, Paraphrasing). To enhance creativity and coverage, annotators are allowed to utilize large
language models as an assistive tool for brainstorming potential scenario alterations (detailed in Ap-
pendix B). However, all generated variants or solutions are required to be meticulously verified and
curated by the annotators.

Stage 2: Integration and Screening. The second stage involves another two annotators indepen-
dently integrating the variant pools generated in Stage 1. The primary criterion during this screening
phase is the semantic meaningfulness of the variant problems. Variants that are semantically incon-
sistent or self-contradictory are discarded. Additionally, if a prototype problem can be legitimately
adapted into multiple variants of the same type, all valid instances are retained to enrich the bench-
mark’s breadth. Conversely, if a prototype problem is inherently unsuitable for a particular variant
type (e.g. a problem cannot be reasonably altered to become unsolvable), that specific variant type
is simply omitted for that problem, rather than forcing a low-quality adaptation.

Stage 3: Consistency Checking and Finalization.

In the final stage, which is designed to ensure the reliability of the benchmark, the two sets of vari-
ants that are independently integrated during Stage 2 are systematically compared to evaluate the
Inter-Annotator Agreement (IAA) (Yang et al., 2023). This consistency assessment rigorously ex-
amines both the selection of variants and the accuracy of their taxonomic classification. Since the
inter-annotator consistency rate exceeds 95%, the number of discrepancies is minimal. Moreover, all
instances where the annotators disagree on either the inclusion of a variant or its specific categoriza-
tion undergo thorough discussion to reach a final decision. These inconsistent items after discussion
are discarded to establish a unified and dependable benchmark. This stringent procedure results in a
final, high-quality set of 216 variant questions, which comprises 50 variants of type Simplification,
45 of type Unsolvability, 53 of type Paradigm Change, 34 of type Numerical Transformation, and
34 of type Paraphrasing.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

To systematically evaluate the phenomenon of reasoning overfitting in LLMs, we conduct a com-
prehensive assessment using the PROBE benchmark. Our evaluation covers a diverse set of con-
temporary and open-sourced LLMs, including many state-of-the-art flagship models. The models
examined are as follows: GPT-5(Leon, 2025), GPT-5-Mini(Leon, 2025), GPT-OSS-120B(Agarwal
et al., 2025), DeepSeek-R1(Guo et al., 2025), Gemini-2.5-Pro(Huang & Yang, 2025), GPT-OSS-
20B(Agarwal et al., 2025), Doubao-Seed, Qwen3-235B-A22B(Yang et al., 2025), GLM-4.5(Zeng
et al., 2025), Claude-Sonnet(Choi et al., 2025), Gemini-2.5-Flash(Huang & Yang, 2025), Qwen3-
235B(Yang et al., 2025), Kimi-K2(Team et al., 2025), Claude-Opus(Choi et al., 2025), GPT-
4.1(Achiam et al., 2023), GLM-4.5-Air(Zeng et al., 2025), GPT-4o(Hurst et al., 2024), and GLM-4-
Plus(GLM et al., 2024). To enhance evaluation consistency and minimize stochasticity, the inference
parameters are fixed at a temperature of 0 and a maximum token limit of 16,384, which is sufficient
for the response lengths required in our problem contexts. The correctness of each model’s output is
assessed automatically using GPT-4.1 as an adjudicator, which is instructed to evaluate the response
against annotated reference answers from the dataset(Stephan et al., 2024).

To evaluate human performance on PROBE, two annotators who are not involved in the original
dataset annotation are assigned to solve the problems. To minimize potential errors caused by over-
sight, the two annotators are instructed to discuss and cross-check their solutions before finalizing
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Table 2: Automatic Evaluation Results on PROBE

Model Origin V1 V2 V3 V4 V5 Average Rank

GPT-5 88.89 82.00 71.43 88.24 90.91 94.12 84.76 2
GPT-5-Mini 90.00 81.63 55.56 83.02 96.97 91.18 80.37 3
GPT-OSS-120B 83.78 70.83 53.33 67.35 88.24 87.50 71.63 4
DeepSeek-R1 81.58 76.00 43.18 75.47 76.47 84.85 70.56 5
Gemini-2.5-Pro 87.50 72.00 35.56 71.70 91.18 91.18 70.37 6
GPT-OSS-20B 84.21 69.39 47.62 73.08 73.53 81.25 68.42 7
Doubao-Seed1.6 90.00 68.75 31.11 62.26 93.94 94.12 67.14 8
Qwen3-235B-A22B 80.00 70.00 44.44 66.04 73.53 85.29 66.67 9
GLM-4.5 82.05 74.00 34.15 66.04 75.76 82.35 65.88 10
Claude-Sonnet 77.50 64.00 28.89 71.70 76.47 81.82 63.26 11
Gemini-2.5-Flash 82.50 66.00 24.44 56.60 85.29 88.24 61.57 12
Qwen3-235B 85.00 60.00 15.56 66.04 90.91 85.29 60.93 13
Kimi-K2 82.50 70.00 28.89 58.49 76.47 73.53 60.19 14
Claude-Opus 82.50 72.00 28.89 50.94 70.59 79.41 58.80 15
GPT-4.1 78.95 65.31 52.27 43.14 67.65 69.70 58.29 16
GLM-4.5-Air 76.32 60.00 25.00 56.60 74.19 73.53 56.13 17
GPT-4o 70.00 38.00 8.89 35.85 50.00 70.59 38.43 18
GLM-4-Plus 65.00 32.00 2.22 30.19 50.00 67.65 33.80 19

Overall 81.57 66.22 35.08 62.38 77.89 82.31 63.18 -
Human - 100.00 97.78 92.16 85.29 90.91 93.87 1

Note: The Overall score for each type (Origin and 5 variants) is the mean across all models for that specific
type. The Average score for each model is the mean of its performance across all five variant types (excluding

Origin). The Rank represents ranking based on Average score. V1-V5 represents Simplification,
Unsolvability, Paradigm Change, Numerical Transformation and Paraphrasing respectively. To facilitate

comparison, the top three performers in each category are highlighted in red, green, and yellow respectively.

a consensus answer. It is important to note that this evaluation aims to assess the human ability to
transfer reasoning patterns to variant problems(Zhang et al., 2024b). Under this setup, participants
are first presented with the original question and its reference solution to familiarize them with the
original reasoning approach, and are then asked to solve its variants.

4.2 MAIN RESULTS

The main results are presented in Table 2 and we have the following insights:

The prevalence and severity of reasoning paradigm overfitting are striking. A significant per-
formance degradation is observed across all flagship models on variant problems, with the average
accuracy dropping substantially from 81.57% on original problems to 63.18% on PROBE. This
decline is particularly pronounced on the first three variant types designed to challenge reasoning
paradigms, unequivocally demonstrating that current LLMs suffer from severe overfitting to specific
reasoning templates rather than possessing generalizable reasoning abilities.

LLMs exhibit good robustness to superficial perturbations without paradigm shifting. In
stark contrast to reasoning paradigm overfitting, performance on the latter two variant types —
Numerical Transformation (77.89% accuracy) and Paraphrasing (82.31% accuracy) shows similar
performance compared to original problems, with Paraphrasing even slightly outperforming the orig-
inal problems. This clear dichotomy indicates that flagship models have largely overcome simple
pattern matching and can robustly apply the same reasoning paradigm across diverse scenarios to
solve problems.

A significant performance gap exists between model structures and series, with GPT-5 demon-
strating notable advantages. The GPT-5 series models (GPT-5 and GPT-5-mini) achieve the
highest overall accuracy, significantly outperforming subsequent models. The substantial improve-

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 3: Meta evaluation results. We demonstrate scores when different judge models (and human
evaluator) assess human-generated answers across five variant types and calculate the correlation
between different judge models and human evaluator.

Judge V1 V2 V3 V4 V5 Average Correlation

GPT-4.1 100.00 97.78 92.16 85.29 90.91 93.87 0.7882
GPT-5 98.00 97.78 90.57 79.41 91.18 92.13 0.7028
Gemini-2.5-Pro 98.00 97.78 84.91 88.24 91.18 92.13 0.7028
GLM-4.5 98.00 95.56 84.91 82.35 88.24 90.28 0.5337
DeepSeek-v3 82.00 46.67 66.04 73.53 82.35 69.44 0.2836

Human 100.00 97.78 88.24 88.24 96.97 94.34 -

Note: V1-V5 represents Simplification, Unsolvability, Paradigm Change, Numerical Transformation and
Paraphrasing respectively. The Average score for each model is the mean of its performance across all five
variant types. The reported correlations are Spearman’s rank correlation coefficients with human judgment.

ment over the poorer-performing GPT-4o generation suggests that during the evolution to GPT-5, its
developers have recognized this type of reasoning overfitting and taken useful methods to mitigate it.
Conversely, other flagship models like Doubao-Seed1.6, while achieving competitive performance
on original problems and the last two types variants (Numerical Transformation and Paraphrasing,
without paradigm shifting), exhibit dramatic performance drops on the first three variants, indicating
that overcoming reasoning paradigm overfitting remains a major challenge for most model develop-
ers.

Among reasoning paradigm shifts, Unsolvability variant presents the greatest challenge. The
performance on Unsolvability variants (35.08% accuracy) shows the most severe decline, signifi-
cantly lower than other reasoning-shift categories. This indicates that models struggle profoundly
when problem conditions change to render standard solutions inapplicable, often failing to recognize
the fundamental constraint shifts and persisting in applying memorized but now invalid reasoning
patterns.

Human performance demonstrates remarkable robustness and generalization across all vari-
ant types, sharply contrasting with model limitations. As shown in the final row of Table 2,
human subjects achieve near-perfect accuracy on the first three reasoning paradigm variants (Sim-
plification, Unsolvability and Paradigm Change), with scores of 100.00%, 97.78%, and 92.16%
respectively. This exceptional performance underscores humans’ inherent ability to flexibly adapt
their reasoning strategies to fundamental problem structure changes, without being constrained by
specific solution templates. Interestingly, for the latter two variant types, several state-of-the-art
(SOTA) models match or even surpass human performance. This suggests that current models have
significantly reduced their overreliance on superficial pattern matching. This phenomenon further
validates the significance of our proposed first three variant types, which are designed to assess
overfitting based on shifts in reasoning paradigms.

4.3 META EVALUATION

To ensure the reliability of our automated evaluation, we conducted a meta-evaluation comparing the
judgment capabilities of several LLMs against human evaluators(Yu et al., 2025). As shown in Table
3, we measured each model’s performance as a judge based on its average agreement score when
evaluating human responses across all problem types, along with its Spearman’s rank correlation
coefficient with human ratings. The results reveal significant differences among the models. GPT-4
achieved the highest average score (93.87%) and the strongest correlation with human judgment
(Spearman’s ρ=0.7882), demonstrating its superior capability as a reliable evaluator. Models such
as GPT-5, Gemini 2.5 Pro, and GLM-4.5 showed competitive but slightly lower performance, while
DeepSeek-V3 lagged considerably. Based on these findings, we selected GPT-4 as the judge model
for all subsequent experiments in our study, as its evaluations most closely approximate those of
human assessors.
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4.4 PROMPT-BASED INTERVENTIONS

Building upon findings that reveal significant reasoning paradigm overfitting in LLMs, we further
investigate whether carefully designed prompting strategies can mitigate this issue. We evaluate
four distinct prompting approaches using six representative models (each exhibiting varying perfor-
mance levels on PROBE) to assess their effectiveness in enhancing model adaptability to reasoning
paradigm shifts.

请仔细阅读以下问题并解答，注意它可能包含与经
典问题不同的关键条件，请谨慎套用熟悉的解法。
[问题]：
Please read the following question carefully and

answer it, noting that it may contain key conditions

that differ from classical problems. Be cautious

about applying familiar solutions directly.

[Question]:

请仔细阅读以下问题并解答，按以下步骤思考： **步骤一：分析差
异。** 先将此问题与你熟悉的类似经典问题进行比较，找出核心条
件上的关键差异。 **步骤二：评估可行性。** 基于这些差异，判
断经典解法是否仍然完全适用、部分适用、或不适用。 **步骤三：
制定新方案。** 如果经典解法不适用，请构思一个新的解决方案。
[问题]：
Please read the following question carefully and answer it by

following these steps: 

Step 1: Analyze the differences. 

Begin by comparing this problem with similar classic problems

you are familiar with, and identify the key differences in the core

conditions.

Step 2: Assess feasibility.

Based on these differences, determine whether the classic

solution is still fully applicable, partially applicable, or not

applicable at all.

Step 3: Develop a new plan.

If the classic solution is not applicable, devise a new solution.

[Question]:# Role-Playing

请你扮演一个严谨的逻辑学家，你的特点是从不盲
目套用公式或既定策略，而是从第一性原理出发分
析问题。现在请解决以下问题：
[问题]：
Please act as a rigorous logician. Your characteristic

is to never blindly apply formulas or predetermined

strategies, but rather to analyze problems from

first principles. Now, please solve the following

question:

[Question]:

# Simple Warning

# Meta-Cognitive Prompting(Chain-of-Thought)

Figure 2: Under the three strategies of Simple Warning, Meta-Cognitive Prompting, and Role-
Playing, the specific prompts we used (StraightForward does not require an additional prompt).

The four prompting approaches are defined as follows and detailed in Figure 2.

• StraightForward: The baseline approach with no additional instructions.

• Simple Warning: A minimal intervention that alerts the model to potential differences
from classic problems.

• Meta-Cognitive Prompting: A structured Chain-of-Thought approach that explicitly
guides the model through comparative analysis and solution adaptation.

• Role-Playing: An approach that frames the task within a specific cognitive persona to
encourage principled reasoning.

Table 4: Models performance on PROBE and original problems with different prompt strategies.

Prompt Strategy Claude Doubao GLM-4.5 GPT-4.1 GPT-4o Kimi-K2

PROBE

StraightForward 63.26 67.14 65.88 58.29 38.43 60.19
Simple Warning 66.82 73.15 67.51 68.06 40.28 64.81
Meta Cognitive 59.07 72.90 66.83 65.28 31.94 53.24
Role Playing 63.89 67.13 71.05 71.76 35.19 62.50

Origin

StraightForward 77.5 90 82.05 78.95 70 82.5
Simple Warning 77.5 95 83.78 70 62.5 80
Meta Cognitive 70 90 82.05 57.5 52.5 67.5
Role Playing 77.5 92.5 74.29 80 60 72.5

Note: Claude and Doubao stand for Claude-Sonnet and Doubao-Seed1.6 respectively. The best results across

different strategies are shown in bold.

On the evaluation of different prompt strategies, it is essential to assess not only their performance
on the PROBE dataset but also whether they cause performance degradation on the original prob-
lems(Mai et al., 2025). Therefore, we compare the effects of each strategy on both PROBE and the
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Table 5: Model Performance Comparison with Different Prompting Strategies

Default Model Origin V1 V2 V3 V4 V5 Avg.

StraightForward
Claude-Sonnet 77.50 64.00 28.89 71.70 76.47 81.82 63.26

Doubao-Seed1.6 90.00 68.75 31.11 62.26 93.94 94.12 67.14
GLM-4.5 82.05 74.00 34.15 66.04 75.76 82.35 65.88
GPT-4.1 78.95 65.31 52.27 43.14 67.65 69.70 58.29
GPT-4o 70.00 38.00 8.89 35.85 50.00 70.59 38.43
Kimi-K2 82.50 70.00 28.89 58.49 76.47 73.53 60.19

Simple Warning
Claude-Sonnet 77.50 74.00 40.91 75.47 70.59 72.73 66.82

Doubao-Seed1.6 95.00 84.00 24.44 81.13 91.18 91.18 73.15
GLM-4.5 83.78 70.21 56.76 62.00 78.79 73.33 67.51
GPT-4.1 70.00 76.00 64.44 64.15 67.65 67.65 68.06
GPT-4o 62.50 44.00 13.33 39.62 47.06 64.71 40.28
Kimi-K2 80.00 74.00 40.00 56.60 79.41 82.35 64.81

Meta Cognitive
Claude-Sonnet 70.00 62.00 28.89 66.04 69.70 73.53 59.07

Doubao-Seed1.6 90.00 82.00 32.56 77.36 88.24 88.24 72.90
GLM-4.5 82.05 66.00 50.00 73.58 70.00 75.76 66.83
GPT-4.1 57.50 70.00 71.11 58.49 58.82 67.65 65.28
GPT-4o 52.50 42.00 4.44 28.30 41.18 50.00 31.94
Kimi-K2 67.50 54.00 40.00 54.72 58.82 61.76 53.24

Role Playing
Claude-Sonnet 77.50 72.00 24.44 62.26 85.29 85.29 63.89

Doubao-Seed1.6 92.50 74.00 22.22 71.70 85.29 91.18 67.13
GLM-4.5 74.29 74.47 55.56 67.35 85.19 77.42 71.05
GPT-4.1 80.00 76.00 66.67 62.26 79.41 79.41 71.76
GPT-4o 60.00 34.00 8.89 28.30 50.00 67.65 35.19
Kimi-K2 72.50 72.00 42.22 58.49 70.59 73.53 62.50

Note: V1=Simplification, V2=Unsolvability, V3=Paradigm Change, V4=Numerical Transformation,
V5=Paraphrasing. The Avg. score for each model is the mean of its performance across all five variant types.

original task as depicted in Table 4. (For PROBE, we only present the average score in Table 4,
detailed results are provided in Table 5)

Our experiment reveal several key findings: First, regardless of the prompting approach, models con-
sistently perform much worse on PROBE than on the original problems, indicating that reasoning
paradigm overfitting cannot be easily resolved through simple prompt engineering. Second, differ-
ent prompt strategies do influence performance on both PROBE and the original questions. Overall,
Simple Warning proves most effective—it not only improves performance on PROBE for most mod-
els but also incurs minimal performance drop on the original task. In contrast, while Meta-Cognitive
Prompting and Role-Playing occasionally lead to notable gains on PROBE for certain models (e.g.,
Role-Playing helps GLM-4.5 and GPT-4.1 achieve the highest PROBE scores), they often result in
significant degradation on the original problems.

In summary, although reasoning paradigm overfitting remains a persistent challenge, it can be par-
tially mitigated through lightweight interventions such as Simple Warning. This offers practical
insight for real-world applications involving similar scenario.

4.5 CASE STUDY

Noting that V2 problems (Unsolvability) exhibit a particularly low performance of all variants, we
select for detailed analysis a problem that has two Type II variants: the Round Table Coin Placement
problem.

The first varient problem describes a round table with a coin already at the center; two players take
turns placing non-overlapping coins, and the player who cannot place a coin loses. The second
varient problem change the round table to a multi-round one.

This alteration invalidates the classic “center-symmetry” strategy, which is only applicable to per-
fectly symmetrical shapes with no coin in the table center.

In these two cases, models often overlook the initial condition that the center is already occupied,
leading them to suggest an invalid first move of ”occupying the center and they fail to recognize that
a semi-circular table breaks the central symmetry, making the core ”mirroring” strategy inapplicable.
Instead of adapting their reasoning to the new geometric constraints, models persistently apply the
memorized paradigm, resulting in a logically structured but fundamentally flawed answer. There is
a typical erroneous response (simplified version, whole response can been seen in Appendix C):

Typical Erroneous Response: “As the first player, you have a winning strategy.
First, place a coin at the center of the table. Then, whenever your opponent places
a coin at any point P, you immediately place a coin at the point P’ that is symmet-
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rically opposite with respect to the center. This mirroring strategy guarantees that
you always have a move, ensuring your victory.”

5 RELATED WORK

5.1 EVALUATION OF LARGE LANGUAGE MODELS

The evaluation of reasoning capabilities in large language models has become a central focus of
NLP research, driven by the rapid progression of model scale and architectural innovations(Wang,
2024). Numerous benchmarks have been established to quantitatively assess these capabilities, span-
ning domains such as mathematical reasoning(Mishra et al., 2022), commonsense reasoning(Davis,
2023), and complex problem-solving(Zhang et al., 2025). These benchmarks aim to provide stan-
dardized measures of abstract reasoning(Lu et al., 2021), logical deduction(Luo et al., 2023), and
multi-step inference(Fujisawa et al., 2024). While reported scores on these benchmarks have consis-
tently risen, reflecting apparent improvements in model sophistication, concerns have grown regard-
ing the extent to which these metrics genuinely capture broad, generalizable reasoning skills versus
the ability to exploit statistical patterns within benchmark datasets(Banerjee et al., 2024). This has
prompted a critical line of inquiry into the robustness and true generalization of the reasoning pro-
cesses these models employ.

5.2 OVERFITTING IN REASONING

The challenge of overfitting plagues the evaluation of reasoning capabilities in large language mod-
els. While numerous benchmarks Li et al. (2024); Mirzadeh et al. (2024) have been developed to
assess mathematical reasoning skills, their effectiveness is undermined when models achieve high
scores through memorization of solution patterns rather than genuine reasoning ability. Existing
approaches to mitigate this issue typically rely on surface-level perturbations such as entity sub-
stitution, numerical alteration, or paraphrasing. However, these methods primarily test robustness
against lexical and syntactic variations, failing to address a more profound form of overfitting where
models internalize the underlying logical templates of specific problem types.

6 LIMITATION

To ensure high-quality variants that effectively probe reasoning patterns, we meticulously collect
prototype problems with distinct reasoning paradigms from publicly available sources and em-
ployed manual annotation. While this process guarantees the benchmark’s quality and conceptual
rigor, it necessarily restricts its size due to the significant resource costs associated with detailed
annotation(Zhang et al., 2024a; Villalobos et al., 2024). Despite this limitation in scale, the core
contribution of our work transcends the benchmark itself. The proposed framework of creating
variants based on reasoning pattern shifts (Simplification, Unsolvability and Paradigm Change) pro-
vides a generalizable and impactful methodology for assessing deep reasoning overfitting beyond
surface-level perturbations. This conceptual approach can be productively applied to other problem
domains and future benchmarks to evaluate model robustness more profoundly(Jeppsson & Pons,
2004). We anticipate that subsequent research within the community will build upon this paradigm
of reasoning-centric evaluation, extending it to larger datasets and diverse reasoning tasks to further
advance the development of genuinely robust language models(Hassid et al., 2024).

7 CONCLUSION

In conclusion, our study reveals a critical disconnect between the benchmark performance and gen-
uine reasoning ability of large language models (LLMs). Through the introduction of PROBE, a
benchmark designed to test for reasoning paradigm overfitting, we demonstrate that even state-of-
the-art models exhibit significant rigidity, failing to adapt when classic solution paths are invalidated
or altered. The stark contrast between this model vulnerability and near-perfect human performance
underscores that current LLMs often rely on memorized procedures rather than flexible, generaliz-
able reasoning. These findings highlight the necessity of moving beyond static benchmarks to foster
the development of more robust and truly intelligent AI systems.

9
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8 ETHICS STATEMENT

This work investigates the phenomenon of reasoning paradigm overfitting in large language models
(LLMs). Our experiments are built upon the proposed PROBE benchmark, which is constructed
from publicly available classic reasoning puzzles. Critically, all prototype problems, their variants,
and corresponding gold-standard solutions were meticulously annotated and verified by human ex-
perts to ensure semantic validity and correctness. We confirm that no private data or personally
identifiable information (PII) was involved in this research. The proposed PROBE benchmark is
designed to expose a critical limitation in current LLM evaluation practices, thereby benefiting the
research community by enabling a more accurate assessment of genuine, generalizable reasoning
abilities. While overfitting to benchmarks may remain an inherent challenge in LLM development,
our benchmark serves as a crucial diagnostic tool for fostering more robust and trustworthy reason-
ing models. We affirm that our research fully complies with the ACL Code of Ethics and poses no
foreseeable harm to individuals or groups.

9 REPRODUCIBILITY STATEMENT

To ensure the reproducibility and transparency of our results, all 216 varient problems in PROBE
and 40 original problems and evaluation scripts have been submitted as supplementary materials.
These materials include detailed instructions for readers to reproduce the experiments reported in
this paper.

10 THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs were utilized to support the writing process of this paper. Specifically, they provided assis-
tance with grammar correction, wording refinement, and formatting adjustments. Furthermore, we
use LLM as a assistant in the process of data construction that have been detailed in the manuscript.
We affirm that the use of AI tools does not affect the originality of this work, and the authors remain
fully responsible for the content and accuracy of the paper.
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Table 6: List of 40 classic reasoning problems used as prototype in PROBE

1. 烧绳计时 Burning Ropes for Timing 2. 水桶量水Water Jug
3. 天平找重球 Finding Heavy Ball with Balance 4. 三门Monty Hall
5. 盲人分牌 Blind Card Division 6. 天平砝码分盐 Dividing Salt with Balance and

Weights
7. 拿苹果 Taking Apples 8. 盲人分袜子 Blind Sock Matching
9. 猴子搬香蕉Monkey Moving Bananas 10. 飞机绕地球 Airplane Around the World
11. 弹球概率 Ball Bouncing Probability 12. 切金条 Cutting Gold Bar
13. 硬币公平 Fair Coin 14. 沙漏计时 Hourglass Timing
15. 四人过桥 Four People Crossing a Bridge 16. 拿钻石 Taking Diamonds
17. 盒子标签 Box Labeling 18. 苹果装箱 Packing Apples
19. 圆桌放硬币 Placing Coins on a Round Table 20. 空瓶换饮料 Empty Bottles for Drinks
21. 赛马 Horse Racing 22. 找变质药 Finding Expired Medicine
23. 囚犯释放概率 Prisoner Release Probability 24. 硬币摆放 Coin Arrangement
25. 分水Water Division 26. 真假话问路 Truth-teller and Liar Path
27. 海盗分金币 Pirate Gold Division 28. 扔鸡蛋 Egg Dropping
29. 农夫过河 Farmer Crossing River 30. 商人随从过河Merchants and Servants Crossing

River
31. 抓狐狸 Catching a Fox 32. 灯泡开关 Light Bulb Switching
33. 找好芯片 Finding Good Chip 34. 鳄鱼吃猴子 Crocodile Eating Monkey
35. 性别概率 Gender Probability 36. 夫妇握手 Couples Handshaking
37. 村子女人数量 Village Women Count 38. 考试及格人数 Exam Passers Count
39. 病狗 Sick Dog 40. 囚犯抓绿豆 Prisoners and Green Beans

A ALL PROTOTYPE PROBLEMS IN PROBE

All prototype problems in PROBE are classic strategic reasoning problems, as listed in Table 6.

B PROMPT FOR GENERATING VARIANTS IN PROBE

The prompt we design for the annotators to call LLMs is shown in the figure 3. A key point to high-
light is that the use of LLMs is strictly assistive. Annotators are instructed not to accept the LLMs’
response verbatim. Instead, the process is designed to leverage the model’s generative capability for
idea inspiration only. The core responsibilities of critical evaluation, factual verification, linguistic
refinement, and final curation remain entirely with the human annotators.

C DETAILED ERRONEOUS RESPONSE IN CASE STUDY

The whole response of the Placing Coins on a Round Table problem is as follows(generated by
Doubao-Seed). It can be easily seen that this response adheres to the reasoning paradigm of the
original problem, ignoring the detailed changes in the new problem that lead to Unsolvability.

要解决正方桌硬币放置游戏的先手必胜问题，**核心策略是利用“中心对称”性质**，通
过对称操作确保每一步后手有位置时，先手必然有对应位置，最终迫使后手无法放置
硬币。**1. 游戏规则与关键性质** - 桌子是**中心对称图形**（正方形的中心是对角线
交点，也是对称中心）。- 硬币不能重叠，不能超出桌子边界。- 无法放置硬币的一方
输。**2. 先手必胜策略** **第一步：先手将第一枚硬币放在桌子的** **正中心**（对称
中心）。**后续步骤：每当后手在某个位置放置一枚硬币后，先手立即在该位置的** **中
心对称点**（关于桌子中心的对称点）放置一枚硬币。**3. 策略的正确性证明** - **对
称性保证合法性**：正方形是中心对称图形，若后手放置的硬币位置(P)在桌子内且不重
叠，则其对称点(P’)必然也在桌子内（对称性质），且不会与已有的硬币重叠（因为(P)未
重叠，(P’)与(P)对称，不会与(P)或其他对称点重叠）。- **必胜性保证**：先手第一步占
据中心后，每一步后手的操作都能被先手的对称操作抵消。只要后手有位置放硬币，先手
就一定有对应的对称位置放硬币。最终，**后手会先遇到没有位置可放的情况**，先手获
胜。**总结**先手的必胜策略是：**第一步放中心，之后每一步都放后手位置的中心对称
点**。该策略利用中心对称性质，将“是否有位置”的问题转移给后手，确保先手始终有应
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你是一个人类出题专家，希望考核你的学生对于一些策略推理问题是不是真的完全理解了还是只是'记住了'解题步骤。为此，你需要对一
些策略问题做改编，提高对学生的考验难度。

改编思路有很多种。例如你可以将问题中的数字改得简单，让问题只需要更少的步骤就能解决，考验学生是不是还像原来那样用原来的
复杂步骤解题；
你也可以通过某种方式修改问题，让问题变得不可解，原有思路实效，考验学生是不是能够意识到这一点；
你还可以将问题中的某个条件作修改、删除，或新增某种限制，让解题思路完全变化，考验学生是不是能够理解不同情景的变化会导致
原有推理范式不可复用；
针对特定问题如果你有更好的改编思路，鼓励你做更多有趣的改编。我会给你一个案例作为参考。

【案例】
<origin_question> 烧一根不均匀的绳子，从头烧到尾需要1小时，现有若干条这种绳子，如何记时45分钟？

<new_question_1> 烧一根不均匀的绳子，从头烧到尾需要1小时，现有若干条这种绳子，如何记时60分钟？
<reason_1> 把45分钟改成60分钟，问题变得十分简单，考验学生是否能够意识到只需要用一小步就能够完成任务。

<new_question_2> 烧一根不均匀的绳子，从头烧到尾需要1小时，现有一条这种绳子，如何记时45分钟？
<reason_2> 绳子数量变成只有一根，这样就没办法像原本那样用多根绳子来计时了，导致原有思路实效。

<new_question_3> 烧一根均匀的绳子，从头烧到尾需要1小时，现有一条这种绳子，如何记时45分钟？
<reason_3> 绳子数量变成只有一根，但是绳子变成均匀的了，这样就会有按照烧的位置记时的新方案。

下边是需要你来改编的原问题，请你按照<new_question_i>\<reason_i>的形式来改编问题，如果你有好的思路，可以不局限于三条，但
是你需要注意的是，案例中的三个改编后问题都是合理的，并且每个问题是单独的，请你不要出一些不合理的问题。

【需要你来改编的问题】

{Question}

You are a human expert in creating exam questions, aiming to assess whether your students have truly fully understood certain

strategic reasoning problems, or if they have merely "memorized" the solution steps. To achieve this, you need to adapt some strategic

problems to increase the difficulty of the assessment for students. 

There are many adaptation approaches.For example, you can simplify the numbers in the problem so that it requires fewer steps to

solve, testing whether the student still uses the original complex steps as before.

You can also modify the problem in a way that makes it unsolvable, rendering the original approach ineffective, to test whether the

student can realize this.

Additionally, you can alter, remove, or add certain constraints to the problem, completely changing the solution approach, to test

whether the student understands that changes in different scenarios make the original reasoning paradigm inapplicable.

Of course, if you have better adaptation ideas for specific problems, you are encouraged to make more interesting modifications. There

is an example for reference.

【Example】

<original_question> Burning an uneven rope from start to finish takes 1 hour. Given several such ropes, how can you measure 45

minutes?

<new_question_1> Burning an uneven rope from start to finish takes 1 hour. Given several such ropes, how can you measure 60

minutes?

<reason_1> Changing 45 minutes to 60 minutes makes the problem very simple, testing whether the student can realize that only a

small step is needed to complete the task.

<new_question_2> Burning an uneven rope from start to finish takes 1 hour. Given one such rope, how can you measure 45 minutes?

<reason_2> The number of ropes is reduced to only one, making it impossible to use multiple ropes for timing as in the original

approach, thus invalidating the original method.

<new_question_3> Burning an even rope from start to finish takes 1 hour. Given one such rope, how can you measure 45 minutes?

<reason_3> The number of ropes is reduced to only one, but the rope becomes even, allowing for a new timing solution based on the

burning position.

Below is the original problem that you need to adapt. Please present your adaptations in the format of <new_question_i><reason_i>. If

you have good ideas, you are not limited to three adaptations. However, please note that the three adapted questions in the example

are all reasonable, and each question is independent. Avoid creating unreasonable problems.

【Problem for you to adapt】

{Question}.

Figure 3: Our designed prompt for calling LLM to generate variants.

对方案，最终获胜。**答案：**先手第一步将硬币放在桌子正中心，之后每当后手放一枚
硬币，先手就放在该硬币关于桌子中心的对称位置。这样先手必能获胜。
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