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ABSTRACT

The reliability of reasoning benchmarks for Large Language Models (LLMs) is
threatened by overfitting, which leads to inflated scores that misrepresent true ca-
pability. While existing benchmarks focus on surface-level perturbations, they fail
to detect a more profound form of overfitting where models memorize problem-
specific reasoning paradigms rather than developing generalizable and dynamic
logical skills. To address this, we introduce PROBE (Paradigm-ReOriented
Benchmark for overfitting Evaluation), a novel benchmark designed to systemati-
cally assess this limitation. PROBE introduces variants that force a shift in the core
reasoning paradigm—such as simplification, introducing Unsolvability, or chang-
ing the fundamental solution approach—alongside conventional transformations.
Our evaluation of state-of-the-art LLMs on PROBE reveals significant reasoning
paradigm overfitting: while models achieve an average accuracy of 81.57% on
original problems, their performance drops substantially to 63.18% on PROBE,
with a striking low score of 35.08% on the most challenging Unsolvability type.
Our work highlights the necessity for benchmarks that probe deeper into reasoning
generalization and provides a tool for fostering more robust LLMs.

1 INTRODUCTION

Recent advancements in Large Language Models (LLMs) have significantly improved their rea-
soning capabilities, which now constitute a crucial dimension of LLM proficiency and are closely
tracked by leading model developers (Cheng et al., [2025)). To systematically assess these reason-
ing skills across various models, numerous benchmarks (Jimenez et al., 2024; |Li et al., 2025} White
et al.,|2024) have been developed, aiming to accurately reflect the true reasoning capability of LLMs.

However, high scores on established benchmarks do not consistently translate into a superior per-
ceived user experience, as practical usage often reveals a performance utility gap primarily at-
tributable to overfitting (McLaughlin & Herlocker, 2004). Overfitting undermines evaluation ef-
fectiveness by producing inflated scores that misrepresent actual reasoning ability (Barkett et al.,
2025)). More critically, when overfitting benchmarks are used as a feedback metric during training,
they may result in a degradation of actual reasoning capabilities (Flood et al., [2024). Therefore,
distinguishing authentic reasoning from benchmark overfitting is imperative for accurate capability
assessment(Ferrag et al., 2025)).

While existing benchmarks have made some contributions to mitigating overfitting, their preva-
lent strategies such as generating variants through entity substitution (Giuliano & Gliozzol |2008),
numerical alteration (Zeng}, 2024)), or superficial paraphrasing primarily assess robustness against
surface-level perturbations (Karimi et al.,|2021). We argue that these methods exhibit inherent lim-
itations: they are predominantly effective at detecting simple forms of overfitting rooted in pattern
matching, but inadequate for identifying more profound overfitting at the level of reasoning path-
ways. This inadequacy occurs when a model internalizes the underlying logical templates or
solution patterns specific to a problem, rather than developing dynamic reasoning faculties
under certain scenario. Consequently, a model may appear robust to superficial changes while still
relying on problem-specific cognitive shortcuts, leading to an inflated and misleading assessment of
its true reasoning generalization.

Specifically, a model that has overfitting to a specific problem type tends to apply a rigid, prede-
termined reasoning strategy, failing to adapt its approach to the nuanced contextual demands of the
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Figure 1: An illustration of problem overfitting versus true reasoning. In the “burning ropes for tim-
ing” puzzle, an overfitting model succumbs to a memorized procedure, whereas a capable reasoning
agent flexibly adapts to contextual nuances.

problem instance. A representative example is the “burning ropes for timing” puzzle, as illustrated
in Figure [T} The canonical solution involves igniting both ends of a rope and using two ropes for
timing. However, when the problem scenario is subtly altered in a way that renders this standard
paradigm less optimal or entirely inapplicable, an overfitting model is likely to persist in applying the
memorized pattern rather than engaging in a new reasoning process tailored to the new constraints,
unlike a truly intelligent human capable of dynamic reasoning and genuine contextual understand-
ing. This illustrates the critical distinction between the application of a procedural memory and the
flexible application of conceptual understanding and reasoning, which can hardly be evaluated by
existing benchmarks.

To address this gap, we construct the Paradigm-ReOriented Benchmark for overfitting Evaluation
(PROBE), comprising 40 prototype problems collected from various sources with classic and fixed
reasoning patterns. For each prototype, we introduce carefully designed variants to systematically
evaluate reasoning overfitting from the perspective of reasoning paradigm. As shown in Table[I] our
variant strategies focus on three types of reasoning pattern shifts(Simplification, Unsolvability and
Paradigm Change) and two conventional variant types (Numerical Transformation and Paraphras-
ing) to allow for a more comprehensive evaluation.

We evaluate several state-of-the-art LLMs on PROBE. Our experiments reveal that mostly powerful
models perform poorly, demonstrating that current LLMs suffer from significant overfitting to com-
mon reasoning paradigm and lack generalized reasoning abilities. The results show a substantial
performance drop from an average accuracy of 81.57% on original problems to 63.18% on PROBE,
with the most challenging Unsolvability type yielding only 35.08% accuracy. This performance gap
is particularly striking when compared to human subjects, who achieve near-perfect scores (93.78%)
on variants of this type, underscoring the limitations of current LLMs in flexibly adapting their rea-
soning strategies.

In summary, this work makes three key contributions: (1) It identifies and formalizes the critical
limitation of existing benchmarks in detecting reasoning-level overfitting, where models memorize
problem-specific solution paradigms rather than developing dynamic reasoning faculties for specific
problems. (2) It introduces the PROBE benchmark, a novel evaluation framework designed to sys-
tematically assess this form of overfitting through carefully crafted variants that induce reasoning
paradigm shifts. (3) It provides extensive empirical evidence demonstrating that even state-of-the-
art LLMs exhibit significant vulnerability to such Paradigm Changes, highlighting a substantial gap
between benchmark performance and genuine, flexible reasoning ability.

2 PILOT STUDY

To concretely demonstrate the concepts of our three newly defined variant forms and the phe-
nomenon of reasoning overfitting they detect, we analyze a classic reasoning puzzle and its variants:
timing with burning ropes. The canonical problem and its solution are stated as follows.
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Table 1: The definitions and examples of the variant types in PROBE. We mark core changes in

variants in red.

Type Definition Example
A A R T S = | e S St as 2
B Prototype problem, variants in proge | S AISIIRT, NABBIRFGRUNY, WHETRXHAT, WTILITASHH?
Origin Burning an uneven rope from one end to the other takes 1 hour.

are adapted from Origin.

Given several such ropes, how do you measure 45 minutes?

Simplification

Making a problem simpler so that
it can be solved with significantly
fewer original reasoning steps.

MR SET, MRREIRF N, WESTHRXFET, WSk 605 #h?
Burning an uneven rope from one end to the other takes 1 hour.
Given several such ropes, how do you measure 60 minutes?

Unsolvability

Altering a problem so that
it cannot be solved by
following the original reasoning steps.

BRI T, NKGREIRFE NS, IWH—ZXFRT, g5 8
Burning an uneven rope from one end to the other takes 1 hour.
Given only one such rope, how do you measure 45 minutes?

Paradigm Change

Fundamentally shifting the core solving
mindset of a problem, requiring a new
line of thought to reach a solution.

RRESET, NARBIRFEVNT, BE —FGXME T, WFHCH 45582
Burning an even rope from one end to the other takes 1 hour.
Given only one such rope, how do you measure 45 minutes?

Numerical Transformation

Modifying numerical values within a
problem without affecting the
original reasoning path.

BR—RAK ST, WARIIBTEUNT, WESETRXFET, mTiEroos#h?
Burning an uneven rope from one end to the other takes 1 hour.
Given several such ropes, how do you measure 90 minutes?

Paraphrasing

Rewriting the problem on a semantic
level without altering the original logical
steps required to solve it.

BRI SIET, WAGREIRFE VN, BERZICN 4558, S ORMEIURET, BAR?
Burning an uneven rope from one end to the other takes 1 hour. If you want to measure 45 minutes,
what is the minimum number of ropes needed and how do you do it?

* Burning an uneven rope from one end to the other takes 1 hour. Given several such ropes,
how do you measure 45 minutes?.

e Ignite both ends of rope A and one end of rope B. Rope A will burn up in 30 minutes. At
that moment, light the other end of rope B. The remaining part of rope B will burn in 15
minutes, for a total of 45 minutes..

This problem embodies a specific reasoning paradigm. We now examine how three carefully de-
signed variants expose different aspects of reasoning overfitting.

The first variant represents a Simplification: “Burning an uneven rope from one end to the other
takes 1 hour. Given several such ropes, how do you measure 60 minutes?”. In this scenario, the
complex two-rope and multi-end-burning strategy is unnecessary. A model overfitting to the original
paradigm might rigidly attempt to apply the multi-rope logic, failing to recognize that the goal can
be achieved more simply with a single rope, thereby revealing its inflexibility.

The second variant represents a Unsolvability: “Burning an uneven rope from one end to the other
takes 1 hour. Given only one such rope, how do you measure 45 minutes?”. Given that there is only
one rope left, it is impossible to time with two ropes as the origin strategy does. If a model overfits to
the solution pattern but fails to grasp the fundamental constraint of the number of ropes, it is likely
to propose an incorrect method similar to the origin solution.

The third variant represents a Paradigm Change: “Burning an even rope from one end to the other
takes 1 hour. Given only one such rope, how do you measure 45 minutes?”. The critical change from
an uneven to an even rope fundamentally alters the solution pathway. An overfitting model might
incorrectly apply the original solution by lighting both ends, which would take exactly 30 minutes,
thus failing to measure 45 minutes. This variant reveals the ability to adapt to the new principle that
an even rope can be used to measure time based on the proportion of its length burned, which in turn
leads to the logic for finding the midpoint and quarter points for timing.

3 THE PROBE BENCHMARK

The construction of the PROBE is a meticulously designed, multi-stage process comprising data
collection and annotation. Throughout this process, multiple annotators are involved to ensure the
quality of the dataset.

3.1 DATA COLLECTION

The foundation of the PROBE is a curated set of prototype problems, each possessing a well-defined
and classic reasoning pattern. To construct this set, we first collect over 100 problems from a variety
of sources, including some puzzle repositories, logic puzzle websites, and Chinese social platform
and then filter these suitable for generating meaningful variants with 40 prototype problems left.
The list of these 40 prototype problems can be found in Appendix [A]
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3.2 DATA ANNOTATION

The annotation process for generating variants from the 40 prototype problems was conducted in
three distinct stages to ensure both the diversity and quality of the resulting benchmark. The entire
workflow is designed to systematically create variants that are semantically meaningful and faith-
fully align with our defined taxonomy.

Stage 1: Independent Variant Generation. In the first stage, three annotators independently gen-
erate variant questions and their corresponding answers for each prototype problem. The goal is to
create a diverse pool of potential variants for each of the three core reasoning-shift types (Simplifi-
cation, Unsolvability, Paradigm Change), as well as the two conventional types (Numerical Trans-
formation, Paraphrasing). To enhance creativity and coverage, annotators are allowed to utilize large
language models as an assistive tool for brainstorming potential scenario alterations (detailed in Ap-
pendix [B). However, all generated variants or solutions are required to be meticulously verified and
curated by the annotators.

Stage 2: Integration and Screening. The second stage involves another two annotators indepen-
dently integrating the variant pools generated in Stage 1. The primary criterion during this screening
phase is the semantic meaningfulness of the variant problems. Variants that are semantically incon-
sistent or self-contradictory are discarded. Additionally, if a prototype problem can be legitimately
adapted into multiple variants of the same type, all valid instances are retained to enrich the bench-
mark’s breadth. Conversely, if a prototype problem is inherently unsuitable for a particular variant
type (e.g. a problem cannot be reasonably altered to become unsolvable), that specific variant type
is simply omitted for that problem, rather than forcing a low-quality adaptation.

Stage 3: Consistency Checking and Finalization.

In the final stage, which is designed to ensure the reliability of the benchmark, the two sets of vari-
ants that are independently integrated during Stage 2 are systematically compared to evaluate the
Inter-Annotator Agreement (IAA) (Yang et al., 2023). This consistency assessment rigorously ex-
amines both the selection of variants and the accuracy of their taxonomic classification. Since the
inter-annotator consistency rate exceeds 95%, the number of discrepancies is minimal. Moreover, all
instances where the annotators disagree on either the inclusion of a variant or its specific categoriza-
tion undergo thorough discussion to reach a final decision. These inconsistent items after discussion
are discarded to establish a unified and dependable benchmark. This stringent procedure results in a
final, high-quality set of 216 variant questions, which comprises 50 variants of type Simplification,
45 of type Unsolvability, 53 of type Paradigm Change, 34 of type Numerical Transformation, and
34 of type Paraphrasing.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

To systematically evaluate the phenomenon of reasoning overfitting in LLMs, we conduct a com-
prehensive assessment using the PROBE benchmark. Our evaluation covers a diverse set of con-
temporary and open-sourced LLMs, including many state-of-the-art flagship models. The models
examined are as follows: GPT-5(Leon| 2025)), GPT-5-Mini(Leon, 2025), GPT-OSS-120B(Agarwal
et al., [2025), DeepSeek-R1(Guo et al.l 2025), Gemini-2.5-Pro(Huang & Yang, 2025), GPT-OSS-
20B(Agarwal et al., [2025), Doubao-Seed, Qwen3-235B-A22B(Yang et al.| [2025), GLM-4.5(Zeng
et al., 2025)), Claude-Sonnet(Choi et al., 2025)), Gemini-2.5-Flash(Huang & Yang| |2025)), Qwen3-
235B(Yang et al., 2025), Kimi-K2(Team et al.l [2025), Claude-Opus(Cho1 et al., [2025), GPT-
4.1(Achiam et al., [2023)), GLM-4.5-Air(Zeng et al., 2025), GPT-4o(Hurst et al.,|2024)), and GLM-4-
Plus(GLM et al.|[2024). To enhance evaluation consistency and minimize stochasticity, the inference
parameters are fixed at a temperature of 0 and a maximum token limit of 16,384, which is sufficient
for the response lengths required in our problem contexts. The correctness of each model’s output is
assessed automatically using GPT-4.1 as an adjudicator, which is instructed to evaluate the response
against annotated reference answers from the dataset(Stephan et al., 2024).

To evaluate human performance on PROBE, two annotators who are not involved in the original
dataset annotation are assigned to solve the problems. To minimize potential errors caused by over-
sight, the two annotators are instructed to discuss and cross-check their solutions before finalizing
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Table 2: Automatic Evaluation Results on PROBE

Model Origin V1 V2 V3 V4 V5 Average Rank
GPT-5 88.89 82.00 71.43 88.24 9091 94.12 84.76 2
GPT-5-Mini 90.00 81.63 5556 83.02 9697 91.18 80.37 3
GPT-OSS-120B 83.78  70.83 5333 67.35 8824 87.50 71.63 4
DeepSeek-R1 81.58  76.00 43.18 7547 7647 84.85 70.56 5
Gemini-2.5-Pro 87.50  72.00 3556 71.70 91.18 91.18 70.37 6
GPT-OSS-20B 84.21 69.39 47.62 73.08 7353 81.25 68.42 7
Doubao-Seed1.6 90.00 6875 31.11 6226 9394 94.12 67.14 8
Qwen3-235B-A22B  80.00  70.00 4444 66.04 73.53 85.29 66.67 9
GLM-4.5 82.05 74.00 3415 66.04 7576 82.35 65.88 10
Claude-Sonnet 7750  64.00 2889 71.70 7647 81.82 63.26 11
Gemini-2.5-Flash 82.50  66.00 2444 56.60 8529 838.24 61.57 12
Qwen3-235B 85.00 60.00 15.56 66.04 9091 85.29 60.93 13
Kimi-K2 82.50  70.00 28.89 5849 7647 73.53 60.19 14
Claude-Opus 82.50  72.00 28.89 50.94 7059 79.41 58.80 15
GPT-4.1 78.95 65.31 5227 43.14 67.65 69.70 58.29 16
GLM-4.5-Air 7632 60.00 2500 56.60 74.19 73.53 56.13 17
GPT-40 70.00 38.00 8.89 3585 50.00 70.59 38.43 18
GLM-4-Plus 65.00 32.00 222 30.19 50.00 67.65 33.80 19
Overall 81.57 6622 3508 6238 77.89 82.31 63.18 -
Human - 100.00 97.78 92.16 8529 90.91 93.87 1

Note: The Overall score for each type (Origin and 5 variants) is the mean across all models for that specific
type. The Average score for each model is the mean of its performance across all five variant types (excluding
Origin). The Rank represents ranking based on Average score. V1-VS5 represents Simplification,
Unsolvability, Paradigm Change, Numerical Transformation and Paraphrasing respectively. To facilitate
comparison, the top three performers in each category are highlighted in red, ,and respectively.

a consensus answer. It is important to note that this evaluation aims to assess the human ability to
transfer reasoning patterns to variant problems(Zhang et al., 2024b)). Under this setup, participants
are first presented with the original question and its reference solution to familiarize them with the
original reasoning approach, and are then asked to solve its variants.

4.2 MAIN RESULTS

The main results are presented in Table[2]and we have the following insights:

The prevalence and severity of reasoning paradigm overfitting are striking. A significant per-
formance degradation is observed across all flagship models on variant problems, with the average
accuracy dropping substantially from 81.57% on original problems to 63.18% on PROBE. This
decline is particularly pronounced on the first three variant types designed to challenge reasoning
paradigms, unequivocally demonstrating that current LLMs suffer from severe overfitting to specific
reasoning templates rather than possessing generalizable reasoning abilities.

LLMs exhibit good robustness to superficial perturbations without paradigm shifting. In
stark contrast to reasoning paradigm overfitting, performance on the latter two variant types —
Numerical Transformation (77.89% accuracy) and Paraphrasing (82.31% accuracy) shows similar
performance compared to original problems, with Paraphrasing even slightly outperforming the orig-
inal problems. This clear dichotomy indicates that flagship models have largely overcome simple
pattern matching and can robustly apply the same reasoning paradigm across diverse scenarios to
solve problems.

A significant performance gap exists between model structures and series, with GPT-5 demon-
strating notable advantages. The GPT-5 series models (GPT-5 and GPT-5-mini) achieve the
highest overall accuracy, significantly outperforming subsequent models. The substantial improve-
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Table 3: Meta evaluation results. We demonstrate scores when different judge models (and human
evaluator) assess human-generated answers across five variant types and calculate the correlation
between different judge models and human evaluator.

Judge A\ V2 V3 V4 V5 Average Correlation
GPT-4.1 100.00 97.78 92.16 8529 9091 93.87 0.7882
GPT-5 98.00 97.78 90.57 79.41 91.18 92.13 0.7028
Gemini-2.5-Pro  98.00 97.78 8491 88.24 91.18 92.13 0.7028
GLM-4.5 98.00 9556 8491 8235 88.24 90.28 0.5337
DeepSeek-v3 82.00 46.67 66.04 73.53 8235 69.44 0.2836
Human 100.00 97.78 88.24 88.24 96.97 94.34 -

Note: V1-VS5 represents Simplification, Unsolvability, Paradigm Change, Numerical Transformation and
Paraphrasing respectively. The Average score for each model is the mean of its performance across all five
variant types. The reported correlations are Spearman’s rank correlation coefficients with human judgment.

ment over the poorer-performing GPT-40 generation suggests that during the evolution to GPT-5, its
developers have recognized this type of reasoning overfitting and taken useful methods to mitigate it.
Conversely, other flagship models like Doubao-Seed1.6, while achieving competitive performance
on original problems and the last two types variants (Numerical Transformation and Paraphrasing,
without paradigm shifting), exhibit dramatic performance drops on the first three variants, indicating
that overcoming reasoning paradigm overfitting remains a major challenge for most model develop-
ers.

Among reasoning paradigm shifts, Unsolvability variant presents the greatest challenge. The
performance on Unsolvability variants (35.08% accuracy) shows the most severe decline, signifi-
cantly lower than other reasoning-shift categories. This indicates that models struggle profoundly
when problem conditions change to render standard solutions inapplicable, often failing to recognize
the fundamental constraint shifts and persisting in applying memorized but now invalid reasoning
patterns.

Human performance demonstrates remarkable robustness and generalization across all vari-
ant types, sharply contrasting with model limitations. As shown in the final row of Table
human subjects achieve near-perfect accuracy on the first three reasoning paradigm variants (Sim-
plification, Unsolvability and Paradigm Change), with scores of 100.00%, 97.78%, and 92.16%
respectively. This exceptional performance underscores humans’ inherent ability to flexibly adapt
their reasoning strategies to fundamental problem structure changes, without being constrained by
specific solution templates. Interestingly, for the latter two variant types, several state-of-the-art
(SOTA) models match or even surpass human performance. This suggests that current models have
significantly reduced their overreliance on superficial pattern matching. This phenomenon further
validates the significance of our proposed first three variant types, which are designed to assess
overfitting based on shifts in reasoning paradigms.

4.3 META EVALUATION

To ensure the reliability of our automated evaluation, we conducted a meta-evaluation comparing the
judgment capabilities of several LLMs against human evaluators(Yu et al.,[2025). As shown in Table
[3l we measured each model’s performance as a judge based on its average agreement score when
evaluating human responses across all problem types, along with its Spearman’s rank correlation
coefficient with human ratings. The results reveal significant differences among the models. GPT-4
achieved the highest average score (93.87%) and the strongest correlation with human judgment
(Spearman’s p=0.7882), demonstrating its superior capability as a reliable evaluator. Models such
as GPT-5, Gemini 2.5 Pro, and GLM-4.5 showed competitive but slightly lower performance, while
DeepSeek-V3 lagged considerably. Based on these findings, we selected GPT-4 as the judge model
for all subsequent experiments in our study, as its evaluations most closely approximate those of
human assessors.
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4.4 PROMPT-BASED INTERVENTIONS

Building upon findings that reveal significant reasoning paradigm overfitting in LLMs, we further
investigate whether carefully designed prompting strategies can mitigate this issue. We evaluate
four distinct prompting approaches using six representative models (each exhibiting varying perfor-
mance levels on PROBE) to assess their effectiveness in enhancing model adaptability to reasoning

paradigm shifts.

BFREEL TR RS, TEEUREa52
HEAERIKREMY, HERERRTIRE.
(e

Please read the following question carefully and
answer it, noting that it may contain key conditions
that differ from classical problems. Be cautious
about applying familiar solutions directly.
[Question]:  # Simple Warning

BIFE—THENBERR, (FISRENTE
BERLNEETERE, MENS—MREHLS
HrialeR, BEEHRRLAT R :

[1E)R%] :

Please act as a rigorous logician. Your characteristic
is to never blindly apply formulas or predetermined
strategies, but rather to analyze problems from
first principles. Now, please solve the following
question:

BFAREU T REARS, RUTEREE: “SR— OiFE
8, SRR SRAEAIES MR TR, 0%
HERXEER, SR IHEIITE. C ETXEER, #
W AR RSB, SDER. FFER. “HR=:
FIEFAR, ~ MREMBENER, BRI HIRRSE.
(i=RE]:

Please read the following question carefully and answer it by
following these steps:

Step 1: Analyze the differences.

Begin by comparing this problem with similar classic problems
you are familiar with, and identify the key differences in the core
conditions.

Step 2: Assess feasibility.

Based on these differences, determine whether the classic
solution is still fully applicable, partially applicable, or not
applicable at all.

Step 3: Develop a new plan.

If the classic solution is not applicable, devise a new solution.

[Question]:  # Role-Playing

[Question]:  # Meta-Cognitive Prompting(Chain-of-Thought)

Figure 2: Under the three strategies of Simple Warning, Meta-Cognitive Prompting, and Role-
Playing, the specific prompts we used (StraightForward does not require an additional prompt).

The four prompting approaches are defined as follows and detailed in Figure[2]

* StraightForward: The baseline approach with no additional instructions.

* Simple Warning: A minimal intervention that alerts the model to potential differences
from classic problems.

* Meta-Cognitive Prompting: A structured Chain-of-Thought approach that explicitly
guides the model through comparative analysis and solution adaptation.

* Role-Playing: An approach that frames the task within a specific cognitive persona to
encourage principled reasoning.

Table 4: Models performance on PROBE and original problems with different prompt strategies.

Prompt Strategy Claude Doubao GLM-4.5 GPT-4.1 GPT-40 Kimi-K2
StraightForward 63.26 67.14 65.88 58.29 38.43 60.19

PROBE Simple Warning 66.82 73.15 67.51 68.06 40.28 64.81
Meta Cognitive 59.07 72.90 66.83 65.28 31.94 53.24
Role Playing 63.89 67.13 71.05 71.76 35.19 62.50
StraightForward 71.5 90 82.05 78.95 70 82.5

Origin Simple Warning 71.5 95 83.78 70 62.5 80

g Meta Cognitive 70 90 82.05 57.5 52.5 67.5

Role Playing 71.5 92.5 74.29 80 60 72.5

Note: Claude and Doubao stand for Claude-Sonnet and Doubao-Seed1.6 respectively. The best results across

different strategies are shown in bold.

On the evaluation of different prompt strategies, it is essential to assess not only their performance
on the PROBE dataset but also whether they cause performance degradation on the original prob-
lems(Mai et al., [2025). Therefore, we compare the effects of each strategy on both PROBE and the
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Table 5: Model Performance Comparison with Different Prompting Strategies

Default Model Origin Vi V2 V3 V4 \E Avg.

StraightForward
Claude-Sonnet ~ 77.50  64.00 2889 7170 7647 81.82 63.26
Doubao-Seed1.6 9000  68.75 3111 6226 93.94 9412 67.14

GLM-4.5 8205 7400 3415 6604 7576 8235 65.88
GPT-4.1 7895 6531 5227 43.14 67.65 69.70 5829
GPT-4o 7000 3800 889 3585 50.00 7059 3843
Kimi-K2 8250 70.00 2889 5849 7647 7353 60.19
Simple Warning
Claude-Sonnet ~ 77.50  74.00 4091 7547 70.59 7273 66.82
Doubao-Seed1.6  95.00 84.00 2444 8113 9LI8 9LI8 73.15
GLM-4.5 8378 7021 5676 6200 7879 7333 6751
GPT-4.1 7000 7600 6444 64.15 67.65 67.65 68.06
GPT-do 62.50 4400 1333 3962 47.06 6471 40.28
Kimi-K2 80.00 74.00 40.00 5660 79.41 8235 64.81
Meta Cognitive
Claude-Sonnet ~ 70.00  62.00 2889 6604 6970 73.53 59.07
Doubao-Seedl.6  90.00 8200 32.56 7736 8824 88.24 7290
GLM-4.5 8205 6600 50.00 7358 70.00 7576 66.83
GPT-4.1 57.50 7000 7111 5849 5882 67.65 65.28
GPT-do 5250 4200 444 2830 4118 5000 31.94
Kimi-K2 67.50 5400 4000 5472 5882 6176 53.24
Role Playing

Claude-Sonnet 7750 7200 2444 6226 8529 8529 63.89
Doubao-Seedl1.6  92.50  74.00 2222 7170 8529 91.18 67.13
GLM-4.5 7429 7447 5556 6735 85.19 7742 71.05
GPT-4.1 80.00 76.00 66.67 6226 7941 7941 71.76
GPT-40 60.00 3400 889 2830 50.00 67.65 3519
Kimi-K2 7250 7200 4222 5849 7059 7353 6250

Note: V1=Simplification, V2=Unsolvability, V3=Paradigm Change, V4=Numerical Transformation,
V5=Paraphrasing. The Avg. score for each model is the mean of its performance across all five variant types.

original task as depicted in Table i} (For PROBE, we only present the average score in Table
detailed results are provided in Table[3)

Our experiment reveal several key findings: First, regardless of the prompting approach, models con-
sistently perform much worse on PROBE than on the original problems, indicating that reasoning
paradigm overfitting cannot be easily resolved through simple prompt engineering. Second, differ-
ent prompt strategies do influence performance on both PROBE and the original questions. Overall,
Simple Warning proves most effective—it not only improves performance on PROBE for most mod-
els but also incurs minimal performance drop on the original task. In contrast, while Meta-Cognitive
Prompting and Role-Playing occasionally lead to notable gains on PROBE for certain models (e.g.,
Role-Playing helps GLM-4.5 and GPT-4.1 achieve the highest PROBE scores), they often result in
significant degradation on the original problems.

In summary, although reasoning paradigm overfitting remains a persistent challenge, it can be par-
tially mitigated through lightweight interventions such as Simple Warning. This offers practical
insight for real-world applications involving similar scenario.

4.5 CASE STUDY

Noting that V2 problems (Unsolvability) exhibit a particularly low performance of all variants, we
select for detailed analysis a problem that has two Type II variants: the Round Table Coin Placement
problem.

The first varient problem describes a round table with a coin already at the center; two players take
turns placing non-overlapping coins, and the player who cannot place a coin loses. The second
varient problem change the round table to a multi-round one.

This alteration invalidates the classic “center-symmetry” strategy, which is only applicable to per-
fectly symmetrical shapes with no coin in the table center.

In these two cases, models often overlook the initial condition that the center is already occupied,
leading them to suggest an invalid first move of “occupying the center and they fail to recognize that
a semi-circular table breaks the central symmetry, making the core “mirroring” strategy inapplicable.
Instead of adapting their reasoning to the new geometric constraints, models persistently apply the
memorized paradigm, resulting in a logically structured but fundamentally flawed answer. There is
a typical erroneous response (simplified version, whole response can been seen in Appendix [C):

Typical Erroneous Response: “As the first player, you have a winning strategy.
First, place a coin at the center of the table. Then, whenever your opponent places
a coin at any point P, you immediately place a coin at the point P’ that is symmet-
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rically opposite with respect to the center. This mirroring strategy guarantees that
you always have a move, ensuring your victory.”

5 RELATED WORK

5.1 EVALUATION OF LARGE LANGUAGE MODELS

The evaluation of reasoning capabilities in large language models has become a central focus of
NLP research, driven by the rapid progression of model scale and architectural innovations(Wang),
2024). Numerous benchmarks have been established to quantitatively assess these capabilities, span-
ning domains such as mathematical reasoning(Mishra et al., [2022)), commonsense reasoning(Davis)}
2023)), and complex problem-solving(Zhang et al.l [2025). These benchmarks aim to provide stan-
dardized measures of abstract reasoning(Lu et al.l 2021), logical deduction(Luo et al.| [2023), and
multi-step inference(Fujisawa et al., 2024). While reported scores on these benchmarks have consis-
tently risen, reflecting apparent improvements in model sophistication, concerns have grown regard-
ing the extent to which these metrics genuinely capture broad, generalizable reasoning skills versus
the ability to exploit statistical patterns within benchmark datasets(Banerjee et al., [2024). This has
prompted a critical line of inquiry into the robustness and true generalization of the reasoning pro-
cesses these models employ.

5.2 OVERFITTING IN REASONING

The challenge of overfitting plagues the evaluation of reasoning capabilities in large language mod-
els. While numerous benchmarks [Li et al.| (2024); Mirzadeh et al.| (2024)) have been developed to
assess mathematical reasoning skills, their effectiveness is undermined when models achieve high
scores through memorization of solution patterns rather than genuine reasoning ability. Existing
approaches to mitigate this issue typically rely on surface-level perturbations such as entity sub-
stitution, numerical alteration, or paraphrasing. However, these methods primarily test robustness
against lexical and syntactic variations, failing to address a more profound form of overfitting where
models internalize the underlying logical templates of specific problem types.

6 LIMITATION

To ensure high-quality variants that effectively probe reasoning patterns, we meticulously collect
prototype problems with distinct reasoning paradigms from publicly available sources and em-
ployed manual annotation. While this process guarantees the benchmark’s quality and conceptual
rigor, it necessarily restricts its size due to the significant resource costs associated with detailed
annotation(Zhang et al., 2024aj |Villalobos et al.| [2024). Despite this limitation in scale, the core
contribution of our work transcends the benchmark itself. The proposed framework of creating
variants based on reasoning pattern shifts (Simplification, Unsolvability and Paradigm Change) pro-
vides a generalizable and impactful methodology for assessing deep reasoning overfitting beyond
surface-level perturbations. This conceptual approach can be productively applied to other problem
domains and future benchmarks to evaluate model robustness more profoundly(Jeppsson & Pons,
2004). We anticipate that subsequent research within the community will build upon this paradigm
of reasoning-centric evaluation, extending it to larger datasets and diverse reasoning tasks to further
advance the development of genuinely robust language models(Hassid et al., 2024).

7 CONCLUSION

In conclusion, our study reveals a critical disconnect between the benchmark performance and gen-
uine reasoning ability of large language models (LLMs). Through the introduction of PROBE, a
benchmark designed to test for reasoning paradigm overfitting, we demonstrate that even state-of-
the-art models exhibit significant rigidity, failing to adapt when classic solution paths are invalidated
or altered. The stark contrast between this model vulnerability and near-perfect human performance
underscores that current LLMs often rely on memorized procedures rather than flexible, generaliz-
able reasoning. These findings highlight the necessity of moving beyond static benchmarks to foster
the development of more robust and truly intelligent Al systems.
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8 ETHICS STATEMENT

This work investigates the phenomenon of reasoning paradigm overfitting in large language models
(LLMs). Our experiments are built upon the proposed PROBE benchmark, which is constructed
from publicly available classic reasoning puzzles. Critically, all prototype problems, their variants,
and corresponding gold-standard solutions were meticulously annotated and verified by human ex-
perts to ensure semantic validity and correctness. We confirm that no private data or personally
identifiable information (PII) was involved in this research. The proposed PROBE benchmark is
designed to expose a critical limitation in current LLM evaluation practices, thereby benefiting the
research community by enabling a more accurate assessment of genuine, generalizable reasoning
abilities. While overfitting to benchmarks may remain an inherent challenge in LLM development,
our benchmark serves as a crucial diagnostic tool for fostering more robust and trustworthy reason-
ing models. We affirm that our research fully complies with the ACL Code of Ethics and poses no
foreseeable harm to individuals or groups.

9 REPRODUCIBILITY STATEMENT

To ensure the reproducibility and transparency of our results, all 216 varient problems in PROBE
and 40 original problems and evaluation scripts have been submitted as supplementary materials.
These materials include detailed instructions for readers to reproduce the experiments reported in
this paper.

10 THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs were utilized to support the writing process of this paper. Specifically, they provided assis-
tance with grammar correction, wording refinement, and formatting adjustments. Furthermore, we
use LLM as a assistant in the process of data construction that have been detailed in the manuscript.
We affirm that the use of Al tools does not affect the originality of this work, and the authors remain
fully responsible for the content and accuracy of the paper.
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Table 6: List of 40 classic reasoning problems used as prototype in PROBE

1. 5584811} Burning Ropes for Timing

2. KA EIK Water Jug

3. R EEK Finding Heavy Ball with Balance

4. =[] Monty Hall

5. 5 A47F# Blind Card Division

6. KFH£M 45> # Dividing Salt with Balance and
Weights

7. ZI5 Taking Apples

8. § A ¥ET Blind Sock Matching

9. ¥ %% & Monkey Moving Bananas

10. KALLEHIEK Airplane Around the World

11.

FHERMEZE Ball Bouncing Probability

12. Y14:% Cutting Gold Bar

13. fifi 1 2°F Fair Coin 14. VIRVEE Hourglass Timing
15. 9 N33 #7 Four People Crossing a Bridge 16. Z55f Taking Diamonds

17. B FH5% Box Labeling 18. S 5FHEFE Packing Apples
19. [E| S /A 1 Placing Coins on a Round Table 20. ZSHi# Y0k Empty Bottles for Drinks

21.

%% Horse Racing

22. %7 it %] Finding Expired Medicine

23.

INFERERIEZE Prisoner Release Probability

24, WAL Coin Arrangement

25. 437K Water Division 26. EABEA] % Truth-teller and Liar Path
27. {5 45r4: T Pirate Gold Division 28. #7358 Egg Dropping

29.

4 F33{H] Farmer Crossing River

30. 7 ARf M2V Merchants and Servants Crossing
River

31. JTUIAE Catching a Fox 32. fT¥1FF 5= Light Bulb Switching
33. #4F.6 A Finding Good Chip 34. #EANZHET Crocodile Eating Monkey

35.

HEAIMER Gender Probability

36. RIF#EF Couples Handshaking

38. il % AZL Exam Passers Count
40. INJEHNEE . Prisoners and Green Beans

37. K’F2 AE&E Village Women Count
39. Jpi4f Sick Dog

A ALL PROTOTYPE PROBLEMS IN PROBRE

All prototype problems in PROBE are classic strategic reasoning problems, as listed in Table [f]

B PROMPT FOR GENERATING VARIANTS IN PROBE

The prompt we design for the annotators to call LLMs is shown in the figure[3] A key point to high-
light is that the use of LLMs is strictly assistive. Annotators are instructed not to accept the LLMs’
response verbatim. Instead, the process is designed to leverage the model’s generative capability for
idea inspiration only. The core responsibilities of critical evaluation, factual verification, linguistic
refinement, and final curation remain entirely with the human annotators.

C DETAILED ERRONEOUS RESPONSE IN CASE STUDY

The whole response of the Placing Coins on a Round Table problem is as follows(generated by
Doubao-Seed). It can be easily seen that this response adheres to the reasoning paradigm of the
original problem, ignoring the detailed changes in the new problem that lead to Unsolvability.

MR R IE 7 SLAE T Ik Y S T e R, A O S R R <AL B B, 3
I REBIEHRE DR FELER, EFLRENNAEE, HFLEMEEFLIELE
BRI o ol PEROIN S RV U - S R DRI BRI T e (IEJT R L0 A 2
L, WEMRFL) - EHhARESE, NEBHE AR . - TIERERHR—T7
B0 w2, SETF LS x o8 — 5. Jo A — MO M CAE S 7 B o IE FRUCve - (PR
) o e FEPIR. BYETAEEMIBRE M TG, ST ILATEIZALE e wxrp
OB RR e (RTF SR HOBI PR ) CE — AR T o 3. SIS A IERR PR AR e - ot
IERIL & A IEARRFONRER, HEFREMNETLECELTHNEAE
&, WENKAE)DRBAERTHN IHRER) , BEAZ5EENERES (FhEe)R
HE, @)SPNK, AXS5CEEMUREES) o - ol BEIERIE>: BFE Db
e, B0 )EFRRERREEOC T X MERERE - AREFEUERET, £F
B — BB R PR B MO T o B2, o7 F RSB EIA BT ILe, SEFIR
fif o e g SEFRLLERIE . 2P L, 2R PEBUR T AR R O OXFR
S ORISR A DRTRIE R, FR TR E RS SE T, WRTTFHREEN
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(FR—ABHEER, FEERFNFENT LRREENEENERN-SER TERRZ CET BESR. Alt, RHEEN—
LRERIRSER, RSN FENEIORE.

gﬁiﬁgfﬁ%ﬂ’ BRI LSRRI RIS E S, ILDRRTEE IS TRMAERR, ERFERTREERIBERRRN
DR

IRATABS R ATUERIRE, ILREEARR, REREIY, ERFERISHBRIRTIX—;
{RERILUGIERR IR NRAH SR, bR, SREmEEMRE, IHRATRETETN, ERFEETEEPERIREENENRS

REEEEA ISR,
FRERRNRMFE BRI RRER, SRMIESEBNNRE. KRR RIWEASE.
[5=41]

<origin_question> BE—iRAISMNET, NURIIRFEIVNG, WEETRXMEF, WITCH45HH?

<new_question_1> JR—RFNIOEF, NLGEIRFZR VI, IEETHRXMET, IMITICH605H?
<reason_1> {BASHEHKAC0D T, ARG +HER, ERFERBRREERIIRTER—/I\THEETMES.

<new_question_2> E—IRAHSINET, NLIRZIEFZ VG, NE—HXMETF, WTICHI45580?
<reason_2> BFHBEMAE—IR, XHEHMSNEZEAIEBASRETRIINT, SHREBEIN.

<new_question_3> JR—tRISOMNET, NLURIIBTZ VNG, ME—FXMET, WACAI455H?
<reason_3> BFHBLMABT—IR, ERBFEMIIINT, XHRSBRRGOMEICHIHRTER.

TORBEIRRBRAIRITIR, BIRIZAR <new_question_i>\<reason_i> I REIRIEA, MFRIFEFHIBE, SILURBRT=4%, 8
EIFREIRNE, ROFN=1SREOEHRESEN, HESNIERRMY, BIFFEH—LAREENEME,

[BEIRRAREIEE]

{Question}

You are a human expert in creating exam questions, aiming to assess whether your students have truly fully understood certain
strategic reasoning problems, or if they have merely "memorized” the solution steps. To achieve this, you need to adapt some strategic
problems to increase the difficulty of the assessment for students.

There are many adaptation approaches.For example, you can simplify the numbers in the problem so that it requires fewer steps to
solve, testing whether the student still uses the original complex steps as before.

You can also modify the problem in a way that makes it unsolvable, rendering the original approach ineffective, to test whether the
student can realize this.

Additionally, you can alter, remove, or add certain constraints to the problem, completely changing the solution approach, to test
whether the student understands that changes in different scenarios make the original reasoning paradigm inapplicable.

Of course, if you have better adaptation ideas for specific problems, you are encouraged to make more interesting modifications. There
is an example for reference.

[Example]
<original_question> Burning an uneven rope from start to finish takes 1 hour. Given several such ropes, how can you measure 45
minutes?

<new_question_1> Burning an uneven rope from start to finish takes 1 hour. Given several such ropes, how can you measure 60
minutes?

<reason_1> Changing 45 minutes to 60 minutes makes the problem very simple, testing whether the student can realize that only a
small step is needed to complete the task.

<new_question_2> Burning an uneven rope from start to finish takes 1 hour. Given one such rope, how can you measure 45 minutes?
<reason_2> The number of ropes is reduced to only one, making it impossible to use multiple ropes for timing as in the original
approach, thus invalidating the original method.

<new_question_3> Burning an even rope from start to finish takes 1 hour. Given one such rope, how can you measure 45 minutes?
<reason_3> The number of ropes is reduced to only one, but the rope becomes even, allowing for a new timing solution based on the
burning position.

Below is the original problem that you need to adapt. Please present your adaptations in the format of <new_question_i> <reason_i>. If
you have good ideas, you are not limited to three adaptations. However, please note that the three adapted questions in the example
are all reasonable, and each question is independent. Avoid creating unreasonable problems.

[Problem for you to adapt]
{Question}.

Figure 3: Our designed prompt for calling LLM to generate variants.

TR, B ER, o EFE DR ANERTIET L, ZREHEFR—
B, SeFRBELRE TR TR T ORI IRAE - (XFES T LR -
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