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Rethinking CNN-Based Pansharpening: Guided
Colorization of Panchromatic Images via GANs

Furkan Ozcelik, Ugur Alganci, Elif Sertel, and Gozde Unal

Abstract—Convolutional Neural Networks (CNN)-based ap-
proaches have shown promising results in pansharpening of
satellite images in recent years. However, they still exhibit
limitations in producing high-quality pansharpening outputs. To
that end, we propose a new self-supervised learning framework,
where we treat pansharpening as a colorization problem, which
brings an entirely novel perspective and solution to the problem
compared to existing methods that base their solution solely on
producing a super-resolution version of the multispectral image.
Whereas CNN-based methods provide a reduced resolution
panchromatic image as input to their model along with reduced
resolution multispectral images, hence learn to increase their
resolution together, we instead provide the grayscale transformed
multispectral image as input, and train our model to learn
the colorization of the grayscale input. We further address the
fixed downscale ratio assumption during training, which does
not generalize well to the full-resolution scenario. We introduce
a noise injection into the training by randomly varying the
downsampling ratios. Those two critical changes, along with the
addition of adversarial training in the proposed PanColorization
Generative Adversarial Networks (PanColorGAN) framework,
help overcome the spatial detail loss and blur problems that are
observed in CNN-based pansharpening. The proposed approach
outperforms the previous CNN-based and traditional methods as
demonstrated in our experiments.

Index Terms—Pansharpening, convolutional neural networks
(CNN), generative adversarial networks (GAN), colorization,
PanColorGAN, AI, deep learning, self-supervised learning, image
fusion, super-resolution.

I. INTRODUCTION

DESIGNING algorithms to obtain images with high-
resolution properties both in spatial and spectral domains

is an important task in remote sensing. As a single sensor
is not sufficient to get dual-domain high-resolution images,
many of the satellites such as Pleiades, GeoEye, Quickbird,
and Worldview constellations contain both panchromatic and
multispectral sensors. Panchromatic sensors focus on spatial
resolution while providing images with a single-band, whereas
multispectral sensors focus on spectral resolution while pro-
viding multi-band images. The fusion of these two modalities
with a prescribed algorithm in order to obtain high-resolution
images in both domains is known as pansharpening.
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Traditional methods of pansharpening algorithms can be
separated mainly into two categories: component substitu-
tion based methods and multiresolution analysis methods [1].
Component Substitution (CS) methods transform and split
multispectral images into spatial and spectral components,
then try to replace the spatial component with a component
obtained from panchromatic images. Many variants of CS
methods such as PCA, IHS, GS, Brovey Transform, BDSD,
and PRACS appeared in the literature [2]. Multiresolution
Analysis (MRA) methods mainly obtain spatial information
by first applying a filter to panchromatic images, followed
by an injection of the obtained information to multispectral
images [3]. There are many examples of MRA methods
such as the high-pass filtering (HPF), MTF based methods
like Generalized Laplacian pyramids with modulation transfer
function (MTF-GLP), MTF-GLP with high pass modulation
(MTF-GLP-HPM), MTF-based algorithms with spatial princi-
pal component analysis (SPCA) and wavelet-based methods
like a trous wavelet transform (ATWT), undecimated discrete
wavelet transform (UDWT), and proportional additive wavelet
intensity method (AWLP) [4]–[9].

Recent availability of large datasets, increased computing
power, advanced architectures and optimization led the way
to the adaptation of deep learning techniques to numerous
problems in computer vision as well as in remote sensing.
Typically, a dedicated convolutional neural network (CNN)
model is built in order to learn specific supervised learning
tasks such as classification and detection, and lately to learn
unsupervised learning tasks, particularly in image generation
problems. For the latter, generative models such as Convo-
lutional Autoencoders and Generative Adversarial Networks
(GANs) [10] are applied to self-supervised image synthesis
tasks such as Super-Resolution (SR) [11] and Colorization
[12]. The self-supervision in SR models is realized by reducing
the resolution of the input (2× - 4× times typically) during
training and allowing the network model to learn to increase
the resolution of the input images. The reconstruction loss
between the output of the network and the original image is
calculated, which is used in the optimization of the network
parameters. Colorization is another popular self-supervised
synthesis task encountered in computer vision. This time, the
network tries to learn to colorize grayscale images, which are
created from their color counterparts in the training phase.
As the network tries to reconstruct original color images, the
corresponding loss between the output of the network and the
original image is utilized in the network optimization process.

In the field of remote sensing, in addition to widely-studied
supervised learning problems such as land cover classification,
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Fig. 1. Standard CNN-based Pansharpening Framework. Generator refers to a CNN model. A loss function is calculated to train the CNN in order to produce
the pansharpened image Ŷ .

building detection, deep network models are recently applied
to the pansharpening task [13]. Existing CNN-based pansharp-
ening methods in the literature [14]–[22] can be re-interpreted
in the framework of self-supervised learning for the super-
resolution task while following the commonly used Wald’s
protocol [23]. Masi et al proposed a three-layer convolutional
neural network that is inspired from image super-resolution
using deep convolutional neural networks [14]. Yang et al
proposed a model which uses domain-specific knowledge
to enhance structural and spectral properties, while employ-
ing high-pass filtering instead of using directly the image
[15]. Huang et al used a stacked modified sparse denoising
autoencoder for pretraining a deep neural network model
effectively [16]. Liu et al established a model that fuses infor-
mation gathered from panchromatic and multispectral images
at a feature level after several convolution operations [18].
Later, they enhanced the model via a generative adversarial
framework by adding a discriminator network [19]. Scarpa
et al utilized a pretrained model that does a fine-tuning on
the target image before the inference stage [20]. Wei et
al designed a convolutional neural network that uses deep
residual learning [22]. In a recent study, Vitale et al devised
a cross-scale learning model where it combines losses from
both reduced resolution and full resolution comparisons [24].
Although they differ in many aspects, all CNN-based methods
have some common properties in the training procedure. In
the training phase, pansharpening models are provided with
the reduced resolution panchromatic and reduced resolution
multispectral image as inputs in order to learn to reconstruct
a high-resolution multispectral image at the output. Inspired
by Wald’s protocol, all previous studies treated CNN-based
pansharpening only as a super-resolution task. However, we
hypothesize and show in this paper that using another self-
supervised learning task, namely colorization, is more suitable
to the pansharpening problem.

The motivation behind our introducing a colorization-based
self-supervised learning approach to pansharpening is based
on our observations of an inefficient level of spatial-detail-
preservation in the former approaches. We demonstrate this
problem and describe why it is encountered in Section II.
As a solution, we present a novel pansharpening approach,

along with a new GAN-based dedicated colorization model,
which we call PanColorGAN in Section III. In Section IV,
we present the results of the new method, which demonstrates
an improved quantitative and qualitative performance, along
with discussions, followed by conclusions in Section V.

II. ELUCIDATING WHY COLORIZATION TASK IS BETTER
SUITED TO CNN-BASED PANSHARPENING

In this section, we elucidate issues with the super-resolution
based pansharpening approach. First, we describe the standard
CNN-based pansharpening framework that is inspired by the
super-resolution task in Section II-A. In Section II-B, we
present the spatial detail differences across reduced resolution
panchromatic images and full resolution multispectral images.
We also demonstrate why current pansharpening with deep
learning approaches are not efficiently handling this problem
in the same section. In Section II-C, we discuss the blurring
problem that is caused by an inherent uncertainty in the ratio
between full resolution and reduced resolution images.

A. Standard CNN-based Pansharpening Framework

As stated in Section I, several pansharpening models were
built on CNNs or GANs in the recent literature. Although
they offer various architectures, their underlying learning
procedures are similar. The standard procedure in CNN-based
pansharpening methods is based on the Wald’s protocol, which
is designed to overcome the reference problem in quantitative
analysis of pansharpening. In Wald’s protocol, the algorithm
gets the reduced resolution panchromatic image and the re-
duced resolution multispectral image as input, and attempts to
return an image similar to the original multispectral image as
its output through various image processing operations. Deep
learning-based models, on the other hand, involve extensive
training processes that are designed while adopting Wald’s
protocol.

We illustrate the standard CNN-based pansharpening frame-
work in Figure 1. Suppose that we have YPAN and YMS ,
which are corresponding panchromatic (PAN) and multispec-
tral (MS) images that we want to fuse through pansharpening.
First, YPAN is reduced by 4× to the size of the YMS to obtain
the XPAN image. YMS is reduced by 4×, then upsampled
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(a)

* *

(b)

* *

(c)

Fig. 2. Spatial-level-of detail comparison between reduced panchromatic
and multispectral images demonstrated on Pleiades dataset. (a) Original
panchromatic image. (b) Reduced panchromatic image. (c) Multispectral
image. Orange boxes on the left are zoomed into for display on the right.

TABLE I
QUANTITATIVE ANALYSIS OF SPATIAL QUALITY

INCOMPATIBILITY BETWEEN REDUCED PANCHROMATIC
IMAGES AND MULTISPECTRAL IMAGES

PSNR sCC SSIM
(worst-best) (0-inf) (0-1) (0-1)

Reduced PAN - Grayscale MS 24.704 .088 .586
Reduced PAN(Blurred) - Grayscale MS 30.751 .424 .848

by 4× to obtain the XMS . XPAN and XMS are provided
to a generator network G, hence Ŷ = G(XPAN , XMS) is
obtained at the output as the generated or pansharpened image.
A reconstruction loss function, either with an L2 or L1 norm
is calculated between the output and the multispectral image.

The procedure with standard CNN-based models with or
without an adversarial loss then is executed through an opti-
mization of the overall loss function (see Section III-B). Next,
we explain the disagreement in spatial details after training
such a model.

B. Problems in Reduced Resolution Pansharpening

When one trains a model with the standard CNN-based pan-
sharpening framework, although quantitative results between
original multispectral and generated pansharpened images are
typically highly favorable, a closer inspection of the inputs
and outputs shows that pansharpened images that are obtained
from the model do not preserve the desired sharp spatial
details that exist in the reduced panchromatic image inputs. We
notice that the problem lies within the crucial assumption that
the reduced panchromatic images and original multispectral
images should have similar spatial quality as they bear the
same spatial resolution level. On the contrary, it can be
both qualitatively and quantitatively argued that the reduced
panchromatic images exhibit better spatial quality than original
multispectral images.

Figure 2 qualitatively demonstrates this problem, where
spatial detail disagreement in terms of lack of sharpness
in detail, blurriness, reduced contrast differences, and less
continuity in lines in the images can be clearly seen by visual

inspection (compare zoomed image patches in (b) and (c)).
In order to quantitatively test our conjecture, we calculate
three measures, which are PSNR, sCC, and SSIM on a set of
reduced panchromatic images given the corresponding gray-
transformed multispectral images as a reference. Next, we
apply a blurring Gaussian filter with 5 × 5 kernel (σ = 2) to
obtain the blurred reduced panchromatic images. We calculate
the three measures using this time the blurred panchromatic
image rather than the original panchromatic image (Table I).
Per our hypothesis, quantitative measures should improve with
blurred versions of the reduced panchromatic images, since
we claim that original multispectral images are blurrier than
reduced panchromatic images. It can be observed in Table I
that all three measures change in an expected direction, hence
the blurred versions of the reduced panchromatic images show
increasingly similar characteristics to multispectral images.

Current deep learning methods used in pansharpening,
which are inspired mainly from super-resolution, inherently
incorporate the abovementioned spatial detail disagreement
issue into their procedures as they involve mapping a func-
tion from a pair of reduced resolution panchromatic image
and reduced resolution multispectral image to the original
multispectral image. Our analysis above shows that reduced
resolution panchromatic images contain more spatial details
than the original multispectral image, which are lost during
the prescribed procedure. This is the main reason behind
obtaining decent quantitative results, whereas pansharpened
images exhibit reduced spatial details compared to original
panchromatic images.

C. Problems in Full Resolution Pansharpening

Similar to the reduced resolution procedures, the full-
resolution pansharpening procedure is also prone to a specific
blurring problem due to the strong assumption of learning a
“fixed upsample scale” (e.g. say a typical ratio of 4×) in the
training phase of standard CNN-based approaches. As the level
of detail of the 4× reduced resolution panchromatic image
may not correspond to that of the original multispectral image,
training the CNN-based learning model according to the
Wald’s Protocol naturally cannot match the desired upsampling
ratio exactly, and leads to blurry results for the full resolution
case. We present a remedy to that problem, by introducing
random downsampling ratios, rather than a fixed (e.g. 4×)
reduced scale during training, as the latter does not generalize
well to full resolution pansharpening, as is demonstrated in
Section IV.

III. PANSHARPENING WITH GUIDED COLORIZATION
USING GANS (PANCOLORGAN)

A. Proposed Framework

To address the shortcomings of the standard CNN-based
approaches, we present a new pansharpening method that
faithfully preserves spatial details given by the input panchro-
matic image in the inference stage. This is achieved by
designing a self-supervised learning procedure based on the
colorization task rather than super-resolution task. This new
task that is cast upon the network model requires that during
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Fig. 3. Proposed Training Scheme for PanColorGAN Model: A reconstruction loss Loss(L1) between the colorized output of the ŶG input and YMS , as
well as an adversarial loss that evaluates the generation quality of ŶG generated from XGMS and XMS are utilized to train the PanColorGAN.

the training phase, we provide the grayscale multispectral
image, whose spatial details perfectly agree with those of
the original multispectral image. This is not the case for the
reduced panchromatic image due to spatial detail disagreement
problem that we discussed in Section II-B.

To further expound our reasoning on colorization based
pansharpening versus super-resolution based pansharpening,
an analogy of comparison between traditional CS and MRA
methods can be made. Existing super-resolution based pan-
sharpening methods can be considered more similar to MRA
methods than CS methods because, in the training phase,
the model tries to increase spatial details of reduced res-
olution multispectral image with spatial features extracted
from reduced resolution panchromatic image by comparing
it to the original multispectral image. On the other hand, the
colorization based pansharpening method we propose can be
interpreted more in line with a CS approach rather than an
MRA approach. As we will see more details in the following
parts, our model learns to generate an original multispectral
image by taking its reduced resolution multispectral image
and the corresponding grayscale multispectral image as inputs,
which is interpreted as colorization. We can also interpret
this in a way that our model learns to separate spectral and
spatial components of the multispectral image during training.
Then, in the testing stage, we provide the corresponding
panchromatic image instead of the grayscale multispectral
image, which can be interpreted as substitution of spatial
components between two images, which alludes to traditional
CS approaches.

Furthermore, we improve the full-resolution pansharpening
procedure by injecting noise into the assumed downsampling-
upsampling ratios between the original panchromatic and
multispectral images, which induces a regularization effect
into our model.

The proposed PanColorGAN pansharpening learning model
is illustrated in Figure 3. First, let us describe the original
PanColorGAN with a fixed down/up-sampling ratio. Suppose
that the input multispectral image YMS is first downsampled
by k = 4× then upsampled by k = 4× to obtain XMS . YMS is
also transformed to grayscale by taking an average of channels

to construct a grayscale input XGMS . Later, XGMS and XMS

are provided as input to the generator network G and ŶG =
G(XGMS , XMS) is obtained as the output. A reconstruction
loss is calculated between ŶG and YMS .

In our PanColorGAN, as in traditional GANs, an additional
discriminator network D is also built to provide an Adversarial
Loss, which is calculated for ŶG because we would like to
augment the representation capability of the generator network
by providing feedback on the quality or the credibility of its
generated output. Details of the model are explained next.

B. Adversarial Loss (GAN - RaGAN)

Generative Adversarial Networks (GANs) belong to the
class of generative networks that learn to synthesize images
with a target distribution by competition of typically two
networks, where one is the generator and the other one is the
discriminator [10]. In vanilla GANs, the generator G learns
to transform a random noise distribution to the target image
distribution. Discriminator D aims to correctly classify the
output of G with a “generated” label versus “real” label. Here,
the “real” refers to a label of the training data. D also performs
the same operation on images generated by the model. This
is the basis of the adversarial loss in the vanilla GAN [10],
which is used in update of both G and D:

LDGAN = −Exr∼P log(D(xr))]− Exf∼Q[log(1−D(xf ))]

LGGAN = −Exf∼Q[log(D(xf ))].

Here, D(x) = σ(C(x)), where C(x) refers to the final
output of the discriminator network after which the activation
function σ is applied. xr refers to real data which is sampled
from the dataset and xf refers to data which is generated
with generator G. A more recent GAN framework, Relativistic
Average GAN (RaGAN) [25], utilizes the following losses
instead:

LRaGAN = −Ex1
[log(D(x1, x2))]− Ex2

[log(1−D(x2, x1))]

LDRaGAN = LRaGAN (xf , xr), LGRaGAN = LRaGAN (xr, xf )

where D(x1, x2) , σ(C(x1) − E[C(x2)]). While a discrim-
inator in vanilla GAN predicts how realistic an image is,
relativistic discriminator evaluates the realness of real and fake
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Fig. 4. PanColorGAN model: Architecture details for its Generator and Discriminator Networks are depicted. Two modes exist for Generator network: In
the training phase, XGMS is provided along with XMS to generate ŶG. In the testing phase, XPAN is provided along with XMS to generate ŶP . Also
during the training phase, Discriminator network gets two different types of batches. A real batch consists a concatenated set of XGMS , XMS and YMS .
A fake batch consists a concatenated set of XGMS , XMS and ŶG, as shown on the bottom right.

images relatively. As it has been shown that using RaGAN loss
provides sharper details while having more stable training, we
also incorporate RaGAN loss in our model.

C. PanColorization GAN (PanColorGAN) Model

Figure 4. depicts the details of the PanColorGAN architec-
ture. Its generator G is a modified and expanded version of
the UNet [26] architecture. It has shortcuts of concatenation
across layers in order to provide improved optimization in
terms of reducing the vanishing gradients problem. G has four
main parts that serve specific goals: (i) spatial detail extrac-
tion, (ii) color injection, (iii) feature transformation, and (iv)
pansharpened image synthesis. The spatial detail extraction
part takes a grayscale image (XGMS) as input and applies
3×3 convolutions while obtaining color features from the color
injection part. The color injection part is a fully convolutional
architecture that applies 3 × 3 convolutions four times and
injects extracted color features from the multispectral image
(XMS) to spatial detail extraction layers of the network after
every convolution operation except the first one. There is a
residual block in the middle of the network that transforms
concatenated spatial and spectral features and prepares them

for a synthesis of the pansharpened image. Finally, the network
slowly increases height and width, and decreases the depth
of features by applying upsampling and 3 × 3 convolutions
while obtaining features from the detail extraction part, as
in the standard Unet architecture. Batch normalization and
LeakyReLU activation are inserted after every convolution
operation. After obtaining features as the same dimension as
the multispectral image, the tanh activation is applied to map
the image intensities to [-1,1] interval. Using tanh provides
faster and more stable training of GANs [27]. This produces
the output ŶG of the generator network.

PanColorGAN discriminator D has a conditional patch-
GAN architecture [28], which operates on image patches,
and gives an output for every receptive field it sees. Hence,
the output indicates whether those receptive fields seen by
D look realistic or not. Then those outputs are aggregated
in a patchGAN loss for the discriminator network D. The
reconstruction loss for the Generator is not calculated over
patches, but calculated pixelwise for the whole image. In a
conditional GAN framework, conventionally the D network
takes the output of the generator or ground truth along with
inputs. Pansharpening can be regarded in the framework of
image-to-image translation idea, which was first presented in
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Fig. 5. Full Resolution Inference (Testing) Scheme: YMS is upsampled by 4× to obtain YMSUP
. YMSUP

and YPAN are fed to the trained PanColorGAN
generator in order to get the full resolution pansharpened image ŶF at the output.

the study of Isola et al [28]. In image-to-image translation
with conditional adversarial networks, for the discriminator
network D, the inputs to the generator are taken as conditions
in its decision of real or fake. For that reason, during our
training, fake batches consist of grayscale images XGMS ,
reduced multispectral images XMS , and outputs of G net-
work ŶG. Real batches consist of XGMS , XMS and original
multispectral images YMS . This procedure differs from that
of the unconditional generative adversarial networks where
the generator network synthesizes images from randomly
sampled latent variables and the discriminator receives only
the generated images and real images at its input. Providing
all related inputs with generated and real images ensure that
the discriminator network understands visual relations between
input and output images. D applies 4×4 convolutions with 2-
strides 5 times and reduces height and width while increasing
depth. Then a final convolution reduces the depth to 1. Batch
normalization and LeakyReLU activation are executed after
every convolution layer. Sigmoid operation is applied in order
to shrink the interval to [0,1]. Hence, at the output of D,
indicators of the realness of receptive fields in the given image
are obtained.

PanColorGAN model utilizes the following losses for learn-
ing the weights of the G and D networks:

LD = LRaGAN (YMS , ŶG) (1)
LG = LRec + αLRaGAN (ŶG, YMS) (2)

LRec = ‖ YMS − ŶG ‖1 (3)

The reconstruction loss is designed as the Mean Absolute Error
(L1 Loss), whereas the adversarial loss is designed as the
relativistic average GAN loss. While the reconstruction loss
increases pixelwise similarity between generated images and
corresponding multispectral images, the adversarial loss brings
closer the distribution of generated images to multispectral
images and provides sharpness in detail. In PanColorGAN,
LRec measures the distance between YMS and ŶG rather than
ŶP , because the latter would lead the training network to bias

the spatial distribution of the pansharpened image towards the
multispectral image domain, which is not desirable, as argued
before in Section II.

D. Random Downsampling of Multispectral Images

As we discussed in Section II-C, training the pansharpen-
ing network with 4× downsampling scale reduces the rep-
resentation capacity of the model, particularly for the full
resolution pansharpening scenario. Hence, we substitute 4×
downsampling operation with a random downsampling opera-
tion in an enhanced model, which we call PanColorGAN+RD
(Random Downsampling). As we want the model to learn the
colorization of grayscale transformed multispectral images and
panchromatic images, the model should be robust to variations
in the spatial resolutions of the reduced multispectral images,
which are used for their spectral information. When random
downsampling procedure is used for an image, say with height
and width sizes of 256, instead of downsampling the image
to a fixed size of 64 × 64, we sample an integer, say s,
from a uniform random distribution between (a, b), where a
and b are two predefined numbers (See Section IV-A). We
downsample the image to the selected size s × s, and then
immediately upsample it back to 256×256. We emphasize here
that this random downsampling process is applied only during
the training phase of the network. In the testing phase, random
downsampling is not utilized. This modification provides a
way to PanColorGAN to improve its learning as follows:
when only 4× downsampling is used in the training stage,
the network learns to interpolate the reduced panchromatic
image and the reduced multispectral images with the given
scale and does not learn the colorization task properly. As the
actual spatial resolution scale difference between the former
two is not known exactly, the learned result provides neither
the desired nor the sufficient super-resolution level when the
model is applied on full resolution. This effect is demonstrated
in Section IV-D.
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E. Inference through proposed PanColorGAN models

After the training phase is completed, during the reduced
resolution testing phase, the original YPAN image is reduced
to the same size as the multispectral image to obtain XPAN .
The XPAN and XMS images are provided to the trained Pan-
ColorGAN generator network G and Ŷ = G(XPAN , XMS)
is obtained as the output, for the reduced resolution inference.

Figure 5 illustrates how to execute the full resolution, i.e. the
real life scenario in pansharpening. The original YPAN and 4×
upsampled version of YMS are provided to the trained PanCol-
orGAN generator network G, and ŶF = G(YPAN , YMSUP

) is
obtained as the full-resolution pansharpened image output.

IV. EXPERIMENTS AND RESULTS

In this section, we provide implementation details of exper-
iments, utilized datasets and evaluation indexes, quantitative
and qualitative evaluation of reduced resolution and full resolu-
tion results. Furthermore, we present transferability properties
of our model as well as discussions of the results. For further
visual results, we refer to the following website. 1

A. Implementation Details

We implemented PanColorGAN in Pytorch 1.0 and trained
it on one Titan RTX GPU. An iteration in the training phase
takes approximately 2 seconds, which makes an epoch approx-
imately 1 hour for our training set. We trained our models
for 100 epochs and selected the best checkpoint in the latest
epochs in terms of performance, which took a model 4 days
to train. As a baseline GAN-based pansharpening method, we
build a pansharpening model inspired by the super-resolution
task, which is similar to other standard CNN-based methods.
We name it as PanSRGAN, which is trained with XPAN input
instead of XGMS , following the same procedure in standard
CNN-based pansharpening framework. We compare it with our
PanColorGAN model in order to perform an ablation study to
assess the provided improvements.

Disabling the adversarial loss and using only the reconstruc-
tion loss leads to blurrier image generation. This blurriness
property occurs due to characteristics of reconstruction loss,
for instance as in pixel-wise minimum squared error loss that
tends to average details of local neighborhoods. Adversarial
loss provides a perceptual similarity metric to training which
leads to sharper results in contrast to reconstruction loss [29].
The advantages of using generative adversarial networks in-
stead of only generators with reconstruction loss were reported
in the study of Liu et al [19] for the pansharpening case as
well. Considering the beneficial effects of adversarial loss in
image generation, we also adapt the generative adversarial
network framework to all pansharpening models proposed in
this work.

In our experiments, the mini-batch size was set to 16. We
used Adam optimizer with an initial learning rate 0.0002,
β1 as 0.5 and β2 as 0.999. We did not use weight decay
because it decreased the performance of image synthesis.
Adversarial loss weight α was set to 0.005 in Eq. 2. A

1http://vision.itu.edu.tr/supplimentaryceliketal/

leakyReLU activation with 0.2 slope is used in all activation
layers. During the training of the PanColorGAN+RD model,
for each image in a given batch, a random downsampling size
is sampled uniformly as an integer from the [20, 80] interval.
The upsampling scale is then automatically set to upscale
the downsampled image back to 256. Both upsampling and
downsampling are carried out with a bicubic interpolation
scheme.

B. Dataset and Evaluation Indexes

The first dataset consists of 6 full-sized image scenes from
Pleiades 1A&1B twin satellites owned by AIRBUS. Five of
them are used for training and one of them is used for
testing. Frames are divided into patches of 1024 × 1024 for
panchromatic images, 256 × 256 for multispectral images.
Thus, 30000 training samples and 5700 test samples are
gathered for the Pleiades dataset. Pleiades image data includes
4 channels for multispectral images which are red, green,
blue, and near-infrared with 2m resolution. Its single-banded
panchromatic image has 0.5m resolution. The dataset consists
of images from both rural and urban areas in Turkey. In
addition, image acquisition angles and seasons are in a wide
range, which helps to train the model with a dataset that
reflects different illumination and geometric conditions. The
second dataset we utilize in our testing experiments consists
of four image scenes from Worldview 2 and Worldview
3 satellites owned by Digital Globe (Maxar Technologies),
which is published as open source [30]. We extract 350
patches (256 × 256 MS, 1024 × 1024 PAN) from 4 cities,
which are Stockholm, Washington, Tripoli and Rio. Similar to
the Pleiades dataset, Digital Globe data has 4 channels for
multispectral images which are red, green, blue, and near-
infrared. The spatial resolution of 4-band multispectral data
is 1.6m and single panchromatic data is 0.4m for Worldview
2 images, while the resolution of 4-band multispectral data
is 1.2m and single panchromatic data is 0.3m for World-
view 3 images. Both Pleiades and Worldview images were
obtained in UTM projection system with appropriate zones.
Detailed information about the image dataset is provided in
Table II. We trained the following models: (i) the proposed
PanColorGAN; (ii) PanColorGAN+RD: PanColorGAN with
Random Downsampling; (iii) PanSRGAN: the baseline GAN-
based pansharpening model; (iv) TA-CNN: Target-Adaptive
CNN-based pansharpening [20]; (v) PanNet: A Deep Network
Architecture for Pan-Sharpening [15]. For comparison, we also
utilize traditional pansharpening algorithms that are available
in the Open Remote Sensing repository [31] which are BDSD
[32], ATWT [33], GSA [34], GLP-REG-FS [35], NIHS [36],
and Semiblind Deconv [37]. For training TA-CNN and PanNet
models, we used the codes provided by the authors [38], [39].

For the quantitative analysis, across all algorithms including
the baselines, QAVE [40], SAM [41], ERGAS [42], sCC [43],
and Q [44] are used as performance measures that include
references in their calculations. We also analyze all algorithms
in full resolution with no-reference metrics. Non-reference
performance measures we utilize are Ds, Dλ, and QNR [45].
For calculation of all metrics, again we use the MatlabTMcode
in Open Remote Sensing repository [31].

http://vision.itu.edu.tr/supplimentaryceliketal/
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Fig. 6. Reduced Resolution Testing Scheme. (a) YPAN is downsampled by 4× to obtain XPAN . YMS is downsampled and then upsampled by 4× to obtain
the XMS image. XMS and XPAN are given to the generator G in order to get pansharpened image ŶP in the natural operation mode of the PanColorGAN,
PanSRGAN, and other CNN-based pansharpening models. (b) This mode is shown only for evaluation of the training procedure of PanColorGAN-GMS and
PanColorGAN+RD-GMS models: YMS is converted to grayscale to obtain XGMS . XMS and XGMS are fed to the generator G to obtain the colorized
image ŶG.

TABLE II
INFORMATION OF SATELLITE IMAGES IN DATASETS

Region Satellite Acquisition Date MS/PAN m Across Track Along Track Train/Test

Aydin Pleiades 1A 3/3/2017 2 / 0.5 -6.91 18.12 Train
Istanbul Pleiades 1A 4/29/2017 2 / 0.5 -22.92 -11.15 Train
Istanbul Pleiades 1A 11/25/2017 2 / 0.5 4 -18.77 Train
Bursa Pleiades 1A 4/4/2018 2 / 0.5 4.32 -14.60 Train

Bilecik Pleiades 1A 4/25/2017 2 / 0.5 3.08 -13.89 Train
Mugla Pleiades 1A 2/6/2017 2 / 0.5 -9.08 15.73 Test

Stockholm Worldview 2 8/27/2016 1.6 / 0.4 6.20 -7.10 Test
Rio Worldview 3 5/2/2016 1.2 / 0.3 23.90 -2.50 Test

Tripoli Worldview 3 3/8/2016 1.2 / 0.3 -3.70 5.00 Test
Washington Worldview 2 8/15/2016 1.6 / 0.4 10.10 -7.70 Test

C. Evaluation of Reduced Resolution Results

Figure 6 depicts reduced resolution testing scheme. We
construct two versions of the method during inference, where
we provide: (1) grayscale multispectral image alongside re-
duced multispectral images to obtain PanColorGAN-GMS; (2)
reduced panchromatic image alongside reduced multispectral
images to obtain PanColorGAN-PAN model. Similarly, two
versions PanColorGAN+RD-GMS and PanColorGAN+RD-
PAN models are constructed for the random-downsample
version of our method. Reduced panchromatic images and
reduced multispectral images are utilized for traditional pan-
sharpening algorithms, CNN-based methods, and the PanSR-
GAN model.

1) Quantitative Analysis of Reduced Resolution Re-
sults: For all the with-reference measures in Table III,

PanColorGAN-GMS outperformed all other techniques, both
CNN-learning based, and previous traditional approaches.
PanColorGAN-GMS surpasses PanColorGAN-PAN extension
models, where for the latter, the reduced panchromatic image
is used as the input during inference. This is expected because
the training procedure is set up to force the model to learn
to colorize the gray-transformed multispectral image, hence
the loss functions make use of the grayscaled multispectral
images, not the reduced panchromatic images. Also, although
standard CNN-based models such as PanNet, TA-CNN, and
PanSRGAN perform clearly worse in visual quality (demon-
strated later), they obtain second-tier yet close performances
to other PanColorGANs, still staying behind PanColorGAN-
GMS.
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TABLE III
WITH-REFERENCE PERFORMANCE INDICATORS AT REDUCED

RESOLUTION ON PLEIADES DATASET

QAVE Q sCC SAM ERGAS
(worst-best) (0-1) (0-1) (0-1) (inf-0) (inf-0)

BDSD .692 .673 .792 2.649 3.049
ATWT .718 .704 .780 2.226 2.669
GSA .689 .669 .774 2.535 3.177
GLP-REG-FS .716 .702 .795 2.329 2.815
Nonlinear IHS .698 .682 .821 1.873 2.597
Semi-blind Convolution .712 .700 .750 2.276 19.179
PanNet .885 .882 .911 1.803 1.440
TA-CNN .891 .888 .933 1.509 1.295
PanSRGAN .917 .889 .960 1.759 1.480
PanColorGAN-GMS .956 .942 .981 1.362 1.039
PanColorGAN-PAN .808 .780 .857 2.116 2.222
PanColorGAN+RD-GMS .949 .930 .976 1.620 1.219
PanColorGAN+RD-PAN .794 .763 .850 2.351 2.447

2) Reduced Resolution Scenario Visual Results: Figure 7
shows results from all algorithms on Pleiades test dataset.
The corresponding full-resolution panchromatic image was
given in Figure 2 on the left. Images in (c)-(h) belong to
the results of traditional approaches, and (i)-(o) depict results
of the CNN-based methods. Artifacts in the Nonlinear IHS
in (g) are immediately noticeable. The continuity in lines, as
well as sharp contrast changes across regions of the pinkish
roofs of an industrial complex in the bottom center parts
of the image, is preserved only in a few methods. Among
those, PanColorGAN-PAN (m) reproduced those features most
successfully, followed by BDSD (d), PanColorGAN+RD-PAN
(o). Similarly, the spectral or the color reproduction in the
results can be gauged from the orange rooftops. Those colors
are preserved best in all PanColorGAN models, and PanSR-
GAN to a degree, whereas the traditional methods all lack the
color saturation level of the original multispectral image (a).
PanNet (j) and TA-CNN (i) also provided similar visual results
to PanSRGAN (k), however, it can be observed that they
could not preserve spatial details. The blurring characteristics
of the methods are clearly visible, starting with Nonlinear
IHS, ATWT, and relatively in all traditional methods except
BDSD. Among CNN-based approaches, PanNet, TA-CNN,
PanSRGAN, PanColorGAN-GMS, and PanColorGAN+RD-
GMS methods show blurrier characteristics with respect to the
PanColorGAN-PAN and PanColorGAN+RD-PAN methods,
which both clearly outperform all the methods in visual in-
spection in terms of both structural and spatial properties while
keeping spectral properties in an acceptable level when com-
pared to the original multispectral image visually. Although,
we obtain higher quantitative scores for PanColorGAN-GMS
when compared to the PanColorGAN-PAN variants, it is
well-known that higher quantitative scores do not necessarily
indicate better perceptual results, as this was also reported in
the literature [14].

TABLE IV
NO-REFERENCE PERFORMANCE INDICATORS AT FULL

RESOLUTION ON PLEIADES DATASET

Dλ Ds QNR
(worst-best) (inf-0) (inf-0) (0-1)

BDSD .037 .094 .872
ATWT .101 .178 .740
GSA .132 .313 .598
GLP-REG-FS .089 .150 .774
Nonlinear IHS .046 .080 .876
Semi-blind Convolution .123 .227 .678
PanNet .060 .044 .895
TA-CNN .041 .037 .920
PanSRGAN .015 .117 .869
PanColorGAN .042 .099 .862
PanColorGAN+RD .048 .134 .824

D. Evaluation of Full Resolution Results

We evaluate the quantitative and qualitative results of the
full-resolution experiments in this section.

1) Quantitative Analysis of Full Resolution Results: Ta-
ble IV refers to calculated performance measures that require
no-reference, as a ground truth or reference pansharpened
image does not exist in the real-life full-resolution scenario.
TA-CNN provides the best quantitative performance among
previous methods followed by PanNet, Nonlinear IHS, and
BDSD, whereas both PanColorGAN and PanSRGAN achieve
similar results. The measure Dλ focuses on spectral char-
acteristics and Ds focuses on spatial details, whereas QNR
is a combination of both measures. In spectral measures,
PanSRGAN achieves a good performance in Dλ, whereas TA-
CNN achieves the best performance in Ds.

2) Full Resolution Scenario Visual Results: Figure 8 shows
full resolution results from all algorithms on the Pleiades test
dataset. Images in (a) and (b) refer to the input, i.e. the original
panchromatic and multispectral images, respectively. Images
in (c)-(h) refer to results produced by traditional methods,
whereas (i)-(m) refer to CNN-based methods. Artifacts in
results of BDSD (c), (GLP-REG-FS (f), and Nonlinear IHS
(g) from traditional methods, as well as in results of PanSR-
GAN (k), PanColorGAN (l) are apparently visible. Although
PanNet (i) and TA-CNN (j) gave decent results in no-reference
metrics, visual results do not support those numbers. They
produce more blurry results when they are compared with
PanColorGAN+RD. Among the traditional methods, GSA
(e) and Semi-blind Convolution (h) produce better results
than the former, whereas PanColorGAN+RD (m) provides
the best performance. For instance, when the bending corner
segments of the white complex structures in the middle of
the image are compared, better preservation of continuity of
borders is observed in the PanColorGAN+RD method and
traditional methods: GSA and Semi-blind Convolution. The
sharp edges and high contrast between the white structures
and its surroundings is best captured in PanColorGAN+RD
and GSA, where the smearing across regions is minimal. In
the green fields with tree clusters and vegetation towards top
right and bottom left of the scene in the figure, GSA and
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o)

Fig. 7. Reduced Resolution Scheme Test Results for Baseline methods and PanColorGAN models over Pleiades Dataset: (a) Multispectral (b) Reduced
Resolution Panchromatic (c) ATWT (d) BDSD (e) GSA (f) GLP-REG-FS (g) Nonlinear IHS (h) Semi-blind Convolution (i) TA-CNN (j) PanNet (k) PanSRGAN
(l) PanColorGAN-GMS (m) PanColorGAN-PAN (n) PanColorGAN+RD-GMS (o) PanColorGAN+RD-PAN. Region in green box in each picture is zoomed
and pasted on the top right for visualization.

Semi-blind Convolution preserve the original pattern better
than all other methods. One can also observe that due to the
low resolution of the MS in (b), the terrain color looks yellow
due to the relatively blurry characteristic of the image, whereas
the proposed PanColorGAN+RD (m) produces a gray-yellow
tone, which matches the colors in other methods. It can
be fairly said that all CNN-based techniques are losing the
vertical lines of the trees to a degree. This is one limitation
we observed in most of the MRA pansharpening methods,
including CNN-based methods. In terms of spectral color
features, almost all of the techniques including PanColorGANs

are observed to capture the original color distributions of the
multispectral input image in (b). In terms of spatial features,
PanColorGAN+RD shows the best performance, as it includes
randomness introduced in its downscaling ratios that increases
its robustness to minute resolution variations between the
reduced panchromatic and multispectral images.

E. Discussions and Transferability

Next, we discuss the transferability capability of the Pan-
ColorGAN models, as well as all other baseline methods. For
that purpose, the trained CNN-based models on the Pleiades
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Fig. 8. Full resolution results for Pleiades test Dataset: (a) Panchromatic (b) Multispectral (c) BDSD (d) ATWT (e) GSA (f) GLP-REG-FS (g) Nonlinear
IHS (h) Semi-blind Convolution (i) TA-CNN (j) PanNet (k) PanSRGAN (l) PanColorGAN (m) PanColorGAN+RD.

dataset are directly tested on the Digital Globe data in order
to assess the transferability of the methods. In Table V,
with-reference performance measures for the Digital Globe
dataset are given. Again, as in Table III, PanColorGAN-
GMS outperformed all other techniques, including traditional
methods. PanNet and TA-CNN trained on Pleiades Dataset
could not provide satisfactory results when they are tested with
Digital Globe Dataset which involves different sensor settings.
Due to different spatial and spectral resolution characteristics
of Pleiades and Digital Globe datasets, a slight decrease
in all the quantitative measures are naturally observed for
CNN-based methods. Yet PanColorGAN models maintain a
slighter decrease when they are compared to other CNN-
based methods which are PanNet, TA-CNN, and PanSRGAN.
Table VI refers to no-reference performance measures in the

full-resolution mode. Nonlinear IHS achieves the best scores
among traditional methods, and PanSRGAN gets the highest
scores for the three measures.

The real-life pansharpening application with the full-
resolution generation deserves further discussions. It is in-
teresting to note that although Nonlinear IHS gives the best
quantitative performance with no-reference measures among
traditional methods (Table VI), it was clearly observed that it
performed almost the worst in visual inspection in Figure 8.
This experiment highlighted the unreliability and mismatch of
the no-reference measures against human visual perception.
This finding was also reported by Vivone et al. where many
pansharpening algorithms are compared [1]. Therefore, in the
full-resolution mode, a more reliable evaluation is carried
out by visual inspection rather than no-reference quantitative
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TABLE V
WITH-REFERENCE PERFORMANCE INDICATORS AT REDUCED

RESOLUTION ON DIGITAL GLOBE DATASET

QAVE Q sCC SAM ERGAS
(worst-best) (0-1) (0-1) (0-1) (inf-0) (inf-0)

BDSD .832 .831 .833 7.259 4.803
ATWT .830 .843 .827 6.110 4.628
GSA .814 .834 .801 7.076 4.952
GLP-REG-FS .820 .834 .807 6.798 4.777
Nonlinear IHS .755 .754 .766 6.229 5.808
Semi-blind Convolution .832 .836 .813 6.062 12.219
PanNet .690 .681 .633 7.382 6.998
TA-CNN .673 .665 .622 7.590 7.166

PanSRGAN .764 .727 .792 7.785 7.430
PanColorGAN-GMS .884 .845 .936 6.783 4.707
PanColorGAN-PAN .835 .796 .879 9.095 6.789
PanColorGAN+RD-GMS .863 .828 .930 7.746 5.131
PanColorGAN+RD-PAN .813 .776 .857 9.319 7.182

TABLE VI
NO-REFERENCE PERFORMANCE INDICATORS AT FULL

RESOLUTION ON DIGITAL GLOBE DATASET

Dλ Ds QNR
(worst-best) (inf-0) (inf-0) (0-1)

BDSD .057 .061 .886
ATWT .091 .146 .777
GSA .078 .160 .775
GLP-REG-FS .084 .141 .788
Nonlinear IHS .036 .046 .919
Semi-blind Convolution .089 .131 .792
PanNet .041 .051 .909
TA-CNN .062 .067 .874

PanSRGAN .027 .043 .930
PanColorGAN .040 .073 .890
PanColorGAN+RD .061 .070 .874

scores.
Figure 9 shows visual results from all algorithms in reduced

resolution mode on the Digital Globe dataset. Images in (b)-
(h) belong to the results of traditional approaches, and (i)-(o)
depict results of the CNN-based methods. This is a hetero-
geneous image patch with many fine man-made structures
and fine textural details. Therefore, the artifacts that were
observed with Nonlinear IHS (g) before in Figure 7 is not that
apparent to the eye. However, the first observation that can be
easily made is that results of ATWT (c), GLP-REG-FS (f),
Nonlinear IHS (g), PanNet (k), TA-CNN (i) and PanSRGAN
(k) present blurrier characteristics than the others. Although we
were expecting similar results to PanSRGAN, PanNet and TA-
CNN gave slightly worse results in terms of spatial quality in
reduced resolution tests. As before, the PanColorGAN models
are among the best performers, as can be observed over the
fine structures in the zoomed flipped C shaped white building.
On the other hand, as expected GMS versions of the Pan-
ColorGAN provide similar results as the multispectral image
while PAN versions preserve spatial details of the reduced
panchromatic image. In terms of restoring the color properties,

BDSD in (d) and PanColorGAN models (l-o) provides the best
visual performance.

Figure 10 shows visual results from all algorithms in full
resolution mode on the Digital Globe dataset. Images in (a)
and (b) refer to the input, i.e. the original panchromatic and
multispectral images, respectively. Images in (c)-(h) refer to
results produced by traditional methods, whereas (i)-(m) refer
to CNN-based methods. The lack of preservation for the
spectral and spatial properties of the input panchromatic and
multispectral images as well as artifacts are clearly visible
in BDSD (c), ATWT (d), GLP-REG-FS (f), Nonlinear IHS
(g), semi-blind Convolution (h), TA-CNN (i), PanNet (j) and
PanSRGAN in (k). We observe that for the Digital Globe
dataset, although the problem of spatial detail disagreement
between reduced panchromatic and original multispectral im-
ages still persists, it is a less pronounced issue compared
to the Pleiades dataset, and this is reflected in the closer
quantitative performance results between the PanColorGAN
and PanColorGAN+RD. However, when full resolution results
in Figures 8 and 10 are visually inspected, the differences
between PanColorGAN and PanColorGAN+RD are clearly
observed, where PanColorGAN+RD shows sharper edges and
higher contrast than PanColorGAN, which clearly demonstrate
the effectiveness of random downsampling in better preserva-
tion of spatial details.

A limitation in the development of pansharpening methods
is the lack of common datasets. Although standard CNN-
based methods, including GAN models, were employed re-
cently for pansharpening, none of those can be evaluated
on common data distributions. Naturally, those CNN-based
methods were trained and tested on different data distribu-
tions, which certainly affects the performance of the models
independently from architectural developments. However, our
methodological development lies mainly in introduction of
a new framework rather than architectural changes, that is
why we build a baseline model PanSRGAN with the standard
CNN/GAN-based framework, which was crucial to present our
improvements in the results.

Our experimental results demonstrate that commonly uti-
lized quantitative image evaluation measures do not necessar-
ily match the expected visual evaluation outcomes. This is not
a novel finding, which is also not limited to the domain of
satellite imaging. Generally, devising new quantitative image
evaluation measures that are faithful to human perceptual
evaluations is an open research problem in image analysis.

To summarize our findings, PanColorGAN models are ob-
served to perform at the top among all methods in preserving
structural and spatial features of images while keeping the
spectral distortion at an acceptable level. This can be as-
serted for both reduced-resolution and full-resolution modes.
In addition, although Digital Globe and Pleiades datasets have
different characteristics, PanColorGAN demonstrated better
transferability properties than other CNN-based models, as
evidenced both quantitatively and qualitatively in our experi-
ments.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o)

Fig. 9. Reduced Resolution Scheme Test Results for Baseline methods and PanColorGAN models for Digital Globe Dataset: (a) Multispectral (b) Reduced
Resolution Panchromatic (c) ATWT (d) BDSD (e) GSA (f) GLP-REG-FS (g) Nonlinear IHS (h) Semi-blind Convolution (i) TA-CNN (j) PanNet (k) PanSRGAN
(l) PanColorGAN-GMS (m) PanColorGAN-PAN (n) PanColorGAN+RD-GMS (o) PanColorGAN+RD-PAN. Region in green box in each picture is zoomed
and pasted at the bottom for visualization.

V. CONCLUSION

We presented a novel pansharpening framework based
on GANs and a guided colorization task for coloring the
gray-transformed multispectral images. PanColorGAN model,
which is positioned on this framework along with two new
developments, namely the color injection and the random scale
downsampling, demonstrated improved structural preservation
and reduced blurring effects when compared to previous CNN-
based pansharpening models. The PanColorGAN demonstrates
the current state-of-the-art performance both in reduced-
resolution and full-resolution pansharpening models especially

through visual inspection. It also presents better transferability
between different satellite images.

PanColorGAN achieves excellent spatial detail preservation,
while the spectral information injection efficiency is open
to improvement. Finding ways to preserve the spatial and
spectral properties in a balanced manner remains an open
future research direction in the problem of pansharpening.
We further articulate that the new deep learning-based pan-
sharpening methods should elaborate extensively on the full-
resolution mode results and transferability, as they certainly
present the real challenges in pansharpening.
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Fig. 10. Full resolution results for Digital Globe Dataset: (a) Panchromatic (b) Multispectral (c) BDSD (d) ATWT (e) GSA (f) GLP-REG-FS (g) Nonlinear
IHS (h) Semi-blind Convolution (i) TA-CNN (j) PanNet (k) PanSRGAN (l) PanColorGAN (m) PanColorGAN+RD.

Pansharpened images produced by the PanColorGAN model
can be used effectively in engineering applications such as
object detection tasks and mapping purposes such as vector
data production (digitization), where high spatial quality and
accurate object geometry are required. As spectral properties
are also preserved at an acceptable level, the use of these
images in satellite image classification tasks is also promising,
however, it needs further evaluation. As for future extensions
of this work, the integration and performance evaluations of
the medium spatial resolution satellite images with a higher
number of multispectral bands and different MS/PAN ratios
such as Landsat 8 OLI are planned.
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