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Abstract

In this work, we propose a robust framework that employs adversarially robust training to safe-
guard the ML models against perturbed testing data. Our contributions can be seen from both
computational and statistical perspectives. Firstly, from a computational/optimization point
of view, we derive the ready-to-use exact solution for several widely used loss functions with
a variety of norm constraints on adversarial perturbation for various supervised and unsuper-
vised ML problems, including regression, classification, two-layer neural networks, graphical
models, and matrix completion. The solutions are either in closed-form, or an easily tractable
optimization problem such as 1-D convex optimization, semidefinite programming, di�erence
of convex programming or a sorting-based algorithm. Secondly, from statistical/generalization
viewpoint, using some of these results, we derive novel bounds of the adversarial Rademacher
complexity for various problems, which entails new generalization bounds. Thirdly,
we validate our approach by showing significant performance improvementwe perform some
sanity-check experiments on real-world datasets over various gradient ascent based baselines
for supervised problems such as regression and classification, as well as for unsupervised prob-
lems such as matrix completion and learning graphical models, with very little computational
overhead.

1 Introduction

Machine learning models are used in a wide variety of applications, such as image classification, speech
recognition, and self-driving vehicles. The models employed in these applications can achieve a very
high training time accuracy but can fail spectacularly in making trustworthy predictions on test data.
Thus, it becomes important for existing machine learning models to be adversarially robust to avoid poor
performance and have better generalization on test data. Our contribution in this work encompasses both the
computational/optimization and statistical/generalization aspects of adversarial training for various supervised
and unsupervised learning problems.

Firstly, from a computational/optimization perspective, we focus on deriving the exact optimal solution of
the inner maximization optimization arising in adversarial training. In particular, we provide ready-to-use
results for a wide variety of loss functions and various norm constraints (See Table 1). Moreover, unlike other
domain specific works such as (Jia & Liang, 2017; Li et al., 2016; Belinkov & Bisk, 2018; Ribeiro et al., 2018)
in natural language processing and (Hendrycks et al., 2021; Alzantot et al., 2018) in computer vision, we aim
to provide an adversarially robust training model which covers a large class of machine learning problems.

From a statistical/generalization perspective, our contributions include providing upper and lower bounds for
adversarial Rademacher complexity (O (1

/

Ô
n)). These bounds are based on the results summarized in Table

1. By analyzing the adversarial Rademacher complexity, we can infer the generalization aspect discussed in
the introduction of Section 5.1. In this regard, we propose novel adversarial Rademacher complexity bounds
for various ML problems like linear regression (applicable for any general norm), matrix completion, and
max-margin matrix completion. Additionally, we propose bounds in Theorem 14 for linear classifiers, which
can be seen as a generalization of the ¸Œ norm (Yin et al., 2019) or any specific p-norm (Awasthi et al., 2020).
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Table 1: A summary of our results for various loss functions and norm constraints which are used in a wide
variety of applications.

Problem Loss function Norm constraint Prior results Our solution

W
ar

m
up Regression Squared loss Any norm Euclidean norm (Xu

et al., 2008)
Closed form, Theorem 3

Classification Logistic loss Any norm Euclidean norm (Liu
et al., 2020)

Closed form, Theorem 4

Classification Hinge loss Any norm None Closed form, Theorem 21

M
ai

n
re

su
lt

s Classification Two-Layer NN
with convex
and nonconvex
activations

Any norm ReLU activation
(Awasthi et al., 2024)

Di�erence of convex functions, Theorem 5

Graphical Models Log-likelihood Euclidean None 1-D optimization, Theorem 6
Graphical Models Log-likelihood Entry-wise ¸Œ None Semidefinite programming, Theorem 7
Matrix Completion Squared loss Frobenius None Closed form, Theorem 8
Matrix Completion Squared loss Entry-wise ¸Œ None Closed form, Corollary 9
Max-Margin MC Hinge loss Frobenius None Sorting based algorithm, Theorem 10
Max-Margin MC Hinge loss Entry-wise ¸Œ None Closed form, Corollary 11

To make the above-discussed computational and statistical contributions, we propose closed-form solutions or
an easily tractable optimization problem for computing the adversarial perturbation in these multiple ML
problems. These solutions summarized in Table 1 are in closed form or can be obtained from a one-dimensional
dual problem, semidefinite programming (SDP), or a sorting-based algorithm which are quite unexpected and
novel in the context of adversarial perturbation. The solution to the inner maximization for various problems
summarized in Table 1 allows to get better robustness in a computationally cheap manner.

In this work, we view adversarially robust training in a practical way and reduce the run time from O(nTL) to O(nT ), where n is the number of samples, T is the number of GD iterations for outer minimization problem for computing model parameters, and L is the number of GD iterations for inner maximization for computing adversarial perturbation. Often, practitioners do not have the luxury to incorporate complex models in their existing machine-learning algorithms due to their potential impact on computational time. Thus, it becomes important to propose a simple plug-and-play framework, which only requires little change in the existing models without imposing a large computational overhead.

For problems with a complex objective function with no closed-form solution, our approach of having computationally tractable problem is very practical, as this step needs to be repeated n ◊ T times. Hence, a seemingly minor improvement in the adversarial perturbation computation benefits greatly. For example, the optimal solution in graphical models with Euclidean norm constraint can be derived by constructing the dual problem, which has a convex objective function in one variable (refer Theorem 6, Table 1). This reduction of a p≠dimension optimization problem to one-dimensional convex program is very helpful as our approach gives better log-likelhood function by consuming 35% less time as compared to closest gradient descent baseline, FGSM (Goodfellow et al., 2015) (refer Table 3 and Table 5).

Our Contributions. Broadly, we make the following contributions through this work:

• Adversarially robust formulation: We use the adversarially robust training framework of Yin et al.
(2019) using worst case adversarial attacks. Under this framework, we analyze several supervised and
unsupervised ML problems, including regression, classification, two-layer neural networks, graphical
models, and matrix completion. The solutions are either in closed-form, 1-D optimization, semidefinite
programming, di�erence of convex programming, or a sorting-based algorithm.

• Computational/Optimization front: We provide a plug-and-play solution which can be easily integrated
with existing training algorithms. This is a boon for practitioners who can incorporate our method in
their existing models with minimal changes. As a conscious design choice, we provide computationally
cheap solutions for our optimization problems.

• Statistical/Generalization front: On the theoretical front, we provide a systematic analysis for several
loss functions and norm constraints, which are commonly used in applications across various domains.
Table 1 provides a summary of our findings in a concise manner. Using some of these results, we further
provide novel lower and upper bounds of the adversarial Rademacher complexity (O (1

/

Ô
n)) for various

problems, which entails novel generalization bounds.
• Real world experiments: We further validate our results by conductingperform some sanity-check

experiments on several real-world datasets. We show that our plug-and-play solution performs better
(most of the time, in terms of test metrics and/or runtime) as compared to the fast gradient sign method
(FGSM) (Goodfellow et al., 2015), projected gradient descent (PGD), and TRADES (Zhang et al., 2019).

2 Preliminaries

For any general prediction problem in machine learning (ML), consider we have n samples of (x, y), where
we try to predict y œ Y from x œ X using the function f : X æ Y. Assuming that the function f can be
parameterized by some parameter w, we minimize a loss function l(x, y, w) to obtain an estimate of w from
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Figure 1: Training domain Figure 2: Worst case adversarial attack domain
Figure 1 shows the domain for clean training points while the dashed cube in Figure 2 shows the worst case
adversarial attack domain (slightly bigger than the original training domain). Each new worst case
adversarially attacked point is judiciously picked from within the green spheres around the corresponding
clean training point with radius ‘ in a predefined norm.

n samples:

ŵ = arg min
w

1
n

nÿ

i=1

l(x(i)

, y

(i)

, w) (1)

where (x(i)

, y

(i)) represents the i

th sample.

Intuitively, with no prior information on the shift of the testing distribution, it makes sense to be prepared
for absolutely worst-case scenarios. We incorporate this insight formally in our proposed adversarially robust
training model. At each iteration of the training algorithm, we generate worst-case adversarial samples using
the current model parameters and “clean” training data within the bounds of a maximum norm. The model
parameters are updated using these worst-case adversarial samples, and the next iteration is performed.
Figure 1 and Figure 2 provide a geometric interpretation of our training process.

Before proceeding to the main discussion, we briefly discuss the notations and basic mathematical definitions
used in the paper.

Notation: We use a lowercase alphabet such as x to denote a scalar, a lowercase bold alphabet such as x
to denote a vector and an uppercase bold alphabet such as X to denote a matrix. The i

th entry of the vector
x is denoted by x

i

. The superscript star on a vector or matrix such as xı denotes it is the optimal solution
for some optimization problem. A general norm for a vector is denoted by ÎxÎ, and its dual norm is indicated
by a subscript asterisk, such as ÎxÎú. The set {1, 2, . . . , n} is denoted by [n]. A set is represented by capital
calligraphic alphabet such as P, and its cardinality is represented by |P|. For a scalar x, |x| represents its
absolute value.
Definition 1. The dual norm of a vector, Î · Îú is defined as:

ÎzÎú = sup{z|x | ÎxÎ Æ 1} (2)

Definition 2. Let Î·Îú is the dual norm to Î.Î. The sub-di�erential of a norm is defined as:

ˆ ÎxÎ = {v : v|x = ÎxÎ , ÎvÎú Æ 1} (3)

In this work, we propose plug-and-play solutions for various ML problems to enable adversarially robust
training. By plug-and-play solution, we mean that any addition to the existing algorithm comes in terms of
a closed-form equation or as a solution to an easy-to-solve optimization problem. Such a solution can be
integrated with the existing algorithm with very minimal changes.
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3 Warm Up

In this section, we formally discuss our proposed approach of adversarially robust training on some warm-up
problems. The classical approach to estimate model parameters in various ML problems is to minimize a loss
function using an optimization algorithm such as gradient descent (Ruder, 2016; Chen & Wainwright, 2015;
Andrychowicz et al., 2016).Turning the focus to adversarially robust training, we work with the following
optimization problem in supervised learning, which can be found in (Yin et al., 2019):

ŵ = arg min
w

1
n

nÿ

i=1

sup
Î�ÎÆ‘

l(x(i) + �, y

(i)

, w) (4)

For unsupervised learning problems, one just removes the variables y

(i) above. The optimization problem 4
depends on two variables: the adversarial perturbation � and the model parameter w. We solve for one
variable assuming the other is given iteratively as illustrated in Algorithm 1. Specifically, we estimate �ı for
robust learning by defining the worst case adversarial attack for a given parameter vector w(j≠1) (j denotes
the iteration number in gradient descent) and sample

)
x(i)

, y

(i)

*
as follows:

�ı = arg sup
Î�ÎÆ‘

l(x(i) + �, y

(i)

, w(j≠1))

For brevity, we drop the subscript j ≠ 1 from the parameter w when it is clear from the context that
the optimization problem is being solved for a particular iteration. Naturally, computing �ı by solving

Input:
)

x(i)

, y

(i)

*
for i œ [n], T : number of iterations, ÷

j

: step size for iteration j œ [T ]
w(0) Ω initial value ;
for j = 1 to T do

gradient Ω 0 ;
for i = 1 to n do

�ı = arg supÎ�ÎÆ‘

l(x(i) + �, y

(i)

, w(j≠1));
gradient Ω gradient + ˆl(x

(i)

+�

ı

,y

(i)

,w

(j≠1)

)

ˆw

;
end
w(j) Ω w(j≠1) ≠ ÷

j

1

n

gradient
end
Output: ŵ = w(T )

Algorithm 1: Plug and play algorithm

another maximization problem every time might not be necessarily e�cient. To tackle this issue, we provide
plug-and-play solutions of �ı for a given (x(i)

, y

(i)

, w(j)) where i œ [n] and j œ [T ] for various widely-used
ML problems.

3.1 Linear Regression

We start with a linear regression model which is used in various applications across numerous domains such
as biology (Schneider et al., 2010), econometrics, epidemiology, and finance (Myers & Myers, 1990). As
discussed in the previous sub-section, the adversary tries to perturb each sample to the maximum possible
extent using the budget ‘ by solving the following maximization problem for each sample:

�ı = arg sup
||�||Æ‘

1
w|

1
x(i) + �

2
≠ y

(i)

2
2

(5)

where y

(i) œ R, x(i)

, � œ Rd and ||�|| denotes any general norm. We provide the following theorem to
compute �ı in closed form.
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Theorem 3. For any general norm Î · Î, the solution for problem in Eq. (5) for a given
!
x(i)

, y

(i)

"
is:

�ı =
I

±‘

v

ÎvÎ , w|x(i) ≠ y

(i) = 0
sign(w|x(i) ≠ y

(i))‘ v

ÎvÎ w|x(i) ≠ y

(i) ”= 0

where v œ ˆ ÎwÎú as specified in Definition 2.

3.2 Logistic Regression

Next, we tackle logistic regression which is widely used for classification tasks in many fields such as medical
diagnosis (Truett et al., 1967), marketing (Michael & Gordon, 1997) and biology (Freedman, 2009). Using
previously introduced notations, we formulate logistic regression (Kleinbaum et al., 2002) with worst case
adversarial attack in the following way:

�

ı
= arg sup

||�||Æ‘
log

!
1 + exp

!
≠y(i)

w

| !
x

(i)
+ �

"""
(6)

where y

(i) œ {≠1, 1} and x(i)

, � œ Rd. The optimal solution for above optimization problem is provided in
the following theorem.
Theorem 4. For any general norm Î · Î, and the problem specified in Eq. (6), the optimal solution is given
by �ı = ≠‘y

(i)

v

/ÎvÎ, where v œ ˆ ÎwÎú as specified in Definition 2.

Theorem 21 presented in Section A.3 of appendix discusses a similar result for the hinge loss.

4 Main Results

4.1 Two-Layer Neural Networks

Consider a two-layer neural network for a binary classification problem with any general (convex or nonconvex)
activation function ‡ : R æ R in the first layer. As we work on the classification problem, we consider the log
sigmoid activation function in the final layer. The general adversarial problem can be stated as:

�

ı
= arg sup

||�||Æ‘
log

!
1 + exp

!
≠y(i)

v

|‡h‡
!
W

| !
x

(i)
+ �

""""
(7)

where y

(i) œ {1, ≠1} for binary classification, x, � œ Rd, and the weight parameters W œ Rh◊d, and v œ Rh.
Note that h denotes the number of hidden units in the first layer, and the output for the general activation
function ‡

h

‡ : Rh æ Rh is obtained by applying ‡ : R æ R to each dimension independently. The optimal
solution to the above problem is the following theorem.
Theorem 5. For any general norm Î · Î, and any activation function, the optimal solution for the problem
specified in Eq. (7) can be solved using di�erence of convex functions.

Proof. As log(·) and exp(·) are monotonically increasing functions, the adversarial problem specified in Eq.
(7) can be equivalently expressed as:

�ı = arg min
||�||Æ‘

f(�) = yv|
‡

h

‡ (W| (x + �)) (8)

where we have dropped the subscript (i) for brevity, as it is clear that the above problem is solved for each
sample. The objective function of the above problem can be equivalently represented as:

f(�) =
ÿ

i:yv

i

>0

yv
i

‡ (z
i

) ≠
ÿ

i:yv

i

<0

|yv
i

|‡ (z
i

) , z
i

= W|
i

(x + �) (9)

where W
i

represents the i

th row of matrix W. Further, we express any general activation function ‡(·)
(which may be non-convex) as the di�erence of two convex functions using ‡(�) = ‡

1

(�) ≠ ‡

2

(�). Using
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this formulation, the objective function in Eq. (9) can be expressed as f(�) = g(�) ≠ h(�), where g(�)
and h(�) are convex functions defined as:

g(�) =
ÿ

i:yv

i

>0

yv
i

‡

1

(z
i

) +
ÿ

i:yv

i

<0

|yv
i

|‡
2

(z
i

) (10)

h(�) =
ÿ

i:yv

i

>0

yv
i

‡

2

(z
i

) +
ÿ

i:yv

i

<0

|yv
i

|‡
1

(z
i

) (11)

where z
i

is defined in Eq. (9). It should be noted that g(�) and h(�) are convex functions as they are
positive weighted combination of convex functions ‡

1

(·) and ‡

2

(·). As the objective function f(�) can be
expressed as di�erence of convex functions for any activation function specified in Appendix D, we can use
di�erence of convex functions algorithms (DCA) (Tao & An, 1997).

If set S = {i | yv
i

< 0, i œ [h]} = ÿ and we have an activation function ‡(�) such that ‡

2

(�) = 0, then
h(�) = 0 and the problem in Eq. (7) reduces to a convex optimization problem. This may not be the case in
general for two-layer neural networks. Therefore we use the di�erence of convex programming approach (Tao
& An, 1997; Sriperumbudur & Lanckriet, 2009; Yu et al., 2021; Abbaszadehpeivasti et al., 2023; Le Thi et al.,
2009; Yen et al., 2012; Khamaru & Wainwright, 2018; Nitanda & Suzuki, 2017) which are proved to converge
to a critical point.

The first step to solve this optimization problem is constructing the functions g(�) and h(�), which requires
decomposing the activation functions as the di�erence of convex functions. In order to do this, we decompose
various activation functions commonly used in the literature as a di�erence of two convex functions. The
decomposition is done by constructing a linear approximation of the activation function around the point
where it changes the curvature. (referPlease see Appendix D).

Further, we compute �ı defined in Eq. (8) by expressing f(�) = g(�) ≠ h(�) and using concave-convex
procedure (Sriperumbudur & Lanckriet, 2009) or di�erence of convex function algorithm (DCA) (Tao & An,
1997). These algorithms are established to converge to a critical point, and hence the obtained �ı is plugged
in Algorithm 1.

4.2 Learning Gaussian Graphical Models

Next, we provide a robust adversarial training process for learning Gaussian graphical models. These models
are used to study the conditional independence of jointly Gaussian continuous random variables. This can be
analyzed by inspecting the zero entries in the inverse covariance matrix, popularly referred as the precision
matrix and denoted by � (Lauritzen, 1996; Honorio et al., 2012). The classical (non-adversarial) approach
(Yuan & Lin, 2007) solves the following optimization problem to estimate � :

�ı = arg min
�º0

≠ log(det(�)) + 1
n

nÿ

i=1

x(i)|�x(i) + c Î�Î
1

where � is constrained to be a symmetric positive definite matrix and c is a positive regularization constant.
As the first term log(det(�)) in the above equation can not be influenced by adversarial perturbation in x(i),
we define the adversarial attack problem for this case as maximizing the second term by perturbing x(i) for
each sample:

�ı = arg sup
||�||Æ‘

1
x(i) + �

2|
�

1
x(i) + �

2
(12)

For the above problem, we provide solutions for the ¸

2

and ¸Œ norm constraints as follows.
Theorem 6. The solution for the problem in Eq. (12) with ¸

2

constraint on � is given by �ı =
(µıI ≠ �)≠1 �x(i), where µ

ı can be derived from the following 1≠d1-D optimization problem:

max ≠1
2x(i)|� (µI ≠ �)≠1 �x(i) ≠ µ‘

2

2 , such that µI ≠ � ≤ 0 (13)
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Theorem 7. The solution for the problem specified in Eq. (12) with ¸Œ constraint on � œ Rp can be derived
from the last column/row of Y obtained from the following optimization problem:

max
=5

� �x(i)

!
�x(i)

"| 0

6
, Y

>
such that Y

p+1,p+1

= 1, Y ≤ 0, |Y
ij

| Æ ‘

2 ’i, j œ [p]

The results in Theorem 6 and Theorem 7 do not have a closed form but can be computed easily by solving a
standard one-dimensional optimization problem and a SDP respectively. Very e�cient scalable SDP solvers
exist in practice (Yurtsever et al., 2021).

4.3 Matrix Completion

Assume we are given a partially observed matrix X. Let P be a set of indices where the entries of X are
observed (i.e., not missing). The classical (non-adversarial) matrix completion approach aims to find a low
rank matrix (Shamir & Shalev-Shwartz, 2011) with small squared error in the observed entries:

min
Y

ÿ

(i,j)œP

(X
ij

≠ Y
ij

)2 + cÎYÎtr

where c is a positive regularization constant and Î · Îtr denotes trace norm of matrix which ensures low-
rankness. Note that regularization does not impact the adversarial training framework. We define the
following worst-case adversarial attack problem:

�ı = arg sup
||�||Æ‘

ÿ

(i,j)œP

(X
ij

+ �
ij

≠ Y
ij

)2 (14)

The solution for the above problem for the Frobenius norm constraint and entry-wise ¸Œ constraint on � is
proposed in Theorem 8 and Corollary 9.
Theorem 8. The optimal solution for the optimization in Eq. (14) with Frobenius norm constraint on � if
÷(i, j) œ P such that X

ij

”= Y
ij

is given by

�

ı
ij =

Y
__]

__[

‘
(

X
ij

≠Y
ij

)Ú q
(i,j)œP

(

X
ij

≠Y
ij

)

2

(i, j) œ P

0 (i, j) /œ P

If X
ij

= Y
ij

, ’(i, j) œ P, then the optimal �ı can be any solution satisfying
q

(i,j)œP �2

ij

= ‘.
Corollary 9. The optimal solution for the optimization problem in Eq. (14) with the constraint |�

ij

| Æ ‘

for all (i, j) œ P is given by �
ij

= (X

ij

≠Y

ij

)

|X
ij

≠Y

ij

| ‘.

4.4 Max-Margin Matrix Completion

We start the discussion from the problem under the classical (non-adversarial) setting. Consider a partially
observed label matrix where the observed entries are +1 or ≠1. Let P be the indices of the observed entries.
The problem of max-margin matrix completion (Srebro et al., 2004) is defined as follows:

min
Y

ÿ

(i,j)œP

max(0, 1 ≠ X
ij

Y
ij

) + c ||Y||tr (15)

where c > 0 is a regularization constant and ||·||tr represents the trace norm (Bach, 2008). As the second
term, ||Y||tr in the above optimization problem can not be a�ected by the adversary, we define the worst-case
adversarial attack problem as the maximization of the first term with ‘ radius around X:

�

ı
= arg sup

||�||Æ‘

ÿ

(i,j)œP

max(0, 1 ≠ (Xij + �ij) Yij) (16)

The optimal �ı under Frobenius norm constraint on � is proposed in the following theorem.
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Table 2: A summary of our results for Rademacher complexity of various loss functions and norm constraints.
‘ is the radius of the norm constraint, n is the number of training samples for regression and classification,
|P| is the number of observed entries in matrix completion. The empirical Rademacher complexity is formally
described in Definition 12 for regression and classification, and in Definition 15 for matrix completion.
Lipschitz losses include the logistic loss, the hinge loss, the hyperbolic tangent, the logit, among others.

Problem Loss Norm Prior Our result Lower bound of R̂S(F̃) Upper bound of R̂S(F̃)
function constraint results

M
ai

n
re

su
lt

s Regression Squared
loss

Any norm None Theorem 13 R̂S(F) ≠ O(‘/n + ‘2/
Ô

n) R̂S(F) + O(‘/n + ‘2/
Ô

n)

Classification Lipschitz
loss

Any norm ¸Œ norm
(Yin et al.,
2019)

Theorem 14 max(R̂S(F), O(‘/
Ô

n)) R̂S(F) + O(‘/
Ô

n)

Lipschitz
loss

Any norm ¸p norm
(Awasthi
et al., 2020)

Matrix
Completion

Squared
loss

Entry-wise
¸Œ

None Theorem 16 R̂S(F) ≠ O(‘/|P|) R̂S(F) + O(‘/|P|)

Max-
Margin
MC

Lipschitz
loss

Entry-wise
¸Œ

None Theorem 17 R̂S(F) ≠ O(‘/|P|) R̂S(F) + O(‘/|P|)

Lipschitz
loss

Entry-wise
¸Œ

None Corollary 18 max(R̂S(F), O(‘/|P|)) R̂S(F) + O(‘/|P|)

Theorem 10. For the problem in Eq. (16) with Frobenius norm constraint on �, the solution is:

�ij =

Y
_]

_[

≠Yij
‘Ú q

(i,j)œP

Y2

ij

(i, j) œ P1

0 (i, j) /œ P1

where P
1

™ P is chosen by sorting X
ij

Y
ij

and selecting indices which satisfy X
ij

Y
ij

< 1 + ‘

/

Ú q
(i,j)œP

Y

2

ij

.

Similarly, the solution for the problem in Eq. (16) for the entry-wise ¸Œ norm is proposed as follows.
Corollary 11. For the problem in Eq. (16) with the constraint |�

ij

| Æ ‘ for all (i, j) œ P, the optimal
solution is given by �

ij

= ≠sign(Y
ij

)‘.

5 Implications

5.1 Novel Rademacher complexities

The motivation behind deriving the bounds for the adversarial Rademacher complexity is briefly discussed
here. As shown in Theorem 8 in (Bartlett & Mendelson, 2002), the upper bound for generalization (the
gap between empirical risk and population/expected risk) is R̂

S

(F) + O(1/

Ô
n). Hence an upper bound

of order O(1/

Ô
n) for the adversarial Rademacher complexity allows obtaining a O(1/

Ô
n) generalization

bound. Also, as shown in Proposition 4.12 in (Wainwright, 2019), the lower bound for generalization is
1

2

R̂
S

(F) ≠ �(1/

Ô
n). Hence a lower bound of order �(1/

Ô
n) for the adversarial Rademacher complexity

allows obtaining a �(1/

Ô
n) generalization bound.

Before diving into theorems and their proofs, we summarize our theoretical statistical/generalization contri-
bution on Rademacher complexity bounds in Table 2, and make some important observations:

• The bounds for adversarial Rademacher complexity presented in Theorem 13 for linear regression (for any
general norm), Theorem 16 for matrix completion, Theorem 17 and Corollary 18 for max-margin matrix
completion are novel.

• The bounds presented in Theorem 14 for linear classifiers are for any general norm can be seen as a
generalization of the ¸Œ norm (Yin et al., 2019) or any particular p-norm (Awasthi et al., 2020).

8
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We utilize the closed-form solutions for various adversarial problems presented in Section 3 and Section 4
to derive new bounds for the adversarial Rademacher complexity. To start with, we define the empirical
Rademacher complexity formally.
Definition 12 (Rademacher complexity for regression and classification). The empirical Rademacher
complexity of the hypothesis class F with respect to a data set S =

)!
x(1)

, y

(1)

"
, . . . ,

!
x(n)

, y

(n)

"*
is defined

as:

ˆRS(F) =

1

n
E‡

C
sup

hœF

A
nÿ

i=1

‡ih
!
x

(i), y(i)"
BD

We denote the adversarial function class with F̃ . Further, we utilize Theorem 3 to derive upper and lower
bounds of the adversarial Rademacher complexity for linear regression.
Theorem 13 (Regression with squared loss). Let the function class F = {!

x(i)

, y

(i)

" ‘æ
!
w|x(i) ≠ y

(i)

"
2 | ÎwÎú Æ C} and the adversarial function class F̃ = {!

x(i)

, y

(i)

" ‘æ
sup

Î�ÎÆ‘

!
w|(x(i) + �) ≠ y

(i)

"
2 | ÎwÎú Æ C}, then:

ˆRS(F) ≠ b(n, ‘, C) Æ ˆRS(

˜F) Æ ˆRS(F) + b(n, ‘, C), where b(n, ‘, C) =

2‘C
n

E‡

C.....

nÿ

i=1

‡ix
(i)

.....

D
+

‘2C2
Ô

n

It should be noted that the above theorem is proposed for any general norm and any further simplification of
the term E

‡

#..
1

/n

q
n

i=1

‡

i

x(i)

..$
requires a further assumption on the specific norm. For example, it can be

easily bounded as c

1

/

Ô
n using Khintchine’s inequality for the Euclidean norm, where c

1

is some constant.

Proof sketch. To prove the above theorem, we have used carefully manipulated the Rademacher complexity
of adversarial function class in terms of classical function class with the help of Theorem 3. Further, we have
used the Ledoux-Talagrand contraction principle for Lipchitz functions and Khintchine’s inequality. A similar
proof recipe is used to prove other theorems in this section, whose detailed proofs can be seen in Section C of
supplementary material.

Further, we utilize Theorem 4 or Theorem 21 to derive the upper and lower bounds of the adversarial
Rademacher complexity for linear classification. Similar to the existing works (Yin et al., 2019; Awasthi et al.,
2020) mentioned in Table 2 as well as prior work on non-adversarial regimes (Kakade et al., 2008), we analyze
the Rademacher complexity of linear functions, which allows for bounding the Rademacher complexity of
relatively more complex Lipschitz functions (e.g., logistic loss, hinge loss, hyperbolic tangent, logit) by using
the Ledoux-Talagrand contraction lemma (Ledoux & Talagrand, 2013).
Theorem 14 (Classification). Let the function class F = {!

x(i)

, y

(i)

" ‘æ ≠y

(i)w|x(i) | ÎwÎú Æ C} and the
adversarial function class F̃ = {!

x(i)

, y

(i)

" ‘æ supÎ�ÎÆ‘

≠y

(i)w|(x(i) + �) | ÎwÎú Æ C}, then:

max
Ó
R̂

S

(F), C‘

/2

Ô
2n

Ô
Æ R̂

S

(F̃) Æ R̂
S

(F) + C‘

/

Ô
n

Similar results have been proposed in the literature for the ¸Œ norm (Yin et al., 2019) or any particular
p-norm (Awasthi et al., 2020), whereas our result is more general, pertaining to any norm.

We further move on to the matrix completion problem and propose the following definition of the Rademacher
complexity motivated from Definition 12.
Definition 15 (Rademacher complexity for matrix completion). The empirical Rademacher complexity of
the hypothesis class F with respect matrix X with observed entries (i, j) œ P is defined as:

R̂X(F) = 1
n
E‡

S

U sup
hœF

Q

a
ÿ

(i,j)œP

‡ijh(Xij)

R

b

T

V
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Table 3: Error metrics on real-world data sets for various supervised and unsupervised ML problems. Notice
that the proposed approach outperforms the baselinesperforms better (most of the time) as compared to
other methods (“No error”, “Random”, “FGSM”, “PGD”, and “TRADES”). MC and NN denote matrix
completion and neural networks respectively.

Problem Loss function Dataset Metric Norm No error Random FGSM PGD TRADES Proposed

W
ar

m
up

Regression Squared loss BlogFeedback MSE Euclidean 11.66 11.66 11.66 11.66 11.49 11.18
Regression Squared loss BlogFeedback MSE ¸Œ 11.66 11.66 11.66 11.66 11.47 11.20
Classification Logistic loss ImageNet Accuracy Euclidean 49.80 48.13 49.8 49.8 50.9 56.75
Classification Logistic loss ImageNet Accuracy ¸Œ 49.80 45.46 49.8 49.8 52 55.34
Classification Hinge loss ImageNet Accuracy Euclidean 47.89 46.66 47.8 47.9 52 52.31
Classification Hinge loss ImageNet Accuracy ¸Œ 47.89 49.59 49.8 49.8 52 52

M
ai

n
re

su
lt

s

Classification NN: ReLuReLU ImageNet Accuracy Euclidean 70.74 70.66 53.88 54.48 71.55 76.49
Classification NN: Sigmoid ImageNet Accuracy Euclidean 72.5 71.08 63.45 75.89 67.92 73.04
Graphical Model Log-likelihood TCGA Likelihood Euclidean -7984.8 -7980.6 -7596.5 -7596.5 -7603.4 -7406.1
Graphical Model Log-likelihood TCGA Likelihood ¸Œ -7984.8 -7984.4 -7888.4 -7916.2 -7917.2 -7918.7
Matrix Completion Squared loss Netflix MSE Frobenius 4.78 4.89 4.6 3.9 4.2 3.2
Matrix Completion Squared loss Netflix MSE Entry-wise ¸Œ 4.78 4.78 4.57 3.87 4.26 3.86
Max-Margin MC Squared loss HouseRep Accuracy Frobenius 97.05 89.72 96.27 97.02 63.22 97.14
Max-Margin MC Squared loss HouseRep Accuracy Entry-wise ¸Œ 92.4 60.7 73.28 75.46 39.99 92.5

We further utilize Corollary 9 to derive novel upper and lower bounds for the adversarial Rademacher
complexity for matrix completion.
Theorem 16 (Matrix completion with squared loss). Let the function class F =
{X

ij

‘æ (X
ij

≠ Y
ij

)2 | ÎYÎú Æ C} and the adversarial function class F̃ = {X
ij

‘æ
supÎ�

ij

ÎÆ‘

(X
ij

+ �
ij

≠ Y
ij

)2 | ÎYÎú Æ C}, then:

R̂
X

(F) ≠ 2‘C

|P| E Î‡Î Æ R̂
X

(F̃) Æ R̂
X

(F) + 2‘C

|P| E Î‡Î

where ‡ is a matrix whose entries ‡
ij

for (i, j) œ P follows Rademacher distribution.

The term E Î‡Î can be simplified for particular norms. For example, if we consider ÎYÎ
1

Æ C, then
E

‡

[Î‡ÎŒ] = 1 where Î.Î
1

and Î.ÎŒ denote the entrywise ¸

1

and ¸Œ norm respectively.

Further, we utilize Corollary 11 to derive upper and lower bounds for the adversarial Rademacher complexity
for max-margin matrix completion. As previously discussed before Theorem 14, prior work in classification
on adversarial regimes (Yin et al., 2019; Awasthi et al., 2020) mentioned in Table 2 as well as prior work on
non-adversarial regimes (Kakade et al., 2008) use the Rademacher complexity of linear functions to bound
the Rademacher complexity of relatively more complex Lipschitz functions by using the Ledoux-Talagrand
contraction lemma (Ledoux & Talagrand, 2013). We use the same principle for max-margin matrix completion
which typically uses the hinge loss, which is Lipschitz.
Theorem 17 (Max-margin matrix completion). Let the function class F = {X

ij

‘æ ≠X
ij

Y
ij

| ÎYÎú Æ C}
and the adversarial function class F̃ = {X

ij

‘æ supÎ�

ij

ÎÆ‘

≠ (X
ij

+ �
ij

) Y
ij

| ÎYÎú Æ C}, then:

R̂
X

(F) ≠ ‘C

|P|E Î‡Î Æ R̂
X

(F̃) Æ R̂
X

(F) + ‘C

|P|E Î‡Î

where ‡ is a matrix whose entries ‡
ij

for (i, j) œ P follows Rademacher distribution.
Corollary 18 (Max-margin matrix completion). For the function class defined in Theorem 17 with ¸

1

norm
constraint, i.e., ÎYÎ

1

Æ C, we obtain the following tighter lower bound: max
Ó
R̂

X

(F), ‘C

/|P|
Ô

Æ R̂
X

(F̃).

5.2 Real-World Experiments
WeAs a sanity check, we compare the proposed approach on real-world datasets against five baselinesmethods
of having no adversary, a random adversary (Gilmer et al., 2019; Qin et al., 2021), and other well-known
baselinesmethods such as FGSM (Goodfellow et al., 2015), projected gradient descent (PGD), and TRADES
(Zhang et al., 2019). While we could have used ‘-perturbed test data (coming from the same distribution of

10
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the training data) with some synthetic adversary, we preferred to use a more challenging scenario: test data
coming from a di�erent distribution than the training data.
The results are summarized in Table 3, and it can be clearly observed that the proposed method
outperforms the baselinesperforms better (most of the time) as compared to other methods. Table 5 shows
run time of the proposed method is comparable to baselines (refer Appendix E).the one of other methods
(most of the time). Please see Appendix E.

6 Concluding Remarks

We proposed a robust adversarial training framework which can be integrated with widely used ML models
without any significant computational overhead. As adversarial attacks are not limited only to the problems
covered in this work, our analysis can be extended to other problems such as clustering, discrete optimization
problems, and randomized algorithms in the future.
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