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ABSTRACT
In recent years, federated learning has been widely studied to speed up various supervised learning tasks at the
wireless network edge under communication constraints. However, there is a lack of theoretical understanding as
to whether similar speedups in sample complexity can be achieved for cooperative reinforcement learning (RL)
problems subject to communication constraints. To that end, we study a federated policy evaluation problem over
wireless fading channels where, to update model parameters, a central server aggregates local temporal difference
(TD) update directions from N agents via analog over-the-air computation (OAC). We refer to this scheme as
OAC-FedTD and provide a rigorous finite-time convergence analysis of its performance that accounts for linear
value function approximation, Markovian sampling, and channel-induced distortions and noise. Our analysis
reveals the impact of the noisy fading channels on the convergence rate and establishes a linear convergence
speedup w.r.t. the number of agents. This is the first non-asymptotic analysis of a cooperative RL setting under
channel effects. Moreover, our proof leads to tighter bounds on the mixing time relative to existing work in
federated RL (without channel effects); as such, it can be of independent interest to federated RL.

1 INTRODUCTION

In recent years, there has been an increasing demand for
edge intelligence, where distributed machine learning al-
gorithms are implemented at the wireless network edge on
diverse datasets (Khan et al., 2020; Shi et al., 2020a). One
particularly popular instance of edge computing is the fed-
erated learning (FL) framework (McMahan et al., 2017),
where agents periodically coordinate with a central server
to speed up the process of model-training for supervised
learning tasks, while keeping raw training data private. The
resulting FL problem boils down to stochastic optimization
subject to communication constraints: unpredictable and
heterogeneous wireless channels (Shi et al., 2020b) that
have limited bandwidth (Reisizadeh et al., 2020) and suffer
from channel fading effects (Sery & Cohen, 2020). In this
context, the effect of imperfect channels on the convergence
of the underlying optimization procedure is a topic that has
been extensively studied in FL (Zhu et al., 2020), (Yang
et al., 2021). Departing from this line of work on supervised
learning/optimization, in this paper, we ask: Is it possible
to achieve speedups in sample-complexity for cooperative
reinforcement learning (RL) problems when communica-
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tion takes place over noisy wireless channels? Surprisingly,
there is no theoretical understanding of this question, even
for the simplest of RL problems, such as policy evaluation.
We seek to bridge this gap with our work.

In a standard RL setup, an agent repeatedly interacts with
an environment by playing actions based on some policy,
receiving observations (rewards), and then improving the
policy with the aim of maximizing long-term cumulative re-
turns. This sequential-decision making problem is captured
via a Markov Decision Process (MDP), where the agent’s
goal is to find the optimal policy without knowledge of the
transition kernels and reward functions of the MDP. As such,
decision-making in RL is based on sequential data in the
form of observations of state transitions and rewards.

For MDPs with large state and action spaces, RL algo-
rithms typically require many data samples to achieve a
desired level of accuracy (Nair et al., 2015). In this regard,
the emerging paradigm of federated reinforcement learning
(FRL) (Qi et al., 2021), (Khodadadian et al., 2022) seeks
to reduce sample-complexity requirements by parallelizing
data collection and computation across multiple agents. In
FRL, agents share local model parameters or model differ-
entials (i.e., gradient-like update directions) with a central
server while keeping their states, rewards, and actions pri-
vate. However, similar to FL, achieving a convergence
speedup w.r.t the number of agents in FRL at the wire-
less network edge requires frequent information exchanges
between the agents and the server over a shared wireless
communication medium. This leads to an interesting ten-
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sion: more agents imply more data, and hence, the hope of
a greater convergence speedup; however, more agents also
imply a larger communication bottleneck.

In this work, we provide the first principled understanding
of this tension in FRL by considering a setting in which
N agents cooperate to solve a policy evaluation problem.
We focus on policy evaluation since it is at the heart of
value iteration algorithms like Watkin’s Q-learning algo-
rithm (Watkins & Dayan, 1992) for finding the optimal
policy. In our setup, each agent interacts with the same
MDP, collects observations by playing the policy to be eval-
uated, and employs temporal difference (TD) learning (Sut-
ton, 1988) with linear function approximation to construct
a local TD(0) update direction. The agents’ local update
directions are then transmitted to a central server over a
shared wireless channel medium for model updating. To
alleviate the communication bottleneck, we consider ana-
log over-the-air computation (OAC) that has recently been
advocated to provide large-scale, bandwidth- and energy-
efficient up-link communication in FL (Amiri & Gündüz,
2020a; Krouka et al., 2022). In particular, OAC exploits
the waveform-superposition property of the wireless mul-
tiple access channel (MAC) to enable the receiver (server)
to obtain the average of the analog signals transmitted by
the agents over the same time-frequency block (Cao et al.,
2021). Compared to standard digital transmission, OAC
comes with notable gains in up-link bandwidth efficiency.
Furthermore, OAC has intrinsic privacy-preserving features
(Amiri & Gündüz, 2020b; Sery & Cohen, 2020). However,
analog signals transmitted over the air are subject to fading
channel distortion and additive noise at the receiver (Sery
& Cohen, 2020; Yang et al., 2021; Zhu et al., 2020). This
leads to our main investigation question: Is it still possible
to achieve collaborative performance gains for federated
policy evaluation under such channel distortion and noise?

In this work, we provide an answer in the affirmative. Com-
pared to the standard federated optimization setting, provid-
ing finite-time rates for our problem is significantly more
challenging since (i) policy evaluation is not a static opti-
mization problem; and (ii) the data samples are temporally
correlated (since they are part of a Markov chain). In fact,
even for the single-agent case, finite-time rates under Marko-
vian sampling have only recently been established (Bhandari
et al., 2018; Chen et al., 2019; Srikant & Ying, 2019). More-
over, almost all the works on multi-agent TD learning make
a restrictive i.i.d. sampling assumption (Doan et al., 2019;
Liu & Olshevsky, 2021). In light of the above discussion,
our specific contributions are as follows.

Contributions. First, we formulate and study federated
policy evaluation under the analog OAC model - a setting
that we refer to as OAC-FedTD. Ours is the first work to
formally study the convergence behavior of a cooperative

RL algorithm subject to the channel distortions and noise
introduced by OAC.

Second, our main technical contribution is to provide a
comprehensive non-asymptotic convergence analysis of
OAC-FedTD that simultaneously accounts for Markovian
sampling, function approximation, and channel effects. In
Theorem 1, we prove that the sample-complexity bounds
for OAC-FedTD exhibit an N -fold linear speedup relative
to the vanilla single-agent TD algorithm. In particular, our
bounds reveal that increasing the number of agents helps
“drown out” the effect of the channel noise. Since RL algo-
rithms are typically data-hungry, our linear speedup result
is of considerable theoretical and practical significance.

Third, our proof of Theorem 1 is of independent interest
to FRL. The only other paper in FRL that establishes a
linear speedup under Markovian sampling is the very re-
cent work (Khodadadian et al., 2022). However, unlike our
analysis, this work does not need to contend with the addi-
tional randomness introduced by channel effects. Moreover,
compared to the proof in (Khodadadian et al., 2022) that is
based on Moreau envelopes for general stochastic approxi-
mation, we provide an alternate analysis that is much more
transparent and leads to sharper bounds even in the absence
of channel effects. Specifically, consistent with the single-
agent case, our variance bounds bear a linear dependence on
the mixing time of the underlying Markov chain. In contrast,
the dependence in (Khodadadian et al., 2022) is quadratic.

2 SYSTEM MODEL AND OAC-FEDTD

We consider a setting involving N agents, where all agents
interact with the same Markov Decision Process (MDP).
Let us denote the shared MDP by M = (S,A,P,R, γ),
where S is a finite state space of size n, A is a finite action
space, P is a set of action-dependent Markov transition ker-
nels, R is a reward function, and γ ∈ (0, 1) is the discount
factor. We are interested in a policy evaluation problem
where the agents exchange information via a central entity
(server) to evaluate the value function associated with a
policy µ : S → A. In what follows, we first briefly re-
view some key concepts relevant to policy evaluation with
function approximation. Then, we formally describe our
communication model, objectives, and technical challenges.

Policy Evaluation with Linear Function Approximation.
The policy µ to be evaluated induces a Markov Reward Pro-
cess (MRP) with transition matrix Pµ and reward function
Rµ : S → R. The purpose of policy evaluation is to evalu-
ate the value function V µ(s) for each s ∈ S, where V µ(s)
is the discounted expected cumulative reward obtained by
playing policy µ starting from initial state s. Formally,

V µ(s) = E

[ ∞∑
k=0

γkRµ(sk)|s0 = s

]
, (1)
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where sk represents the state of the Markov chain at the
discrete time-step k under the action of the policy µ. Our
particular interest is in the RL setting where the Markov
transition kernels and reward functions are unknown.

In several large-scale practical settings, the size n of the
state space S is large, thereby creating a major computa-
tional challenge. To work around this issue, we will resort to
the popular idea of linear function approximation (Tsitsiklis
& Van Roy, 1997) where V µ is approximated by vectors in
a linear subspace of Rn spanned by a set of d basis vectors
{ϕℓ}ℓ∈[d]

1; importantly, d≪ n. To be more precise, let us
define the feature matrix Φ ≜ [ϕ1, ...,ϕd] ∈ Rn×d. Given
a weight (model) vector θ ∈ Rd, the parametric approxi-
mation V̂ θ of V µ is then given by V (θ) := V̂ θ = Φθ.
If we denote the s-th row of Φ as ϕ′

s, then the approxima-
tion of V µ(s), in particular, is given by V̂ θ(s) = ⟨θ,ϕ′

s⟩.
Throughout, we will make the standard assumption (Bhan-
dari et al., 2018) that the columns of Φ are independent and
that the rows are normalized, i.e., ∥ϕ′

s∥22 ≤ 1,∀s ∈ S.

Given the above setup, the goal of the server-agent system is
to collectively estimate the model vector θ∗ corresponding
to the best linear approximation of V µ in the span of Φ.
To achieve this goal, we now describe a multi-agent variant
of the classical TD(0) algorithm (Sutton, 1988). All agents
start out from a common initial state s0 ∈ S with an initial
estimate θ0 ∈ Rm. Subsequently, at each time-step k ∈ N,
a global model vector θk is broadcasted by the server to
all agents. Each agent i ∈ [N ] then takes an action ai,k =
µ(si,k), and observes the next state si,k+1 ∼ Pµ(·|si,k)
and instantaneous reward ri,k = Rµ(si,k); here, si,k is the
state of agent i at time-step k. Using the model vector θk

and the observation tuple oi,k = (si,k, ri,k, si,k+1), agent i
computes the following local TD update direction:

gi,k(θk, oi,k) = (ri,k+γ⟨ϕ′
si,k+1

,θk⟩−⟨ϕ′
si,k

,θk⟩)ϕ′
si,k

.

We will often use gi,k(θk) as a shorthand for gi,k(θk, oi,k).
Note that although all agents play the same policy µ, and
interact with the same MDP, the realizations of the local
observation sequences {oi,k} can differ across agents. We
assume that these observation sequences are statistically
independent across agents.2 Intuitively, based on this inde-
pendence property, one can expect that exchanging agents’
local TD update directions should help reduce the variance
in the estimate of θ∗. In the wireless FRL framework that
we consider in this paper, the exchange of local TD update
directions occurs based on over-the-air aggregation. In what
follows, we describe this scheme in detail.

Over-the-air computation model. We consider the typical
OAC channel model that has been adopted, for example, in

1Given a positive integer d, we use the notation [d] = 1, ..., d.
2For each agent i, the observations over time are, however,

correlated since they are all part of a single Markov chain.

Agent 1

noise

Server

Agent N

Figure 1. Illustration of the OAC-FedTD scheme. For a descrip-
tion of the various symbols, see Table 1.

(Amiri & Gündüz, 2020b; Cao et al., 2021; Sery & Cohen,
2020; Zhu et al., 2020). In this scheme, N agents, coordi-
nated by a central entity, synchronously transmit their local
update directions as analog wireless signals. The central
entity then collects the superposition of these signals; hence,
the term ‘over-the-air.’ The analog signals are subject to
fading channel distortion and to additive white Gaussian
noise at the receiver.

Under the assumptions of synchronization and phase com-
pensation (Cao et al., 2021; Sery & Cohen, 2020; Yang et al.,
2021), the server at iteration k obtains the following noisy
and distorted global TD direction:

vk =
1

N

N∑
i=1

hi,kgi,k(θk) +wk, (2)

where wk ∼ N (0, σ2
wId) and σ2

w = σ̃2
w/N

2, where σ̃2
w

is the additive white noise variance at the receiver. The
distortion term hi,k is the random channel gain experienced
by agent i at iteration k, with mean mh and variance σ2

h.
We make the standard assumption that the random channel
gain process is independent across agents and iterations.
We will also assume that the random processes {wk} and
{hi,k} related to the channel effects are independent of the
Markovian data tuples {oi,k}. The model in (2) captures dif-
ferent settings of OAC. For example, the model adopted in
(Cao et al., 2021) considers transmitters with adaptive power
transmission. In that case, hi,k = ci,k

√
pi,k, where ci,k is

the actual channel gain, and √
pi,k is the power scaling fac-

tor of device i that can be adaptively adjusted to reduce
the impact of the channel gain. Due to channel estimation
errors (Guo et al., 2021), even in the case in which channel
inversion is performed, hi,k is typically a random object.
In general, the model considered in this paper captures any
OAC framework with phase compensation, as long as the
distortion hi,k in (2) admits first and second moments.
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Table 1. List of notations
Notation Description

oi,k = (si,k, si,k+1, ri,k) observation tuple of agent i at iteration k

gi,k(θk) = g(θk, oi,k) ∈ Rd TD(0) update direction of agent i at iteration k

ḡ(θk) ∈ Rd expected TD(0) update direction at iteration k

Φ ∈ Rn×d, γ ∈ (0, 1) feature matrix and discount factor

π ∈ Rn stationary distribution of the Markov chain

µ : S → A policy to be evaluated by OAC-FedTD

∥ · ∥D norm induced by D = diag(π) ∈ Rn×n

ω ∈ R smallest eigenvalue of Σ = ΦDΦ⊤

hi,k ∈ R channel distortion for agent i at iteration k

wk ∈ Rd measurement noise at the receiver

mh = E [hi,k] , σ
2
h = var(hi,k) mean and variance of channel distortion

σ2
wI = Var(wk) ∈ Rd×d variance of measurement noise

Once the server receives vk, it updates the estimate of the
parameter θk according to the following update rule:

θk+1 = θk + αvk, (3)

where α is a constant step-size/learning rate, and vk is as in
(2). We refer to the updating scheme described above as the
over-the-air TD learning algorithm, or simply OAC-FedTD.

Objective and Challenges. In the rest of the paper, we
aim to provide a finite-time analysis of OAC-FedTD. This
is non-trivial for several reasons. Even in the single-agent
setting, providing a non-asymptotic analysis of TD(0) with-
out any projection step is known to be challenging due to
temporal correlations between the Markov samples. To
analyze OAC-FedTD, we need to deal with a multi-agent
setting where two distinct sources of randomness are concur-
rently in place: (i) the randomness due to the time-correlated
agents’ trajectories, and (ii) the randomness due to the wire-
less fading channel. Furthermore, the final objective of
OAC-FedTD is to provide a linear convergence speedup
w.r.t. the number of agents. This requires a novel and careful
analysis that we provide in the sequel.

3 MAIN RESULT

In this section, we state and discuss our main result per-
taining to the non-asymptotic performance of OAC-FedTD.
First, we need some technical preparation. We assume that
the rewards are uniformly bounded, i.e., ∃r̄ > 0 such that
Rµ(s) ≤ r̄,∀s ∈ S. This standard assumption ensures that
the value function in (1) is well-defined. Next, we make
another standard assumption that plays a key role in the
finite-time analysis of TD algorithms (Bhandari et al., 2018;
Srikant & Ying, 2019; Tsitsiklis & Van Roy, 1997).

Assumption 1. The Markov chain induced by the policy µ
is aperiodic and irreducible.

As a consequence of the above assumption, the Markov

chain induced by µ admits a unique stationary distribution
π (Durrett, 2019). Let Σ = Φ⊤DΦ, where D is a diagonal
matrix with diagonal entries given by the elements of π.
Since Φ is assumed to be full column rank, Σ is full rank
with a strictly positive smallest eigenvalue ω < 1. Next, we
define the steady-state local TD direction as follows:

ḡ(θ) ≜ Eoi,k∼π[gi,k(θ, oi,k)],∀θ ∈ Rd. (4)

The deterministic recursion θk+1 = θk + αḡ(θk) captures
the limiting behavior of the TD(0) update rule. In (Bhandari
et al., 2018), it was shown that the iterates generated by
this recursion converge exponentially fast to θ∗, where θ∗

is the unique solution of the projected Bellman equation
ΠDTµ(Φθ∗) = Φθ∗. Here, ΠD(·) is the projection opera-
tor onto the subspace spanned by {ϕℓ}ℓ∈[d] with respect to
the inner product ⟨·, ·⟩D, and Tµ : Rn → Rn is the policy-
specific Bellman operator (Tsitsiklis & Van Roy, 1997). To
analyze OAC-FedTD, we require the following definition
of mixing time.

Definition 1. Define τϵ ≜ min{t ≥ 1 :
∥E [gi,k(θ, oi,k)|oi,0] − ḡ(θ)∥ ≤ ϵ (∥θ∥+ 1) ,∀k ≥
t, ∀θ ∈ Rm,∀i ∈ N, ∀oi,0}.3

Assumption 1 implies that the Markov chain induced by µ
mixes at a geometric rate, i.e., there exists some K ≥ 1,
such that τϵ ≤ K log( 1ϵ ). For our purpose, we will set
ϵ = αq, where q is an integer satisfying q ≥ 2. Unlike the
centralized setting where q = 1 suffices (Bhandari et al.,
2018; Srikant & Ying, 2019), to establish the linear speedup
property, we will require q ≥ 2. Henceforth, we will drop
the subscript of ϵ = αq in τϵ and simply refer to τ as the
mixing time. Let us define by σ ≜ max{1, r̄, ∥θ∗∥} the
“variance” of the observation model for our problem. Let
δ2k ≜ ∥θ∗ − θk∥2, and ph ≜ max{1,m2

h + σ2
h}.

We now present the main result of our paper, which is the
first finite-time result in RL with OAC. Notably, we consider
the challenging case in which agents’ trajectories follow a
Markov process, and show that cooperation between agents
provides a linear convergence speedup even under noisy
analog communication over wireless fading channels.

Theorem 1. Consider the update rule of OAC-FedTD in
(3). There exists a universal constant C0 ≥ 1, such that with
α ≤ mhω(1−γ)

C0τph
, the following holds for T ≥ 2τ :

E
[
δ2T
]
≤ (1−mhαω(1− γ))TC1 +

C2phατσ
2

mhω(1− γ)N

+
C3phτσ

2α3

mhω(1− γ)
+

C4ατσ̃
2
wd

mhω(1− γ)N2
,

(5)
where C1 = 4δ20 + 2σ2 + 2

σ̃2
wd
N2 , and C2, C3, C4 are uni-

versal constants.
3Unless otherwise specified, ∥ · ∥ is the Euclidean norm.
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A detailed proof of Theorem 1 is provided in the Appendix,
where we outline the key technical challenges relative to the
centralized analysis in (Srikant & Ying, 2019).

Discussion: We now discuss the main takeaways from The-
orem 1. From (5), we first note that OAC-FedTD guaran-
tees linear convergence (in the mean-square sense) to a ball
around θ∗ whose radius depends on the second, third and
fourth terms in (5). The linear convergence rate gets slack-
ened by both the mean distortion mh, and by the choice of
the step size, which needs to scale inversely with phτ . The
term ph also inflates the dominant “variance term”, namely
the second term in (5). So, given that E

[
h2i,k

]
= m2

h + σ2
h

and recalling that ph = max{1,m2
h + σ2

h}, our bound
clearly reveals the effect of fading distortion. This channel
effect is consistent with what one observes for analogous
settings in FL with OAC (Sery & Cohen, 2020). Compared
with the effect of noise in FL via OAC, we note that the
variance term related to the additive noise at the receiver,
i.e., the fourth term in (5), gets scaled by the mixing time τ .
Next, compared to the centralized setting (Srikant & Ying,
2019, Theorem 7), observe that the second and fourth terms
in (5) get scaled down by a factor of N . Moreover, the third
term is O(α3), i.e., it is a higher-order term that is domi-
nated by the second term for small enough α. Thus, ours is
the first work in MARL/FRL over wireless fading channels
to establish a variance-reduction effect w.r.t. the number of
agents. With α = O(log (NT )/T ), we can explicitly show
that each of the four terms in (5) is O(1/NT ), yielding the
linear speedup effect we had hoped for. Finally, note that,
compared to the only other very recent paper (Khodadadian
et al., 2022) that establishes linear speedup under Markovian
sampling (albeit, without channel effects), the second, third,
and fourth terms in (5) have a tighter dependence on the mix-
ing time τ . Indeed, while we achieve a linear dependence
of O(τ), which is consistent with the centralized setting
(Srikant & Ying, 2019), the dependence in (Khodadadian
et al., 2022, Theorem 4.1) is O(τ2).

4 SIMULATION RESULTS

In this section, we provide simulation results to validate our
theory. We consider an MDP with |S| = 20 states and a
feature space spanned by d = 10 orthonormal basis vectors;
we set the discount factor to γ = 0.5 and the step size to
α = 0.02. We generate the channel distortion hi,k (with
mean mh and variance σ2

h) as a Rayleigh random variable,
which is a widely adopted model for fading channels (Sery
& Cohen, 2020). The focus of the simulations is on two
aspects: (i) the effect of the OAC channel distortion on the
convergence behavior and (ii) the benefit of cooperation
in improving the convergence of OAC-FedTD, i.e., con-
vergence speedup w.r.t. N . To this end, we compare the
proposed OAC-FedTD algorithm with a vanilla version of

2000 4000 6000 8000
10-3

10-2

10-1

100

101
FedTD, N = 1
OAC-FedTD, N = 1
FedTD, N = 15
OAC-FedTD, N = 15

Figure 2. Comparison between vanilla FedTD and OAC-FedTD,
in the single-agent (N = 1) and multi-agent (N = 15) case.

federated TD learning (i.e., OAC-FedTD without channel
effects) to which we refer to as FedTD. For all the simu-
lations, we set mh = 1, σ2

h ≃ 0.3, and σ2
w = 0.25, which

are values similar to those in (Sery & Cohen, 2020). From
Fig. 2, we note that for the single-agent case (N = 1),
the convergence error-floor of FedTD is smaller relative
to OAC-FedTD with channel distortion, as expected. Cru-
cially, by increasing the number of agents (N = 15), we
observe that this gap can be made much smaller, thus vali-
dating the convergence speedup w.r.t. N in Theorem 1.

5 CONCLUSION AND FUTURE WORK

We studied, for the first time, a federated policy evaluation
problem where multiple agents interacting with the same
MDP upload local TD(0) update directions over noisy wire-
less channels that introduce distortions. Our main contribu-
tion was to provide a rigorous finite-time analysis of this
scheme that we referred to as OAC-FedTD. Our theoretical
bounds reveal how the noise and distortion introduced by
the channel affects sample-complexity bounds. Moreover,
we showed that despite the channel effects, OAC-FedTD
achieves a linear convergence speedup w.r.t. the number of
agents under Markovian sampling. In particular, our proof
of the linear speedup is novel and can be applied to other
federated RL problems as well.

There are several interesting questions one can explore based
on our work. For instance, the focus of this paper was solely
on policy evaluation. The next natural step would be to con-
sider the control problem and study Q learning and policy
gradient algorithms over wireless channels. One can also
ramp up the generality of the wireless channel model and
study the effect of interference phenomenon (Yang et al.,
2021). We believe that the analysis framework in our paper
provides the theoretical foundation to address these interest-
ing follow-up directions.
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APPENDIX A
In this appendix, we will provide the detailed proof of Theorem 1. We start by introducing some definitions and preliminary
results. To lighten the notation, let us define

η
(i)
k,τ (θ) ≜ ∥E [gi,k(θ, oi,k)|oi,k−τ ]− ḡ(θ)∥,∀k ≥ τ,∀θ ∈ Rd,∀i ∈ [N ],

δk,τ ≜ ∥θk − θk−τ∥,∀k ≥ τ.
(6)

Next, we summarize in one lemma a result from (Bhandari et al., 2018) that we will use in our analysis.

Lemma 2. The following holds ∀θ ∈ Rd:

⟨θ∗ − θ, ḡ(θ)⟩ ≥ ω(1− γ)∥θ∗ − θ∥2.

We will also use the fact that the random TD update directions and their steady-state versions are 2-Lipschitz (Bhandari
et al., 2018), i.e., ∀i ∈ [N ],∀k ∈ N, and ∀θ,θ′ ∈ Rd, we have:

∥ḡ(θ)− ḡ(θ′)∥ ≤ 2∥θ − θ′∥, and
∥gi,k(θ)− gi,k(θ

′)∥ ≤ 2∥θ − θ′∥.
(7)

From (Srikant & Ying, 2019), we further have

∥gi,k(θ)∥ ≤ 2∥θ∥+ 2r̄,∀i ∈ [N ],∀k ∈ N,∀θ ∈ Rd. (8)

Given that (x+ y)2 ≤ 2(x2 + y2),∀x, y ∈ R, and the definition of σ, we will often use the following inequality:

∥gi,k(θ)∥2 ≤ 4(∥θ∥+ r̄)2 ≤ 8(∥θ∥2 + r̄2) ≤ 8(∥θ∥2 + σ2). (9)

In what follows, τ = τϵ with ϵ = α2. We now provide an intuitive outline of the proof, highlighting the challenges and the
key technical steps in establishing Theorem 1.

Outline of the Proof

The proof relies on analyzing the following recursion, which, in turn, follows directly from the update rule of OAC-FedTD:

δ2k+1 = δ2k − 2α⟨vk,θ
∗ − θk⟩+ α2∥vk∥2. (10)

Let ḡN (θk) ≜ 1
N

∑N
i=1 hi,kḡ(θk) and gh,k(θk) ≜ 1

N

∑N
i=1 hi,kgi,k(θk). Taking expectation on both sides of (10),

E
[
δ2k+1

]
= E

[
δ2k
]
− 2αE [⟨ḡN (θk),θ

∗ − θk⟩]
− 2αE [⟨gh,k(θk)− ḡN (θk),θ

∗ − θk⟩]
− 2αE [⟨wk,θ

∗ − θk⟩] + α2∥vk∥2.
(11)

Now note that E [⟨wk,θk − θ∗⟩] = ⟨E [wk] ,E [θk − θ∗]⟩ = 0, using the fact that the measurement noise at iteration k and
the iterate θk are independent, and E [wk] = 0. Moreover, using the fact that the distortion hi,k of agent i at iteration k and
the parameter θk are independent, we obtain

E [⟨ḡN (θk),θ
∗ − θk⟩] =

1

N

N∑
i=1

E [hi,k]E [⟨ḡ(θk),θ
∗ − θk⟩] = mhE [⟨ḡ(θk),θ

∗ − θk⟩] . (12)

Based on the above discussion, we can write

E
[
δ2k+1

]
= E

[
δ2k
]
− 2αmh⟨ḡ(θk),θ

∗ − θk⟩+ 2αE [⟨gh,k(θk)− ḡN (θk),θk − θ∗⟩] + α2∥vk∥2. (13)

Now define
ψk ≜ ⟨gh,k(θk)− ḡN (θk),θk − θ∗⟩. (14)
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Using Lemma 2, we then obtain

E
[
δ2k+1

]
≤ E

[
δ2k
]
− 2αmh(1− γ)ωE

[
δ2k
]
+ 2αE [ψk] + α2E

[
∥vk∥2

]
. (15)

The most challenging part of the analysis is in bounding E
[
∥vk∥2

]
and E [ψk] while guaranteeing a convergence speedup

w.r.t. the number of agents. In fact, even without the channel effects, this is highly non-trivial. Let us elaborate on this point.
First, in standard stochastic optimization analyses, E [ψk] would vanish under the unbiasedness assumption of the stochastic
gradient oracle. However, in our case, since the Markovian observations are temporally coupled, E [ψk] does not vanish. To
work around this difficulty, the bounding techniques in the centralized setting, like the ones in (Bhandari et al., 2018) and
(Srikant & Ying, 2019), use mixing-time arguments in conjunction with equation (9). Unfortunately, directly appealing
to such techniques will fail to provide the desired convergence speedup that we seek in our multi-agent setting. The key
technical step of our proof is providing a bound for E

[
∥vk∥2

]
of the following form:

E
[
∥vk∥2

]
≤ O (ph)E

[
δ2k
]
+O

(
σ2ph
N

)
+O

(
σ2m2

hα
4
)
+O

(
σ̃2
wd

N2

)
. (16)

We derive this bound by appealing to the Lipschitz properties of gi,k(θk) and performing some careful manipulations that
allow us to exploit the mixing property of the Markov chain. Leveraging this key result, our next main step is to obtain a
bound on E

[
δ2k,τ

]
of the following form:

E
[
δ2k,τ

]
≤ O

(
α2τ2ph

)
E
[
δ2k
]
+O

(
α2τ2

phσ
2

N

)
+O

(
τ2σ2α4

)
+O

(
α2τ2

σ̃2
wd

N2

)
. (17)

This result, derived in Lemma 4, turns out to play an essential role in bounding E [ψk]. In particular, using Lemma 4, we
show that

E [ψk] ≤ O (ατph)E
[
δ2k
]
+O

(
ατphσ

2

N

)
+O

(
τphσ

2α3
)
+O

(
ατσ̃2

wd

N2

)
.

This final ingredient is established in Lemma 5. Combining these bounds leads to Theorem 1. In what follows, we flesh out
the above argument.

Auxiliary Lemmas

We state and prove three lemmas that are instrumental to the proof of Theorem 1. In particular, these three results allow us
to bound the terms E

[
∥vk∥2

]
and E [ψk] in (15). We start by providing a bound on E

[
∥vk∥2

]
of the form illustrated in

(16). To that end, we state and prove the following lemma.

Lemma 3. For k ≥ τ , we have

E
[
∥vk∥2

]
≤ 8phE

[
δ2k
]
+ 32

σ2ph
N

+ 8σ2m2
hα

4 +
σ̃2
wd

N2
. (18)

Proof. Let us start by noting that the randomness in θk is induced by {hi,ℓ}i∈[N ],ℓ∈[k−1], {oi,ℓ}i∈[N ],ℓ∈[k−1], and
{wℓ}ℓ∈[k−1]. Based on our assumptions on the noise process, wk is independent of each of these random variables
and also independent of {hi,k}i∈[N ] and {oi,k}i∈[N ]. Using these observations with the fact that E [wk] = 0, we immedi-
ately obtain E [⟨gh,k(θk),wk⟩] = ⟨E [gh,k(θk)] ,E [wk]⟩ = 0. This yields:

E
[
∥vk∥2

]
= E

[
∥gh,k(θk)∥2

]
+ E

[
∥wk∥2

]
. (19)

Now, note that in the centralized/single-agent TD analysis, ∥gh,k(θk)∥2 could be bounded using (8), and this would provide
a term of the form O(δ2k) +O(σ2). This approach would, however, fail to provide a linear convergence speedup with the
number of agents, N . We will show how through a finer analysis, we can establish a tighter bound. We start by writing

∥gh,k(θk)∥2 = ∥gh,k(θk)− gh,k(θ
∗) + gh,k(θ

∗)∥2

≤ 2

N2
(T1 + T2) ,

(20)
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where T1 and T2 are as follows:

T1 = ∥
N∑
i=1

hi,kgi,k(θ
∗)∥2, T2 = ∥

N∑
i=1

hi,k(gi,k(θk)− gi,k(θ
∗))∥2. (21)

We proceed to bound T1 first. We express T1 = T11 + T12, with

T11 =

N∑
i=1

h2i,k∥gi,k(θ
∗)∥2, and

T12 =

N∑
i,j=1
i ̸=j

hi,khj,k⟨gi,k(θ
∗),gj,k(θ

∗)⟩.
(22)

Using (9) and the fact that ∥θ∗∥ ≤ σ, we obtain

∥gi,k(θ
∗)∥2 ≤ 16σ2, (23)

and hence, T11 ≤ 16σ2
∑N

i=1 h
2
i,k. Taking expectations, we thus obtain

E [T11] ≤ 16σ2E

[
N∑
i=1

h2i,k

]
= 16σ2N(m2

h + σ2
h) ≤ 16Nσ2ph.

Next, to bound the cross-terms in T12, we will exploit the mixing property in Definition 1. To that end, we write

E [T12] =

N∑
i,j=1
i̸=j

E [hi,khj,k⟨gi,k(θ
∗),gj,k(θ

∗)⟩]

(a)
=

N∑
i,j=1
i ̸=j

E [hi,khj,k]E [⟨gi,k(θ
∗),gj,k(θ

∗)⟩]

(b)
=

N∑
i,j=1
i ̸=j

E [hi,k]E [hj,k] ⟨E [gi,k(θ
∗)] ,E [gj,k(θ

∗)]⟩

(c)
= m2

h

N∑
i,j=1
i ̸=j

⟨E [E [gi,k(θ
∗)|oi,k−τ ]− ḡ(θ∗)] ,E [E [gj,k(θ

∗)|oj,k−τ ]− ḡ(θ∗)]⟩

(d)

≤ m2
h

N∑
i,j=1
i ̸=j

∥E [E [gi,k(θ
∗)|oi,k−τ ]− ḡ(θ∗)] ∥∥E [E [gj,k(θ

∗)|oj,k−τ ]− ḡ(θ∗)] ∥

(e)

≤ m2
h

N∑
i,j=1
i̸=j

E

∥E [gi,k(θ
∗)|oi,k−τ ]− ḡ(θ∗)∥︸ ︷︷ ︸
η
(i)
k,τ (θ

∗)

E

∥E [gj,k(θ
∗)|oj,k−τ ]− ḡ(θ∗)∥︸ ︷︷ ︸
η
(j)
k,τ (θ

∗)

 ,
where (a) follows from the independence between the channel distortion gains and the Markovian tuples; (b) follows from
the independence between hi,k and hj,k for i ̸= j, and between oi,k and oj,k for i ̸= j; (c) follows from the fact that
ḡ(θ∗) = 0 (Bhandari et al., 2018); (d) is a consequence of the Cauchy-Schwarz inequality; and (e) follows from Jensen’s
inequality. Now observe that:

E
[
η
(i)
k,τ (θ

∗)
]
× E

[
η
(j)
k,τ (θ

∗)
]
≤
(
α2(1 + ∥θ∗∥)

)2 ≤ 4σ2α4. (24)
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In the step above, we used the mixing property by noting that k ≥ τ . We therefore obtain that E [T12] ≤ 4N2m2
hσ

2α4.
Combining the bounds for E [T11] and E [T12] thus yields:

E [T1] ≤ 16σ2Nph + 4N2m2
hσ

2α4. (25)

Now, using (7), we see that

E [T2] ≤ N

N∑
i=1

E
[
h2i,k∥gi,k(θk)− gi,k(θ

∗)∥2
]

≤ 4NE
[
δ2k
] N∑
i=1

E
[
h2i,k

]
= 4phN

2E
[
δ2k
]
.

(26)

Combining all the bounds above, we conclude that

E
[
∥gh,k(θk)∥2

]
≤ 8phE

[
δ2k
]
+ 32

σ2ph
N

+ 8σ2m2
hα

4. (27)

The claim of the lemma then follows from the above bound and by noting that E
[
∥wk∥2

]
=

σ̃2
wd
N2 .

Our next key result is the following.

Lemma 4. Let k ≥ 2τ and α ≤ 1
68τph

. We then have

E
[
δ2k,τ

]
≤ 64α2τ2phE

[
δ2k
]
+ 96α2τ2

phσ
2

N
+ 4α4τ2σ2 + 4α2τ2

σ̃2
wd

N2
. (28)

Proof. We start by writing

δ2k+1 = δ2k − 2α⟨vk,θ
∗ − θk⟩+ α2∥vk∥2 ≤ (1 + α)δ2k + (α+ α2)∥vk∥2

≤ (1 + α)δ2k + 2α∥vk∥2.
(29)

Now using Lemma 3, we have

E
[
δ2k+1

]
≤ (1 + α)E

[
δ2k
]
+ 2α

(
8phE

[
δ2k
]
+ 32

σ2ph
N

+ 8σ2m2
hα

4 +
σ̃2
wd

N2

)
≤ (1 + 17αph)E

[
δ2k
]
+ 64α

σ2ph
N

+ 16σ2m2
hα

5 + 2α
σ̃2
wd

N2︸ ︷︷ ︸
B

.
(30)

Iterating this inequality, we can obtain for any k − τ ≤ k′ ≤ k,

E
[
δ2k′

]
≤ (1 + 17αph)

τE
[
δ2k−τ

]
+B

τ−1∑
ℓ=0

(1 + 17αph)
ℓ. (31)

Now using the fact that (1+x) ≤ ex,∀x ∈ R, observe that (1+17αph)
ℓ ≤ (1+17αph)

τ ≤ e0.25 ≤ 2, for α ≤ 1/(68phτ).
Using the same argument, we also have

∑τ−1
ℓ=0 (1 + 17αph)

ℓ ≤ 2τ . This yields:

E
[
δ2k′

]
≤ 2E

[
δ2k−τ

]
+ 2Bτ. (32)

Next, note that

δ2k,τ ≤ τ

k−1∑
ℓ=k−τ

∥θℓ+1 − θℓ∥2 = τα2
k−1∑

ℓ=k−τ

∥vℓ∥2. (33)
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Taking expectations on both sides of the above equation and applying Lemma 3 and (32), we get

E
[
δ2k,τ

]
≤ α2τ

k−1∑
ℓ=k−τ

(
8phE

[
δ2ℓ
]
+ 32

σ2ph
N

+ 8σ2m2
hα

4 +
σ̃2
wd

N2

)

= 8phα
2τ

k−1∑
ℓ=k−τ

E
[
δ2ℓ
]
+

1

2
ατ2B

≤ 8phα
2τ

k−1∑
ℓ=k−τ

(
2E
[
δ2k−τ

]
+ 2Bτ

)
+

1

2
ατ2B

= 16α2τ2phE
[
δ2k−τ

]
+ 16α2τ3Bph +

1

2
ατ2B.

(34)

In the above steps, we used the fact that ℓ ≥ τ since k ≥ 2τ . We now proceed to simplify the resulting inequality above as
follows:

E
[
δ2k,τ

]
≤ 16α2τ2phE

[
δ2k−τ

]
+ 16α2τ3ph

(
64α

σ2ph
N

+ 16σ2m2
hα

5 + 2α
σ̃2
wd

N2

)
+

1

2
ατ2

(
64α

σ2ph
N

+ 16σ2m2
hα

5 + 2α
σ̃2
wd

N2

)
= 16α2τ2phE

[
δ2k−τ

]
+ 16α3τ3ph

(
64
σ2ph
N

+ 16σ2m2
hα

4 + 2
σ̃2
wd

N2

)
+

1

2
α2τ2

(
64
σ2ph
N

+ 16σ2m2
hα

4 + 2
σ̃2
wd

N2

)
(a)

≤ 16α2τ2phE
[
δ2k−τ

]
+ 48α2τ2

σ2ph
N

+ 2α4τ2σ2 + 2α2τ2
σ̃2
wd

N2
,

(35)

where for (a), we used the fact that ατ ≤ 1
68ph

, and that m2
h

ph
≤ 1, implyingm2

hα ≤ 1
68τ . Now noting that δ2k−τ ≤ 2δ2k+2δ2k,τ ,

we obtain

E
[
δ2k,τ

]
(1− 32α2τ2ph) ≤ 32α2τ2phE

[
δ2k
]
+ 48α2τ2

σ2ph
N

+ 2α4τ2σ2 + 2α2τ2
σ̃2
wd

N2
. (36)

Since ατ ≤ 1
68ph

, we have that 1− 32α2τ2ph ≤ 1
2 , and hence

E
[
δ2k,τ

]
≤ 64α2τ2phE

[
δ2k
]
+ 96α2τ2

σ2ph
N

+ 4α4τ2σ2 + 4α2τ2
σ̃2
wd

N2
. (37)

Using the above lemma, we are now able to provide a bound for E [ψk], which is the last ingredient we need to prove
Theorem 1.

Lemma 5. Let k ≥ 2τ and α ≤ 1
68τph

. We then have

E [ψk] ≤ 435ατphE
[
δ2k
]
+ 657ατ

phσ
2

N
+ 30τphσ

2α3 + 27ατ
σ̃2
wd

N2
. (38)

Proof. Recall the definition of ḡN (θk) ≜ 1
N

∑N
i=1 hi,kḡ(θk) and gh,k(θk) ≜ 1

N

∑N
i=1 hi,kgi,k(θk). We write ψk as

ψk = T1 + T2 + T3 + T4, where

T1 = ⟨θk − θk−τ ,gh,k(θk)− ḡN (θk)⟩,
T2 = ⟨θk−τ − θ∗,gh,k(θk−τ )− ḡN (θk−τ )⟩,
T3 = ⟨θk−τ − θ∗,gh,k(θk)− gh,k(θk−τ )⟩,
T4 = ⟨θk−τ − θ∗, ḡN (θk−τ )− ḡN (θk)⟩.

(39)
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We now bound each of the terms E [T1]− E [T4] individually. We start by observing that

E [T1] = ⟨θk − θk−τ ,gh,k(θk)− ḡN (θk)⟩

≤ 1

2ατ
E
[
δ2k,τ

]
+

1

2
ατE

[
∥gh,k(θk)− ḡN (θk)∥2

]
≤ 1

2ατ
E
[
δ2k,τ

]
+ ατE

[
∥gh,k(θk)∥2

]
+ ατE

[
∥ḡN (θk)− ḡN (θ∗)∥2

]
.

(40)

Now note that E
[
∥gh,k(θk)∥2

]
can be bounded using the same procedure we used in (20), while for E

[
δ2k,τ

]
we can invoke

Lemma 4. We also have

E
[
∥ḡN (θk)− ḡN (θ∗)∥2

]
≤ N

N2

N∑
i=1

E
[
h2i,k∥ḡ(θk)− ḡ(θ∗)∥2

]
≤ 4

N
E
[
δ2k
] N∑
i=1

E
[
h2i,k

]
= 4phE

[
δ2k
]
.

(41)

Now, combining the bounds on these three terms and simplifying, we can obtain

E [T1] ≤ 44ατphE
[
δ2k
]
+ 80ατ

σ2ph
N

+ 3τσ2α3 + 2ατ
σ̃2
wd

N2
. (42)

We now proceed to bound E [T3]. We will again use the fact that δ2k−τ ≤ 2δ2k + 2δ2k,τ .

E [T3] = E [⟨θk−τ − θ∗,gh,k(θk)− gh,k(θk−τ )⟩]

= E

[
⟨θk−τ − θ∗,

1

N

N∑
i=1

hi,k(gi,k(θk)− gi,k(θk−τ ))⟩

]

= E

[
1

N

N∑
i=1

hi,k⟨θk−τ − θ∗,gi,k(θk)− gi,k(θk−τ )⟩

]

≤ mhE

[
δk−τ

1

N

N∑
i=1

∥gi,k(θk)− gi,k(θk−τ )∥

]

≤ ατ

2
m2

hE
[
δ2k−τ

]
+

2

ατ
E
[
δ2k,τ

]
≤ ατm2

hE
[
δ2k
]
+ ατm2

hE
[
δ2k,τ

]
+

2

ατ
E
[
δ2k,τ

]
≤ ατm2

hE
[
δ2k
]
+

3

ατ
E
[
δ2k,τ

]
,

(43)

where we have used that ατ ≤ 1
68ph

and m2
h

ph
≤ 1, which imply m2

hατ ≤ 1. Applying Lemma 4, we can then get

E [T3] ≤ ατphE
[
δ2k
]
+

3

ατ

(
64α2τ2phE

[
δ2k
]
+ 96α2τ2

phσ
2

N
+ 4α2τ2σ2α2 + 4α2τ2

σ̃2
wd

N2

)
. (44)

Simplifying the above bound yields:

E [T3] ≤ 193ατphE
[
δ2k
]
+ 288ατ

phσ
2

N
+ 12τσ2α3 + 12ατ

σ̃2
wd

N2
. (45)

With analogous calculations, we can derive exactly the same bound for E [T4].

We now proceed to bound E [T2]. For ease of notation, let us define Fk,τ = ({oi,k−τ}Ni=1,θk−τ ). Observe:

E [T2] = E [E [T2|Fk,τ ]] = E[⟨θk−τ − θ∗,
mh

N

N∑
i=1

(E [gi,k(θk−τ , oi,k)|Fk,τ ]− ḡ(θk−τ ))⟩]

≤ E

[
δk−τ

mh

N

N∑
i=1

η
(i)
k,τ (θk−τ )

]
≤ mhα

2E [δk−τ (1 + ∥θk−τ∥)] .
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Since α < 1, we have δk−τ (δk−τ + 2σ) ≤ δ2k−τ

α + 2σδk−τ + ασ2 =
(

δk−τ√
α

+
√
ασ
)2

≤ 2
(

δ2k−τ

α + ασ2
)

. Based on this
observation, Lemma 4, and the fact that mh ≤ ph, we obtain

E [T2] ≤ 2mhα
2

(
δ2k−τ

α
+ ασ2

)
= 2mhαδ

2
k−τ + 2mhα

3σ2

≤ 4mhαδ
2
k + 4mhαδ

2
k,τ + 2mhα

3σ2

≤ 5phατE
[
δ2k
]
+ ατ

σ2ph
N

+ 3τσ2phα
3 + ατ

σ̃2
wd

N2
.

(46)

Combining all the terms, we can conclude the proof.

We are now in position to prove Theorem 1.

Proof of Theorem 1

Consider the inequality that we derived in (10). For k ≥ 2τ , plugging in the inequality the bounds derived in Lemma 3 and
in Lemma 5, we get

E
[
δ2k+1

]
≤ E

[
δ2k
]
− 2αmh(1− γ)ωE

[
δ2k
]
+ 2αE [ψk] + α2E

[
∥vk∥2

]
≤ E

[
δ2k
]
− 2αmh(1− γ)ωE

[
δ2k
]

+ 2α

(
435ατphE

[
δ2k
]
+ 657ατ

phσ
2

N
+ 30τphσ

2α3 + 27ατ
σ̃2
wd

N2

)
+ α2

(
8phE

[
δ2k
]
+ 32

σ2ph
N

+ 8σ2m2
hα

4 +
σ̃2
wd

N2

)
= E

[
δ2k
]
− 2αmh(1− γ)ωE

[
δ2k
]

+ 878α2τphE
[
δ2k
]
+ 1346α2τ

phσ
2

N
+ 61τphσ

2α4 + 55α2τ
σ̃2
wd

N2

= E
[
δ2k
]
− α (2mh(1− γ)ω − 878ατph)E

[
δ2k
]

+ 1346α2τ
phσ

2

N
+ 61τphσ

2α4 + 55α2τ
σ̃2
wd

N2
.

(47)

Hence, for α ≤ mh(1−γ)ω
C0τph

, with C0 = 878, we get

E
[
δ2k+1

]
≤ (1− αmh(1− γ)ω)E

[
δ2k
]
+ 1346α2τ

phσ
2

N
+ 61τphσ

2α4 + 55α2τ
σ̃2
wd

N2
. (48)

Unrolling this inequality, we obtain

E
[
δ2T
]
≤ (1− αmh(1− γ)ω)T−2τE

[
δ22τ
]
+ C2

ατphσ
2

mh(1− γ)ωN

+
C3τphσ

2α3

mh(1− γ)ω
+

C4ατσ̃
2
wd

mh(1− γ)ωN2
,

(49)

with C2 = 1346, C3 = 61 and C4 = 55. To conclude, we proceed to bound E
[
δ22τ
]
. Note that, for any k ≥ 0,

E
[
δ2k+1

]
≤ (1 + α)E

[
δ2k
]
+ 2αE

[
∥vk∥2

]
. (50)

Observe as before (see (19)):
E
[
∥vk∥2

]
= E

[
∥gh,k(θk)∥2

]
+ E

[
∥wk∥2

]
. (51)
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Note that E
[
∥wk∥2

]
=

σ̃2
wd
N2 and that we can bound E

[
∥gh,k(θk)∥2

]
as follows:

E
[
∥gh,k(θk)∥2

]
= E

[
∥ 1

N

N∑
i=1

hi,kgi,k(θk)∥2
]
≤ N

N2

N∑
i=1

h2i,k∥gi,k(θk)∥2

≤ 1

N

(
8(∥θk∥2 + σ2)

N∑
i=1

E
[
h2i,k

])
≤
(
8(2δ2k + 3σ2)

)
ph

= 16phE
[
δ2k
]
+ 24phσ

2.

(52)

Hence,

E
[
∥vk∥2

]
≤ 16phE

[
δ2k
]
+ 24phσ

2 +
σ̃2
wd

N2
. (53)

We thus have

E
[
δ2k+1

]
≤ (1 + α)E

[
δ2k
]
+ 2α

(
16phE

[
δ2k
]
+ 24phσ

2 +
σ̃2
wd

N2

)
≤ (1 + 33phα)E

[
δ2k
]
+ 48αphσ

2 + 2α
σ̃2
wd

N2
.

(54)

Iterating this inequality, we obtain

E
[
δ22τ
]
≤ (1 + 33αph)

2τδ20 +

(
48αphσ

2 + 2α
σ̃2
wd

N2

) 2τ−1∑
j=0

(1 + 33αph)
j . (55)

Now with the same procedure used to obtain (32), we see that if 66αphτ ≤ 1
4 , then

E
[
δ22τ
]
≤ 2E

[
δ20
]
+ 4τ

(
48αphσ

2 + 2α
σ̃2
wd

N2

)
≤ 2E

[
δ20
]
+ 192ατσ2ph +

8ασ̃2
wdτ

N2

≤ 2E
[
δ20
]
+ σ2 +

σ̃2
wd

N2
,

(56)

where we have used that ατ ≤ 1
878ph

. With the choice of step size in the statement of the theorem, we have αω(1−γ)mh ≤ 1.
This then yields (1 − αω(1 − γ)mh)

−2τ ≤ (1 − αmh)
−2τ . Finally note that since ατ ≤ 1

C0ph
≤ 1

4ph
, we have

ατmh ≤ mh

4ph
≤ 1

4 , where we used the fact that mh

ph
≤ 1. Based on this discussion and using Bernoulli’s inequality, we

obtain (1−αmh)
2τ ≥ 1− 2ατmh ≥ 1

2 ; hence, (1−αmh)
−2τ ≤ 2. We thus have (1−αω(1− γ)mh)

−2τ ≤ 2. Plugging
this bound back in (49) completes the proof.
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APPENDIX B
In this appendix, we provide further simulations to corroborate our theoretical findings and to analyse the performance of
OAC-FedTD under different configurations. To simulate the Markov chain, we adopt the same configuration as Section 4.
In Figure 3, we show the performance of OAC-FedTD when the number of states is larger with respect to the experiments
shown in the results of Section 4. Specifically, we consider a Markov chain with |S| = 100 states. As expected, the overall
number of iterations required for convergence is larger compared to the case in which |S| = 20. However, the linear speedup
property of OAC-FedTD is evident in this case as well, and the obtained result is similar to the one observed in Figure 2 of
Section 4. In Figure 4, we show some further results comparing the performance of QFedTD under two different values of
the standard deviation of the receiver noise, namely σ̃w = 0.2 and 0.8. We show the performance for N = 1 and N = 15
agents, with the step size set to α = 0.2. Consistent with the theory, we can see how the convergence ball is inflated by the
noise at the receiver. We can note, however, that for N = 15, thanks to the speedup guaranteed by cooperation, the noise
ball inflation is limited and we still get better performance compared to the single-agent case.
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FedTD, N = 1
OAC-FedTD, N = 1
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OAC-FedTD, N = 15
OAC-FedTD, N = 50

Figure 3. Comparison between vanilla FedTD and OAC-FedTD, in the single-agent (N = 1) and multi-agent (N = 15, N = 50) case.
In this experiment, the number of states of the Markov chain is |S| = 100.
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Figure 4. Performance of OAC-FedTD for different values of the standard deviation of the measurement noise at the receiver (σ̃w =
0.2, 0.8), and for different values of the number of cooperating agents (N = 1, 15).


