TCMREASONSET: A DATASET FOR EXPLAINABLE MEDICAL REASONING IN TRADITIONAL CHINESE MEDICINE

Anonymous authorsPaper under double-blind review

000

001

002

004

006

008 009 010

011 012

013

014

015

016

017

018

019

021

023

025

026

027

028

029

031

034

037

040

041

042

043

044

045

046

047

048

051

052

ABSTRACT

Large language models (LLMs) excel in structured tasks such as mathematics and programming but remain limited in knowledge-intensive domains like Traditional Chinese Medicine (TCM), which require complex reasoning. The primary bottleneck stems from the scarcity of high-quality training corpora that are well-structured and explicitly traceable in their reasoning pathways. To address this, we introduce TCMReasonSet, a high-quality dataset specifically designed for TCM clinical reasoning, aimed at enhancing the reliability and interpretability of LLMs in solving TCM-related problems. The construction of TCMReasonSet comprises three core components: (1) a proprietary TCM knowledge graph we developed — containing 52,000 entities and 1.38 million relations — serving as the foundation for dynamic retrieval and reasoning; (2) the generation of clinical question-answer pairs using LLMs, grounded in the aforementioned knowledge graph; and (3) building upon the knowledge graph and QA pairs, we propose the "TCM Tree-of-Thought" (TCM-ToT) methodology, which incorporates a dualdimension scoring mechanism (logical consistency + factual accuracy) to evaluate clinical QA pairs and transform them into coherent, interpretable reasoning chains with explicit pathways. Through this pipeline, we ultimately generated 36,573 clinically interpretable reasoning samples. Experimental results demonstrate that fine-tuning models with TCMReasonSet significantly enhances medical problemsolving performance: the DeepSeek-Distill-8B model achieves an 8.9% accuracy gain, while our TCMReason-8B model surpasses the current state-of-the-art medical reasoning model by a 5.7% margin. Furthermore, expert evaluations further validate the reliability of our dataset in terms of factual accuracy and logical coherence.

1 Introduction

In recent years, large language models (LLMs) have achieved remarkable success in tasks such as mathematical reasoning, logical inference, and code generation Zhang et al. (2024); Pei et al. (2025); Zhao et al. (2023). Among these advancements, the Chain-of-Thought (CoT) paradigm has proven particularly effective across a wide range of reasoning tasks Feng et al. (2023); Liu et al. (2024). However, in knowledge-intensive domains like Traditional Chinese Medicine (TCM), the reasoning capabilities of LLMs remain limited and face substantial challenges Liévin et al. (2024); Yang et al. (2024b).

The primary challenge lies in the severe scarcity of high-quality, domain-adapted reasoning data. Unlike Western medicine, which is grounded in standardized systems, traditional Chinese medicine (TCM) emphasizes holistic perspectives, dynamic pattern differentiation, and the transmission of experiential knowledge—resulting in a knowledge structure that is highly complex and context-dependent. At present, there is a lack of publicly available datasets that are authoritative, logically coherent, and capable of supporting interpretable multi-step reasoning, which severely hampers the development of reasoning capabilities in large language models (LLMs) within the TCM domain.

Another critical limitation arises when attempting to construct TCM reasoning data using existing techniques. Current mainstream chain-of-thought (CoT) paradigms are ill-suited to the distinctive

characteristics of TCM diagnosis and treatment. The linearity and autoregressive nature of CoT reasoning fail to capture the multidimensional, nonlinear, and dialectical logic inherent in TCM practice—such as the principles of "treating the same disease with different therapies" and "treating different diseases with the same therapy" Wang et al. (2025a). This mismatch between the reasoning approach and the characteristics of the TCM system not only degrades reasoning performance but also risks the progressive accumulation and propagation of errors throughout the reasoning process—a particularly hazardous outcome in clinical applications.

To address these challenges, we introduce TCMReasonSet—the first large-scale, open-source reasoning dataset tailored for traditional Chinese medicine (TCM), designed to support high-quality and interpretable medical reasoning. The construction of this dataset proceeds in three stages:

- Stage 1: Knowledge-guided foundation. We construct a TCM knowledge graph (TCM-KG) containing 52,000 entities and 1.38 million relations, which provides a factual backbone for subsequent reasoning tasks.
- Stage 2: Construction of TCM-specific QA pairs. Building upon this graph, we leverage large language models (LLMs) to generate 50,000 knowledge-constrained, multitask QA pairs covering TCM theory, diagnosis, clinical practice, and pharmacology.
- Stage 3: Integration of domain knowledge into Tree-of-Thought (ToT) reasoning. Given
 the high-stakes nature of medical applications, each reasoning step must be verifiable and
 firmly grounded in expert knowledge Wen et al. (2023). Inspired by the RATT framework Zhang et al. (2025a), we design a novel data generation pipeline that deeply integrates TCM-KG into the ToT reasoning paradigm, ultimately producing more than 30,000
 high-quality reasoning samples.

Our key contributions are threefold:

- Dataset release: Introduction of TCMReasonSet, the first large-scale, open-source reasoning dataset for TCM domain, consisting of 30,000 high-quality and interpretable reasoning samples.
- Knowledge-constrained generation: Development of a knowledge-constrained data generation pipeline grounded in a TCM knowledge graph, which substantially improves the interpretability and clinical reliability of TCM reasoning data.
- Empirical validation: Comprehensive experiments show that models fine-tuned on TCM-ReasonSet achieve substantial performance gains across multiple TCM benchmark suites. Notably, TCMReason-8B, fine-tuned on this dataset, establishes state-of-the-art results among medical models with fewer than 10 billion parameters.

2 RELATED WORK

2.1 Reasoning Data for Model Enhancement

In recent years, LLMs have demonstrated remarkable reasoning capabilities in domains such as mathematics and programming Satpute et al. (2024); Luo et al. (2023); Cai et al. (2023), motivating interest in applying similar methodologies to professional fields like Traditional Chinese Medicine (TCM). However, training high-quality reasoning models typically requires large-scale datasets annotated with fine-grained reasoning steps—resources that are prohibitively expensive to curate manually Zhao et al. (2025). A common alternative is to distill knowledge from more powerful LLMs Zhang et al. (2023). Yet, in knowledge-intensive tasks, this approach is prone to hallucination—the generation of factually incorrect or unverifiable content—a limitation that is especially pronounced in the TCM domain Zhang et al. (2025b); Xu et al. (2023). To address this issue, we introduce the TCMReasonSet dataset, which centers on structured Traditional Chinese Medicine Thought Trees (TCM-ToT). This dataset is designed to guide LLMs toward generating more reliable, fact-grounded, and interpretable reasoning chains for TCM tasks. By incorporating domain-specific knowledge and explicit reasoning structures, TCMReason provides a foundation for enhancing intelligent decision support systems in TCM with transparent and trustworthy outputs.

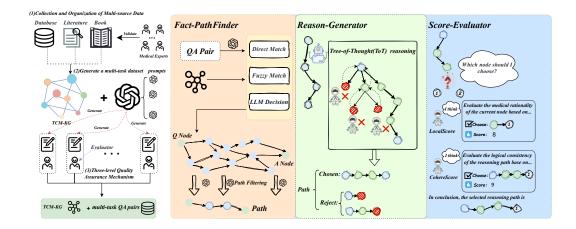


Figure 1: Overview of Our Data Generation Pipeline. The pipeline comprises three stages: (1) construction of a Traditional Chinese Medicine knowledge graph (TCM-KG) and automated generation of multi-task question-answer (QA) pairs; (2) identification of factual reasoning paths via entity linking and constrained path retrieval; and (3) synthesis of Tree-of-Thought (ToT) reasoning instances grounded in the extracted paths

2.2 THOUGHT STRUCTURES FOR LLMS

Structured reasoning paradigms, as advanced prompt engineering techniques, have shown strong potential in enhancing the logical coherence and interpretability of large language model (LLM) outputs Minaee et al. (2024); Zhang et al. (2022). Among them, the Chain-of-Thought (CoT) approach improves the model's reasoning capacity by explicitly decomposing tasks into intermediate logical steps Wei et al. (2022). Building upon this, the Tree-of-Thought (ToT) framework introduces a branching search process Yao et al. (2023), which enables forward planning, hypothesis exploration, and backtracking-based error correction, thereby demonstrating superior performance on cognitively demanding reasoning tasks Ni et al. (2025); Yang et al. (2025b). Given the inherent complexity and non-linear diagnostic reasoning in Traditional Chinese Medicine (TCM), this study systematically adapts and extends the ToT paradigm to TCM knowledge modeling. We propose TCM-ToT, a fact-guided reasoning method that tightly integrates the TCM knowledge graph into the reasoning process. It dynamically adjusts reasoning trajectories based on a dual-dimensional scoring mechanism—evaluating both logical coherence and factual accuracy. This method enables the generation of highly interpretable and reliable reasoning paths, supporting key applications in TCM decision-making, question answering, and educational scenarios.

3 Proposed Method

This section introduces TCMReason—a knowledge-guided reasoning data generation pipeline tailored for Traditional Chinese Medicine (TCM). As illustrated in Figure 1, the pipeline comprises four core modules that sequentially transform a knowledge graph into high-quality reasoning samples: (1) the QA-Pair Generator constructs(QA-Pair-Generator) a TCM knowledge graph by integrating multi-source data and then generates multi-task TCM question-answer pairs based on this graph; (2) the Fact-Path Finder(Fact-PathFinder)leverages structured medical knowledge from the TCM domain knowledge graph to construct fact-guided reasoning paths; (3) the Reason Generator(Reason-Generator)traverses entities related to the extracted paths to build interpretable reasoning chains; and (4) the Score Evaluator(Score-Evaluator)employs a dual-dimensional assessment mechanism that jointly evaluates factual accuracy and logical consistency to filter generated reasoning chains for validity and coherence.

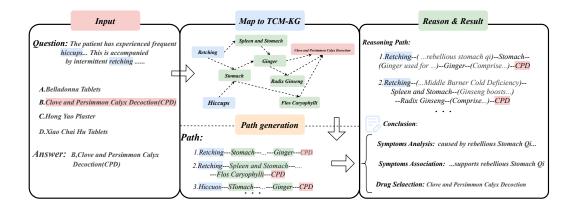


Figure 2: This example illustrates the end-to-end workflow of the TCMReason data generation pipeline. The figure depicts the full pipeline, beginning with a user query, followed by medical entity extraction via a large language model (LLM), entity alignment through knowledge graph mapping, and reasoning path generation with subsequent semantic pruning. Next, Tree-of-Thought (ToT) reasoning is performed along the selected paths, guided by a dual-dimensional scoring mechanism to ensure both logical coherence and factual accuracy.

3.1 QA-PAIR-GENERATOR

We construct the largest and most comprehensive Traditional Chinese Medicine (TCM) knowledge graph by integrating multi-source heterogeneous data into a high-quality, semantically rich structure. Our sources include: (1) structured medical entities from over ten authoritative TCM databases (e.g., TCMIO, ITCM, SymMap, TARKG); (2) structured knowledge extracted from more than 2,000 pharmacological research papers validated by domain experts; and (3) official drug standards from the Pharmacopoeia of the People's Republic of China and over 5,000 real-world classical clinical case records. After rigorous preprocessing—data cleaning, entity normalization, and semantic alignment—we built a high-quality TCM knowledge graph containing 52,000 entities (e.g., herbal formulas, syndromes, Chinese medicinal herbs, active compounds, molecular targets) and approximately 1.38 million semantic relations (e.g., formula-syndrome associations, compound-target interactions). Leveraging this graph, we propose a prompt engineering—based method to automatically generate diverse question-answering (QA) pairs, forming a multi-task TCM QA dataset covering core tasks such as fundamental TCM knowledge querying, classical case analysis, syndrome-disease reasoning, and herb/formula recommendations. To ensure logical coherence and factual accuracy, we implemented a three-tier quality assurance framework: (1) Automated evaluation: a domainadapted LLM scorer retained only QA pairs scoring ;90/100 for logical consistency and factual correctness; (2) Human validation: 1,000 random samples per task underwent dual blind annotation, achieving ¿90% inter-annotator agreement; (3) Expert review: ten senior TCM experts independently rated a sample of 100 QA pairs, yielding an average score ¿90/100, confirming clinical and academic reliability.

3.2 FACT-PATHFINDER

Fact-PathFinder leverages structured knowledge graphs to generate fact-guided reasoning paths, serving as the foundation for informed and interpretable decision-making.

Given an input question–answer pair (Q,A), we employ a large language model (LLM) to perform semantic parsing and extract the associated sets of medical entities, denoted as $\{e_i^Q\}_{i=1}^{n_Q}$ and $\{e_j^A\}_{j=1}^{n_A}$. These entities are then mapped to nodes in the TCM-specific knowledge graph via a hierarchical three-stage matching strategy. First, exact string matching is applied. If no match is found, the system performs a vector-based similarity search and selects the top-1 candidate whose cosine similarity exceeds a predefined threshold ($\alpha=0.85$). When both prior strategies fail, an LLM-driven semantic decision mechanism is activated, which selects the most contextually appropriate

candidate node by jointly analyzing the semantic content of Q and A. This yields aligned entity sets $\{\hat{e}_i^Q\}_{i=1}^{n_Q}$ and $\{\hat{e}_j^A\}_{j=1}^{n_A}$.

For each aligned entity pair $(\hat{e}_i^Q, \hat{e}_j^A)$, the system retrieves all shortest paths connecting them in the knowledge graph, forming a preliminary path set \tilde{P}_{ij} . This ensures minimal path complexity to support interpretability. To refine the collection of all candidate paths $\bigcup_{i,j} \tilde{P}_{ij}$, we introduce an LLM-guided semantic pruning mechanism. Conditioned on the clinical context provided by Q, the LLM filters out irrelevant or semantically weak paths and selects the global top-k most contextually salient reasoning chains (e.g., "lower back and knee weakness \rightarrow kidney deficiency \rightarrow Rehmannia \rightarrow Acanthopanax").

Finally, we construct a global reasoning path set $\mathcal{P}=\{p_i\}_{i=1}^k$, where each path $p_i=(v_1^{(i)},v_2^{(i)},\ldots,v_{n_i}^{(i)})$ denotes a directed sequence of knowledge graph nodes of variable length. This set \mathcal{P} serves as the foundational input to the subsequent Tree-of-Thought (TCM-ToT) reasoning module.

3.3 REASON-GENERATOR

Reason-Generator employs a knowledge graph-driven tree-of-thought (KG-ToT) mechanism to construct hierarchical reasoning paths, enabling interpretable and domain-aligned inference tailored to Traditional Chinese Medicine (TCM) decision-making.

Given the set of fact-guided reasoning paths $\mathcal{P}=\{p_i\}_{i=1}^k$ generated by Fact-PathFinder, where each path p_i consists of a sequence of entity nodes from the TCM-specific knowledge graph (TCM-KG)—such as etiology, pathogenesis, symptoms, and treatments—we enhance each path with natural language explanations. Each p_i represents a semantically coherent medical fact path grounded in clinical reasoning. To improve interpretability, we incorporate a large language model (LLM)-based explanatory mechanism that generates intermediate reasoning nodes between every pair of adjacent entity nodes, thereby enriching the symbolic path with human-readable justifications.

The resulting structure forms a reasoning tree \mathcal{T}_{KG} , which integrates both graph-anchored medical facts and LLM-generated explanatory narratives, serving as the foundation for transparent and clinically plausible inference.

The above process is formalized as follows:

$$Branch(p_i) = (PathNode(v_1^{(i)}), ReasonNode_1^{(i)}, PathNode(v_2^{(i)}), ReasonNode_2^{(i)}, \dots, PathNode(v_{n_i}^{(i)}))$$

$$(1)$$

ReasonNode_j⁽ⁱ⁾ = ToT(
$$v_j^{(i)}, v_{j+1}^{(i)}$$
), for $j = 1, ..., n_i - 1$ (2)

$$\mathcal{T}_{KG} = \bigcup_{p_i \in \mathcal{P}} Branch(p_i)$$
(3)

where $\operatorname{PathNode}(v_j^{(i)})$ denotes an entity node inherited from the knowledge graph, serving as an anchor for medical facts such as pathology, symptoms, or treatment plans. ReasonNode $_j^{(i)} = \operatorname{ToT}(v_j^{(i)}, v_{j+1}^{(i)})$ represents an intermediate node produced by the LLM, encoding causal, pathological, or TCM-specific reasoning (e.g., syndrome differentiation) between $v_j^{(i)}$ and $v_{j+1}^{(i)}$.

3.3.1 REASONING BETWEEN NODES AND PATH EXPLANATION

After constructing the set of reasoning paths $\mathcal{P}=\{p_i\}_{i=1}^k$, the system sequentially invokes the large language model to perform Tree-of-Thought (ToT) reasoning over each adjacent node pair $(v_i^{(i)}, v_{i+1}^{(i)})$ within each path. For every such pair, the LLM not only infers a reasoning outcome but also produces a coherent chain of thoughts that explicates the underlying causal relationships and domain-specific medical logic—such as syndrome differentiation, pathogenesis progression, or therapeutic rationale—linking the two nodes.

$$ToT_{LLM}(v_i^{(i)}, v_{i+1}^{(i)}) \Rightarrow Reasoning(v_i^{(i)} \rightarrow v_{i+1}^{(i)})$$

$$\tag{4}$$

272 273

274 275

276 277

278 279

280 281

282 283 284

285 286

287 288 289

290 291 292

> 293 294

> > 295

296

297

298 299 300

305 306 307

309 310 311

312

313

308

314 315 316

317 318 319

321

323

320 322

ciples characteristics, medicinal properties and their meridian associations, etc.). Reasoning $(v_i^{(i)} \rightarrow v_i^{(i)})$ $v_{i+1}^{(i)}$) represents the reasoning output, including the result node and a structured or natural languagebased medical reasoning explanation.

3.3.2 DYNAMIC BACKTRACKING MECHANISM

If a segment of the ToT reasoning output is deemed invalid by the scoring mechanism, the system triggers a backtracking procedure to the most recent verified knowledge node (i.e., a PathNode). From this anchor point, alternative reasoning trajectories are regenerated to preserve logical coherence and clinical correctness.

where $(v_i^{(i)}, v_{i+1}^{(i)})$ represents the node pairs of the reasoning input (e.g., syndrome types, Eight Prin-

The backtracking target is formally defined as:

$$v_{\text{backtrack}}^{(i)} = \arg\max_{n \in \text{Ancestors}(v_{\text{err}}^{(i)})} \text{depth}(v) \quad \text{if } \mathbb{I}[\text{Type}(v) = \text{PathNode}]$$
 (5)

where $Ancestors(v_{err}^{(i)})$ represents all ancestor nodes pointing to the current erroneous node. $v_{
m backtrack}^{(i)}$ represents the most recent knowledge anchor point returned by the system, and then reexpands other potential reasoning paths.

3.4 Score-Evaluator

Traditional methods for generating reasoning paths over knowledge graphs typically rely on structured algorithms, such as shortest path search or random walks. However, these methods struggle to fully capture the unique diagnostic and treatment patterns of Traditional Chinese Medicine (TCM) and the domain-specific safety constraints. To ensure both the accuracy and consistency of treestructured reasoning grounded in knowledge graphs for medical tasks, we propose an innovative dual-dimensional scoring mechanism. This mechanism performs semantic-level evaluations at both the local (node-level, i.e., single-step reasoning) and global (path-level, i.e., multi-step reasoning) scales. The mechanism includes two core components: (1) accuracy of single-step facts: verifying the medical validity of inferences between adjacent nodes; (2) rationality of multi-step logic: examining the logical consistency of the entire reasoning path. To implement this scoring mechanism, we employ the medical-domain fine-tuned large language model "HuatuoGPT-o1-72B"? as the scoring oracle.

3.4.1 ACCURACY OF SINGLE-STEP FACTS

This component evaluates the medical validity of each reasoning step in context, detecting issues such as contraindicated drug interactions, logical inconsistencies, and contradictions in TCM syndrome differentiation.

LocalScore =
$$\operatorname{HuaTuo}_{\theta}(I_{\text{local}}, x_{\text{node}}) \in [0, 10]$$
 (6)

where I_{local} denotes the instruction template for local accuracy evaluation, and x_{node} represents the current node information (including entity type and attributes).

3.4.2 RATIONALITY OF MULTI-STEP LOGIC

This component assesses the logical coherence and medical plausibility of pathogenesis evolution along the entire reasoning path, ensuring adherence to established clinical inference principles.

CohereScore =
$$\operatorname{HuaTuo}_{\theta}(I_{\operatorname{cohere}}, x_{\operatorname{path}}) \in [0, 10]$$
 (7)

where I_{cohere} denotes the instruction template for path-level coherence evaluation, and x_{path} represents the sequence of nodes and their semantic relationships along the reasoning path.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

4.1.1 REASONING DATA GENERATION AND PREPROCESSING

Based on a rigorously validated, high-quality knowledge graph (TCM-KG), we developed a reasoning-oriented dataset using the TCMReason data generation pipeline. The resulting dataset, named **TCMReasonSet**, comprises over 30,000 Tree-of-Thought (ToT) reasoning samples spanning a broad range of tasks in Traditional Chinese Medicine (TCM). Each sample includes a structured and interpretable reasoning chain. TCMReasonSet is designed to serve as an efficient and scalable resource for TCM-specific reasoning and model training, thereby enhancing the reasoning capabilities of large language models and improving the transparency of clinical decision-making.

4.1.2 BENCHMARK DATASETS

We rigorously evaluate the model's performance using standardized benchmarks datasets in TCM: the Chinese Medicine Benchmark (CMB) (Wang et al., 2024), the Traditional Chinese Medicine Standardized Diagnostic Test (TCM-SDT) (Wang et al., 2025b), the Medical Language Evaluation Corpus (MLEC-QA) (Li et al., 2021), and the TCM Licensing Examination Database (TCM-exam) (SylvanL, 2024). CMB, as a comprehensive evaluation benchmark dedicated to the field of Chinese medicine, categorizes the TCM domain evaluation data into four subsets: (1) Chinese Materia Medica (CHM), focusing on the properties of medicinal materials, compatibility principles, and the application of formulas; (2) TCM Diagnosis (TCM-DS), emphasizing clinical differentiation and reasoning abilities; (3) Basic TCM Theory (BTT), covering core theories such as Yin-Yang and the Five Elements; and (4) Postgraduate Entrance Exam Questions (PEEQ), encompassing advanced medical education-related questions. TCM-SDT specializes in TCM differentiation decision-making through patient simulations, MLEC-QA evaluates the performance of medical question-answering systems in complex reasoning tasks, and TCM-exam assesses qualifications for TCM practitioners.

4.1.3 COMPARISON MODELS

To systematically evaluate the generalization performance of the TCMReasonSet across different base models, we select several models with fewer than 10 billion parameters as baselines and perform supervised fine-tuning (SFT) on the dataset. Specifically, we focus on two representative instruction-tuned models: Qwen2.5-7B-Instruct (Yang et al., 2024a) and Mistral-Instruct-7B (Jiang et al., 2023). Based on the experimental framework by Chen et al. (2024b), we employ a learning rate of 5e-6, a batch size of 128, and utilize DeepSpeed-ZeRO stage 3 optimization techniques (Rajbhandari et al., 2020) to complete three epochs of training. To further investigate the impact of the dataset on reasoning ability, we also fine-tune Qwen3-8B (Yang et al., 2025a), DeepSeek-Distill-8B (Guo et al., 2025), and Huatuo-o1-RL-8B (Chen et al., 2024a) using the same hyperparameters. Finally, as shown in Table 3, we compare the fine-tuned models against three categories of baselines: (1) General-purpose large language models, including LLaMA 3.1-Instruct-8B (Dubey et al., 2024), Mistral-Instruct-7B, and Qwen-Instruct-7B; (2) Medical domain-specific models, such as BianQue (Chen et al., 2023), Bentsan (Wang et al., 2023), BianCang (Wei et al., 2024), ShengNong-TCM (Wei Zhu & Wang, 2023), and Taiyi (Luo et al., 2024); and (3) Medical reasoning optimization models, including Medical-CoT (Mahmoud, 2025), Deepseek-Distill-8B and Huatuo-o1-RL.

4.2 EXPERIMENT RESULTS

We follow the experimental design methodology of MedReason (Wu et al., 2025) to comprehensively evaluate the performance of the proposed framework from two perspectives: data validity and model validity. (1) **Data Validity Evaluation**: To assess the quality and utility of the constructed dataset, we conduct instruction tuning on LLMs using both our proposed dataset and the Huatuo-CoT dataset. In addition, we fine-tune a dedicated reasoning model exclusively on our dataset. This setup enables a comparative analysis of the impact of different data sources on instruction-following and reasoning capabilities. (2) **Model Validity Evaluation**: We evaluate the model fine-tuned with our dataset against several state-of-the-art models in the domain of Traditional Chinese Medicine

Benchmarks		Qwen2.5-7B-Instr	ruct	Mistral-Instruct-7B			
	original	w/ huatuo CoT	w/ ours	original	w/ huatuo CoT	w/ ours	
TCM-exam	76.1	80.4 (+4.3)	82.2 (+6.1)	38.8	41.3 (+2.5)	47.7 (+8.9)	
TCM-SDT	52.9	57.8 (+4.9)	61.5 (+8.6)	23.3	31.7 (+8.4)	33.9 (+10.6)	
MLEC(A2)	78.7	81.3 (+2.6)	85.6 (+6.9)	43.7	52.5 (+8.8)	54.2 (+10.5)	
MLEC(A3A4)	75.2	78.9 (+3.7)	80.5 (+5.3)	41.3	43.6 (+2.3)	44.8 (+3.5)	
CMB-CHM	59.1	63.3 (+4.2)	67.4 (+8.3)	35.5	41.2 (+5.7)	44.3 (+8.8)	
CMB-DS	55.1	61.9 (+6.8)	62.1 (+7.0)	34.3	41.8 (+7.5)	43.1 (+8.8)	
CMB-BTT	55.7	56.3 (+0.6)	57.8 (+2.1)	37.0	39.2 (+2.2)	41.6 (+4.6)	
CMB-PEEQ	48.2	53.8 (+5.6)	55.7 (+7.5)	29.6	34.8 (+5.2)	36.3 (+6.7)	
Avg	62.6	66.7 (+4.1)	69.1 (+6.5)	35.4	40.7 (+5.3)	43.2 (+7.8)	

Table 1: Performance comparison of LLMs fine-tuned with Huatuo-CoT and TCMReasonSet (our dataset) under instruction-based fine-tuning.

Base Model	Data	TCM-exam	TCM-SDT	MLEC(A2)	MLEC(A3A4)	Avg
Qwen3-8B	Original	72.3	54.1	76.6	78.5	70.3
	w/ ours	78.4 (+6.1)	58.9 (+4.8)	82.5(+5.9)	83.7 (+5.2)	75.8(+5.5)
DeepSeek-Distill-8B	Original	35.5	26.8	34.3	37.2	33.4
	w/ ours	42.9 (+7.4)	34.5 (+7.7)	44.1 (+9.8)	45.3 (+8.1)	41.4(+8.9)

Base Model	Data	CMB-CHM	CMB-DS	CMB-BTT	CMB-BEEQ	Avg
Owen3-8B	Original	56.4	57.6	58.3	47.8	55.0
Qwell3-8D	w/ ours	58.0 (+1.6)	62.1 (+4.5)	61.7 (+3.4)	51.4 (+3.6)	58.3(+3.3)
DeepSeek-Distill-8B	Original	34.8	29.6	37.0	27.5	32.2
Deepseek-Distill-ob	w/ ours	37.5 (+2.7)	34.2 (+4.6)	42.5 (+5.5)	35.6 (+8.1)	37.4(+5.2)

Table 2: Performance comparison of reasoning LLMs fine-tuned with TCMReasonSet (our dataset) versus the original models.

(TCM). The comparison is conducted across multiple benchmarks, focusing on metrics such as reasoning accuracy, interpretability, and alignment with domain knowledge. The results demonstrate that our framework significantly outperforms existing baselines in producing coherent, reliable, and clinically meaningful reasoning paths.

4.2.1 EVALUATION OF TCMREASONSET ON INSTRUCTION FINE-TUNED MODEL

In this section, we evaluate the effectiveness of instruction fine-tuning with TCMReasonSet as a data augmentation strategy. As shown in Table 1, we report the accuracy (%) of Qwen2.5-7B-Instruct and Mistral-Instruct-7B across multiple benchmark datasets in the TCM domain. Models fine-tuned on our TCMReasonSet (denoted as w/ours) consistently outperform both the base models and those fine-tuned on the Huatuo-CoT dataset across all evaluated benchmarks. Specifically, for Qwen2.5-7B-Instruct, fine-tuning with TCMReason yields an average accuracy improvement from 62.6% to 69.1% (+6.5%), exceeding the +4.1% gain achieved by the Huatuo-CoT-finetuned model. The improvement is even more pronounced for Mistral-Instruct-7B, where accuracy rises from 35.4% to 43.2% (+7.8%), compared to a +5.3% increase from Huatuo-CoT. These results confirm the effectiveness of our TCMReason data in enhancing the reasoning ability of instruction-tuned models, and demonstrate its superiority over existing domain-specific datasets in TCM.

4.2.2 EVALUATION OF TCMREASONSET ON REASONING MODELS

We further investigate the effect of fine-tuning LLMs using the TCMReasonSet to enhance their reasoning capabilities. As shown in Table 2, incorporating our dataset (denoted as w/ours) leads to substantial performance gains across multiple TCM question-answering benchmarks. Specifically, on the TCM-exam, TCM-SDT, and MLEC datasets, Qwen-8B achieves an average improvement of 5.5%, while DeepSeek-Distill-8B demonstrates a more pronounced gain of 8.9%. Similarly, on the CMB benchmark, Qwen-8B improves by 3.3%, and DeepSeek-Distill-8B shows an improvement of 5.2%. These results highlight the effectiveness of the TCMReason dataset—which integrates knowledge graph (KG)-based factual guidance with Tree-of-Thought (ToT) reasoning—in improving the reasoning performance of reasoning large language models within the TCM domain.

Model	TCM-exam	TCM-SDT	MLEC(A2)	MLEC(A3A4)	CMB(TCM)	Avg
Llama3.1-Instruct-8B	41.2	38.6	46.3	48.7	37.6	42.4
Qwen2.5-Instruct-7B	76.1	52.9	78.7	75.2	54.5	67.4
Mistral-Instruct-7B	38.8	23.3	43.7	41.3	34.1	36.2
BianQue	23.6	19.3	21.2	23.3	18.8	21.2
Bnetsan	29.2	17.3	22.6	23.0	20.3	22.4
BianCang	86.7	52.9	83.1	84.5	60.2	73.4
ShengNong-TCM	35.4	18.7	21.5	23.3	18.7	23.5
Taiyi	46.6	33.5	43.0	46.8	24.5	38.8
Qwen3-8B	72.3	54.1	76.6	78.5	55.0	67.3
Medical-CoT-8B	39.3	27.8	41.7	38.2	31.7	35.7
DeepSeek-Distill-8B	35.5	26.8	34.3	37.2	32.2	33.2
Huatuo-o1-RL-8B	85.4	60.6	82.7	85.3	57.1	74.2
TCMReason-8B (ours)	89.7	67.8	87.1	89.2	65.8	79.9

Table 3: Compare the TCMReason-8B model, trained on TCMReasonSet, against general-purpose large language models (LLMs) and medical-domain LLMs of comparable parameter scale across multiple Traditional Chinese Medicine (TCM) medical benchmarks.

Dual-Dim Scoring	TCM-exam	TCM-SDT	MLEC(A2)	MLEC(A3A4)	CMB(TCM)	Avg
w/o Single-step Scoring	75.2	49.6	76.3	75.1	52.8	65.8
w/o Multi-step Scoring	73.8	46.9	74.1	73.5	50.2	63.7
w/	76.1	52.9	78.7	75.2	54.5	67.4

Table 4: Ablation study of the dual-dimensional scoring mechanism.

4.2.3 COMPARISON OF TCMREASON-8B AND EXISTING SOTA MODELS

We further fine-tuned the Huatuo-o1-RL-8B model using TCMReasonSet to develop a new TCM-specific reasoning model—TCMReason-8B. As shown in Table 3, TCMReason-8B consistently outperforms all baseline models across the four benchmark datasets, achieving an overall average score of 79.9%, which represents a 5.7% absolute improvement over the base Huatuo-o1-RL-8B. Notably, the model exhibits substantial gains on tasks requiring advanced diagnostic reasoning and syndrome differentiation. On the TCM-SDT benchmark, TCMReason-8B achieves a 7.8% improvement over the base model and surpasses all other baselines by more than 10% in several sub-tasks. These results strongly validate the effectiveness of our TCMReasonSet dataset, and the superior performance of TCMReason-8B establishes it as a new benchmark for reasoning capabilities in TCM-oriented artificial intelligence systems.

4.3 ABLATION STUDY

To assess the contribution of the proposed dual-dimensional scoring mechanism, we conducted an ablation study using the Qwen2.5-7B-Instruct model. As shown in Table 4, incorporating the dual-scoring mechanism leads to notable performance gains across most TCM benchmarks—yielding an average improvement of 1.6% over the multi-step scoring variant and 3.7% over the single-step variant. These results underscore the importance of the dual-scoring mechanism in enhancing the reasoning capabilities of LLMs in medical applications by ensuring higher-quality, semantically coherent training data. Additional details of the ablation setup and results are provided in the Appendix.

5 CONCLUSION

We prop we construct TCMReasonSet, a high-quality reasoning dataset to support model training in TCM diagnostic tasks. Experimental results show that models fine-tuned on our dataset achieve state-of-the-art performance across multiple TCM benchmarks, particularly in complex reasoning scenarios. This work demonstrates the effectiveness of combining domain knowledge with LLM-based reasoning, offering a scalable and interpretable approach for trustworthy medical AI in the TCM domain.

REFERENCES

- Yuzhe Cai, Shaoguang Mao, Wenshan Wu, Zehua Wang, Yaobo Liang, Tao Ge, Chenfei Wu, Wang You, Ting Song, Yan Xia, et al. Low-code llm: Graphical user interface over large language models. arXiv preprint arXiv:2304.08103, 2023.
- Junying Chen, Zhenyang Cai, Ke Ji, Xidong Wang, Wanlong Liu, Rongsheng Wang, Jianye Hou, and Benyou Wang. Huatuogpt-o1, towards medical complex reasoning with llms. arXiv preprint arXiv:2412.18925, 2024a.
- Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu, Mengfei Zhou, Zhuosheng Zhang, et al. Do not think that much for 2+ 3=? on the overthinking of o1-like llms. arXiv preprint arXiv:2412.21187, 2024b.
- Yirong Chen, Zhenyu Wang, Xiaofen Xing, Zhipei Xu, Kai Fang, Junhong Wang, Sihang Li, Jieling Wu, Qi Liu, Xiangmin Xu, et al. Bianque: Balancing the questioning and suggestion ability of health llms with multi-turn health conversations polished by chatgpt. arXiv preprint arXiv:2310.15896, 2023.
- Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. arXiv e-prints, 2024.
- Guhao Feng, Bohang Zhang, Yuntian Gu, Haotian Ye, Di He, and Liwei Wang. Towards revealing the mystery behind chain of thought: a theoretical perspective. In *Advances in Neural Information Processing Systems*, volume 36, pp. 70757–70798, 2023.
- Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.
- Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b. arxiv preprint arXiv:2310.06825, 2023.
- Jing Li, Shangping Zhong, and Kaizhi Chen. Mlec-qa: A chinese multi-choice biomedical question answering dataset. In *Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing*, pp. 8862–8874, Online and Punta Cana, Dominican Republic, 2021. Association for Computational Linguistics.
- Valentin Liévin, Christoffer Egeberg Hother, Andreas Geert Motzfeldt, and Ole Winther. Can large language models reason about medical questions? *Patterns*, 5(3), 2024.
- Yanming Liu, Xinyue Peng, Tianyu Du, Jianwei Yin, Weihao Liu, and Xuhong Zhang. Era-cot: improving chain-of-thought through entity relationship analysis. arXiv preprint arXiv:2403.06932, 2024.
- Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jianguang Lou, Chongyang Tao, Xiubo Geng, Qingwei Lin, Shifeng Chen, and Dongmei Zhang. Wizardmath: Empowering mathematical reasoning for large language models via reinforced evol-instruct. arXiv preprint arXiv:2308.09583, 2023.
- Ling Luo, Jinzhong Ning, Yingwen Zhao, Zhijun Wang, Zeyuan Ding, Peng Chen, Weiru Fu, Qinyu Han, Guangtao Xu, Yunzhi Qiu, et al. Taiyi: a bilingual fine-tuned large language model for diverse biomedical tasks. *Journal of the American Medical Informatics Association*, 31(9):1865–1874, 2024.
- Mohamed Mahmoud. Deepseek-r1-medical-cot. https://huggingface.co/thesnak/DeepSeek-R1-Medical-COT, 2025.
- Shervin Minaee, Tomas Mikolov, Narjes Nikzad, Meysam Chenaghlu, Richard Socher, Xavier Amatriain, and Jianfeng Gao. Large language models: A survey. arXiv preprint arXiv:2402.06196, 2024.

- Ziyi Ni, Yifan Li, Ning Yang, Dou Shen, Pin Lyu, and Daxiang Dong. Tree-of-code: A self-growing tree framework for end-to-end code generation and execution in complex tasks. In *Findings of the Association for Computational Linguistics: ACL 2025*, pp. 9804–9819, 2025.
 - Qizhi Pei, Lijun Wu, Zhuoshi Pan, Yu Li, Honglin Lin, Chenlin Ming, Xin Gao, Conghui He, and Rui Yan. Mathfusion: Enhancing mathematical problem-solving of llm through instruction fusion. arXiv preprint arXiv:2503.16212, 2025.
 - Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations toward training trillion parameter models. In *SC20: International Conference for High Performance Computing, Networking, Storage and Analysis*, pp. 1–16. IEEE, 2020.
 - Ankit Satpute, Noah Gießing, André Greiner-Petter, Moritz Schubotz, Olaf Teschke, Akiko Aizawa, and Bela Gipp. Can llms master math? investigating large language models on math stack exchange. In *Proceedings of the 47th international ACM SIGIR conference on research and development in information retrieval*, pp. 2316–2320, 2024.
 - SylvanL. Traditional-chinese-medicine-exam. https://huggingface.co/datasets/SylvanL/Traditional-Chinese-Medicine-Exam, 2024.
 - Haochun Wang, Sendong Zhao, Zewen Qiang, Zijian Li, Nuwa Xi, Yanrui Du, MuZhen Cai, Haoqiang Guo, Yuhan Chen, Haoming Xu, et al. Knowledge-tuning large language models with structured medical knowledge bases for reliable response generation in chinese. arXiv preprint arXiv:2309.04175, 2023.
 - Haochun Wang, Sendong Zhao, Zewen Qiang, Zijian Li, Chi Liu, Nuwa Xi, Yanrui Du, Bing Qin, and Ting Liu. Knowledge-tuning large language models with structured medical knowledge bases for trustworthy response generation in chinese. ACM Transactions on Knowledge Discovery from Data, 19(2):1–17, 2025a.
 - Xidong Wang, Guiming Hardy Chen, Dingjie Song, Zhiyi Zhang, Zhihong Chen, Qingying Xiao, Feng Jiang, Jianquan Li, Xiang Wan, Benyou Wang, and Haizhou Li. Cmb: A comprehensive medical benchmark in chinese. arXiv preprint arXiv:2308.08833, 2024.
 - Zhe Wang, Meng Hao, Suyuan Peng, Yuyan Huang, Yiwei Lu, Keyu Yao, Xiaolin Yang, and Yan Zhu. Tcmeval-sdt: a benchmark dataset for syndrome differentiation thought of traditional chinese medicine. *Scientific Data*, 12(1):437, 2025b.
 - Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. In *Advances in neural information processing systems*, volume 35, pp. 24824–24837, 2022.
 - Sibo Wei, Xueping Peng, Yi-fei Wang, Jiasheng Si, Weiyu Zhang, Wenpeng Lu, Xiaoming Wu, and Yinglong Wang. Biancang: a traditional chinese medicine large language model. arXiv preprint arXiv:2411.11027, 2024.
 - Wenjing Yue Wei Zhu and Xiaoling Wang. Shennong-tcm: A traditional chinese medicine large language model. https://github.com/michael-wzhu/ShenNong-TCM-LLM, 2023.
 - Yilin Wen, Zifeng Wang, and Jimeng Sun. Mindmap: Knowledge graph prompting sparks graph of thoughts in large language models. arXiv preprint arXiv:2308.09729, 2023.
 - Juncheng Wu, Wenlong Deng, Xingxuan Li, Sheng Liu, Taomian Mi, Yifan Peng, Ziyang Xu, Yi Liu, Hyunjin Cho, Chang-In Choi, et al. Medreason: Eliciting factual medical reasoning steps in llms via knowledge graphs. arXiv preprint arXiv:2504.00993, 2025.
 - Ran Xu, Hejie Cui, Yue Yu, Xuan Kan, Wenqi Shi, Yuchen Zhuang, Wei Jin, Joyce Ho, and Carl Yang. Knowledge-infused prompting: Assessing and advancing clinical text data generation with large language models. arXiv preprint arXiv:2311.00287, 2023.

- An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang, Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin Xu, Jingren Zhou, Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zhihao Fan. Qwen2 technical report. arXiv preprint arXiv:2407.10671, 2024a.
- An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint arXiv:2505.09388, 2025a.
- Songhua Yang, Hanjie Zhao, Senbin Zhu, Guangyu Zhou, Hongfei Xu, Yuxiang Jia, and Hongying Zan. Zhongjing: Enhancing the chinese medical capabilities of large language model through expert feedback and real-world multi-turn dialogue. In *Proceedings of the AAAI conference on artificial intelligence*, volume 38, pp. 19368–19376, 2024b.
- Zongxian Yang, Jiayu Qian, Zhi-An Huang, and Kay Chen Tan. Qm-tot: A medical tree of thoughts reasoning framework for quantized model. arXiv preprint arXiv:2504.12334, 2025b.
- Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. In *Advances in neural information processing systems*, volume 36, pp. 11809–11822, 2023.
- Di Zhang, Xiaoshui Huang, Dongzhan Zhou, Yuqiang Li, and Wanli Ouyang. Accessing gpt-4 level mathematical olympiad solutions via monte carlo tree self-refine with llama-3 8b. arXiv preprint arXiv:2406.07394, 2024.
- Jinghan Zhang, Xiting Wang, Weijieying Ren, Lu Jiang, Dongjie Wang, and Kunpeng Liu. Ratt: A thought structure for coherent and correct llm reasoning. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 26733–26741, 2025a.
- Yue Zhang, Leyang Cui, Wei Bi, and Shuming Shi. Alleviating hallucinations of large language models through induced hallucinations. arXiv preprint arXiv:2312.15710, 2023.
- Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu, Tingchen Fu, Xinting Huang, Enbo Zhao, Yu Zhang, Yulong Chen, et al. Siren's song in the ai ocean: A survey on hallucination in large language models. *Computational Linguistics*, pp. 1–45, 2025b.
- Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. Automatic chain of thought prompting in large language models. arXiv preprint arXiv:2210.03493, 2022.
- Han Zhao, Haotian Wang, Yiping Peng, Sitong Zhao, Xiaoyu Tian, Shuaiting Chen, Yunjie Ji, and Xiangang Li. 1.4 million open-source distilled reasoning dataset to empower large language model training. arXiv preprint arXiv:2503.19633, 2025.
- Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv preprint arXiv:2303.18223, 2023.

A APPENDIX

A.1 DATA DESCRIPTION

This chapter presents the knowledge graph data and the generated question-answer (QA) pairs. As shown in Figure 3, the Traditional Chinese Medicine Knowledge Graph (TCM-KG) is stored in the Neo4j graph database. figure 4 presents the multi-task QA pairs, covering TCM knowledge such as fundamental theories, herbal recommendations, prescription recommendations, and more, comprising over 50,000 high-quality data samples.

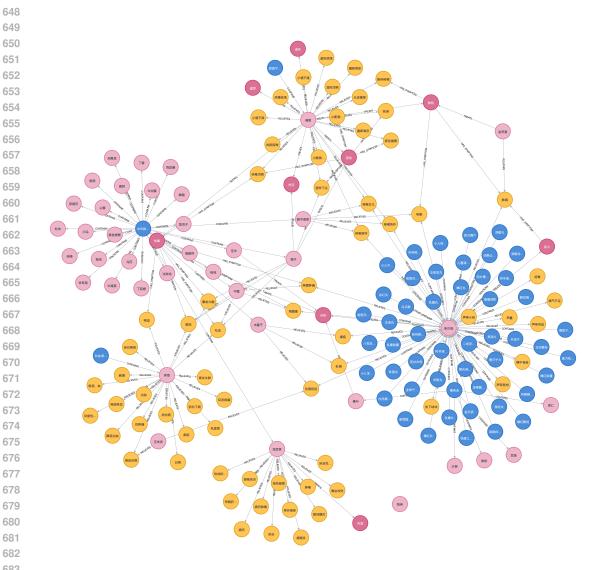


Figure 3: Illustration of the TCM Knowledge Graph (TCM-KG)

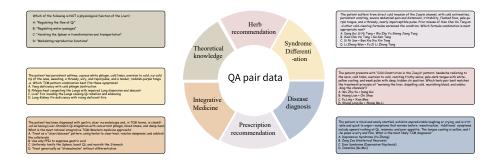


Figure 4: Detailed information on the multi-task dataset

KG	TCM-exam	TCM-SDT	MLEC(A2)	MLEC(A3A4)	CMB(TCM)	Avg
W/o	65.8	45.3	72.5	68.5	51.8	60.7
W/	76.1	52.9	78.7	75.2	54.5	67.4

Table 5: Ablation study results: Impact of knowledge graph as factual guidance on TCM benchmarks.

Method	Expert 1	Expert 2	Expert 3	Expert 4	Expert 5	Avg
CoT	6	7	5	7	6	6.2
AoT	6	6	7	6	8	6.6
ToT	7	6	7	7	8	7.0
GoT	7	8	7	8	8	7.6
TCM-ToT (Ours)	9	8	7	9	9	8.4

Table 6: Performance comparison of the dual-dimensional scoring-based TCM-ToT method with other reasoning strategies. The scores represent the average accuracy across multiple TCM benchmarks.

A.2 ALGORITHM DETAILS

702

704 705

706

716

717

718719720

721 722

723

724

725 726

727

728

729

730

731 732

733

734 735

736

738

739

740

741

742

743

744

745

746

747 748

749

750

751

752

753

754

755

This section provides detailed pseudocode for the core components of our data generation pipeline, including the knowledge graph path discovery mechanism and the tree-of-thought reasoning with dual-dimensional scoring.

Algorithm 1 Knowledge Graph Path Discovery for TCM Reasoning (Fact-PathFinder)

```
Require: Question–Answer pair (Q, A), TCM Knowledge Graph G, similarity threshold \alpha = 0.85,
      path limit k, LLM function f_L
Ensure: Set of fact-guided reasoning paths \mathcal{P} = \{p_i\}_{i=1}^k
 1: \{e_i^Q\}_{i=1}^{n_Q} \leftarrow \text{extract\_entities}(Q, f_L) \text{ {Extract entities from question via semantic parsing}}
2: \{e_j^A\}_{j=1}^{n_A} \leftarrow \text{extract\_entities}(A, f_L) \text{ {Extract entities from answer via semantic parsing}}
 3: \{\hat{e}_{i}^{Q}\}_{i=1}^{n_{Q}}, \{\hat{e}_{j}^{A}\}_{j=1}^{n_{A}} \leftarrow \emptyset, \emptyset
 4: for each entity e \in \{e_i^Q\}_{i=1}^{n_Q} \cup \{e_j^A\}_{j=1}^{n_A} do
         matched \leftarrow \text{exact\_match}(e, G) \{ \text{Stage 1: Exact string matching} \}
 5:
 6:
         if matched = None then
 7:
             candidates \leftarrow vector\_search(e, G, \alpha) {Stage 2: Cosine similarity search (\geq \alpha)}
             if |candidates| > 0 then
 8:
                 matched \leftarrow top\_candidate(candidates) \{ Select top-1 candidate \}
 9:
10:
             else
                 matched \leftarrow f_L(semantic\_select, e, G, Q, A) {Stage 3: LLM-driven semantic selection
11:
```

 $\begin{array}{c} \text{using clinical context} \\ 12: & \textbf{end if} \\ 13: & \textbf{end if} \\ 14: & \text{Add } matched \text{ to corresponding } \left\{ \hat{e}_i^Q \right\} \text{ or } \left\{ \hat{e}_i^A \right\} \end{array}$

15: **end for**

16: $\tilde{\mathcal{P}} \leftarrow \emptyset$ {Preliminary path set} 17: **for** each pair $(\hat{e}_i^Q, \hat{e}_j^A) \in \{\hat{e}_i^Q\}_{i=1}^{n_Q} \times \{\hat{e}_j^A\}_{j=1}^{n_A}$ **do**

18: $paths_{ij} \leftarrow \text{find_shortest_paths}(\hat{e}_i^Q, \hat{e}_j^A, G)$ {Retrieve all shortest paths for minimal complexity}

19: $\tilde{\mathcal{P}} \leftarrow \tilde{\mathcal{P}} \cup paths_{ij}$

20: **end for**

21: $\mathcal{P} \leftarrow f_L$ (semantic_prune, $\tilde{\mathcal{P}}$, Q, k) {LLM-guided pruning: retain top-k contextually salient paths}

22: return \mathcal{P}

782 783 784

785 786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

Algorithm 2 Tree-of-Thought Reasoning with Dual-Dimensional Scoring

```
757
            Require: Path set \mathcal{P} = \{p_i\}_{i=1}^k, LLM function f_L, scoring model f_S, score thresholds \theta_{local},
758
759
            Ensure: Enhanced reasoning tree \mathcal{T}_{final}
760
              1: \mathcal{T}_{KG} \leftarrow \emptyset {Initialize reasoning tree}
             2: for each path p_i = (v_1^{(i)}, v_2^{(i)}, \dots, v_{n_i}^{(i)}) \in \mathcal{P} do
3: branch_i \leftarrow [\text{PathNode}(v_1^{(i)})] {Initialize branch with first node}
761
762
763
             4:
                     for j = 1 to n_i - 1 do
764
                         reasoning \leftarrow f_L(\text{ToT\_reason}, v_j^{(i)}, v_{j+1}^{(i)}) \{\text{Generate reasoning}\}
             5:
765
                         local\_score \leftarrow f_S(local\_eval, reasoning, v_i^{(i)}, v_{i+1}^{(i)}) \{Local\ scoring\}
766
             6:
             7:
                         if local\_score < \theta_{local} then
767
                             ancestor \leftarrow \texttt{find\_backtrack\_node}(branch_i) \; \{\texttt{Backtrack to last valid node}\}
768
             8:
                            reasoning \leftarrow f_L(\texttt{ToT\_reason}, ancestor, v_{j+1}^{(i)}) \ \{\texttt{Regenerate reasoning}\}
769
             9:
770
                            local\_score \leftarrow f_S(local\_eval, reasoning, ancestor, v_{i+1}^{(i)})
            10:
771
            11:
772
                         Append ReasonNode(reasoning) to branch_i
            12:
773
                         Append PathNode(v_{i+1}^{(i)}) to branch_i
            13:
774
            14:
775
                     global\_score \leftarrow f_S(\text{coherence\_eval}, branch_i) \{\text{Global coherence scoring}\}
            15:
776
                     if global\_score \ge \theta_{global} then
            16:
777
                         \mathcal{T}_{KG} \leftarrow \mathcal{T}_{KG} \cup \{\check{b}ranch_i\} \{Accept high-quality branch\}
            17:
778
            18:
779
            19: end for
            20: \mathcal{T}_{final} \leftarrow \text{merge\_branches}(\mathcal{T}_{KG}) {Construct final reasoning tree}
780
            21: return \mathcal{T}_{final}
781
```

A.3 ABLATION STUDY

To systematically evaluate the effectiveness and contribution of the proposed knowledge graph as factual guidance in the training of large language models, we designed and conducted a series of ablation experiments based on the Qwen2.5-7B-Instruct model. As shown in Table 5, the model variant incorporating the knowledge graph as external knowledge guidance consistently achieves significant performance improvements across multiple benchmark tasks in the field of traditional Chinese medicine (TCM). Compared to the baseline model without any factual guidance, it achieves an average accuracy improvement of 6.7%, with even greater gains observed in certain complex reasoning tasks. These results indicate that the knowledge graph not only provides structured domain-specific knowledge but also effectively enforces factual consistency during the training process, thereby mitigating hallucination phenomena and enhancing the model's understanding and reasoning capabilities regarding professional terminology, disease mechanisms, prescription compatibility, and other intricate medical logic. More importantly, as a reliable and trustworthy knowledge source, the knowledge graph facilitates the construction of more accurate and robust training samples, enabling the model to perform plausible inference based on structured facts when confronted with ambiguous or ill-defined inputs.

To further evaluate the performance of the proposed TCM-ToT method based on dual-dimensional scoring, we conducted comparative experiments against several mainstream reasoning frameworks: Chain-of-Thought (CoT), Algorithm-of-Thoughts (AoT), Tree-of-Thought (ToT), and Graph-of-Thought (GoT). For each task, ten questions were randomly selected, and reasoning paths were generated using the aforementioned methods. Subsequently, five domain experts in traditional Chinese medicine (TCM) were invited to conduct a 10-point scale manual evaluation of the generated outputs, based on three criteria: Safety, Professionalism, and Fluency. The results, summarized in Table 6, show that TCM-ToT significantly outperforms all baseline methods in terms of overall score. Specifically, it achieves an average improvement of 1.4 point over the original ToT approach and surpasses the second-best method, GoT, by 0.8 points. The expert evaluations consistently indicate that the reasoning paths generated by TCM-ToT are more logically rigorous, better supported

by medical evidence, and exhibit higher levels of professionalism and clinical interpretability. These findings validate the effectiveness and advantages of our proposed method in enhancing the reasoning quality of large language models within the domain of traditional Chinese medicine.

A.4 EXPERT EVALUATION

We invited five domain experts in traditional Chinese medicine to conduct a comprehensive evaluation of the responses generated by TCMReason-8B, Taiyi, Qwen2.5-7B-Instruct, Huatuo-8B-RL, and BianCang, based on three dimensions: Safety, Professionalism, and Fluency. In the experiment, ten questions were randomly selected from the TCM-SDT benchmark dataset, and each model was prompted to reason and generate answers to these questions. The experts scored each model's performance based on the reasoning process and the quality of the final answer.

As shown in Figure 5, TCMReason-8B outperforms all other models across all three evaluation dimensions, demonstrating a comprehensive performance advantage. Notably, TCMReason-8B achieves particularly outstanding results in the dimension of safety, significantly surpassing existing models. The experts consistently agreed that TCMReason-8B exhibits stronger factual accuracy and clinical compliance in its responses, effectively avoiding the generation of misleading or potentially risky content, thereby demonstrating higher safety and reliability in medical scenarios.

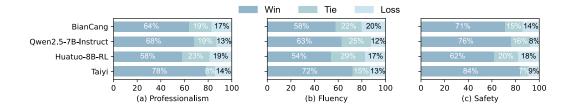


Figure 5: Experts' scoring results across three dimension

A.5 MAIN PROMPTS USED IN THE FRAMEWORK

This section presents the key prompts employed in our TCMReason framework for different components of the reasoning pipeline.

A.6 USE OF LARGE LANGUAGE MODELS (LLMS)

In accordance with ICLR's guidelines on the use of AI-assisted technologies, we declare that Large Language Models (LLMs) were used in the preparation of this manuscript for translation and language polishing purposes only. Specifically:

- **Translation**: LLMs were used to assist in translating portions of Chinese medical texts and terminology into English to ensure accurate representation of Traditional Chinese Medicine concepts.
- Language polishing: LLMs were employed to improve the grammatical accuracy, clarity, and readability of the manuscript text.

No LLMs were used in:

- The design or implementation of the proposed methodology
- The generation of experimental results or data analysis
- The formulation of research hypotheses or conclusions
- The creation of figures, tables, or other scientific content

All authors take full responsibility for the accuracy, originality, and scientific validity of the content presented in this paper. The core research contributions, methodology, experimental design, and conclusions are entirely the work of the human authors.

prompt for identifying in question and answer

messages = [{"role": "system", "content": "You are a TCM information processing assistant who is proficient in Traditional Chinese Medicine (TCM) theory and strictly follows instructions."}, {"role": "user", "content": """Within the context of TCM theory, clinical practice, or classical TCM literature, precisely extract all TCM-related entities from the given text.

Output Format:

Strictly adhere to the following JSON structure.

The type of each entity must belong exclusively to one of the following categories:

- 1. zhongyi_syndrome(中医证候,如"肝郁脾虚证""气虚血瘀证")
- 2. disease(疾病名称,包括现代病名与中医病名,如"消渴""高血压")
- 3. herb(中药饮片或药材,如"黄芪""当归")
- 4. formula(方剂,如"四物汤""逍遥散")
- 5. symptom (症状或体征,如"头晕""舌淡苔白""脉弦")
- 6. meridian(经络,如"足少阳胆经""任脉")
- 7. zangfu(脏腑,如"肝""脾""心肾不交")
- 8. pathogenic_factor(病因病机,如"风寒""湿热""情志内伤")
- 9. therapeutic_principle(治则治法,如"疏肝理气""健脾化湿""活血化瘀")
- 10. acupuncture_point (穴位,如"足三里""太冲")

Figure 6: Prompt for identifying entities in question and answer

918 919 Prompt for generating ansewer with TOT reasoning 921 922 923 messages = [{"role": "system", "content": "You are an expert in the medical field, 924 skilled at solving complex problems through systematic thinking."}, {"role": "user", 925 "content": f"""Given a medical question, a set of initial reasoning paths, and a 926 reference answer, your task is to simulate a Tree-of-Thought reasoning process: 927 actively explore multiple possible reasoning branches, critically evaluate the 928 plausibility of each path, and—based on medical knowledge—select or construct the 929 optimal path to reach a conclusion. 930 931 ##Core Requirements: 932 Generate multiple reasoning paths: Even if initial paths are provided, proactively 933 consider 934 whether other plausible explanations or mechanisms exist. Treat all feasible paths 935 936 branches of a "thought tree." 937 Evaluate each path: Critically analyze every path—does it align with medical 938 principles? Is 939 there supporting evidence? Are there logical flaws? 940 3.Expand the most promising paths: Select 1-2 of the most reasonable paths for 941 deeper 942 reasoning, integrating strengths from multiple paths when appropriate. 943 Allow backtracking and revision: If a path is disproven upon deeper exploration, 944 explicitly 945 state this and pivot to alternative branches. 946 5.Do not assume the provided answer is correct: Completely disregard whether the 947 948 answer is "correct"; derive conclusions solely based on medical logic. 949 6.Do not reference the source of input paths or answers: Present all reasoning as the 951 result of autonomous thinking. 952 ##Input Format: 953 Question: {{question}} Answer: {{answer}} 955 Paths: {{paths}} 956 ##Output: 957 Thought Tree Exploration: 958 Path 1: [Briefly describe the first reasoning approach] 959 Path 2: [Briefly describe the second reasoning approach] 960 Path 3: [Add more paths if necessary, including those you generate yourself] 961 Path Evaluation: 962 Analysis of Path 1: [Strengths/weaknesses/medical basis] 963 Analysis of Path 2: [Strengths/weaknesses/medical basis] 964 965 Selection of Optimal Path and In-Depth Reasoning: (Choose the path(s) with the 966 967 medical grounding and conduct step-by-step, rigorous reaso 968

Figure 7: Prompt for generating answer with ToT reasoning

1021

```
973
974
975
976
              prompt for evaluate the relevance of knowledge
977
                                  graph paths
978
            messages = [ {"role": "system", "content": "You are a medical reasoning expert
979
            responsible for assigning dual-dimensional relevance scores to each step in a
980
            knowledge graph path."}, {"role": "user", "content": """Question: {question}
981
            Path: {path}
982
983
            Please assign the following two scores for each hop in the path:
984
            Single-Step Score: Evaluate only the medical plausibility of the current hop (from
985
            the current entity to the next entity) on a scale of 1-10.
986
987
            Multi-Step Score: Evaluate the overall medical coherence and relevance of the sub-
988
            path from the start of the path to the target entity of the current hop on a scale
989
            of 1-10.
990
            Example:
991
992
            If the path is ["Diabetes", "Insulin Resistance", "Type 2 Diabetes"], it contains two
            hops:Hop 1: "Diabetes" → "Insulin Resistance"Hop 2: "Insulin Resistance" → "Type
993
994
            2 Diabetes"
995
            For Hop 1: Single-Step: Assess whether "Diabetes → Insulin Resistance" is
996
            medically reasonable. Multi-Step: Assess the coherence of the sub-path "Diabetes
997
            → Insulin Resistance".
998
            For Hop 2:Single-Step: Assess whether "Insulin Resistance → Type 2 Diabetes" is
999
1000
            medically reasonable.
1001
            Multi-Step: Assess whether the full sub-path "Diabetes \rightarrow Insulin Resistance \rightarrow
1002
            Type 2 Diabetes" forms a coherent and relevant medical pathway.
1003
            ```json
1004
 Γ
1008
 "hop_index": 1,"from": "EntityA","to": "EntityB",
1009
1010
 "single_step_score": 8,"multi_step_score": 8
1011
 },
1012
1013
1014
 "hop_index": 2,"from": "EntityB","to": "EntityC",
1015
1016
 "single_step_score": 7,"multi_step_score": 8
1017
 }]```""
1018
]
1020
```

Figure 8: Prompt for dual-dimensional scoring

```
1028
1029
1030
 prompt for evaluate the relevance of knowledge
1031
 graph paths
1032
1033
1034
 messages = [{"role": "system", "content": "As a medical reasoning expert, evaluate
1035
 the relevance of knowledge graph paths to medical questions."},
1036
1037
 {"role": "user", "content": """Evaluate the relevance of the following paths to
1038
1039
 the question.
1040
 QUESTION: {question}
1041
 EXPECTED ANSWER: {answer}
1042
1043
 Path list:
1044
1045
 {paths_text}
1046
 ### 评分标准:
1047
1048
 - 0-3: Low relevance, unlikely to help answer the question
1049
 - 4-6: Moderate relevance, may contain some useful information
1050
1051
 - 7-10: High relevance, likely to provide a good medical explanation
1052
 ### output:
1053
1054
 Return directly in JSON format, without any other content:
1055
            ```json
1056
1057
1058
1059
1060
               "path_id": 1,"score": 8,"reason": "Brief reason"
1061
             },
1062
1063
             {
1064
               "path_id": 2, "score": 3, "reason": "Brief reason"
1065
1066
             }
1067
1068
1069
            ```""}
1070
1071
]
1072
```

Figure 9: Prompt for evaluating the relevance of knowledge graph paths