
Under review as a conference paper at ICLR 2024

EVOLUTION-INSPIRED LOSS FUNCTIONS FOR PRO-
TEIN REPRESENTATION LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

AI-based frameworks for protein engineering use self-supervised learning (SSL)
to obtain representations for downstream mutation effect predictions. The most
common training objective for these methods is wildtype accuracy: given a se-
quence or structure where a wildtype residue has been masked, predict the miss-
ing amino acid. Wildtype accuracy, however, does not align with the primary goal
of protein engineering, which is to suggest a mutation rather than to identify what
already appears in nature. Here we present Evolutionary Ranking (EvoRank), a
training objective that incorporates evolutionary information derived from mul-
tiple sequence alignments (MSAs) to learn more diverse protein representations.
EvoRank corresponds to ranking amino-acid likelihoods in the probability distri-
bution induced by an MSA. This objective forces models to learn the underlying
evolutionary dynamics of a protein. Across a variety of phenotypes and datasets,
we demonstrate that EvoRank leads to dramatic improvements in zero-shot per-
formance and can compete with models fine-tuned on experimental data.

1 INTRODUCTION

The success of AlphaFold (Jumper et al., 2021) has inspired a new era of deep-learning frameworks
for protein design and engineering. Large protein language models (e.g., ESM (Rives et al., 2019a;
Meier et al., 2021a)), structure generative models (e.g., RFDiffusion (Watson et al., 2023), Neu-
ralPLexer (Qiao et al., 2023)) and structure-based self-supervised models (Sumida et al., 2024; Diaz
et al., 2023; Lu et al., 2022) can accelerate the development of biotechnology with applications in
identifying disease-causing variants (Braunisch et al., 2021; Kouba et al., 2023; Scherer et al., 2021)
and enzyme engineering for biomanufacturing. Due to the prohibitive cost of generating experimen-
tal data, self-supervised learning (SSL) has become the primary technique used by the community
to generate protein representations (e.g., Riesselman et al., 2018a; Rives et al., 2019a; Meier et al.,
2021a; Dauparas et al., 2022; Bepler & Berger, 2019; d’Oelsnitz et al., 2023; Notin et al., 2022; Hsu
et al., 2022). These methods rely on masking followed by predicting the wildtype (WT) amino acids
in extant proteins as the SSL training objective. For example, given as input a protein sequence
and masked residue, models can be trained to predict what amino acid has been masked. The loss
in WT-mask SSL is typically defined to be the cross entropy between a model’s prediction and the
one-hot encoding of the masked wildtype amino acid(s). This wildtype accuracy metric, also known
as recovery ratio, is then reported as a proxy for the quality of the learned representations.

For machine learning-guided protein engineering (MLPE), practitioners desire models that suggest
mutations to a protein away from wildtype, as opposed to models that merely predict wildtype. To
address this disparity, several approaches have been proposed. Structure-based methods often adjust
the temperature of the logits (Ingraham et al., 2019; Dauparas et al., 2022; Sumida et al., 2024) to
bias away from wildtype. Sequence-based methods require large protein databases and incorporate
MSAs as additional inputs (Rao et al., 2021a; Notin et al., 2022).

A more serious and often overlooked issue, however, is that improved wildtype accuracy may not
correlate with downstream mutation effect performance. We sharply illustrate this phenomenon in
Table 1 where we train a structure-based model to increasing levels of wildtype accuracy and show
that its downstream performance on thermodynamic stability prediction begins to decrease beyond
a wildtype accuracy threshold.
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Additionally, current frameworks using either sequence or structure modalities can achieve greater
than 90% wildtype accuracy (e.g., Rives et al., 2019a; Meier et al., 2021a; Lin et al., 2023; Diaz
et al., 2023), forcing the practitioner to make ad-hoc decisions about the optimal choice of wildtype
accuracy for downstream applications. Developing a self-supervised learning objective that acts as
an effective proxy for mutation effect prediction remains a critical open problem.

Loss Metrics MutComputeXGT ESM2 ProteinMPNN

WT-mask WT Acc 17% 29% 43% 68% 79% 92% 94% 48%
Pearson 0.14 0.21 0.30 0.34 0.30 0.24 0.25 0.31

EvoRank EvoRank 0.24 0.21 0.17 0.15 0.13 0.12 - -
Pearson 0.30 0.36 0.45 0.48 0.51 0.50 0.25 0.31

Table 1: We train the MutComputeXGT architec-
ture with SSL for different iterations and evaluate
the WT accuracy and zero-shot folding free en-
ergy change Pearson correlation on held out val-
idation FireProtDB (Stourac et al., 2021). Note
that improvements in the EvoRank objective are
more consistent with Pearson correlation.

Our main contribution is a new self-supervised
training objective, EvoRank, that incorporates
evolutionary information from multiple se-
quence alignments (MSAs) in order to address
the limitations of WT-mask SSL. To emulate
the mutation setting, EvoRank uses a ranking
objective to force a model to learn fine-grained
information about the MSA-induced distribu-
tion of amino acids at a particular location. We
show that after initializing a model’s wildtype
predictions with an approximate MSA distribu-
tion, EvoRank results in dramatic empirical im-
provements for zero-shot performance across a
variety of commonly studied benchmarks. Additionally, since MSAs are incorporated into the loss,
they are only needed during training and not inference time, in contrast to models that require an
MSA as an additional input Notin et al. (2022). Further, empirical improvements on the EvoRank
loss are correlated with improvements in downstream mutation effect prediction (see Table 1), lead-
ing to a reliable benchmark for protein representation learning.

2 METHODS

This section introduces the main method. We start with introducing the widetype (WT) based mask
prediction for self-supervised representation on proteins. We then propose our two novel techniques:
1) a MSA-based soft label to introduce evolution information into the learning; and 2) a EvoRank loss
that allows us to extra evolution information more efficiently and robustly with a learning-to-rank
idea.

Self-Supervised Learning via WT-mask prediction We are given a protein set P = {P}, where
the representation P = (A,V) of each protein consists of both its amino acid sequence A and atoms
information V . The sequence A = (aj , · · · , am) contains m amino acids, where aj is the one-hot
representation of the 20 amino acid types. The V = {vj}nj=1 represents all the atoms contained in
the protein, where vj contains the information of the j-th atom, including its 3D coordinates, atom
type, partial charge and solvent accessible surface.

WT-Mask Prediction In the WT-mask prediction task (Torng & Altman, 2017), we mask an amino
acid aj , and learn a neural network to predict aj back based on the microenvironment surround-
ing aj . The network can then provide useful representation of the protein for downstream tasks.
Specifically, Denote by Cα(aj) be the α-carbon atom of amino acid aj , and Atom(aj) all the atoms
contained in amino acid aj . We take the microenvironment of aj to be the atoms within 20Å distance
with Cα(aj), excluding all atoms in Atom(aj), that is,

Vmask
j = {v : v ∈ V \ Atom(aj), Dist(Cj

α, v) ≤ 20Å},

We train a neural network y = f(x), that takes a micro-environment x = Vmask
j as input and output

the logits on the 20 amino acid types. We want to train to model to make f(Vmask
j ) ≈ aj :

min
f

∑
P∈P

∑
j

D(aj , Softmax(f(Vmask
j ))),

where D denotes the loss function. A typical choice is the KL divergence, a.k.a., cross entropy loss.

Evolution Information via MSA-based Soft Labels As described in the introduction, we desire a
self-supervised learning procedure that (1) discourages low-entropy distributions skewed towards
wildtype and (2) incorporates meaningful evolutionary and biochemistry from the input protein
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structure. Since Multiple sequence alignment (MSA) provides a powerful tool for capturing evo-
lutionary relations between sequences, we propose to incoporate MSA information into the self-
supervised learning with an MSA soft-label loss (equation 2), where the wildtype one-hot encoded
label is replaced with a distribution from a protein’s MSA.

Formally, instead of training network f to predict the one-hot vector of the wildtype amino acid, we
predict the following soft label based on the following pdf derived from the MSA of the protein:

pMSA
j (ℓ) ∝

∑
P ′∈MSA(P )

δ(ℓ = Amino(P ′, j)), (1)

where ℓ is one of the 20 amino acids, δ is the delta function, MSA(P ) denotes the set of sequences
that are best aligned with P via multiple sequence alignment on UniRef50 (Consortium, 2015). and
Amino(P ′, j) denotes the amino acid type of protein P ′ at location j. We refer to this distribution
as the empirical amino acid distribution.

We define the MSA soft-label training loss as follows:

min
f

∑
P∈P

∑
j

D(pMSA
j , Softmax(f(Vmask

j ))). (2)

Although KL divergence has been the canonical choice, it is known to suffer from mode collapse.
We experimented with taking D(·; ·) within a richer family of α-divergences. By applying different
α values, we can adjust the sensitivity to multimodal distributions present in MSAs and find a better
trade-off between over/under estimates of the top ranked amino acid (which is often wildtype).
When we apply reverse KL divergence or α = 0.5 divergence (Table 2), we observe marginally
improved rank order but overall lower coefficients for the top-5 amino acids. This suggests the need
for designing better loss functions.

Divergence Label Top-5 Top-10 20
KL Div WT 0.54 0.38 0.28
KL Div MSA 0.60 0.52 0.34
Reverse KL Div MSA 0.54 0.56 0.40
Alpha Div (α = 0.5) MSA 0.57 0.53 0.40

Table 2: Spearman correlation coefficient for
amino acids at the same local chemical environ-
ment in the test dataset for the mask prediction
task. Here, ‘Top-5’ indicates the amino acids with
the top-5 probability score based on the empirical
amino acid distribution.

EvoRank: A New Rank-based Learning Ob-
jective To further improve the performance of
the self-supervised model, we reformulate the
training task to correspond more directly to mu-
tation prediction and train with a ranking loss.
Rather than predicting the wildtype amino acid
type aj or soft label pMSA

j , we set up a model to
take as input a pair of “positive” and “negative”
amino acid types a+ and a−, and output their
relative likelihood in the empirical amino acid
distribution. More precisely, we define a rank
label of aj w.r.t. (a+, a−) as the following

ri(a
+, a−) =

pMSA
j (a+)

pMSA
j (a+) + pMSA

j (a−)
− 1

2
, (3)

where pMSA
j (a) denotes the probability assigned on a according to pMSA

j , and 1
2 to ensure neu-

tral predictions are made when pMSA
j (a+) = pMSA

j (a−). The rank label represents the relative
likelihood between with respect to two amino acids to be evolutionarily observed at a particular
microenvironment, as demonstrated in Figure 1.

We train a model f(Vmask
j , a+, a−) to predict the rank label rj(a+, a−) via the following loss:

min
f

∑
a+,a−

∑
P∈P

∑
j

D(rj(a
+, a−), f(Vmask

j , a+, a−)), (4)

where the a+, a− are summed on all the amino acid types and D(x, y) = ||x− y||. We refer to the
loss in equation 4 as the EvoRank loss or EvoRank training objective.

In practice, we first initialize the parameters by training using the MSA soft-label loss (equation
equation 2) and then apply the EvoRank loss to further improve performance. Similar ideas are used
in the recommendation system literature (e.g., Cao et al., 2007; Aggarwal et al., 2016; Liu et al.,
2009), where parameters are initialized from a model trained with a standard prediction loss and
then trained further using a ranking loss.
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- T2837 S669 S-Sym Myolobin FireProtDB Gβ1 T2837 Reverse
# Mutations 2837 669 342 134 1764 935 2837

Metric ρ ↑ AUC ↑ ρ ↑ AUC ↑ ρ ↑ AUC ↑ ρ ↑ AUC ↑ ρ ↑ AUC ↑ ρ ↑ AUC ↑ ρ ↑ AUC ↑
RaSP∗ (Blaabjerg et al., 2023) 0.58 0.61 0.39 0.69 0.64 0.73 0.68 0.75 0.56 0.71 0.72 0.66 0.23 0.59
ThermoMPNN∗ (Dieckhaus et al., 2023) 0.55 0.78 0.39 0.68 0.66 0.82 0.58 0.77 0.57 0.75 0.65 0.78 0.43 0.71
Prostata-IFML (Diaz et al., 2023) 0.53 0.75 0.49 0.76 0.55 0.75 0.54 0.67 - - 0.66 0.82 0.52 0.75
Stability Oracle (Diaz et al., 2023) 0.59 0.81 0.52 0.74 0.72 0.87 0.68 0.81 0.61 0.79 0.71 0.82 0.59 0.81
ESM2∗ (Lin et al., 2023) 0.28 0.60 0.04 0.50 0.26 0.56 0.15 0.57 0.25 0.57 0.25 0.63 0.28 0.60
ProteinMPNN∗ (Dauparas et al., 2022) 0.36 0.70 0.25 0.59 0.32 0.64 0.35 0.66 0.31 0.70 0.35 0.67 0.36 0.70
MutComputeXGT (Diaz et al., 2023) 0.34 0.68 0.27 0.57 0.38 0.72 0.37 0.72 0.30 0.69 0.34 0.66 0.34 0.68
MutComputeXGT w/ MSA soft-label (Ours) 0.37 0.70 0.30 0.59 0.48 0.75 0.45 0.75 0.36 0.71 0.41 0.69 0.37 0.70
MutRank (Ours) 0.51 0.78 0.40 0.67 0.62 0.84 0.68 0.84 0.51 0.77 0.62 0.77 0.51 0.78
SSL Improvement ↑ 42% 11% 48% 14% 63% 17% 83% 17% 65% 10% 77% 15% 42% 11%
Supervised Fine-Tuning Gap ↓ 14% 4% 23% 9% 14% 3% 0% -4% 16% 3% 13% 3% 14% 4%

Table 3: Zero-shot results of multiple methods on multiple thermodynamic stability (∆∆G)
datasets. ρ equals the Pearson correlation coefficient and AUC is the area under the receiver op-
erating characteristic. The first block reports the performance of frameworks fine-tuned using ex-
perimental ∆∆G datasets. The second block reports the performance of self-supervised models
common in the literature. The third block reports the performance of two models trained in this
work. The first is trained only using the MSA soft-label loss and the second is MutRank, trained
with both the MSA soft-label loss and the EvoRank loss (see Section B.2). ‘SSL Improvement’
compares MutRank with respect to the best zero-shot model in the second block. ‘Supervised
Fine-Tuning Gap’ compares MutRank with respect to the best supervised ∆∆G model in the first
block. ∗ denotes that we compute the metrics using the official checkpoint.

Dataset Phenotype # Mut MutComputeXGT MutRank ESM2 Stability Oracle
Pearson Spearman AUC Pearson Spearman AUC Pearson Spearman AUC Pearson Spearman AUC

levoglucosan kinase ∆Solubility 7195 0.26 0.30 0.61 0.29 0.34 0.64 0.27 0.32 0.62 0.32 0.34 0.63
TEM1-β-Lactamase ∆Solubility 4345 0.16 0.21 0.60 0.22 0.26 0.64 0.08 0.18 0.61 0.10 0.16 0.60
AcrIIA4 Acitivity 1653 0.36 0.34 0.65 0.59 0.53 0.75 0.06 0.06 0.56 0.48 0.40 0.69
Amidase Activity 6227 0.38 0.39 0.66 0.64 0.64 0.83 0.56 0.56 0.78 0.48 0.46 0.75
Deiminase Activity 5689 0.26 0.26 0.63 0.41 0.42 0.73 0.38 0.39 0.70 0.24 0.24 0.63
SKEMPI-V2 Protein-Protein ∆∆Gbind 4102 0.28 0.26 0.62 0.42 0.42 0.69 0.23 0.19 0.57 0.39 0.39 0.67
S487 Protein-Protein ∆∆Gbind 487 0.24 0.25 0.58 0.38 0.38 0.67 0.01 0.01 0.48 0.38 0.38 0.70
PlatinumDB Protein-Ligand ∆∆Gbind 925 0.05 0.01 0.48 0.28 0.28 0.64 0.03 0.06 0.51 0.26 0.26 0.64
ABBind Antibody-Antigen ∆∆Gbind 309 0.36 0.42 0.73 0.41 0.46 0.74 -0.07 -0.05 0.60 0.38 0.42 0.72

Table 4: We show that MutRank improves zero-shot performance for solubility and binding free
energy phenotypes. In comparison with both sequence and structure-based models trained using
wildtype accuracy, training a structure-based model with EvoRank leads to greatly improved zero-
shot performance. Stability Oracle is initialized with MutComputeXGT and fine-tune for ∆∆G.

3 EXPERIMENTAL RESULTS

We retrained a SOTA structure model (Diaz et al., 2023) using both the MSA soft-label loss and the
EvoRank loss as described in Section B.2. We name the MutComputXGT structure model trained
with EvoRank loss as MutRank. We refer to the resulting model as MutRank.

Zero-shot thermodynamic stability evaluations Table 3 reports the zero-shot Pearson correla-
tion coefficient (ρ) and area under the ROC curve (AUC) performance of various machine learning
frameworks across multiple ∆∆G datasets: T2837 (Diaz et al., 2023), S-Sym (Li et al., 2020),
S669 (Pancotti et al., 2022), FireProtDB (Stourac et al., 2021), Gβ1 (Nisthal et al., 2019), and Myo-
globin (Li et al., 2020). Our results validate the impact prioritizing rank order during self-supervised
training has on zero-shot ∆∆G predictions. First, our results on the MSA-based soft labels with α
divergence already outperforms literature self-supervised baselines for both Pearson correlation and
AUC. Then, by reformulating the training objective with EvoRank we improve over the previous
best literature zero-shot model by a significant margin–on average we improve the Pearson correla-
tion and AUC across the six datasets by ∼64% and ∼14%, respectively. Direct comparison with its
WT-masked predecessor, MutComputeXGT, MutRank results in a 66% and 16% improvement in
Pearson correlation and AUC, respectively. Notably, compared to the well-known self-supervised
methods ESM2 and ProteinMPNN, MutRank achieves on average a Pearson correlation improve-
ments of ∼288% and ∼72% across the six ∆∆G datasets, respectively. These results demonstrate
the effectiveness of MutRank representations for ∆∆G.

Next, we compared to the structure-based frameworks RaSP (Blaabjerg et al., 2023) and Ther-
moMPNN Dieckhaus et al. (2023)) and the sequence-based framework Prostata-IFML (Diaz et al.,
2023). Although these frameworks are explicitly fine-tuned on large scale cDNA ∆∆G dataset, our
zero-shot results are competitive. Compared to the SOTA-supervised framework, Stability Oracle,
our zero-shot Pearson correlation and AUC are only ∼13% and ∼3% lower on average across the
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six datasets. Overall, our results demonstrate how the EvoRank loss significantly narrows the gap
between supervised fine-tuned framework and zero-shot representation for ∆∆G.

Zero-shot evaluation on multiple phenotypes To further characterize the generalization capabil-
ity of MutRank representations, we evaluate performance on binding free energy change datasets
and four DMS datasets: two for solubility and two for activity (Table 4). Unlike folding stability,
which has seen significant increases in available public data (Tsuboyama et al., 2023), binding free
energy change datasets are scarce, filled with mutation type and label biases, and suffer from noisy
labels. These challenges makes developing supervised frameworks challenging for these pheno-
types and underlines the importance of zero-shot self-supervised models. For the binding free en-
ergy datasets, we use the protein-protein interface binding ∆∆G datasets SKEMPIv2 Jankauskaitė
et al. (2019), AB-Bind (Sirin et al., 2016), S487 (Geng et al., 2019) and the protein-ligand inter-
face binding ∆∆G dataset PlatinumDB (Pires et al., 2015). For the solubility and activity datasets,
we used Deep Mutational Scanning (DMS) datasets, which leverage a high throughput screen or
next-generation sequencing as a proxy for function. For solubility, we use the DMS datasets for
for levoglucosan kinase (uniprot id:B3VI55) and TEM1-β-Lactamase (uniprot id: P62593) from
Klesmith et al. (2017). For activity evaluation, we use the DMS datasets for the aliphatic hydrolase
(uniprot id: P11436), the Anti-CRISPR protein AcrIIA4 (uniprot id: A0A247D711), and Porpho-
bilinogen deaminase (uniprot id: P08397). We compare against two WT-mask SSL frameworks,
MutComputeXGT and ESM2, and one supervised fine-tune framework, Stability Oracle. Compar-
ison between just the literature methods on the binding ∆∆G datasets demonstrate that ESM2 did
the worst and Stability Oracle did the best across all metrics (Pearson and Spearman correlation
and AUC). These results are expected since binding free energy (interactions between proteins) is
fundamentally related to folding free energy (interactions within a protein). ESM2 is unable to see
the binding partner (protein or ligand) and must rely purely on the single sequence representation.

Remarkably, MutRank outperforms MutcomputeXGT across all datasets for all metrics. This
demonstrates that the EvoRank loss improve zero-shot generalization across all phenotypes com-
pared to its WT-masked predecessor. Additionally, MutRank outperforms ESM2 on all datasets
for all metrics even though it is a much smaller model trained on only ∼23K proteins compared
to UniRef50. Surprisingly, MutRank’s zero-shot performance surpasses or ties Stability Oracle
performance on nearly all metrics for binding ∆∆G datasets (except S487 AUC). Furthermore,
it significantly outperforms Stability Oracle on the TEM1-β-Lactamase solubility dataset and the
three activity datasets. Stability Oracle performance on the TEM1-β-Lactamase dataset is lower
than it’s pretrained representation, MutComputeXGT. This finding highlighting the superior pheno-
type generalization of EvoRank loss and demonstrating how supervised fine-tuning can improve the
performance on one phenotype at the expense of others. Finally, we highlight MutRank’s substan-
tial improvement on the protein-ligand interface binding ∆∆G dataset, PlatinumDB: compared to
MutComputeXGT: MutRank improves the Pearson correlation and AUC from 0.05 and 0.48 (indi-
cating a random classifier) to 0.28 and 0.64. We conclude that for the activity, solubility and binding
free energy phenotypes, MutRank representations significantly improves the zero-shot generaliza-
tion over the WT-mask representations of MutComputeXGT. However, additional evaluations are
needed to better understand its generalization across phenotypes for diverse proteins.

4 CONCLUSION

We propose EvoRank training objective aimed at improving the protein representations obtained
from self-supervised learning for zero-shot mutation effect prediction tasks. EvoRank reformulates
the learning task to better emulate a mutation by replacing the 20-class classification head with a
regression head trained to learn the ranking of amino acids within the MSA distribution at a par-
ticular position. To evaluate EvoRank, we trained a structure-based graph transformer with the
EvoRank loss and observe performance improvements in all downstream single point mutation ef-
fect prediction tasks compared to the WT-mask predecessor. When compared to the most renown
sequence-based (ESM2) and structure-based (ProteinMPNN) frameworks, EvoRank demonstrates
superior zero-shot performance across all evaluated benchmarks. From our results, we conclude that
the EvoRank training objective produces protein representation with an enriched understanding of
the complex mutational landscape of proteins.
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Kathryn Tunyasuvunakool, Russ Bates, Augustin Žı́dek, Anna Potapenko, et al. Highly accurate
protein structure prediction with alphafold. Nature, 596(7873):583–589, 2021.

Dhananjay Kimothi, Akshay Soni, Pravesh Biyani, and James M Hogan. Distributed representations
for biological sequence analysis. arXiv preprint arXiv:1608.05949, 2016.

7

https://www.biorxiv.org/content/early/2022/04/10/2022.04.10.487779
https://www.biorxiv.org/content/early/2022/04/10/2022.04.10.487779
https://proceedings.neurips.cc/paper_files/paper/2019/file/f3a4ff4839c56a5f460c88cce3666a2b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/f3a4ff4839c56a5f460c88cce3666a2b-Paper.pdf


Under review as a conference paper at ICLR 2024

Justin R Klesmith, John-Paul Bacik, Emily E Wrenbeck, Ryszard Michalczyk, and Timothy A
Whitehead. Trade-offs between enzyme fitness and solubility illuminated by deep mutational
scanning. Proceedings of the National Academy of Sciences, 114(9):2265–2270, 2017.

Petr Kouba, Pavel Kohout, Faraneh Haddadi, Anton Bushuiev, Raman Samusevich, Jiri Sedlar, Jiri
Damborsky, Tomas Pluskal, Josef Sivic, and Stanislav Mazurenko. Machine learning-guided
protein engineering. ACS catalysis, 13(21):13863–13895, 2023.

Bian Li, Yucheng T Yang, John A Capra, and Mark B Gerstein. Predicting changes in protein
thermodynamic stability upon point mutation with deep 3d convolutional neural networks. PLoS
computational biology, 16(11):e1008291, 2020.

Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin,
Robert Verkuil, Ori Kabeli, Yaniv Shmueli, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom
Sercu, Salvatore Candido, and Alexander Rives. Evolutionary-scale prediction of atomic-level
protein structure with a language model. Science, 379(6637):1123–1130, 2023. doi: 10.1126/
science.ade2574.

Tie-Yan Liu et al. Learning to rank for information retrieval. Foundations and Trends® in Informa-
tion Retrieval, 3(3):225–331, 2009.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Amy X Lu, Haoran Zhang, Marzyeh Ghassemi, and Alan Moses. Self-supervised contrastive learn-
ing of protein representations by mutual information maximization. BioRxiv, 2020.

Hongyuan Lu, Daniel J Diaz, Natalie J Czarnecki, Congzhi Zhu, Wantae Kim, Raghav Shroff,
Daniel J Acosta, Bradley R Alexander, Hannah O Cole, Yan Zhang, et al. Machine learning-aided
engineering of hydrolases for pet depolymerization. Nature, 604(7907):662–667, 2022.
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A RELATED WORKS

Multiple Sequence Alignments (MSAs) A multiple sequence alignment (MSA) is an established
tool used to identify the evolutionary relationship between genes and can be generated for DNA,
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served in extant homologous sequences present in a database, such as UniProt (Consortium, 2015),
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and capture evolutionary and structural constraints for a particular protein family (Thompson et al.,
1994; 1997). This makes MSAs a rich source of biological information for computational biologist
and recently for training machine learning models. For example, Alphafold2 demonstrates that the
information within a protein’s MSA is sufficient to predict its 3D structure with near experimental
accuracy. Additionally, AlphaFold-Multimer demonstrates that using paired-MSA information im-
proves protein-protein interaction predictions, resulting in significant improvements for predicting
of protein complexes Evans et al. (2021).

Sequence-based machine learning frameworks have used MSA information to predict mutational
effects and protein fitness. Representative methods, i.e., EVmutation (Hopf et al., 2017), DeepSe-
quence (Riesselman et al., 2018b), MSA Transformer (Rao et al., 2021b), use MSA information to
model the evolutionary sequence density with potts models, variational auto-encoders, and trans-
former, respectively. Biswas et al. (2021); Rives et al. (2021); Barrat-Charlaix et al. (2016) consider
a semi-supervised manner which adopts a joint training on MSAs and labeled data for the prediction
of protein’s fitness.In this paper, instead of using MSA information to construct model inputs or for
reconstruction, we incorporate MSA information into the training loss in order to learn protein rep-
resentations with improved understanding of the mutational landscape. In practice, we achieve this
by formulating the training loss to prioritize learning the rank order of the position specific amino
acid distribution. Additionally, this paradigm shift on the application of MSA information has the
benefit of only requiring MSA information at train time and not at inference time.

Protein Language and Structure Models. Protein representation learning borrows various in-
sights from self-supervision research in the natural language processing community Liu et al.
(2019); Yang et al. (2019). The main goal of protein representation learning is to extract biological
and functional knowledge of proteins from large unlabeled data to enable zero-shot generalization
and/or rapid adaptation to various protein-related tasks. To learn amino acid-level representations
from sequence, the community has used methods such as auto-encoding Shuai et al. (2021), auto-
regressive Rives et al. (2019b); Meier et al. (2021b); Elnaggar et al. (2020); Riesselman et al. (2019),
skip-gram language model Kimothi et al. (2016), mask prediction Vig et al. (2020); Brandes et al.
(2022) or amino acid contrastive learning objectives Lu et al. (2020), similarity metric learning Be-
pler & Berger (2019); Alley et al. (2019), etc. The most renown protein language models (pLMs)
are the evolutionary-scale models (ESMs) Rives et al. (2019a); Meier et al. (2021a) with ESM2 be-
ing the most recent and underpins ESMFold, a sequence-based structure prediction framework (Lin
et al., 2023).

For protein structures, 3DCNNs (Townshend et al., 2020; Shroff et al., 2020), GNNs (Townshend
et al., 2020; Dauparas et al., 2022), and graph-transformers (Diaz et al., 2023) architectures have
been developed to learn residue-level representations using the local chemical environment (mi-
croenvironment) or the protein backbone as input. These frameworks primarily use masking to
obtain their representations but other pre-training task, such as structure contrastive learning Moon
et al. (2023), distance/angle prediction Chen et al. (2023a), and denoising (Watson et al., 2023)
have been proposed. Several structure-based frameworks have experimentally designed proteins.
The microenvironment framework MutCompute Shroff et al. (2020); d’Oelsnitz et al. (2023) has
demonstrated the ability to guide the engineering of several functionally diverse enzymes (Lu et al.,
2022; Paik et al., 2021; d’Oelsnitz et al., 2023). Inverse Folding frameworks, such as ESM-IF (Hsu
et al., 2022) and ProteinMPNN (Dauparas et al., 2022), use the protein backbone to conditionally
design novel sequences for de novo binder design (Watson et al., 2023) and enzyme engineering
(Sumida et al., 2024). More works (Chen et al., 2023b; Gligorijević et al., 2021; Zheng et al., 2023;
Zhang et al., 2023) focus on the effective knowledge integration between sequence and structure
data. Due to the prohibitive cost of training a pLM and the added complexity of decoding an entire
protein sequence during inverse folding, we focus on initially validating our EvoRank loss using the
microenvironment modality.

B EXPERIMENT SETTING

B.1 DATASETS

For the self-supervised training, we use the same procedure as MutComputeX (d’Oelsnitz et al.,
2023). Briefly, this dataset consists of a 90:10 split of 2,569,256 micro-environments sampled from
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22,759 protein sequences clustered at 50% sequence similarity and having a structure resolution of
at least 3Å from the RCSB (November 2021). Our test data for the folding free energy changes
and binding free energy changes are proposed in Diaz et al. (2023); Gong et al. (2023) and we
refer the readers to these works for details. These datasets are curated from literature datasets and
incorporate additional policies (e.g., below 30% sequence similarity between training and test sets)
for better quality.

For mutation effect prediction tasks, we use the experimental structure files from RCSB and Al-
phaFold structures if the protein lacks an experimental structure. Due to the prohibitive cost of
generating experimental data, no phenotype has sufficient experimental data to properly benchmark
ML frameworks and evaluate generalization. Thus, we explore datasets for several phenotypes.
To date, the most characterized mutation effect phenotype is thermodynamic stability of folding
(∆∆G) with several established datasets reserved for evaluation of computational tools: S-Sym,
S669, T2837, Gβ1, Myoglobin, and P53. Recently, a cDNA-display protelysis technique enabled
the multiplex characterization of single domain mini-proteins to provide the first exhaustive, sys-
tematically generated training set for machine learning (Tsuboyama et al., 2023). However, this
dataset used proteolytic stability as proxy for thermodynamic stability and the technique does not
generalize to full-length functional proteins. For evaluating against the binding free energy changes
of point mutations, we used SKEMPIv2 (Jankauskaitė et al., 2019) and AB-Bind (Sirin et al., 2016)
for protein-protein interface and PlatinumDB for protein-ligand interface Pires et al. (2015). For
the activity, we used an anti-CRISPR protein (A0A247D711) (Stadelmann et al., 2021) and an
amidase (Wrenbeck et al., 2017). These datasets are curated from the literature, thus, different
techniques–with different biases–were used for data collection. Thus, we filtered mutational data
for the techniques that provide high quality measurements: SPR, ITC, FL, IASP, SFFL. To eval-
uate a non-thermodynamic phenotype, we evaluate against the solubility change deep mutational
scanning (DMS) datasets of levoglucosan kinase and TEM1-β-lactamase (Klesmith et al., 2017).
To obtain these solubility change measurements, a yeast surface display readout was used not of
their wildtype sequences but rather for a chimeric variants with a N-terminus Aga2p domain and
a C-terminus epitope tag. Thus, solubility change results should be interpreted with caution since
the input sequence and structure used to generate predictions are for the native proteins and not
chimeras.

B.2 TRAINING

We train the self-supervised model with AdamW optimizer, with 512 batch size, 5× 10−5 learning
rate, 10−5 weight decay. We first train the mask prediction model with MSA soft label loss in equa-
tion equation 1 for 100K iterations, and then train with the EvoRank defined in equation equation 4,
for an additional 100K iterations. Training the model typically requires approximately two day GPU
days using an A100. We generate MSAs with JackHMMer Remmert et al. (2012) against UniRef90,
using the default configuration of AlphaFold2. For the supervised fine-tuning, we train with AdamW
optimizer and backbone learning rate 10−5 and regression head learning rate 5 × 10−5. We tune it
with 500 iterations on the curated cDNA dataset generated by Diaz et al. (2023).

Evaluation Metrics and Baselines We assess the model’s performance using a comprehensive
set of evaluation metrics encompassing both regression and classification aspects. The regression
metrics include Spearman correlation coefficient, Pearson correlation coefficient, and Root Mean
Squared Error (RMSE). For classification evaluation, we employ AUROC (Area Under the Receiver
Operating Characteristic curve). This dual approach ensures a thorough and nuanced evaluation
of the model’s capabilities across different dimensions of prediction tasks. To comparison with
results in the literature, we report the Spearman correlation on different DMS datasets. To establish
baselines, we incorporate a range of self-supervised and supervised methods. As a representative
self-supervised method, we employ the extensively used ESM2 models. The default baseline is set
with the 650M-parameter ESM2 model, and we provide results for other scales of ESM2 models and
alternative protein language models. We first evaluate different model performance first on different
∆∆G datasets, since these datasets have high-quality labels. Then, we further compare models on
more phenotype datasets, to examine whether our model can generalize to different settings.

Model Architecture The microenvironment-based model used here is based on previous work
by Diaz et al. (2023). Briefly, the model uses a graph transformer backbone to process an input
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microenvironment, in which Vmask
i for amino acid ai is the input and each atom in this set is rep-

resented by its 3D coordinates, atom type, partial charge and solvent accessible surface area. After
transforming the atomic representations into a continuous latent space using embedding layers, we
process the hidden representations for each atom with graph transformer blocks, where the attention
bias is based on the atom-wise Euclidean distance. We refer the readers to (Diaz et al., 2023) for
more details on the graph transformer backbone architecture.

The regression head accepts two amino acid embedding vectors and the hidden representation of
the microenvironment as input. As shown in Figure 1, we use Siamese network architecture to
contextualize each amino acid type to the masked microenvironment, and a MLP to decode a ranking
prediction between the two contextualized amino acid embeddings. We refer the readers to (Diaz
et al., 2023) for more details on the regression head architecture.

C ADDITIONAL EXPERIMENT RESULTS

# Proteins # Mut (K) Fine-Tune MutComputeXGT w/ WT-Mask Fine-Tuned MutComputeXGT w/ EvoRank
Pearson Spearman AUC RMSE Pearson Spearman AUC RMSE

10 11K 0.50 0.52 0.73 1.92 0.58 0.60 0.78 1.73
50 54K 0.55 0.58 0.77 1.78 0.59 0.61 0.80 1.66
116 117K 0.59 0.62 0.81 1.64 0.61 0.63 0.81 1.62

Table 5: The performance of fine-tuned models on the T2837 dataset trained varying training dataset
size. The learning rate and number of iterations are tuned for each SSL pretraining task in order to
maximize performance. We fine-tune the model on subsets of the cDNA dataset Diaz et al. (2023)
and test the model performance on T2837. ’#Mut’ denotes number of mutations in the training data.

Impact on supervised fine-tuning One of the most important applications of representation learn-
ing is to enable transfer learning to domains with limited labeled datasets. Thus, to evaluate the
impact of the MutRank representations against the WT-mask representations, we conduct a com-
parative analysis on supervised fine-tuning for thermodynamic stability using the Stability Oracle
framework. Table 5 provides a comprehensive comparison between fine-tuned WT-mask representa-
tions (Stability Oracle) and fine-tuned MutRank representations. To achieve optimal performance,
WT-mask representations and MutRank representations are fine-tuned with 3000 (same as Stabil-
ity Oracle) and 500 iterations, respectively. The evaluation metrics include Pearson correlation,
Spearman correlation, AUC, and RMSE on the T2837 folding free energy (∆∆G) phenotype. Our
results demonstrate that both models reach approximately the same performance on T2837 from
training on the cDNA dataset, with EvoRank loss pretraining having a marginal improvement. In-
terestingly, EvoRank loss impact is most apparent when there is significantly less fine-tuning data
available. When fine-tuned with ∼9% of the proteins (10 proteins and 11K mutations) in the cDNA
dataset, EvoRank loss pretraining outperforms WT-mask pretraining by 16%, 15%, 7% for Pearson
and Spearman correlation and AUC, respectively, and required 6× fewer training iterations. Fur-
thermore, EvoRank loss pretrained model’s Pearson and Spearman correlation and AUC metrics are
only 2%, 3%, and 4% lower than Stability Oracle, respectively. While the corresponding WT-mask

MicroEnv
Encoder

Transformer 
θ

Transformer
θ

Subtract MLP Rank
Score

From AA

To AA

From AA

To AA

...

Regression
Head

Masked Microenvironment

Figure 1: The MutRank architecture, where the rank score is optimized by equation 3. In the
regression head, the hidden representation of the microenvironment is used to contextualize the
“from” and “to” amino acid embeddings using a Siamese network. The rank hidden representation
is generated by subtracting the contextualized amino acid embeddings, which is then decoded into
the rank score.
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pretrained model’s Pearson and Spearman correlation and AUC metrics are 15%, 16%, and 10%
lower than Stability Oracle, respectively. These gaps are less drastic when 43% of the proteins (50
proteins and 54K mutations) are used for supervised fine-tuning since the EvoRank loss pretrained
model has nearly reached the ceiling of the cDNA dataset. Thus, we conclude that the supervised
fine-tuning of the MutRank representations can significantly improve the generalization capacity
of smaller training sets and simultaneously accelerate training time.

Loss T2837 S487
pMSA
j (a+)

pMSA
j (a+)+pMSA

j (a−)
− 0.5 0.51 0.38

CLMAP{log{pMSA
j (a+)/pMSA

j (a−)},±5} 0.52 0.38
CLMAP{[pMSA

j (a+)/pMSA
j (a−)]2,±5} 0.50 0.37

Table 6: We demonstrate the model Pearson correlation coefficient with different rank score loss.
The first block shows the loss as the default setting. The second block displays the loss with other
formulations.

Dataset Phenotype EvoRank w/ Classification Head EvoRank w/ Joint Heads EvoRank w/ Regression Head
Pearson Spearman AUC RMSE Pearson Spearman AUC RMSE Pearson Spearman AUC RMSE

T2837 ∆∆G 0.47 0.49 0.76 1.78 0.51 0.53 0.77 1.76 0.51 0.53 0.78 1.70
levoglucosan kinase ∆ Solubility 0.28 0.34 0.62 1.40 0.30 0.34 0.65 1.37 0.29 0.34 0.64 1.39
S487 Protein-Protein ∆∆Gbind 0.36 0..35 0.65 1.35 0.37 0.37 0.67 1.36 0.38 0.38 0.67 1.26
platinumDB Protein-Ligand ∆∆Gbind 0.25 0.24 0.61 1.58 0.27 0.27 0.65 1.58 0.28 0.28 0.64 1.53
ABBind Antibody-Antigen∆∆Gbind 0.39 0.45 0.72 1.48 0.41 0.46 0.72 1.57 0.41 0.46 0.74 1.42

Table 7: We illustrate that MutRank without additional regression head can still generate good
results on the test sets. The numbers reported are averaged over three trials.

Head architecture ablations In our approach, to train with the EvoRank loss, we replace the clas-
sification head with a regression head. This head contextualize the embedding vectors for the two
amino acids with the hidden representation for a particular microenvironment in order to compute a
residue specific rank score. Alternatively, we can use the EvoRank loss with the original classifica-
tion head by calculating the rank score from the logits. In this ablation study, shown in Table 7, we
observe that introducing the additional regression head generally results in a modest performance
improvement ranging from 1% to 4% across 5 datasets. More importantly, these results demonstrate
the superior zero-shot generalization of the EvoRank representations over the WT-mask baseline
regardless of the head architecture.

Exploring different loss formulation Training with EvoRank loss is a two-stage procedure. Ini-
tially, we train the backbone using MSA-based soft labels with the α-divergence loss and subse-
quently fine-tune with the EvoRank loss. 1) We evaluate the impact of jointly training with α-
divergence loss and EvoRank (Table 7, middle column). Our results indicate that the linear combi-
nation of the α-divergence and EvoRank losses with 0.4 and 0.6 coefficients, respectively, provides
the best performance. However, these results match our previous performance. 2) We then evaluate
different ways to compute the rank score for a residue from the MSA distribution, and benchmark on
the T2837 and S487 datasets. As demonstrated in Table 6, all rank score formulations converge to
similar performance on T2837 and S487. Thus, the exact formulation for computing the rank score
has an insignificant impact on performance and further demonstrates the robustness of the EvoRank
loss.

Dataset #Mut MutRank-2M MutRank-8M MutRank-24M MutRank-48M
T2837 2837 0.48 0.51 0.51 0.51
levoglucosan kinase 9011 0.27 0.29 0.29 0.28
Gβ1 935 0.58 0.62 0.62 0.62
S487 487 0.36 0.38 0.40 0.40
PlatinumDB 925 0.25 0.28 0.28 0.26

Table 8: We demonstrate the model Pearson correlation coefficient with different model sizes. All
the results are averaged over three trials.
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Method Pearson Spearman AUROC RMSE
cDNA MSA 0.15 0.13 0.62 2.17
ESM2 0.37 0.37 0.65 5.48
MutComputeXGT 0.38 0.38 0.64 1.89
MutRank 0.45 0.46 0.71 1.09

Table 9: We demonstrate that our method get better generalization compared to naive MSA on the
cDNA117K dataset.

Model size ablations The machine learning community has empirically demonstrated the benefits
of increasing model size (Dehghani et al., 2023; Chowdhery et al., 2023). This too has been demon-
strated by protein language models (Elnaggar et al., 2021; Rives et al., 2019a; Lin et al., 2023).
However, to the best of our knowledge no study has explored the impact of model size for protein
structure-based machine learning frameworks. We conducted a comprehensive analysis ranging the
parameters from ∼2M to ∼48M. The results, presented in Table 8, demonstrate marginal to no im-
provements from scaling the model parameters. For example, the smallest model (∼2M) exhibit
diminished performance compared to the largest (∼48M) model but the average performance im-
provement across 4 datasets is only ∼6%. But the same analysis between the (∼8M) and (∼48M)
models results in an average performance decrease of 1.25%. Further experiments, such as scaling
the dataset beyond ∼20K proteins, are required to confirm if structure-based ML frameworks trained
with EvoRank loss will benefit from model scaling. All experiments reported in this work are from
the 8M parameter model.

Generalizing beyond the MSA distribution While our model is trained with MSA information,
the MSA information itself can also directly serve as a predictor for mutation effects. In the lit-
erature, MSAs are often used to create a sequence profile (Lüthy et al., 1994) or position-specific
scoring matrix (PSSM) (Jones, 1999), which can be used to predict the impact of a mutation by
assessing the deviation from the expected amino acid at a specific position.

We evaluate if EvoRank representations outperforms these naive MSA baselines using the large
cDNA dataset (∼ 117K mutations from 116 single domain proteins) provided in Diaz et al. (2023).
For these 116 proteins, the average and std of their MSA depth is 3.9K±0.6K sequences. To cal-
culate naive predictions from a protein’s MSA, we use the log-odds of the empirical amino acid
distribution at a position (Figure ??): log(pto/pfrom). Furthermore, we provide MutComputeXGT
and ESM2 as a baselines for comparison. As demonstrated in Table 9, our method not only out-
performs ESM2 but also significantly improves upon the naive MSA predictions derived from the
cDNA MSAs: for Pearson correlation, our method achieves 0.45, surpassing MSA’s 0.15, ESM2’s
0.37, and MutComputeXGT’s 0.38. These results demonstrate that the MutRank representations
capture residue specific variability beyond what is present in a protein’s MSA.
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