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ABSTRACT

Vision-Language Models (VLMs) have captivated the research community by ef-
fectively merging visual and textual information, implying a holistic comprehen-
sion of the environment. These models find applications in tasks such as Image
Captioning and Visual Question Answering, fostering the assumption that they
perceive reality in a way similar to human cognition. However, this apparent
understanding may be misleading. We argue that a critical component of compre-
hension—spatial reasoning—has been insufficiently addressed, as current bench-
marks primarily test models’ ability to identify object positions rather than evalu-
ate genuine spatial logic. In this study, we aim to address this limitation. Drawing
from the fundamental elements of human cognition, we developed a diagnostic
framework designed to isolate the essential components of spatial reasoning: rela-
tional understanding, orientation, mental rotation, and visualization. We evaluated
17 state-of-the-art VLMs within both controlled synthetic settings and the com-
plex variability of images captured in the real world. Results indicate a substantial
gap in performance: the apparent competence of these models decreases signifi-
cantly under spatial reasoning tasks that require any dynamic transformation and
manipulation of spatial information. On average, their performance parallels ran-
dom guessing, which highlights a major systematic weakness in spatial reasoning
in current VLMs. In addition to providing evidence for this limitation, this study
also provides the research community with a foundational framework for devel-
oping models that can accurately understand and reason about spatial properties
in their environment.

1 INTRODUCTION

Vision-Language Models (VLMs) have demonstrated impressive proficiency across a broad spec-
trum of multimodal tasks, such as Image Captioning, Visual Question Answering, and text-image
retrieval (Liu et al., 2023; Dubey et al., 2024; Radford et al., 2021). Leveraging extensive datasets
in their pretraining phases, these models can effectively map the intricate interactions between vi-
sual and textual data. Nonetheless, one crucial facet of intelligence that remains notably deficient is
spatial reasoning. This essential skill entails understanding object locations, orientations, and their
interrelations within a scene—a capability that is instinctive to humans but poses a substantial chal-
lenge for modern deep learning models (Zhang et al., 2025b; Shiri et al., 2024; Chen et al., 2024a;
Cheng et al., 2024).

Spatial reasoning is not a niche skill; it is fundamental to cognition. In humans, it develops be-
tween two and eleven years old Hodgkiss et al. (2021) and underpins our ability to navigate and
interact with complex environments (Johnson, 1987; Newcombe & Huttenlocher, 2000). Cogni-
tive science and neuroscience research confirms that spatial cognition is deeply engrained in our
perceptual and motor systems (Burgess, 2008; Husain & Nachev, 2007). Bridging this gap in AI
is crucial for moving beyond pattern recognition toward a more human-like understanding of the
world. Moreover, performant spatial reasoning is a prerequisite for real-world applications such as
robotics, autonomous navigation, and augmented reality, where agents must interact with and adapt
to dynamic physical spaces (Venkatesh et al., 2021).

A key obstacle to progress has been the absence of a structured evaluation framework for spatial
reasoning in VLMs. Current benchmarks often subsume spatial tasks under broader categories such
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Which candidate option is 
the rotated version of the 

Original Shape ?

Is the woman on the left 
from camera's perspective? Yes

Option B

Figure 1: Example of VLM responses to mental rotation and relation tasks. Models frequently
struggle to identify legitimate rotations, exposing deficiencies in tasks requiring dynamic transfor-
mations. However, they exhibit competence in discerning spatial relations present within the image.

as object detection or semantic interpretation, failing to isolate core cognitive challenges (Liu et al.,
2024b). This lack of a targeted evaluation has hindered the development of models with robust
spatial intelligence. To address this, we introduce a comprehensive benchmark grounded in founda-
tional paradigms from cognitive psychology, designed to systematically evaluate the core facets of
spatial reasoning (Bar-Hen-Schweiger & Henik, 2024). Our framework assesses performance across
four distinct pillars: (1) mental rotation, (2) spatial visualization, (3) relational understanding, and
(4) egocentric navigation.

Our evaluation of 18 current VLMs shows they handle static spatial reasoning fine, yet fail when-
ever the task requires simulating a transformation of the object to reach the answer. While leading
models exhibit high accuracy on tasks involving spatial relations and orientation in static images,
their performance collapses on tasks requiring mental manipulation (Fig. 1). Notably, on the mental
rotation task, nearly all models—including state-of-the-art systems such as GPT-4o—perform at or
below random chance. This points to a gap: models have trouble imagining or predicting spatial
transformations.

In summary, our contributions are as follows:

• We introduce a new comprehensive benchmark for systematically evaluating dynamic spa-
tial reasoning in VLMs, grounded in foundational paradigms from cognitive psychology.

• We evaluate 17 state-of-the-art models, revealing that their performance on many core spa-
tial tasks is near random chance, highlighting a critical area for future research.

• We analyse dissociations between static scene understanding and dynamic reasoning, high-
lighting a fundamental weakness in current models.

• We find that scaling the model alone is insufficient to overcome the inability to perform sim-
ulative spatial reasoning (i.e., mentally transforming objects). Future progress will likely
require new inductive biases that explicitly support simulation-style reasoning about object
dynamics.

2 CONSTRUCTING THE BENCHMARK AND EXPERIMENTAL SETUP

Human spatial reasoning emerges from the intricate interplay of several cognitive abilities that al-
low us to navigate, manipulate, and understand our three-dimensional world (Hegarty, 2010; Darken
et al., 1999; Wang & Spelke, 2002). Unlike previous benchmarks that evaluate isolated aspects of
spatial cognition Ma et al. (2024); Kamath et al. (2023), our comprehensive evaluation framework
systematically assesses Vision-Language Models across the fundamental interconnected pillars of
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(a) Mental Rotation (Easy)

(b) Mental Rotation (Hard)

(c) Paper Folding

(d) Relations

(e) Orientation (f) Navigation

Representative Examples from SRBench Task Categories

Figure 2: Representative examples from SRBench spatial reasoning tasks. (a-b) Mental rotation
tasks with hard and easy difficulty levels. (c) Paper folding visualization task. (d) Spatial navigation
with route planning. (e) Spatial orientation and perspective-taking. (f) Spatial relations between
geometric elements. Each panel demonstrates the visual complexity and cognitive demands of the
respective spatial reasoning category in the benchmark dataset.

human spatial reasoning: mental rotation, spatial visualization, relational understanding, and ego-
centric navigation.

2.1 MENTAL ROTATION

We begin by evaluating a model’s capability for mental rotation—the ability to mentally transform
three-dimensional objects in space. Drawing from the seminal Mental Rotation Test (MRT) (Cooper,
1975), which has served as the gold standard for measuring this cognitive ability in humans for
decades, we adapt this classical paradigm to modern VLMs.

The original MRT presents participants with pairs of 3D objects or letters, rotated along various
axes, challenging them to distinguish between identical shapes and their mirror images (Shepard &
Metzler, 1971). Human performance is typically assessed through both accuracy and response time
at rotation angles of 0°, 60°, 120°, and 180° (F Caissie et al., 2009).

Our digital adaptation follows this established protocol while accommodating the unique character-
istics of VLMs. We manually craft five distinct polycube shapes and construct test images featuring
the target shape in the top row, accompanied by four candidate shapes below. Among these candi-
dates, exactly one represents the original shape rotated by 0°, 60°, 90°, or 120°; the remaining three
consist of two mirrored versions at different rotations and one randomly selected unrelated shape.

To systematically vary task difficulty, we develop two complementary variants. The MRT-Hard
subset presents white shapes against blank backgrounds, offering minimal visual cues and posing
a significant challenge to the model’s internal spatial representations. Recognizing that this austere
presentation might limit model performance, we create the MRT-Easy subset, which incorporates
colored shapes positioned within a 3D Cartesian grid background and reduces the choice set to three
candidates by removing one mirrored candidate. Each subset consists of 200 carefully designed test
cases, as illustrated in Figure 2 (a and b).

3
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2.2 SPATIAL VISUALIZATION

Beyond object rotation, spatial reasoning demands the ability to mentally simulate complex geo-
metric transformations. We assess this through an adaptation of the Paper Folding Test (Ekstrom &
Harman, 1976; McGee, 1979)—a psychometric instrument whose performance strongly correlates
with success in spatially demanding fields such as engineering and architecture (Carroll, 1993).

Each instance presents a temporal sequence of transformations: a paper square undergoes one or
two folds (vertical, horizontal, or diagonal), followed by punching one to three holes through the
folded configuration. The model must then predict the resulting hole pattern when the paper is
unfolded, selecting from three plausible alternatives. This task directly probes the model’s capacity
to internalize sequential geometric operations and mentally simulate their cumulative effects—a
cornerstone of spatial visualization ability. The subset comprised 200 test cases, illustrated in Fig. 2
(c) as examples.

2.3 SPATIAL RELATIONS

Understanding the relative positioning and interactions between objects forms the foundation of
scene comprehension. We evaluate this critical capability using a curated sample from the Spatial-
Obj dataset (Shiri et al., 2024), a rigorously constructed benchmark that contains 2,000 multiple
choice queries regarding spatial relationships in natural images.

The authors generated this dataset employing an in-depth dual-stage annotation procedure, thor-
oughly encompassing 36 essential spatial relationships. These range from elementary positional
notions such as ‘right of’ and ‘above’, to intricate geometric interactions including ‘attached to,’
‘touch’, and ‘overlapping’. The queries encompass diverse visual challenges including identifica-
tion of precise object location, orientation discrimination, and contextual spatial reasoning, provid-
ing a robust assessment of how well VLMs comprehend relational spatial language in realistic visual
scenarios. This subset contains 400 test cases, with examples shown in Fig. 2 (d).

2.4 ORIENTATION AND NAVIGATION

Finally, we examine spatial reasoning within the critical domains of navigation and egocentric per-
spective taking, abilities essential for real-world spatial intelligence.

For navigation assessment, we employ the Maze-Nav component of SpatialEval (Wang et al., 2024),
which challenges models to reason about paths through visual mazes represented by colored block
configurations. Tasks include identifying routes from start (S) to exit (E) points, counting directional
changes, and describing spatial relationships between key locations. While trivial for human spatial
cognition, these challenges reveal significant limitations in current VLMs’ navigational reasoning
capabilities.

Complementing navigation assessment, we evaluate orientation understanding using 400 binary
questions from EgoOrientBench (Jung et al., 2024). This benchmark addresses critical inconsis-
tencies in spatial orientation evaluation by establishing a unified, camera-centric perspective frame-
work. Through an eight-class egocentric taxonomy (Left, Right, Front-Left, Back-Right, etc.), it
provides consistent object orientation definitions relative to the observer’s viewpoint. This egocen-
tric approach not only enhances evaluation reliability but also aligns with the increasing need for
VLMs to operate effectively in user-centered, real-world applications, such as robotics, where spa-
tial understanding must be grounded in human perspective. This subset contains 400 test cases, with
examples shown in Fig. 2 (e and f).

2.5 SETUP

Our experiments were conducted with PyTorch (Paszke et al., 2019) and Hugging Face Transform-
ers (Wolf et al., 2020). We evaluated the spatial reasoning capabilities of 17 VLMs, which include
open-source and commercial models. Specifically, from the commercial side, we included evalua-
tions of OpenAI’s GPT-4o and o1 (Achiam et al., 2023; Jaech et al., 2024). The open source model
set consists of: QwenVL2.5 in sizes 3B, 7B, 32B, and 78B (Bai et al., 2025); Llava 1.5 7B (Liu
et al., 2024a); LlavaNext 7B (Li et al., 2024); Idefics3 8B (Laurençon et al., 2024) and SmolVLM2
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at 500M and 2.2B (Marafioti et al., 2025). Additionally, MiniCPM-V-2.6 8B (Yao et al., 2024);
InternVL-3 models at 8B, 38B, and 78B (Chen et al., 2024b) and Gemma3 at 12B, and 28B. All
models are instruction tuned and the experiments were conducted using greedy decoding (Germann,
2003) and Chain-of-Thought (Wei et al., 2022) prompting. For OpenAI’s models, we used the Azure
OpenAI API service, while for the open-source models, inference was performed using 2 × H200
140GB NVIDIA GPUs.

3 RESULTS

Our investigation into the spatial reasoning of contemporary VLMs reveals a compelling, two-part
narrative. On one hand, models exhibit a promising, emergent ability to parse static visual scenes.
On the other, this competence proves remarkably brittle, collapsing entirely when confronted with
tasks that require dynamic mental manipulation. This core tension, explored below, points to a
fundamental gap between superficial pattern recognition and robust spatial cognition.

Model Paper Folding MRT Easy MRT Hard Navigation Orientation Relations Overall

Random 33.0 33.0 25.0 25.0 50.0 25.0 32.0

Idefics3 8B 35.0 28.0 22.5 30.5 64.0 59.8 43.35

InternVL-3 8B 27.0 33.0 28.5 18.3 69.5 66.3 43.64

InternVL-3 38B 42.5 40.5 29.0 43.0 77.5 73.5 55.00

InternV-L3 78B 43.5 34.5 23.0 55.0 74.2 73.8 55.77
MiniCPM-V 2.6 35.5 32.5 24.0 23.5 47.0 41.0 34.65

Qwen2.5-VL 3B 24.0 29.0 21.1 19.3 60.3 53.8 37.50

Qwen2.5-VL 7B 36.0 35.0 26.0 21.0 65.0 63.2 49.25

Qwen2.5-VL 32B 42.5 34.0 22.5 42.25 68.5 69.25 50.94

Qwen2.5-VL 72B 45.0 39.5 24.0 40.8 69.5 73.3 52.33

SmolVLM2 2.2B 35.0 31.9 11.0 17.8 65.2 43.4 36.38

SmolVLM2 500M 29.5 36.0 27.5 34.5 51.8 37.8 37.53

Gemma 3 12B 31.0 32.0 24.0 22.3 57.5 29.95 34.10

Gemma 3 27B 16.50 22.50 16.00 25.00 57.2 47.3 34.3

LLaVA-1.5 7B 36.0 35.5 25.5 36.0 52.8 31.4 37.1

LLaVA-NeXT 7B 25.0 34.5 27.0 20.3 53.1 48.3 36.29

o1 (Undisclosed) 36.0 33.0 20.5 33.3 71.0 64.8 47.05

GPT-4o (Undisclosed) 36.0 32.0 20.0 32.8 72.5 66.5 47.48

Table 1: Performance of models across various spatial reasoning tasks. The Random baseline is in-
cluded for comparison. All scores are accuracy percentages. The best performance in each category
is highlighted in bold.

3.1 THE FRAGILITY OF SPATIAL INTELLIGENCE: FROM STATIC COMPETENCE TO DYNAMIC
COLLAPSE

At first glance, the models detailed in Table 3 demonstrate a solid grasp of basic spatial proper-
ties. On static tasks like Orientation and Relations, leading architectures such as InternVL-3 38B
achieve high accuracy (77.5% and 73.5%, respectively), suggesting they can adeptly identify and
relate objects in a fixed scene. This initial success, however, masks a profound underlying weakness.

This apparent competence is undermined when models must perform internal simulations of dy-
namic object transformations. On the Mental Rotation Test (MRT Hard), a task requiring com-
plex, multi-axis mental manipulation, performance plummets. The failure is not merely a gradual
decline but a catastrophic collapse: most models do not outperform the random baseline. Most
strikingly, even state-of-the-art models like GPT-4o score just 20%, performing significantly worse
than random chance (25%). This deficit likely stems from factors such as biases in training data
(lack of rotated/diagonal views, spurious correlations), pretraining focused on static descriptions
over internal simulations, and limitations in architecture for encoding continuous 3D priors. This
indicates that their success in static spatial tasks does not imply the capacity for simulating transfor-
mations; they have learnt to describe the world as it is, but cannot reliably reason about how it might
change Newman et al. (2024); Li et al. (2025).
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3.2 SCALING LAWS AND THE EMERGENCE OF ARTICULATED REASONING

A central question is whether this cognitive deficit can be overcome by simply increasing model
scale. Our findings affirm the powerful effect of scaling laws, which manifest not only in quantitative
accuracy but also in the qualitative nature of the models’ reasoning.

As we scale models from billions to tens of billions of parameters, a distinct shift in cognitive
style emerges. Smaller models, like InternVL3-8B, tend to produce terse, direct answers, offering
little insight into their decision-making process. Their larger counterparts, such as InternVL-78B,
behave fundamentally differently. They engage in articulated, step-by-step reasoning, verbalizing
their analysis of visual evidence and systematically evaluating options. This transition from opaque,
“black-box” intuition to a more transparent, deliberative process suggests that scaling does not just
improve accuracy—it unlocks more sophisticated and explicit reasoning pathways.

This qualitative evolution is mirrored by quantitative gains. Across the QwenVL2.5 and InternVL-3
families, models with tens of billions of parameters generally showcase much better performance
compared to smaller ones (for example, InternV-L3 78B scores 55.77% versus 43.64% for the 8B
variant). But scaling is not strictly monotonic: mid-size models sometimes beat larger ones (e.g.,
InternVL-3 38B outperforms 78B on the ‘MRT hard’ split), and we observe plateaus with little
or no gain for some jumps, as depicted in Fig. 3. Given that model size typically covaries with
various other elements, such as the training ensemble, objectives, data, and optimisation processes,
it is not safe to assert that these effects arise solely due to the number of parameters. A plausible set
of mechanisms that accompany scaling helps explain the qualitative shift. Larger parameter counts
increase representational capacity, enabling models to internalize multi-step algorithms or templates
for reasoning rather than relying on single-step heuristics. Larger models are also typically trained
with more compute over longer runs on much bigger and more diverse corpora, raising the chance
they encounter examples that demonstrate explicit, chain-of-thought–style analyses which they can
imitate. These correlations necessitate controlled ablation studies to determine causality. Crucially,
even the best and largest models still fail catastrophically on the hardest tasks, showing that scale
alone does not resolve the underlying gaps in their reasoning toolkit.
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InternVL3 8B

Qwen2.5 VL 72B

Qwen2.5 VL 32B

Qwen2.5 VL 7B
Qwen2.5 VL 3B

Gemma 3 27BGemma 3 12B

Model Family
InternVL3
Qwen2.5 VL
Gemma 3

Figure 3: Model accuracy as a function of parameter count. While a positive trend exists within
families, architectural differences create distinct performance tiers, highlighting that scale alone is
not a panacea for complex reasoning failures
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3.3 A GRANULAR DISSECTION OF FAILURE MODES

To understand the limits of scaling, we performed a granular analysis of common failure modes.
This investigation revealed a consistent Achilles’ heel across all models and scales: a fundamental
difficulty in processing diagonal and rotational transformations, particularly evident in the ‘MRT
hard’ and ‘Paper folding’ tasks.

3.3.1 STATIC PERCEPTION VS. DYNAMIC & DIAGONAL REASONING

The most straightforward tasks reveal a foundational bias. In Orientation tasks, every model is
more adept at identifying cardinal directions (e.g., “front”) than diagonal directions (e.g., “front
left”). This suggests an inbuilt preference for axis-aligned spatial judgments, a tendency that is
highly likely attributable to biases in the training data.

This perceptual weakness extends to the Relations task, where reasoning accuracy declines.
Through manual qualitative inspection of model responses, we observed that models reliably re-
solved queries involving static, unambiguous relationships (e.g., “The bus is to the left of the build-
ing”), yet their responses deteriorated noticeably for prompts involving agents performing actions
(e.g., “The man is holding the...”). These observations suggest that while models can parse a
static layout, they fail to build a robust model of interactions, a more complex and dynamic form of
reasoning.

3.3.2 THE FRAGILITY OF ABSTRACT SPATIAL TRANSFORMATION

Through qualitative analysis of model responses, we noticed that difficulties with dynamic opera-
tions become most apparent when models are required to mentally simulate transformations. In the
Paper Folding subset, outputs were consistently more reliable for simple axis-aligned folds than for
diagonal ones, and reasoning quickly broke down as additional folds were introduced. Responses of-
ten became inconsistent or contradictory when asked to track more than a couple of sequential folds,
suggesting that the cognitive load of maintaining an object’s state across transformations exceeds the
models’ effective reasoning capacity.

A similar pattern was visible in the more demanding MRT tasks. For example, the InternVL-38B
model seemed most stable on objects of medium complexity, but its answers deteriorated as the
number of polycubes increased.

Upon inspecting the model’s responses, it was clear that for medium-complexity shapes, the model
was able to correctly count the number of polycubes and their reasoning tended to be more stable.
However, in more complex shapes, the model often failed to identify how many polycubes each
shape was comprised of, leading to fabricated or inaccurate reasoning. This aligns with the im-
pression that model strategies can handle limited complexity but degrade in a roughly predictable
manner once that limit is crossed.

Collectively, these failures—from a bias against diagonals to an inability to track sequential
rotations—highlight that the path to robust, human-like reasoning will require not just greater scale,
but new architectural paradigms and new inductive biases designed to master the reasoning over
the complexities of dynamic object transformations. This conclusion is supported by performance
across task categories such as navigation and ‘MRT easy’. Importantly, in the most difficult ‘MRT
hard’ partition, models of the Qwen2.5-VL family exhibit sub-par performance, although the accu-
racy of the largest models shows a minor improvement. This suggests that while scaling generally
improves analytical reasoning for moderately complex problems, it does not guarantee enhanced
performance on tasks that may exceed the architectural limitations of the current models, where a
more explicit reasoning process may not confer an advantage and could even be detrimental.

4 RELATED WORK

4.1 SPATIAL REASONING IN VISION-LANGUAGE MODELS

Recent progress in VLMs has significantly advanced multimodal comprehension, though explicit
spatial reasoning still presents substantial challenges. Initially, VLMs were primarily tailored for
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overarching image understanding and captioning, frequently overlooking the intricate spatial rela-
tionships required for uses in robotics and augmented reality. As a countermeasure, various strate-
gies have emerged, integrating spatial supervision into training datasets and model frameworks.

One area of research endeavours to develop comprehensive synthetic datasets for spatial reasoning
on a large scale. For example, Chen et al. (2024a) utilizes an automated system to generate 3D
spatial Visual Question Answering datasets, producing millions of comprehensive question-answer
pairs from 2D images by constructing 3D scene graphs and applying metric depth estimation. This
technique enriches the training datasets with spatial labels, thereby enhancing the spatial reason-
ing capability of Vision-Language Models (VLMs) both qualitatively and quantitatively. Similarly,
Cheng et al. (2025) extends this approach by integrating region-level cues and relative depth in-
formation into the visual encoder. By incorporating a depth-to-language transformation module and
accommodating user-specified region proposals, the method demonstrates substantial improvements
in performance on spatial reasoning benchmarks—even in intricate 3D settings.

Recent studies delving into the underlying causes of these issues indicate that the challenge tran-
scends merely insufficient datasets. According to Zhang et al. (2025a), expanding the amount of
training data yields limited improvements, pointing to a fundamental structural bottleneck. Their
research emphasizes that spatial comprehension is heavily dependent on the positional encodings
within the visual encoder, while the language model plays a minor role in ultimate spatial assess-
ments. This highlights a critical limitation in how visual data is formatted and integrated into the
language module.

An alternative research thread delves into the internal workings of the model during the reasoning
process. From the viewpoint of mechanistic interpretability, Chen et al. (2025) identified that errors
in spatial tasks are highly associated with the misalignment of visual attention. Their findings indi-
cate that although image tokens constitute most of the input, they receive relatively minimal attention
(approximately 10%). Crucially, the model frequently neglects to concentrate on the pertinent ob-
jects or regions essential for producing a correct response. They propose a solution to be applied
during inference, which adaptively sharpens or smoothens attention based on a model’s confidence,
thereby substantially enhancing performance without the need for retraining.

These findings are complemented by initiatives such as that of Tang et al. (2024), which focus on
training VLMs in core 2D spatial tasks, enhancing skills such as direction interpretation, distance
estimation, and localization, thus improving spatial reasoning. This approach suggests basic spatial
skills lay the foundation for tackling complex challenges. Research into grounded and compositional
strategies, such as multimodal spatial grounding, further improves alignment between visuals and
language Rajabi & Kosecka (2024). However, models still fall short of human-level reasoning,
especially in dynamic environments, indicating a need for future exploration. Improving VLM
spatial reasoning requires not only effective data curation, but also critical architectural innovation.
Despite progress through techniques such as 3D annotations and depth features, achieving reliable
human-level understanding in real-world applications needs further effort.

4.2 SPATIAL REASONING IN HUMANS

Spatial reasoning is a multifaceted cognitive ability that enables individuals to perceive, manipulate,
and navigate space. Seminal work by Shepard & Metzler (1971) introduced the mental rotation
paradigm, laying the groundwork for subsequent studies that have refined our understanding of
spatial cognition. Researchers such as Hegarty & Waller (2004) and Newcombe & Huttenlocher
(2000) have differentiated between intrinsic skills (e.g., mental rotation and spatial visualization) and
extrinsic skills (e.g., navigation and perspective-taking), establishing frameworks that underscore the
link between early spatial abilities and later academic achievement in STEM domains (Wai et al.,
2009).

More recent intervention studies demonstrate that targeted spatial training can enhance children’s
mathematical performance (Uttal et al., 2013; Cheng & Mix, 2014). Interdisciplinary research has
applied computational and qualitative frameworks to model human spatial reasoning for applications
in areas such as human–robot interaction and geographic information systems (Moratz & Tenbrink,
2006; Montello, 1993). These combined efforts affirm that spatial reasoning is not only a train-
able and critical cognitive skill but also a pivotal foundation for solving real-world problems and
advancing STEM education.
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4.3 SPATIAL REASONING BENCHMARKING

Benchmarking spatial reasoning capabilities is critical for evaluating the effectiveness of VLMs
in real-world scenarios. Recent efforts have introduced dedicated benchmarks that focus on both
qualitative and quantitative aspects of spatial understanding. For example, Cheng et al. (2025) not
only improve model performance but also introduce a benchmark dataset comprising both qualitative
and quantitative spatial reasoning tasks derived from indoor, outdoor, and simulated environments.
This benchmark evaluates models on tasks such as determining relative positions (e.g., above, below,
left, right) and measuring metric distances (e.g., direct, horizontal, vertical distances).

Other benchmarking approaches, such as those incorporated in Tang et al. (2024), focus on isolat-
ing basic spatial capabilities (direction, distance, localization) and then composing these to solve
more complex spatial problems. Meanwhile, grounded spatial reasoning evaluations in multi-modal
settings assess a model’s ability to align visual evidence with textual spatial descriptions Rajabi &
Kosecka (2024). Although these benchmarks are instrumental in highlighting the current limita-
tions of VLMs and providing clear metrics for tracking progress, they fail to address the models’
significant deficiencies in dynamic spatial reasoning.

A complementary line of work focusses on how VLMs handle the inherent ambiguity in spatial
language, which arises from different Frames of Reference (FoR). Zhang et al. (2025c) introduced
the COMFORT evaluation protocol to systematically assess how VLMs resolve these ambiguities.
Using controlled 3D-rendered scenes, they test whether models can flexibly adopt different per-
spectives (e.g., the camera’s, an observer’s, or an object’s intrinsic view). Their findings reveal
that VLMs exhibit significant shortcomings: they show poor robustness, struggle to adopt alterna-
tive FoRs when prompted, and overwhelmingly default to English-centric conventions, even when
tested in other languages. This approach highlights the need to evaluate not just geometric accuracy,
but also the cognitive and cross-cultural dimensions of spatial reasoning.

Concurrent work Xu et al. (2025) used human-applied psychometric tests to investigate spatial think-
ing in VLMs, with similar results. Their results demonstrate that VLMs underperform relative to
humans on these tests, underscoring the need for further exploration of these models’ spatial capa-
bilities. Our approach diverges by incorporating real-world images alongside psychometric assess-
ments, which provide richer coverage and precise control over reasoning tasks.

Collectively, these benchmarking efforts underscore the need for systematic evaluation of spatial
reasoning. They provide a foundation for comparing diverse approaches and guiding future research
toward achieving robust, human-level spatial understanding in VLMs.

5 CONCLUSION

This paper studies spatial reasoning in VLMs—the ability to infer, predict, and manipulate geo-
metric relationships and transformations (rotation, translation, scaling, occlusion) from images—by
providing a clear definition, a robust benchmark with synthetic and real-world images, and an eval-
uation of 17 state-of-the-art VLMs. We find a stark gap: while most VLMs handle tasks that infer
information present in an image, their performance falls to near-random on tasks that require rea-
soning about transformations, revealing a major limitation with important practical consequences.
Our work takes a step toward addressing this gap; future research should analyze which cues models
use in natural images, introduce inductive biases that explicitly encode transformations, and de-
sign architectures or modules for object-centric representation and manipulation of transformations.
Continued study of how spatial components interact and how other visual cues support reasoning
will be crucial to achieving more human-like spatial reasoning in AI systems.
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This appendix provides supplementary materials and detailed examples that support the main paper’s
findings. Section A offers a curated look at specific instances where leading models failed, revealing
critical gaps in their spatial reasoning capabilities.

A ILLUSTRATIVE EXAMPLES OF REASONING FAILURES

These case studies are not mere errors; they are windows into the systematic shortcomings of current
models, providing tangible evidence for the key phenomena discussed in our paper. Each example
includes the model, the task, the question, the model’s (often incorrect) reasoning, the correct an-
swer, and a brief analysis of the failure.

A.1 THE PERCEPTUAL-ABSTRACTIVE GAP

This gap appears when a model can correctly identify individual objects and their properties but fails
to synthesize them into a coherent, abstract understanding of the scene. It sees the trees but misses
the forest.

A.1.1 FAILURE ON DIAGONAL VS. CARDINAL ORIENTATIONS

Models show a distinct weakness in identifying diagonal orientations compared to simpler cardinal
directions, pointing to a foundational bias for axis-aligned reasoning.

Example 1: Diagonal Orientation Failure

• Model: Gemma-3 27B-it
• Task: Orientation
• Question: Is the toy truck facing ’back left’ from the camera’s perspective? Answer

with ’yes’ or ’no’ only.
• Model’s Prediction: YES
• Correct Answer: NO

Model’s Reasoning:

The camera is positioned to the side of the truck, and slightly
towards the front. The front of the truck (white cabin) is on
the left side of the image, and the back (green tank) is on

13

https://openreview.net/forum?id=84pDoCD4lH


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

the right side of the image. Therefore, the truck is facing
towards the back and left from the camera’s perspective.

Analysis: This is a classic failure of synthesis. The model correctly identifies the perceptual
ingredients (’back’ and ’left’) but cannot combine them into the correct abstract recipe (the
diagonal orientation ’back-left’). It treats the components as a simple checklist rather than an
integrated spatial concept.

A.1.2 FAILURE ON DYNAMIC ACTION-BASED RELATIONS

Models that succeed at identifying static relationships between objects often fail when the relation-
ship is defined by a dynamic action performed by an agent.

Example 2: Action-Based Relation Failure

• Model: InternVL-3 8B
• Task: Relations
• Question: Is the person using the tool to hold the food on the left or the right side of

the image?
• Model’s Prediction: RIGHT
• Correct Answer: LEFT

Model’s Reasoning:

The image shows a person holding a piece of food with a tool.
The food is located on the right side of the image.

Analysis: The model sees a static scene of objects—person, tool, food—but fails to comprehend
the action (‘using the tool to hold‘) that connects them. It correctly identifies the location of the
food but completely misses the context of the question. It answers ”where is the food?” instead
of ”where is the *act of holding* happening?”, highlighting a critical gap in reasoning about
dynamic events.

A.2 THE FRAGILITY OF ABSTRACT SPATIAL TRANSFORMATION

This category of failure occurs when models are tasked with mentally simulating changes to an
object’s state, such as folding or rotating it. Their ability to perform these ”mental gymnastics” is
surprisingly brittle.

A.2.1 EXPONENTIAL FAILURE IN SEQUENTIAL TRANSFORMATION (PAPER FOLDING)

The most dramatic failures occur when models must track an object’s state through multiple sequen-
tial transformations. Performance collapses exponentially with each additional fold.

Example 3: 3-Fold Paper Folding Failure

• Model: InternVL-3 78B (Top Performer)
• Task: Paper Folding
• Question: A piece of paper is folded three times, and one hole is punched. Which

option shows the unfolded paper?
• Model’s Prediction: D
• Correct Answer: B

Model’s Reasoning:
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After the first fold, there are 2 layers. After the second fold,
there are 4 layers. After the third fold, there are 8 layers.
A hole is punched through all 8 layers. When unfolded, there
will be 8 holes. Option D shows 8 holes.

Analysis: This reasoning is a textbook case of the Perceptual-Abstractive Gap applied to trans-
formation. The model demonstrates a shallow, quantitative success (correctly calculating
23 = 8 holes) while utterly failing the core qualitative, spatial task of predicting the holes’
symmetrical pattern. It found an answer with the right *number* of holes but in the completely
wrong *configuration*, revealing that its ’reasoning’ was a brittle shortcut, not a true mental
simulation of unfolding the paper.

A.2.2 THE COGNITIVE ”SWEET SPOT” IN MENTAL ROTATION

The top-performing model’s accuracy on MRT tasks does not scale linearly with object complexity.
It fails on overly simple shapes and overly complex ones, performing best on objects of medium
complexity.

Example 4a: Failure on a Simple Shape

• Model: InternVL-3 78B
• Task: MRT Hard
• Question: (Image with a simple 5-cube shape)
• Model’s Prediction: A
• Correct Answer: D

Model’s Reasoning:

The original shape is composed of five red cubes. By rotating
the original shape 90 degrees to the right around the vertical
axis, it matches the configuration of Option A.

Analysis: The model’s failure on a simple shape is revealing. It suggests that without sufficient
complexity to anchor its analysis, the model resorts to flimsy heuristics that lead to error. It is
akin to overthinking a simple problem and making a careless mistake because its more powerful,
systematic reasoning pathways were not fully engaged.

Example 4b: Success on a Medium-Complexity Shape

• Model: InternVL-3 78B
• Task: MRT Hard
• Question: (Image with a more complex 7-cube shape)
• Model’s Prediction: B
• Correct Answer: B

Model’s Reasoning:

The original shape is an assembly of seven cubes. Let’s trace
the key features. There is a central column of three cubes and
two arms protruding. By performing a 180-degree rotation around
the horizontal axis, the shape aligns perfectly with Option B.

Analysis: Here, with a moderately complex object, the model hits its stride. Its reasoning be-
comes more descriptive and structural (”central column,” ”two arms”), indicating a deeper level
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of engagement. It successfully simulates the rotation because the problem is complex enough
to demand genuine spatial processing but not so complex as to overwhelm it. This success,
contrasted with the failure on the simpler shape, perfectly illustrates the non-linear ”sweet spot”
for its performance.

B USE OF LARGE LANGUAGE MODELS

In the preparation of this paper, Large Language Models (LLMs) were utilized to refine the text,
improving clarity, grammatical precision, and stylistic flow without altering the substantive ideas or
original authorship. This AI-assisted process enabled a more polished presentation of the research
while maintaining academic integrity.
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