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ABSTRACT

Vision-Language Models (VLMs) have captivated the research community by ef-
fectively merging visual and textual information, implying a holistic comprehen-
sion of the environment. These models find applications in tasks such as Image
Captioning and Visual Question Answering, fostering the assumption that they
perceive reality in a way similar to human cognition. However, this apparent
understanding may be misleading. We argue that a critical component of compre-
hension—spatial reasoning—has been insufficiently addressed, as current bench-
marks often conflate visual recognition with spatial reasoning, or focus on static
properties rather than the dynamic simulation required for genuine spatial logic.
In this study, we aim to address this limitation through a targeted diagnostic ap-
proach. Drawing from the fundamental elements of human cognition, we devel-
oped a curated evaluation suite designed to isolate the essential components of
spatial reasoning: relational understanding, orientation, mental rotation, and visu-
alization. We evaluated 17 state-of-the-art VLMs across a strictly controlled set
of 1800 samples, split between synthetic settings and real-world images. Results
indicate a substantial gap in performance: the apparent competence of these mod-
els decreases significantly under spatial reasoning tasks that require any dynamic
transformation and manipulation of spatial information. On average, their perfor-
mance parallels random guessing, which highlights a major systematic weakness
in spatial reasoning in current VLMs. In addition to providing evidence for this
limitation, this study provides the research community with a foundational diag-
nostic framework for probing model capabilities regarding spatial properties in
their environment.

1 INTRODUCTION

Vision-Language Models (VLMs) have demonstrated impressive proficiency across a broad spec-
trum of multimodal tasks, such as Image Captioning, Visual Question Answering, and text-image
retrieval (Liu et al., 2023; Dubey et al., 2024; Radford et al., 2021). Leveraging extensive datasets,
these models effectively map intricate interactions between visual and textual data. However, one
crucial facet of intelligence remains notably deficient: spatial reasoning. This essential skill entails
understanding object locations, orientations, and their interrelations within a scene—a capability that
is instinctive to humans but poses a substantial challenge for modern deep learning models (Zhang
et al., 2025; Shiri et al., 2024; Chen et al., 2024a; Cheng et al., 2024).

Spatial reasoning is not a niche skill; it is fundamental to cognition. Developing in humans between
the ages of two and eleven Hodgkiss et al. (2021), it underpins our ability to navigate and interact
with complex environments (Johnson, 1987; Newcombe & Huttenlocher, 2000). Bridging this gap
in AI is crucial for moving beyond static pattern recognition toward a human-like understanding
of the physical world, a prerequisite for applications in robotics and autonomous navigation where
agents must adapt to dynamic spaces (Venkatesh et al., 2021).

Despite the breadth of existing benchmarks, a critical diagnostic gap remains: the distinction be-
tween static spatial perception and dynamic spatial simulation. Although frameworks like SAT Ray
et al. (2024) and MindCube Yin et al. evaluate spatial reasoning, they often conflate a model’s ability
to describe a fixed scene with its ability to mentally manipulate it. Similarly, VSI-Bench Yang et al.
(2025) identifies a “reasoning bottleneck” in video, but its focus on complex indoor scenes makes
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Which candidate option is 
the rotated version of the 

Original Shape ?

Is the woman on the left 
from camera's perspective? Yes

Option B

Figure 1: The Static-Dynamic Dissociation. Models frequently struggle to identify legitimate ro-
tations, exposing deficiencies in tasks requiring dynamic internal simulation. However, they exhibit
competence in discerning spatial relations present within static images.

it difficult to isolate whether failures stem from visual noise or a lack of cognitive machinery. Cur-
rent evaluations fail to explain why models struggle: Is it a failure to parse the scene (Perception),
or a failure to run the internal physics engine required to predict change (Simulation)? Without
separating these modalities, the community risks overestimating VSI capabilities based on high per-
formance in static recognition tasks.

To address this, we introduce SRBench, a cognitive psychology-based diagnostic suite designed to
disentangle these capabilities. Unlike large-scale generalist benchmarks, our framework prioritises
the isolation of reasoning variables. We adapt the gold-standard human cognitive tests—specifically
the Mental Rotation Test (MRT) and the Paper Folding Test—to systematically assess models across
four distinct pillars: (1) mental rotation, (2) spatial visualisation, (3) relational understanding and
(4) egocentric navigation.

Table 1: Comparison of Related Spatial Reasoning Benchmarks. Unlike prior works which focus
on video or synthetic environments, SRBench adapts psychometric standards to systematically dis-
entangle static perception from dynamic simulation.
Benchmark Domain Key Focus Key Limitation/Insight
MindCube Yin et al. Multiview Mental simulation & “Map-then-reason” Scaffolding maps improves reasoning.
SAT Ray et al. (2024) Synthetic (ProcTHOR) Procedural data (175k pairs) Evaluation limited to LLaVA variants.
VSI-Bench Yang et al. (2025) Video (Indoor) Visual-spatial intelligence bottleneck Models form fragmented local world models.
OmniSpatial Jia et al. (2025) Video & Image Cognitive taxonomy (Psychology) Covers outdoor dynamic scenes.
STARE Li et al. (2025b) 3D Tasks Multi-step visual simulation Near-random performance on complex 3D tasks.
11Plus Li et al. (2025a) Aptitude Tests Human vs. Model cognitive profiles Compares human response time to model effort.

SRBench (Ours) Psychometric (Image) Disentangling Perception vs. Simulation Static-Dynamic dissociation across 17 models.

Our evaluation of 17 state-of-the-art VLMs reveals a fundamental fracture in current capabilities. We
observe a Static-Dynamic Dissociation: while models exhibit strong performance on static tasks
(e.g., Orientation, Spatial Relations), they suffer a catastrophic collapse on tasks requiring dynamic
simulation. As illustrated in Figure 1, on mental rotation tasks, nearly all models—including GPT-
4o—perform at or below random chance. This indicates that current models operate as surface-level
observers rather than world simulators; they can describe what is, but cannot imagine how it changes.

In summary, our contributions are as follows:

• Psychometric Grounding for VLMs: We introduce SRBench, a curated suite of 1,800
examples stratified across four cognitive pillars. By adapting established psychometric
paradigms (MRT, Paper Folding), we provide a rigorous testbed that isolates specific cog-
nitive primitives rather than confounding them with visual noise.

• The “Static-Dynamic” Dissociation: We empirically demonstrate that modern VLMs
possess a sharp divide between static perception and dynamic reasoning. While capable
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of parsing spatial relations in fixed images, they fail to run the internal simulations required
for mental manipulation.

• Limits of Scaling on Simulation: Through an extensive evaluation of 17 models (includ-
ing GPT-4o, o1, and the InternVL-3/Qwen2.5 families), we show that scaling parameters
improves articulated reasoning and static perception but yields diminishing returns on dy-
namic simulation. We argue that without specific architectural inductive biases for 3D
continuity, even the largest models struggle to “imagine” object transformations reliably.

2 CONSTRUCTING THE BENCHMARK AND EXPERIMENTAL SETUP

Human spatial reasoning emerges from the intricate interplay of several cognitive abilities that al-
low us to navigate, manipulate, and understand our three-dimensional world (Hegarty, 2010; Darken
et al., 1999; Wang & Spelke, 2002). Unlike previous benchmarks that evaluate isolated aspects of
spatial cognition Ma et al. (2024); Kamath et al. (2023), our comprehensive evaluation framework
systematically assesses Vision-Language Models across the fundamental interconnected pillars of
human spatial reasoning: mental rotation, spatial visualization, relational understanding, and ego-
centric navigation.

2.1 MENTAL ROTATION

We begin by evaluating a model’s capability for mental rotation—the ability to mentally transform
three-dimensional objects in space. Drawing from the seminal Mental Rotation Test (MRT) (Cooper,
1975), which has served as the gold standard for measuring this cognitive ability in humans for
decades, we adapt this classical paradigm to modern VLMs.

The original MRT presents participants with pairs of 3D objects or letters, rotated along various
axes, challenging them to distinguish between identical shapes and their mirror images (Shepard &
Metzler, 1971). Human performance is typically assessed through both accuracy and response time
at rotation angles of 0°, 60°, 120°, and 180° (F Caissie et al., 2009).

Our digital adaptation follows this established protocol while accommodating the unique charac-
teristics of VLMs. We manually craft five distinct polycube shapes and construct test images that
feature the target shape in the top row, accompanied by four candidate shapes below. Among these
candidates, exactly one represents the original shape rotated by 0°, 60°, 90°, or 120°; the remaining
three consist of two mirrored versions at different rotations and one randomly selected unrelated
shape.

To systematically vary the difficulty of the task, we develop two complementary variants. The
MRT-Hard subset presents white shapes against blank backgrounds, offering minimal visual cues
and posing a significant challenge to the model’s internal spatial representations. Recognising that
this austere presentation might limit model performance, we create the MRT-Easy subset, which
incorporates coloured shapes positioned within a 3D Cartesian grid background and reduces the
choice set to three candidates by removing one mirrored candidate. Each subset consists of 200
carefully designed test cases, as illustrated in Figure 2 (a and b).

2.2 SPATIAL VISUALIZATION

Beyond object rotation, spatial reasoning demands the ability to mentally simulate complex geo-
metric transformations. We assess this through an adaptation of the Paper Folding Test (Ekstrom
& Harman, 1976; McGee, 1979)—a psychometric instrument whose performance is strongly cor-
related with success in spatially demanding fields such as engineering and architecture (Carroll,
1993).

Each instance presents a temporal sequence of transformations: a paper square undergoes one or
two folds (vertical, horizontal, or diagonal), followed by punching one to three holes through the
folded configuration. The model must then predict the resulting hole pattern when the paper is
unfolded, selecting from three plausible alternatives. This task directly probes the model’s capacity
to internalise sequential geometric operations and mentally simulate their cumulative effects—a
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(a) Mental Rotation (Easy)

(b) Mental Rotation (Hard)

(c) Paper Folding

(d) Relations

(e) Orientation (f) Navigation

Figure 2: Representative image examples from SRBench spatial reasoning tasks. (a-b) Mental ro-
tation tasks with hard and easy difficulty levels. (c) Paper folding visualization task. (d) Spatial
navigation with route planning. (e) Spatial orientation and perspective-taking. (f) Spatial relations
between geometric elements. Each panel demonstrates the visual complexity and cognitive de-
mands of the respective spatial reasoning category in the benchmark dataset. More details can be
found in Appendix B

cornerstone of spatial visualisation ability. The subset comprised 200 test cases, illustrated in Fig. 2
(c) as examples.

2.3 SPATIAL RELATIONS

Understanding the relative positioning and interactions between objects is the foundation of scene
comprehension. We evaluate this critical capability using a curated sample from the Spatial-Obj
dataset (Shiri et al., 2024), a rigorously constructed benchmark that contains 2,000 multiple choice
queries regarding spatial relationships in natural images.

The authors generated this dataset employing an in-depth dual-stage annotation procedure, thor-
oughly encompassing 36 essential spatial relationships. These range from elementary positional
notions such as ‘right of’ and ‘above’, to intricate geometric interactions including ‘attached to,’
‘touch’, and ‘overlapping’. The queries encompass diverse visual challenges including the iden-
tification of the precise location of the object, discrimination in orientation, and contextual spatial
reasoning, providing a robust assessment of how well VLMs comprehend relational spatial language
in realistic visual scenarios. This subset contains 400 test cases, with examples shown in Fig. 2 (d).

2.4 ORIENTATION AND NAVIGATION

Finally, we examine spatial reasoning within the critical domains of navigation and egocentric per-
spective taking, abilities essential for real-world spatial intelligence.

For navigation assessment, we employ the Maze-Nav component of SpatialEval (Wang et al., 2024),
which challenges models to reason about paths through visual mazes represented by colored block
configurations. Tasks include identifying routes from start (S) to exit (E) points, counting directional
changes, and describing spatial relationships between key locations. While trivial for human spatial
cognition, these challenges reveal significant limitations in current VLMs’ navigational reasoning
capabilities.
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Complementing navigation assessment, we evaluate orientation understanding using 400 binary
questions from EgoOrientBench (Jung et al., 2024). This benchmark addresses critical inconsis-
tencies in spatial orientation evaluation by establishing a unified, camera-centric perspective frame-
work. Through an eight-class egocentric taxonomy (Left, Right, Front-Left, Back-Right, etc.), it
provides consistent object orientation definitions relative to the observer’s viewpoint. This egocen-
tric approach not only enhances evaluation reliability but also aligns with the increasing need for
VLMs to operate effectively in user-centered, real-world applications, such as robotics, where spa-
tial understanding must be grounded in human perspective. Each of this subsets contain 400 test
cases, with examples shown in Fig. 2 (e and f).

2.5 SETUP

Our experiments were conducted with PyTorch (Paszke et al., 2019) and Hugging Face Transform-
ers (Wolf et al., 2020). We evaluated the spatial reasoning capabilities of 17 VLMs, which include
open-source and commercial models. Specifically, from the commercial side, we included evalua-
tions of OpenAI’s GPT-4o and o1 (Achiam et al., 2023; Jaech et al., 2024). The open source model
set consists of: QwenVL2.5 in sizes 3B, 7B, 32B, and 78B (Bai et al., 2025); Llava 1.5 7B (Liu et al.,
2024); LlavaNext 7B (Li et al., 2024); Idefics3 8B (Laurençon et al., 2024) and SmolVLM2 at 500M
and 2.2B (Marafioti et al., 2025). Additionally, MiniCPM-V-2.6 8B (Yao et al., 2024); InternVL-3
models at 8B, 38B, and 78B (Chen et al., 2024b) and Gemma3 at 12B, and 28B. All models are
instruction tuned and the experiments were conducted using greedy decoding (Germann, 2003) and
Chain-of-Thought (Wei et al., 2022) prompting. For OpenAI’s models, we used the Azure OpenAI
API service, while for the open-source models, inference was performed using 2 × H200 140GB
NVIDIA GPUs.

3 RESULTS

Our investigation into the spatial reasoning of contemporary VLMs reveals a compelling, two-part
narrative. On one hand, models exhibit a promising, emergent ability to parse static visual scenes.
On the other, this competence proves remarkably brittle, collapsing entirely when confronted with
tasks that require dynamic mental manipulation. This core tension, explored below, points to a
fundamental gap between superficial pattern recognition and robust spatial cognition.

3.1 EMPIRICAL COHERENCE OF THE BENCHMARK TASKS

To justify integrating these diverse spatial tasks under a single benchmark, we computed pairwise
correlation coefficients across task performances (aggregated from model outputs and behavioural
data) and performed hierarchical clustering (using Ward’s linkage) to reveal shared latent factors.
This empirical analysis builds on the theoretical foundations detailed in the task construction above,
grounded in established cognitive paradigms.

As shown in Figure 3, tasks cluster into meaningful subgroups: MRT Easy and Hard (r=0.73) re-
flect rotation centred on objects; Orientation and Relations (r=0.87) capture egocentric perspectives;
and Paper Folding and Navigation (r=0.74) involve sequential transformations. Moderate cross-
cluster correlations (e.g. 0.59 between Orientation and Paper Folding) support their aggregation as
components of a unified spatial cognition construct, while low/negative ones (e.g. -0.11 between
MRT Hard and Orientation) highlight diagnostic distinctions. This empirical structure demonstrates
that the tasks are not an arbitrary collection but capture overlapping cognitive processes, with two
major branches: small-scale object manipulation (MRT-dominant) versus large-scale environmental
processing (Orientation/Relations/Paper Folding/Navigation).

3.2 THE FRAGILITY OF SPATIAL INTELLIGENCE: FROM STATIC COMPETENCE TO DYNAMIC
COLLAPSE

At first glance, the models detailed in Table 2 demonstrate a solid grasp of basic spatial proper-
ties. On static tasks like Orientation and Relations, leading architectures such as InternVL-3 38B
achieve high accuracy (77.5% and 73.5%, respectively), suggesting they can adeptly identify and
relate objects in a fixed scene This initial success, however, masks a profound underlying weak-
ness. This apparent competence is undermined when models must perform internal simulations of
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Model Paper Folding MRT Easy MRT Hard Navigation Orientation Relations Overall

Open-Source Models

Random 33.0 33.0 25.0 25.0 50.0 25.0 32.0

Idefics3 8B 35.0 28.0 22.5 30.5 64.0 59.8 43.35

InternVL-3 8B 27.0 33.0 28.5 18.3 69.5 66.3 43.64
InternVL-3 38B 42.5 40.5 29.0 43.0 77.5 73.5 55.00
InternVL-3 78B 43.5 34.5 23.0 55.0 74.2 73.8 55.77

MiniCPM-V 2.6 35.5 32.5 24.0 23.5 47.0 41.0 34.65

Qwen2.5-VL 3B 24.0 29.0 21.1 19.3 60.3 53.8 37.50
Qwen2.5-VL 7B 36.0 35.0 26.0 21.0 65.0 63.2 49.25
Qwen2.5-VL 32B 42.5 34.0 22.5 42.25 68.5 69.25 50.94
Qwen2.5-VL 72B 45.0 39.5 24.0 40.8 69.5 73.3 52.33

SmolVLM2 500M 29.5 36.0 27.5 34.5 51.8 37.8 37.53
SmolVLM2 2.2B 35.0 31.9 11.0 17.8 65.2 43.4 36.38
Gemma 3 12B 31.0 32.0 24.0 22.3 57.5 29.95 34.10
Gemma 3 27B 16.50 22.50 16.00 25.00 57.2 47.3 34.3
LLaVA-1.5 7B 36.0 35.5 25.5 36.0 52.8 31.4 37.1
LLaVA-NeXT 7B 25.0 34.5 27.0 20.3 53.1 48.3 36.29

Proprietary Models

o1 (Undisclosed) 36.0 33.0 20.5 33.3 71.0 64.8 47.05
GPT-4o (Undisclosed) 36.0 32.0 20.0 32.8 72.5 66.5 47.48

Table 2: Performance of models across various spatial reasoning tasks. Models are grouped into
open-source and proprietary categories. All scores are accuracy percentages. The best performance
in each category is highlighted in bold.

MRT Easy MRT Hard Orientation Relations Paper Folding Navigation

MRT Easy

MRT Hard

Orientation

Relations

Paper Folding

Navigation

1.00 0.73 0.17 0.30 0.58 0.55

0.73 1.00 -0.11 0.02 0.07 0.13

0.17 -0.11 1.00 0.87 0.59 0.36

0.30 0.02 0.87 1.00 0.62 0.48

0.58 0.07 0.59 0.62 1.00 0.74

0.55 0.13 0.36 0.48 0.74 1.00

1.0

0.5

0.0

0.5

1.0

Figure 3: Hierarchical clustering of spatial tasks based on pairwise correlation coefficients, revealing
subgroups of related cognitive processes (e.g., mental rotation vs. relational/scene-based reasoning).
Correlations range from -1.0 (orange) to 1.0 (purple).

dynamic object transformations. On the Mental Rotation Test (MRT Hard), a task requiring com-
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plex, multi-axis mental manipulation, performance plummets. The failure is not merely a gradual
decline, but a catastrophic collapse: most models do not outperform the random baseline. Most
strikingly, even state-of-the-art models like GPT-4o score just 20%, performing significantly worse
than random chance (25%). Although mental rotation demands cognitive effort, the average adult
accuracy in standard MRT tasks is typically well above 70% (Vandenberg & Kuse, 1978)—far ex-
ceeding the random baseline. This deficit likely stems from factors such as biases in training data
(lack of rotated/diagonal views, spurious correlations), pretraining focused on static descriptions
over internal simulations, and limitations in architecture for encoding continuous 3D priors. This
indicates that their success in static spatial tasks does not imply the capacity to simulating transfor-
mations; they have learnt to describe the world as it is, but cannot reliably reason about how it might
change Newman et al. (2024); Li et al. (2025c).

3.3 SCALING LAWS AND THE EMERGENCE OF ARTICULATED REASONING

As we scale models from billions to tens of billions of parameters, a distinct shift in the cogni-
tive style emerges. Smaller models, such as InternVL3-8B, tend to produce concise and direct
answers, offering little insight into their decision-making process. Their larger counterparts, such
as InternVL-78B, behave fundamentally differently. They engage in articulated step-by-step rea-
soning, verbalising their analysis of visual evidence, and systematically evaluating options. This
transition from opaque, “black-box” intuition to a more transparent, deliberative process suggests
that scaling does not just improve accuracy—it unlocks more sophisticated and explicit reasoning
pathways.

This qualitative evolution is mirrored by quantitative gains. Across the QwenVL2.5 and InternVL-
3 families, models with tens of billions of parameters generally show much better performance
compared to smaller ones (for example, InternV-L3 78B scores 55.77% versus 43.64% for the 8B
variant). But scaling is not strictly monotonic: mid-size models sometimes beat larger ones (e.g.,
InternVL-3 38B outperforms 78B on the ‘MRT hard’ split), and we observe plateaus with little
or no gain for some jumps, as depicted in Fig. 4. Given that model size typically covaries with
various other elements, such as the training ensemble, objectives, data, and optimisation processes,
it is not safe to assert that these effects arise solely due to the number of parameters. A plausible set
of mechanisms that accompany scaling helps explain the qualitative shift. Larger parameter counts
increase representational capacity, enabling models to internalize multi-step algorithms or templates
for reasoning rather than relying on single-step heuristics. Larger models are also typically trained
with more compute over longer runs on much bigger and more diverse corpora, raising the chance
they encounter examples that demonstrate explicit, chain-of-thought–style analyses which they can
imitate. These correlations necessitate controlled ablation studies to determine causality. Crucially,
even the best and largest models still fail catastrophically on the hardest tasks, showing that scale
alone does not resolve the underlying gaps in their reasoning toolkit.
3.4 A GRANULAR DISSECTION OF FAILURE MODES

To understand the limits of scaling, we performed a granular analysis of common failure modes.
This investigation revealed a consistent Achilles’ heel across all models and scales: a fundamental
difficulty in processing diagonal and rotational transformations, particularly evident in the ‘MRT
hard’ and ‘Paper folding’ tasks.

3.4.1 STATIC PERCEPTION VS. DYNAMIC & DIAGONAL REASONING

The most straightforward tasks reveal a foundational bias. In Orientation tasks, every model is
more adept at identifying cardinal directions (e.g., “front”) than diagonal directions (e.g., “front
left”). This suggests an inbuilt preference for axis-aligned spatial judgments, a tendency that is
highly likely attributable to biases in the training data.

This perceptual weakness extends to the Relations task, where reasoning accuracy declines.
Through manual qualitative inspection of model responses, we observed that models reliably re-
solved queries involving static, unambiguous relationships (e.g., “The bus is to the left of the build-
ing”), yet their responses deteriorated noticeably for prompts involving agents performing actions
(e.g., “The man is holding the...”). These observations suggest that while models can parse a
static layout, they fail to build a robust model of interactions, a more complex and dynamic form of
reasoning.
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Figure 4: Model accuracy as a function of parameter count. While a positive trend exists within
families, architectural differences create distinct performance tiers, highlighting that scale alone is
not a panacea for complex reasoning failures

3.4.2 THE FRAGILITY OF ABSTRACT SPATIAL TRANSFORMATION

Qualitative analysis of model responses shows that difficulties with dynamic operations are most
evident when models must mentally simulate transformations. In the Paper Folding subset, outputs
were more reliable for simple axis-aligned folds than for diagonal ones, and reasoning quickly de-
graded as additional folds were introduced. When asked to track more than a few sequential folds,
responses often became inconsistent or contradictory, suggesting that maintaining an object’s state
across transformations exceeds the models’ effective reasoning capacity. A similar pattern appeared
in the more demanding MRT tasks. For instance, the InternVL-38B model was most stable on
medium-complexity objects, but its answers deteriorated as the number of polycubes increased. For
medium-complexity shapes, the model generally counted polycubes correctly and reasoned more
consistently; for more complex shapes, it often miscounted polycubes, leading to fabricated or in-
accurate reasoning. This supports the view that model strategies handle only limited complexity
and degrade predictably once that limit is crossed. These failures—from a bias against diagonals
to difficulty tracking sequential rotations—indicate that achieving robust, human-like reasoning will
require not just larger models, but new architectures and inductive biases tailored to dynamic ob-
ject transformations. This conclusion is reinforced by performance on tasks such as navigation and
‘MRT easy’. In the most difficult ‘MRT hard’ partition, Qwen2.5-VL models perform poorly, with
only minor gains for the largest variants. Thus, while scaling generally improves analytical reason-
ing for moderately complex problems, it does not ensure better performance on tasks that exceed
current architectural limits, where more explicit reasoning may offer little benefit and can even be
detrimental.

4 RELATED WORK

Recent advances in Multimodal Large Language Models (MLLMs) have shifted focus from sim-
ple visual recognition to complex spatial reasoning. This section reviews concurrent benchmarks
and frameworks that evaluate the ability of models to construct mental models, perform dynamic
reasoning, and align with human cognitive processes.
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4.1 3D SPATIAL REASONING AND MENTAL SIMULATION

Several works focus on the ability of models to internalise 3D spaces from limited observations.
MindCube (Yin et al.) evaluates the ability of VLMs to construct spatial mental models through
multiview observations. It employs questions that span three patterns of camera movement: ro-
tation, around, and among to test the reasoning about occluded spaces. A critical finding from
MindCube is the efficacy of the “map-then-reason” approach, where scaffolding VLMs to first gen-
erate explicit 2D cognitive maps prior to reasoning significantly outperforms passive map injection
or view interpolation.

The concurrent work of STARE (Li et al., 2025b) highlights the fragility of current models in this
domain. Their analysis reveals that while models perform well on simple 2D transformations, they
struggle significantly with multi-step visual simulations in 3D tasks, often achieving near-random
performance.

To address data scarcity in this domain, SAT Ray et al. (2024) introduces a procedural framework
that uses the ProcTHOR simulator. SAT generates 175k synthetic QA pairs covering both static
relationships and motion-based reasoning tasks (e.g., egocentric movement, object motion, and per-
spective shifts). However, it should be noted that the current evaluation of SAT is restricted to two
LLaVA variants, leaving its impact on a wider range of architectures less explored.

4.2 VIDEO-BASED AND DYNAMIC SPATIAL INTELLIGENCE

Moving beyond static imagery, recent benchmarks have begun to probe spatial intelligence in video.
VSI-Bench Yang et al. (2025) represents a comprehensive effort in this space, evaluating MLLMs on
more than 5,000 questions in 288 indoor videos. Their analysis identifies spatial reasoning—rather
than visual perception or linguistic ability—as the primary bottleneck. Crucially, VSI-Bench finds
that models tend to form fragmented local world models rather than unified global cognitive maps.
However, VSI-Bench is limited to static indoor scenes with restricted camera motion.

Addressing these environmental limitations, OmniSpatial Jia et al. (2025) introduces a taxonomy
grounded in cognitive psychology, categorising tasks into dynamic reasoning, complex spatial logic,
spatial interaction, and perspective-taking. Unlike VSI-Bench, OmniSpatial evaluates models on
both video and images and explicitly extends the domain to include dynamic outdoor environments.

4.3 COGNITIVE ALIGNMENT AND APTITUDE TESTING

Finally, researchers are exploring how model reasoning processes align with human cognition. The
11Plus-Bench Li et al. (2025a) uses realistic 11+ aptitude tests to measure “cognitive profiles.” By
annotating instances with perceptual complexity and reasoning steps, this benchmark moves beyond
coarse task-wise accuracy. Uniquely, it compares human response times directly against model
token-level effort, allowing a granular analysis of the computational cost of reasoning relative to
human cognitive load.

5 CONCLUSION

This paper studies spatial reasoning in VLMs—the ability to infer, predict, and manipulate geo-
metric relationships and transformations (rotation, translation, scaling, occlusion) from images—by
providing a clear definition, a robust benchmark with synthetic and real-world images, and an eval-
uation of 17 state-of-the-art VLMs. We find a stark gap: while most VLMs handle tasks that infer
information present in an image, their performance falls to near-random on tasks that require rea-
soning about transformations, revealing a major limitation with important practical consequences.
Our work takes a step toward addressing this gap; future research should analyze which cues models
use in natural images, introduce inductive biases that explicitly encode transformations, and de-
sign architectures or modules for object-centric representation and manipulation of transformations.
Continued study of how spatial components interact and how other visual cues support reasoning
will be crucial to achieving more human-like spatial reasoning in AI models.
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This appendix provides supplementary materials and detailed examples that support the main paper’s
findings. Section A offers a curated look at specific instances where leading models failed, revealing
critical gaps in their spatial reasoning capabilities.

A ILLUSTRATIVE EXAMPLES OF REASONING FAILURES

These case studies are not mere errors; they are windows into the systematic shortcomings of current
models, providing tangible evidence for the key phenomena discussed in our paper. Each example
includes the model, the task, the question, the model’s (often incorrect) reasoning, the correct an-
swer, and a brief analysis of the failure.
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A.1 THE PERCEPTUAL-ABSTRACTIVE GAP

This gap appears when a model can correctly identify individual objects and their properties but fails
to synthesize them into a coherent, abstract understanding of the scene. It sees the trees but misses
the forest.

A.1.1 FAILURE ON DIAGONAL VS. CARDINAL ORIENTATIONS

Models show a distinct weakness in identifying diagonal orientations compared to simpler cardinal
directions, pointing to a foundational bias for axis-aligned reasoning.

Example 1: Diagonal Orientation Failure

• Model: Gemma-3 27B-it
• Task: Orientation
• Question: Is the toy truck facing ’back left’ from the camera’s perspective? Answer

with ’yes’ or ’no’ only.
• Model’s Prediction: YES
• Correct Answer: NO

Model’s Reasoning:

The camera is positioned to the side of the truck, and slightly
towards the front. The front of the truck (white cabin) is on
the left side of the image, and the back (green tank) is on
the right side of the image. Therefore, the truck is facing
towards the back and left from the camera’s perspective.

Analysis: This is a classic failure of synthesis. The model correctly identifies the perceptual
ingredients (’back’ and ’left’) but cannot combine them into the correct abstract recipe (the
diagonal orientation ’back-left’). It treats the components as a simple checklist rather than an
integrated spatial concept.

A.1.2 FAILURE ON DYNAMIC ACTION-BASED RELATIONS

Models that succeed at identifying static relationships between objects often fail when the relation-
ship is defined by a dynamic action performed by an agent.

Example 2: Action-Based Relation Failure

• Model: InternVL-3 8B
• Task: Relations
• Question: Is the person using the tool to hold the food on the left or the right side of

the image?
• Model’s Prediction: RIGHT
• Correct Answer: LEFT

Model’s Reasoning:

The image shows a person holding a piece of food with a tool.
The food is located on the right side of the image.

Analysis: The model sees a static scene of objects—person, tool, food—but fails to comprehend
the action (‘using the tool to hold‘) that connects them. It correctly identifies the location of the
food but completely misses the context of the question. It answers ”where is the food?” instead
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of ”where is the *act of holding* happening?”, highlighting a critical gap in reasoning about
dynamic events.

A.2 THE FRAGILITY OF ABSTRACT SPATIAL TRANSFORMATION

This category of failure occurs when models are tasked with mentally simulating changes to an
object’s state, such as folding or rotating it. Their ability to perform these ”mental gymnastics” is
surprisingly brittle.

A.2.1 EXPONENTIAL FAILURE IN SEQUENTIAL TRANSFORMATION (PAPER FOLDING)

The most dramatic failures occur when models must track an object’s state through multiple sequen-
tial transformations. Performance collapses exponentially with each additional fold.

Example 3: 3-Fold Paper Folding Failure

• Model: InternVL-3 78B (Top Performer)
• Task: Paper Folding
• Question: A piece of paper is folded three times, and one hole is punched. Which

option shows the unfolded paper?
• Model’s Prediction: D
• Correct Answer: B

Model’s Reasoning:

After the first fold, there are 2 layers. After the second fold,
there are 4 layers. After the third fold, there are 8 layers.
A hole is punched through all 8 layers. When unfolded, there
will be 8 holes. Option D shows 8 holes.

Analysis: This reasoning is a textbook case of the Perceptual-Abstractive Gap applied to trans-
formation. The model demonstrates a shallow, quantitative success (correctly calculating
23 = 8 holes) while utterly failing the core qualitative, spatial task of predicting the holes’
symmetrical pattern. It found an answer with the right *number* of holes but in the completely
wrong *configuration*, revealing that its ’reasoning’ was a brittle shortcut, not a true mental
simulation of unfolding the paper.

A.2.2 THE COGNITIVE ”SWEET SPOT” IN MENTAL ROTATION

The top-performing model’s accuracy on MRT tasks does not scale linearly with object complexity.
It fails in overly simple and overly complex shapes, performing best in objects of medium complex-
ity.

Example 4a: Failure on a Simple Shape

• Model: InternVL-3 78B
• Task: MRT Hard
• Question: (Image with a simple 5-cube shape)
• Model’s Prediction: A
• Correct Answer: D

Model’s Reasoning:

The original shape is composed of five red cubes. By rotating
the original shape 90 degrees to the right around the vertical

14
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axis, it matches the configuration of Option A.

Analysis: The model’s failure on a simple shape is revealing. It suggests that without sufficient
complexity to anchor its analysis, the model resorts to flimsy heuristics that lead to error. It is
akin to overthinking a simple problem and making a careless mistake because its more powerful,
systematic reasoning pathways were not fully engaged.

Example 4b: Success on a Medium-Complexity Shape

• Model: InternVL-3 78B
• Task: MRT Hard
• Question: (Image with a more complex 7-cube shape)
• Model’s Prediction: B
• Correct Answer: B

Model’s Reasoning:

The original shape is an assembly of seven cubes. Let’s trace
the key features. There is a central column of three cubes and
two arms protruding. By performing a 180-degree rotation around
the horizontal axis, the shape aligns perfectly with Option B.

Analysis: Here, with a moderately complex object, the model hits its stride. Its reasoning be-
comes more descriptive and structural (”central column,” ”two arms”), indicating a deeper level
of engagement. It successfully simulates the rotation because the problem is complex enough
to demand genuine spatial processing but not so complex as to overwhelm it. This success,
contrasted with the failure on the simpler shape, perfectly illustrates the non-linear ”sweet spot”
for its performance.

B DETAILED EXAMPLES OF SRBENCH

In this appendix, we provide qualitative examples for the various tasks comprising SRBench. These
visualisations illustrate the input modalities and the expected spatial reasoning required by the
model. The benchmark covers three primary categories of spatial cognition: Object Manipulation,
Spatial Relations, and Navigation/Orientation.

B.1 SPATIAL VISUALIZATION AND MANIPULATION

Figures 5 and 6 illustrate the Mental Rotation Task. The model is presented with a reference object
and a target object and must determine whether the target is a rotation of the reference or a distinct
shape. Figure 5 demonstrates an ”Easy” sample of difficulty, involving a single-axis rotation with
minimal occlusion. Conversely, Figure 6 represents a ”Hard” difficulty sample, requiring reasoning
over multi-axis rotations and complex 3D structures.
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MRT Easy

Question
This image shows a 3D polycube shape.
Which of the options is simply the
original shape in a rotated orientation?
Only one of the options is correct.
Available options: A. Left, B. Center,
C. Right

Answer
C

Figure 5: A sample from the MRT (Easy) subset. The target object requires a simple rotation along
one axis to align with the reference. MRT Hard

Question
This image shows a 3D polycube shape.
Which of the options is simply the
original shape in a rotated orientation?
Only one of the options is correct.
Available options: A. Left, B. Middle-
Left, C. Middle-Right, D. Right

Answer
A

Figure 6: A sample from the MRT (Hard) subset. This task involves complex multi-axis rotations
and higher structural complexity.

Figure 7 visualises the Folding task of paper. In this task, the model observes a sequence in which
a 2D sheet is folded and potentially punched with holes. The model must mentally ”unfold” the
paper to predict the final 2D pattern or hole configuration, testing its capacity for non-rigid spatial
transformations.

B.2 SPATIAL RELATIONS

Figure 8 details the Spatial Relations task, evaluating the understanding of geometric predicates.
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Paper Folding

Question
The image depicts a piece of paper
folded and then punched with holes. The
white areas represent the paper after it
has been folded. The black points
represent the holes punched in the
paper. Which of the options accurately
shows the pattern of holes that will
appear when the paper is fully unfolded?
Only one of the options is correct.
Available options: A. Left, B. Center,
C. Right

Answer
B

Figure 7: The Paper Folding task requires the model to mentally simulate the unfolding and subse-
quent perforation of a two-dimensional sheet and to infer the number of holes that will be present in
the paper once it is fully unfolded.

Relations

Question
Is the woman on the left from camera's
perspective? A. yes B. no

Answer
A. yes

Figure 8: Example of the Spatial Relations task. The model must identify the correct geometric
predicate describing the relationship between the highlighted objects.

B.3 NAVIGATION AND ORIENTATION

Figure 9 illustrates the Orientation task, which requires determining the direction of gaze of the
subject depicted in the image. Figure 10 presents the Navigation task, which involves planning a
trajectory through a maze-like environment.
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Orientation

Question
Is the rhinoceros facing 'right' from
the camera's perspective?  Answer with
'yes' or 'no' only.

Answer
yes

Figure 9: The Orientation task. The model is required to determine the directional orientation of
the rhinoceros depicted in the image.

Navigation

Question
The figure represents a Maze, where
the colored blocks have the
following meanings: - Black blocks
represent walls that are impassable
barriers. - [...] the provided
information. How many right turns
are there in the provided path
(marked by Blue) from S to E?
Available options: A. 7 B. 4 C. 0
D. 6.

Answer
C

Figure 10: The Navigation task. The figure illustrates a successful path execution from start (green)
to goal (red) avoiding obstacles.

C USE OF LARGE LANGUAGE MODELS

In the preparation of this paper, Large Language Models (LLMs) were utilised to refine the text,
improving clarity, grammatical precision, and stylistic flow without altering the substantive ideas or
original authorship. This AI-assisted process allowed a more polished presentation of the research
while maintaining academic integrity.
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