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Abstract

The anonymity on the Darknet allows vendors001
to stay undetected by using multiple vendor002
aliases or frequently migrating between dif-003
ferent markets. Consequently, illegal markets004
and their connections are challenging to un-005
cover on the Darknet. To identify relation-006
ships between illegal markets and their ven-007
dors, we propose VendorLink, an NLP-based008
approach that examines writing patterns to ver-009
ify, identify, and link unique vendor accounts010
across the advertisements (ads) on seven public011
Darknet markets. In contrast to the existing012
vendor verification literature, VendorLink uti-013
lizes the strengths of supervised learning, semi-014
supervised learning, and knowledge transfer to015
verify and identify migrating vendors and their016
potential aliases with state-of-the-art (SOTA)017
performance on both existing and emerging018
low-resource (LR) Darknet markets. As a re-019
sult, our approach can better aid law enforce-020
ment agencies (LEA) make more informed de-021
cisions by offloading labour and helping them022
effectively utilize manual resources.023

1 Introduction024

Conventional search engines index surface-web025

websites that constitute 4% of the entire internet026

(Georgiev, 2021). The remaining is made up of027

90% Deep Web (not indexed) and 6% Darknet,028

which uses advanced anonymity enhancing proto-029

cols (Georgiev, 2021). While the former serves030

legitimate purposes requiring anonymity, the latter031

is also used for illegal activities such as financial032

fraud (ENISA, 2018), child exploitation (Bruggen033

and Blokland, 2021), and trading of illegal weapons034

(Weimann, 2016; Persi Paoli et al., 2017), prohib-035

ited drugs, and chemicals (Kruithof et al., 2016).036

Given the Darknet’s scope, size, and anonymity,037

it is difficult for LEA to uncover connections be-038

tween illegal marketplaces (Vogt, 2017). While039

manual detection of such connections is a time-040

consuming and resource-extensive process, the041

recent success of online scrapers (Fu et al., 042

2010; Hayes et al., 2018) and monitoring systems 043

(Schäfer et al., 2019; Godawatte et al., 2019) has 044

enabled researchers and LEA to analyze (East- 045

tom, 2018; Faizan and Khan, 2019; Goodison 046

et al., 2019; Davies, 2020) and automatically iden- 047

tify (Al Nabki et al., 2017; Ghosh et al., 2017; 048

Jeroen Ubbink, 2019; He et al., 2019) other Dark- 049

net content types. We propose a vendor verification 050

and identification approach to help LEA make bet- 051

ter decisions by linking vendors, offloading manual 052

labour, and generating similarity-based analyses. 053

As demonstrated in Figure 1, our research investi- 054

gates the capabilities of VendorLink for: 055

(i) Vendor Verification Task: Due to limited hu- 056

man resources, LEA prioritizes investigating active 057

Darknet vendors depending on the size and nature 058

of the trade. As a result, to stay undetected by 059

LEA, these vendors often distribute their business 060

across multiple markets. Similarly, some vendors 061

relocate to other markets after a darknet market 062

disappears and resume their business (Booij et al., 063

2021). For brevity, we refer to these migrating ven- 064

dors as migrants. Unfortunately, this movement 065

prevents LEA from correctly estimating the size of 066

a vendor’s operations. To aid LEA, we first perform 067

supervised pre-training in an open-set multiclass 068

classification setting (Fei and Liu, 2016; Geng et al., 069

2021) to analyze the writing patterns in text ads and 070

verify migrating vendors to unique vendor accounts 071

across the Darknet markets. 072

(ii) Knowledge Transfer Task: While research 073

has demonstrated impressive performance for the 074

Darknet’s vendor verification task (Kumar et al., 075

2020; Manolache et al., 2022), high computational 076

and storage requirements pose a significant chal- 077

lenge to LEA. Additionally, with the exponential 078

growth of Darknet markets and vendors every year, 079

there is a dire need for systems that can verify exist- 080

ing vendors from a known database and simultane- 081
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Figure 1: (i) Vendor Verification Task: Verifying vendor migrants across existing markets, (ii) Knowledge
Transfer Task: Adapting knowledge transfer to verify vendor migrants on LR emerging markets, (iii) Vendor
Identification Task: Identifying and Linking vendors to potential aliases using advertisement similarity.

ously adapt to the emerging vendors. After all, not082

all LEA have the resources to train computation-083

ally expensive models from scratch. Therefore, this084

experiment investigates our classifier’s capability085

in low data and resource application settings to per-086

form zero-shot (Srivastava et al., 2018) and knowl-087

edge transfer (Ruder et al., 2019) on emerging (up-088

coming) vendors and markets. Consequently, we089

refer to this step as the supervised fine-tuning task.090

Finally, we comment on the performance of the091

zero-shot and trained low-resource transfer models092

against Transformer-based classifiers when trained093

from scratch on unforeseen data.094

(iii) Vendor Identification Task: Sometimes095

vendors create aliases and work in groups to096

distribute their products across multiple markets,097

which allows them to expand their business without098

being detected by LEA. Given the scope and099

anonymity on the Darknet, manually linking these100

profiles is infeasible. Therefore, we analyze the101

text-similarity between ads in a semi-supervised102

fashion using cosine distance to link vendors103

to their potential aliases and copycats within104

and across datasets. First, we extract sentence105

representations from our trained classifier for all106

vendor ads. Then, keeping one of the vendors107

as the parent vendor, we iteratively compute the108

cosine similarity between these representations to109

compute the probability of two vendors being the110

same.111

In contrast to the existing Darknet literature (He 112

et al., 2015; Ekambaranathan, 2018; Tai et al., 113

2019; Kumar et al., 2020; Manolache et al., 114

2022), this research emphasizes the following 115

contributions to the problem of verifying and 116

identifying vendor accounts on Darknet markets: 117

118

(i) In real-to-close-world scenarios, the trained 119

classifier may encounter unknown vendors from 120

emerging markets during the inference. Therefore, 121

any efficient classifier must accurately classify 122

the existing vendors and effectively deal with 123

new/unseen ones. In contrast to the existing liter- 124

ature, this research performs vendor verification 125

on market ads in an open-set classification setting 126

to accurately classify existing vendors, deal with 127

unseen ones, and simultaneously apply zero-shot 128

on emerging ones. 129

130

(ii) Thousands of new markets and vendors emerge 131

every day on Darknet. While the existing liter- 132

ature has demonstrated impressive performance 133

on the vendor verification task, they fail to com- 134

ment on the scalability of their trained models to 135

new emerging markets. After all, it is not feasible 136

for LEA to train SOTA computationally expensive 137

models from scratch every time a new market ap- 138

pears. This research uses transfer learning to adapt 139

to these LR emerging markets and vendors using 140

carbon-efficient low-compute-resource networks 141

with SOTA performance. 142
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(iii) While many existing researchers have estab-143

lished vendor verification approaches in a super-144

vised setting, progress in the direction of vendor145

identification is yet to be established. Therefore146

in this research, we perform vendor identification147

to link vendor accounts to their potential aliases148

by comparing text similarities in vendor ads in a149

semi-supervised fashion.150

2 Related Research151

Vendor Verification - a supervised Authorship152

Attribution (AA) task: Researchers previously153

have utilized various NLP (Ekambaranathan, 2018;154

Tai et al., 2019; Manolache et al., 2022) and com-155

puter vision (Wang et al., 2018; He et al., 2015)156

techniques to identify and link vendors across Dark-157

net markets. In their research, Zhang et al. (2019)158

proposed uStyle-uID to leverage both writing and159

photography styles to identify vendors in drug traf-160

ficking markets. Similarly, Kumar et al. (2020) pro-161

posed exploiting the multi-view learning paradigm162

and domain-specific knowledge to improve the163

cross-domain performance with both stylometric164

and location representation.165

The Darknet ads consist of a product title and de-166

scription, vendor details, price of the product, and167

occasionally some meta-data and images. While168

most of these details were enclosed in the ad’s169

description, manual extraction of these features re-170

quires considerable labelling efforts. Therefore, we171

emphasize our research towards an end-to-end ap-172

proach that only expects the advertisement’s title173

and description to analyze the writing patterns for174

vendor verification and identification. Furthermore,175

since we perform multi-class classification over the176

text sequences of Darknet ads, we consider our177

approach similar to the AA task in NLP.178

With the advances in NLP, there has been con-179

siderable research into the field of AA that has180

demonstrated the success of TF-IDF based cluster-181

ing and classification techniques (Agarwal et al.,182

2019; İzzet Bozkurt et al., 2007), CNNs (Rhodes,183

2015; Shrestha et al., 2017), RNNs (Zhao et al.,184

2018; Jafariakinabad et al., 2019; Gupta et al.,185

2019), and SOTA transformers architectures (Fa-186

bien et al., 2020; Ordoñez et al., 2020; Uchendu187

et al., 2020a). However, researchers have also ob-188

served a significant difference in the structure of189

language between Darknet and Surface net web-190

sites (Choshen et al., 2019; Jin et al., 2022). There-191

fore, it is necessary to explore the application of192

these SOTA approaches to the Darknet language. 193

Transfer Learning: In their research, Ruder 194

(2019) introduced transfer learning as a means 195

to extract knowledge from a source setting and 196

transfer it to a target setting. Since then, many 197

researchers have investigated the successful appli- 198

cation of transfer learning on the cross-domain and 199

topic AA task (Sapkota et al., 2014; Barlas and 200

Stamatatos, 2021). Similar to the experiments in 201

(Devlin et al., 2019; Horne et al., 2020), this work 202

proposes utilizing knowledge transfer from pre- 203

trained embeddings (trained on the ads of existing 204

markets) to train a computationally efficient Bi- 205

GRU classifier for the vendor identification task on 206

emerging Darknet markets. 207

Text Similarity: Text-similarity techniques are 208

not new to the researchers in the field of AA (Sap- 209

kota et al., 2013; Castro Castro et al., 2015; Rexha 210

et al., 2018; Boenninghoff et al., 2019). How- 211

ever, with the recent success of SOTA transformers 212

(Reimers and Gurevych, 2019a; Yang et al., 2019b; 213

Jiang et al., 2022), researchers are now investigat- 214

ing the application of semantically meaningful rep- 215

resentations for paraphrasing detection (Timmer 216

et al., 2021; Olney, 2021; Ko and Choi, 2020), text 217

summarization (Miller, 2019; Cai et al., 2022), se- 218

mantic parsing (Ge et al., 2019; Ferraro and Suomi- 219

nen, 2020), question answering (Yang et al., 2019a; 220

Vold and Conrad, 2021; Louis and Spanakis, 2021), 221

and AA (Fabien et al., 2020; Li et al., 2020; Custó- 222

dio and Paraboni, 2021; Uchendu et al., 2020b). 223

This research utilzes a Transformer-based classifier 224

to extract sentence representations for computing 225

cosine similarity between ads of different vendors. 226

3 Datasets 227

Many researchers have conducted similar experi- 228

ments on scraped data from active Darknet markets. 229

However, since law enforcement has seized and 230

shut down these markets now, we could not repro- 231

duce the results nor get access to their data. There- 232

fore, for reproducibility and future research pur- 233

poses, we conduct our analyses on public datasets 234

from Alphabay (Van Wegberg et al., 2018; Bar- 235

avalle and Lee, 2018; CMU, 2017-18a), Dreams, 236

Traderoute, Valhalla, and Berlusconi (Carr et al., 237

2019; CMU, 2017-18b), Agora (Branwen et al., 238

2015), and Silk Road (Christin, 2013; CMU, 2012- 239

13) non-anonymous markets.1 240

1Hosted by IMPACT cyber trust portal
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Preprocessing: Figure 2(a) demonstrates the241

distribution of the number of tokens for all the242

input ads in our datasets. In a violin plot, the243

probability distribution is maximum around the244

median, and Table 2(a) shows that the median245

for our chosen datasets is between 40 and 100.246

Therefore, to run a fair comparison between other247

baseline classifiers and transformers-based models,248

we truncate our ads to the first 512 tokens. On249

the other hand, figure 2(b) demonstrates a class250

imbalance in the number of ads per vendor account251

in our datasets. As can be seen, some markets252

are more imbalanced than others. Therefore,253

in contrast to earlier research emphasising the254

performance of the trained models on accuracy255

and micro-F1, we also evaluate our trained models256

on macro-F1, which weighs all classes equally.257

258

(a) (b)

Figure 2: Distribution of (a) Token length per advertise-
ment (b) Number of ads per vendor.

259

Table 1 illustrates the number of unique ads (input260

sequences) and vendor accounts per market.2 First,261

we merge the title and description of the ads using262

the BERTtokenizer "[SEP]" token to form the input263

sequences. Then, we drop all the duplicate ads for264

every vendor in our dataset. Most ads are in En-265

glish, with a few exceptions where the vendors use266

multiple languages. We reason that the noise in the267

2In this research, market data refers to the ads and vendor
accounts from a single Darknet market. On the other hand, a
dataset refers to the combined data from two or more markets.

Use-Case Dataset Ads. Vendors
Alphabay 100,429 1,457

Baseline / Dreams 93,586 1,422
Supervised Silk Road-1 78,681 1,392
Pre-training Alphabay- 272,696 3,896

Dreams-Silk
Low- Valhalla 2,175 110
Resource Berlusconi 1,437 84
Supervised Valhalla- 3,612 194
Fine-tuning Berlusconi
High- Traderoute 19,952 612
Resource Agora 109,644 3,187
Supervised Traderoute- 129,586 3,799
Fine-tuning Agora

Table 1: Number of unique ads and vendor accounts
per market.

data roughly represents the unique writing style of 268

individual vendors. For example, we found that the 269

vendor "CaliforniaDreams420" refers to medicines 270

as "medi...", "SAPIOWAX" uses multiple "-" for 271

newline, and "QualityKing" only uses uppercase 272

letters in its ads. Therefore, any cleaning and pro- 273

cessing will only be counter-productive. However, 274

since we consider the vendor accounts as the gold 275

labels for our classification task, we lower-cased 276

all the vendor names to minimize the number of 277

vendors in our datasets. In other words, we as- 278

sume the vendors "agentq" and "AgentQ" to be the 279

same entity. The table illustrates how we divide our 280

datasets for supervised pre-training, Low-Resource, 281

and High-Resource fine-tuning steps. Finally, we 282

assign all the vendors with less than 20 ads to a new 283

class label, "others", which enables our classifier 284

to be trained in an open-set classification setting. 285

4 Experiments 286

Before running our experiments, we conduct a 287

sanity check to evaluate the need for ML algo- 288

rithms by examining the similarity in Darknet ads 289

using textdistance-based traditional stylometric ap- 290

proaches (orsinium, 2022) (refer appendix A.2.1). 291

Our analyses show that these traditional methods 292

fail to identify vendors with dissimilar ads, indi- 293

cating the need for sophisticated featureextraction 294

techniques. Furthermore, these approaches help us 295

discard identical ads from further analysis. 296

4.1 Vendor Verification: A supervision 297

pre-training task 298

Architectural Baselines: To verify the vendor 299

migrants existing across multiple markets, we first 300
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train different classifiers to examine writing pat-301

terns in Darknet ads and establish a benchmark302

amongst various ML and neural network-based al-303

gorithms. Given the resources at our disposal, train-304

ing models on the combined Alphabay, Dreams,305

and Silk Road dataset would be computationally306

expensive and time-consuming. Therefore, we307

first establish an architectural baseline by train-308

ing (i) TF-IDF based statistical (Multinomial Naive309

Bayes, Logistic Regressor, Random Forest, SVMs,310

and MLP network), (ii) Bi-directional GRU with311

Fasttext embeddings (Gupta et al., 2019), CNNs312

over character n-grams (Shrestha et al., 2017),313

(iii) Pre-trained BERT-base-cased (Devlin et al.,314

2019), RoBERTa-base (Liu et al., 2019), and315

a DistilBERT-base-cased (Sanh et al., 2019) se-316

quence classifiers to identify 1,422 unique vendor317

accounts from 93,586 ads on the Dreams market.318

Methodological Baselines: We further establish319

a methodological baseline to investigate the influ-320

ence of different training approaches on the com-321

bined Alphabay, Dreams, and Silk Road 1 dataset322

with 272,696 ads and 3,896 unique vendors. First,323

we train BERT-base-cased and uncased classifiers324

to investigate the influence of uppercase and low-325

ercase patterns in ads on the model’s performance.326

Second, we investigate if applying knowledge trans-327

fer from a BERT-cased model, trained on the Dark-328

net ads for the language task, improves the clas-329

sification performance. We refer to trained lan-330

guage model as DarkBERT-LM and the classifier as331

DarkBERT-classifier in this research. In an another332

study, Houlsby et al. (2019) suggests that rather333

than updating the weights of the pre-trained model,334

it is much more efficient to stitch adapter layers and335

update them while keeping the pre-trained model336

frozen. Therefore, we finally train a BERT-cased337

classifier with adapter layers (aka Adapter BERT)338

and compute its performance. 3339

4.2 Knowledge Transfer: a supervised340

fine-tuning task341

To verify the vendor migrants in emerging markets,342

we conduct our experiments on an LR dataset, i.e.,343

Valhalla-Berlusconi, with 3,612 ads and 194 ven-344

dors. First, we extract the sentence representations345

from the "[CLS]" token of the pre-trained classifier346

3Further experimental details, including the various archi-
tectures, hyperparameters, number of trainable parameters,
training time, and evaluation metrics, are presented in Ap-
pendix A.3.

(Section 4.1) for all the ads in our LR dataset. Then, 347

following (Devlin et al., 2019), we apply knowl- 348

edge transfer from the pre-trained classifier to a 349

two-layer bidirectional GRU classifier using the 350

extracted representations and fine-tune it to verify 351

the migrants across the LR dataset. We refer to this 352

model as the transfer-BiGRU model in our research. 353

During the evaluation, we compare the perfor- 354

mance of our transfer-BiGRU against BERT-base- 355

cased and two-layer BiGRU (with fasttext embed- 356

dings) classifiers (aka end-to-end baselines) when 357

trained from scratch on the LR dataset. Finally, 358

we also evaluate the zero-shot performance of our 359

architectural and methodological classifiers (aka 360

zero-shot baselines) against the transfer-BiGRU in 361

an open-set classification setting. 362

4.3 Vendor Identification : A semi-supervised 363

task 364

In their research, (Kornblith et al., 2019; Phang 365

et al., 2021) proposed Centered Kernel Alignment 366

(CKA) as a similarity metric to reliably compute 367

correspondences between representations in net- 368

works trained from different initializations. In this 369

research, we compute CKA similarity between the 370

representational layers of our trained classifier and 371

an available pre-trained checkpoint (not trained on 372

Darknet data). Finally, we examine the least simi- 373

lar layers, i.e., the layers that changed most during 374

training and have a low CKA similarity, to extract 375

semantically-meaningful representations from the 376

ads of Darknet markets. 4 377

Similar to Reimers and Gurevych (2019b), we 378

compute the similarity between two vendors by 379

computing cosine-similarity between the extracted 380

representations in their ads. Then, assigning one 381

of the vendors as the parent vendor, we repeat the 382

process for all the other vendors in our dataset. 383

However, cosine distance represents a linear space 384

with all dimensions weighted equally. Therefore, 385

Xiao (2018) suggests that the emphasis be on the 386

rank and not the absolute value representing the 387

similarity between the two vendors. Besides, ven- 388

dors on Darknet advertise their products across var- 389

ious categories. For two vendors, A and B, selling 390

their products under multiple categories, the cosine 391

similarity between their ads would be low by de- 392

fault. Therefore, instead of comparing ads across 393

similar trade categories (which requires labelling 394

4Algorithm-2 in Appendix A.6 demonstrates the pseudo-
code for computing CKA similarity across layers of our
trained classifier and an available pre-trained checkpoint.
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efforts and is counterproductive to our research),395

we propose normalized similarity (simnorm) as a396

measure of cosine similarity (sim) in ads between397

two vendors, w.r.t. to the self-similarity (simself )398

in their ads through the equation below:399

simnorm = 2 ∗ sim(A,B)

simself (A,A) + simself (B,B)
400

5 Results401

5.1 Classifying vendor migrants across402

Darknet markets403

Architectural Baselines: Table 2 presents the404

performance of our architectural baselines evalu-405

ated on the Dreams market. Amongst all the sta-406

tistical models, we found a Multilayer Perceptron407

(MLP) with bigram TF-IDF features to perform408

the best. While conventional neural networks such409

as character-based CNN and Bidirectional GRU410

with fasttext embeddings performed better than411

the statistical models, we noted a considerable in-412

crease in performance with the SOTA transformers413

architecture on our datasets. To our surprise, the414

RoBERTa-base model underperformed compared415

to the BERT-base-cased architecture. Although we416

propose to leverage writing styles to identify vari-417

ous vendors, the Darknet markets are intentionally418

designed with random noise to foil any automated419

system. Furthermore, since RoBERTa-tokenizer420

works on "byte-level BPE," we believe the trained421

model did not have enough data to learn these422

features. Consequently, we establish the trained423

BERT-cased classifier on the Dreams market as the424

benchmark classifier of our architectural baselines.425

Methodological Baselines: Table 3 illustrates426

the performance of our methodological baselines427

evaluated on the combined Alphabay-Dreams-Silk428

Road-1 test dataset. Our first experiment inves-429

tigates the influence of writing style, i.e., lower-430

case and uppercase patterns, on the classification431

task. As can be seen, the BERT-cased classifier432

outperforms the uncased classifier by a reasonable433

margin (Approx. 3% on 3,896 class labels). We434

believe that the increment in performance comes435

from adding uppercase and lowercase patterns dur-436

ing training. Next, we experiment with continued437

pre-training of the DarkBERT-LM on the ads for438

the language task 5 to achieve a test perplexity of439

5Pre-training BERT for a language task is highly resource-
intensive. Unfortunately, we did not have the resources to con-
tinue the pre-training until the convergence and only trained
our model for 20 epochs.

Data Models Accuracy Micro-F1 Macro-F1
Statistical Models

Multinomial 0.0183 0.0144 0.0059
Naive Bayes

Random Forest 0.0102 0.1093 0.0449
Logistic 0.0045 0.0090 0.0037

Regression
SVM 0.2480 0.3974 0.3703

Dreams Conventional Neural Networks
market MLP 0.6614 0.6603 0.6594

Character-CNN 0.7266 0.7256 0.7248
BiGRU-Fasttext 0.7374 0.7415 0.7360

SOTA Transformers
BERT-cased 0.8978 0.8978 0.9002

DistilBERT-cased 0.8886 0.8885 0.8889
RoBERTa-base 0.8776 0.8797 0.8736

Table 2: Performance of architectural baselines on the
Dreams market.

Data Models Accuracy Micro-F1 Macro-F1
BERT-uncased 0.8947 0.8939 0.8768

Alphabay- BERT-cased 0.9046 0.9066 0.9013
Dreams-Silk DarkBERT- 0.9000 0.9090 0.9073

dataset Classifier
Adapter BERT 0.8398 0.8330 0.8188

Table 3: Performance of methodological baselines on
the combined Alphabay-Dreams-Silk dataset.

2.07. In comparison to the BERT-cased classifier, 440

we observe a minor increase in the performance 441

of the finetuned DarkBERT-Classifier. However, 442

we reason that such a minor increase is not worth 443

all the training. Furthermore, the low performance 444

of the DarkBERT-LM depicts the unpredictable 445

and noisy lingo used by Darknet vendors in their 446

ads. We also suspect that further pre-training our 447

models on an extensive dataset can help the base- 448

line improve its performance. Finally, the Adapter 449

BERT also underperforms compared to the vanilla 450

BERT-cased classifier. Consequently, we establish 451

the trained BERT-cased classifier on the combined 452

Alphabay-Dreams-Silk data as the benchmark clas- 453

sifier of our methodological baselines. 454

5.2 Adapting to LR emerging markets 455

Given that the architectural and methodological 456

classifiers are trained on the Dreams market and 457

Alphabay-Dreams-Silk Road1 dataset, we first per- 458

form Zero-Shot classification to verify the vendor 459

migrants between Dreams-Valhalla-Berlusconi and 460

Alphabay-Dreams-Silk Road1-Valhalla-Berlusconi 461

datasets, respectively. Since the LR dataset, 462

Valhalla-Berlusconi, has new vendors, we assign 463

all these emerging vendor accounts to the class la- 464

bel "others." However, since the macro-F1 score 465

is computed for the unweighted arithmetic mean 466
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of F1 for all class labels, the absence of previously467

existing vendors in the LR emerging market leads468

us to unreliable macro-F1 results. Consequently,469

we emphasize the performance of our Zero-Shot470

baselines on the micro-F1 score. The baselines471

exhibit promising performance with a micro-F1 of472

0.7702 and 0.7388 despite not being trained on LR473

data. Additionally, we observe a decrease in macro-474

F1 performance from architectural to methodolog-475

ical baseline performance due to an increase in476

the number of vendors from 1,442 to 3,896 in the477

supervised pre-training step.478

Models Layer Micro-F1 Macro-F1
Zero-Shot Baselines

Architectural - 0.7702 0.2927
Methodological - 0.7388 0.2401

End-to-End Baselines
BERT-cased - 0.8987 0.8148

BiGRU-Fasttext - 0.7797 0.6957
Transfer Baselines
Embedding 0.7653 0.6408

Last 0.8590 0.7809
Transfer-BiGRU Second-to-Last 0.8951 0.7884

Weighted Sum All 12 0.8928 0.7837
Weighted Sum Last 4 0.8946 0.8132

Table 4: Performance of Zero-Shot, End-to-End, and
Transfer baselines on the Valhalla-Berlusconi dataset.

GPU Models Trainable Training time
parameters (Hrs:Mins)

Tesla- BERT-cased 110M 0:54
V100 BiGRU-Fasttext 13M 0:12

(32 GB) Transfer-BiGRU 24M 0:32
Ge-MX110 Transfer-BiGRU 24M 2:40

(2 GB)

Table 5: Computational details of trained classifiers on
the LR, Valhalla-Berlusconi, dataset.

Then, following the results in section 5.1, we fur-479

ther train another BERT-cased and a BiGRU clas-480

sifier with Fasttext embeddings to adapt to new481

vendors in the emerging LR dataset. As described482

in table 4, compared to the Zero-Shot baselines,483

introducing new vendors shows a significant in-484

crease in performance in both micro-F1 and macro-485

F1 scores for the End-to-End baselines. Finally,486

similar to (Devlin et al., 2019), we perform knowl-487

edge transfer by extracting the sentence represen-488

tations from multiple layers of the BERT-cased489

methodological classifier and use them to initial-490

ize the BiGRU before the classification layer. Ta-491

ble 4 shows that when initialized with the sum of492

weighted representations from the last four layers,493

the transfer-BiGRU classifier benefits most from494

the knowledge transfer and performs comparably495

to the SOTA End-to-End BERT-cased classifier on 496

the emerging LR dataset. 6 497

Finally, Table 5 reflects upon the computational 498

aspects of the trained models by comparing the 499

number of trainable parameters and training time 500

for classifiers on the LR dataset. As can be 501

seen, compared to the BERT-cased, our transfer- 502

BiGRU classifier is carbon-efficient (refer to ap- 503

pendix A.1), has 78% less trainable parameters, 504

and takes approximately half the training time. 505

Furthermore, we also show the training feasibil- 506

ity of our transfer-BiGRU on a low-end graphic 507

card, GeForce-MX110, with 2 GB of GPU memory. 508

Thus, our low-compute transfer-BiGRU classifier 509

can significantly help law enforcement scale our 510

approach to emerging markets without significant 511

performance loss. 512

5.3 Identifying potential Vendor Aliases and 513

Copycats across Markets 514

0 1 2 3 4 5 6 7 8 9 10 11 12

0.0378 0.2660 0.1839 0.2442 0.1919 0.1606 0.2360 0.3430 0.3951 0.5973 0.7557 0.8767 0.9957
0.25
0.50
0.75

Figure 3: CKA distance between layers of the BERT-
cased methodological classifier, compared before and
after being trained on the Alphabay-Dreams-Silk dataset.

Figure 4: Scatter plot between parent-vendors (on the x-
axis) and their potential aliases (scatter points on y-axis)
from Alphabay , Dreams , and Silk Road-1 markets.

Figure 3 reveals a high CKA distance, i.e. low 515

CKA similarity, between the representations for 516

the last four layers of the methodological BERT- 517

6We also test the performance of our baselines on an emerg-
ing High-Resource (HR) dataset, Traderoute-Agora. Results
in the appendix table 7 show that the transfer-BiGRU model
underperforms compared to the End-to-End BERT-cased clas-
sifier. In other words, applying knowledge transfer to adapt to
emerging High Resource (HR) markets does not yield SOTA
performance. For more details, please refer section A.2.2 in
appendix.
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cased classifier. Therefore, extracting information518

from the weighted sum of the final four layers pro-519

vides the most meaningful representations for our520

ads in the Alphabay-Dreams-Silk dataset. We then521

use these sentence representations to compute the522

cosine similarity between vendor ads following the523

experiment described in section 4.3. Figure 4 dis-524

plays some randomly selected parent vendors (on525

the x-axis) and their most likely two aliases with526

a similarity score (on the y-axis) in their writing527

styles for the vendors in the Alphabay-Dreams-528

Silk dataset. 7 The higher the similarity, the more529

likely it is for two vendor accounts to be from the530

same entity. For example, our analysis suggests531

"eurekarebellionaus" and "eurekarebellion", "mu-532

tant_gear" and "mutantgear", "fence" and "tinsel",533

and "planet-pluto" and "planetpluto" have very sim-534

ilar ads likely to be from the same vendor. For a535

better visibility, these vendors are highlighted in-536

side the red box of our scatter plot.537

Parent Vendor Alias / Copycat Similarity
houseofdank houseofdank2.0 0.9844

High incorporated incorporatedv2 0.9769
(potential castro6969 castro69696 0.9541
aliases) thewizard thewizzardnl 0.9480

europills europills2 0.9467
topgear topgear69 0.0367

Low dutchpirates dutchpiratesshop -0.1015
(potential whitey whiteyford -0.1410
copycats) g3cko gecko -0.2292

aussieimportpills aussieimportpillsv2 -0.2560

Table 6: Normalized similarity between parent vendors
and their potential aliases / copycats aligned in a de-
creasing order.

Often, vendor aliases have similar-looking ven-538

dor handles to have recognition and a monopoly539

over their business. While most similar-looking540

accounts can be detected using string-based match-541

ing techniques like string_grouper (Chris van den542

Berg, 2021), our experiments reveal the existence543

of copycats with very different writing styles repre-544

sented by low similarity in their ads. For example,545

our experiments uncovered that only about 24% of546

similar-looking vendor-alias pairs in the Alphabay-547

Dreams-Silk dataset have a similarity score of 0.7548

or above in their ads. Table 6 illustrates the simi-549

larity in ads between 10 such parent-vendors and550

their likely aliases or copycats. Finally, we believe551

our experiments can also help law enforcement un-552

7We generate the scatter plot using Plotly, which allows us
to zoom infinitely for any vendor. However, we only show the
chosen vendors with their two most likely aliases for better
clarity and visibility.

cover vendor-alias pairs with completely unrelated 553

vendor names, ex: "fence" and "tinsel" (see figure 554

4), but a high similarity between their ads. 555

6 Discussion and Future Work 556

We discuss our work’s data collection protocols, 557

ethical considerations, legal, societal, and environ- 558

mental impacts, and potential risks in appendix A.1. 559

The additional experiments and experimental setup 560

are discussed in appendix sections A.2 and A.3, 561

respectively. Finally, the pseudo-code for CKA 562

algorithms are discussed in the appendix A.6. 563

In future, we plan to work on the assumptions 564

and limitations indicated in appendix sections A.4 565

and A.5 by investigating contrastive learning ap- 566

proaches (Pan et al., 2021; Zhou et al., 2021) to 567

perform vendor verification and identification on 568

existing and emerging Darknet datasets. Further- 569

more, given the sensitivity of our research, we un- 570

derstand the need for reliable explanations that can 571

ensure trust amongst LEA. Finally, the inconsistent 572

model explanations from word attributions-based 573

explainability experiments in appendix A.2.3 sug- 574

gest the need to investigate other explainability and 575

interpretability approaches in future to generate 576

meaningful explanations. 577

7 Conclusion 578

This research presents an NLP-based vendor veri- 579

fication and identification approach, VendorLink, 580

for law enforcement to verify, identify, and link 581

vendor migrants and aliases on the existing and 582

emerging hidden Darknet markets. In this work, 583

we first perform supervised pre-training to establish 584

a BERT-cased classifier to verify existing vendor 585

migrants between markets. Then, to scale our ap- 586

proach to emerging vendors and LR markets, we 587

perform supervised fine-tuning by utilizing knowl- 588

edge transfer from a BERT-cased classifier to a 589

low-compute-resource BiGRU classifier. Finally, 590

we extract the sentence representations (from the 591

trained BERT-cased classifier) to compute the self- 592

supervised cosine similarity in vendor ads and link 593

them to their potential aliases. Through our experi- 594

ments, we uncover (i) 15 migrants and 71 aliases 595

on the Alphabay-Dreams-Silk dataset, (ii) 17 mi- 596

grants and 3 aliases on the Valhalla-Berlusconi 597

dataset, and (iii) 75 migrants and 10 aliases in the 598

Traderoute-Agora dataset with a cosine similarity 599

of 0.8 and above, between the ads of vendors and 600

their aliases. 601
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A Appendix1074

A.1 Broader Impact1075

This section discusses mandatory data collection1076

protocols, ethical considerations, potential risks,1077

and legal, societal, and environmental impacts.1078

Data Collection Protocol: Ethical concerns as-1079

sociated with web scraping do not apply to our1080

research as the online darknet data used is re-1081

quested through a signed Memorandum of Agree-1082

ment (MoA) with IMPACT Cyber Trust portal1083

(ICC). As a result, the data is freely available,1084

legally collected, and distributed for large-scale1085

cybersecurity analytics, allowing researchers to ad-1086

vance the state-of-the-art cyber-risk R&D and deci-1087

sion support.1088

Legal Impact: This research emphasizes bring- 1089

ing structure and meaning to the massively avail- 1090

able online data on Darknet markets for law en- 1091

forcement. While we can not predict whether our 1092

research will impact the LEA process, the intent is 1093

to identify potential connections between vendors 1094

of illegal goods and present LEA with a broader in- 1095

formation base for their internal processes. Please 1096

note that at no point do we claim to provide pieces 1097

of evidence necessary for prosecuting any criminal. 1098

Ethical Considerations: We acknowledge that 1099

using vendor names in our analyses could poten- 1100

tially be exploited and identified as a privacy con- 1101

cern. However, these vendor names are usually 1102

pseudo-anonymous. Furthermore, research has 1103

also shown that only a tiny fraction (2%) of success- 1104

ful vendors last over two years and spans multiple 1105

markets (Booij et al., 2021). Since the ads in our 1106

dataset date between 2011-2018, it is unlikely for 1107

any of the vendors to be currently active with the 1108

same username. 1109

Societal Impact and Potential Risk: In their 1110

research, Juola (2020) described the dark side 1111

of authorship studies and social media analytics 1112

for target-based recommendation systems and em- 1113

ployee, political, medical, gender, demographic 1114

and racial profiling. While our approach can lend 1115

itself to abuses, we find it unlikely for anyone to 1116

be able to exploit our research, given the extreme 1117

difference in the language between the Darknet 1118

and surface web websites (Choshen et al., 2019). 1119

Moreover, given the nature of illegal activities on 1120

the Darknet and despite all the potential risks, we 1121

believe that our research can potentially benefit 1122

LEA and save human lives. Finally, it is also up to 1123

policymakers, researchers, and end-users to respon- 1124

sibly collaborate, investigate, prevent, and mitigate 1125

the potential malicious use that can interfere with 1126

or impede research progress unless those measures 1127

are likely to bring commensurate benefits. Through 1128

dual-use nature, one can always enable the neces- 1129

sity of norms and institutions to reimagine the open- 1130

ness of research, risk assessment, licensing, safety 1131

and security (Brundage et al., 2018). 1132

Environmental Impact: Keeping in mind that 1133

not all LEA have the resources to train compu- 1134

tationally expensive architectures, we investigate 1135

utilizing knowledge transfer to train low-compute- 1136

resource models in this research. As a result, our 1137

transfer-BiGRU classifier has a carbon efficiency 1138
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of 0.07 kgCO2eq/kWh and 2.25 kgCO2eq/kWh1139

as opposed to the BERT-cased classifier with a1140

carbon efficiency of 0.12 kgCO2eq/kWh and 4.211141

kgCO2eq/kWh on the Vallhalla-Berlusconi and1142

Traderoute-Agora datasets, respectively. These es-1143

timations were conducted on Tesla V100-SXM2-1144

32GB (TDP of 300W) using the MachineLearn-1145

ing Impact calculator presented in (Lacoste et al.,1146

2019). In other words, this research demonstrates1147

that applying knowledge transfer from existing1148

to emerging markets can help law enforcement1149

train low-compute-resource models with compa-1150

rable SOTA performance, faster training time, and1151

lesser carbon footprint.1152

A.2 Additional Experiments1153

A.2.1 Sanity Check: stylometric approaches1154

As a sanity check, we investigate the need for ML1155

algorithms by examining if traditional stylometric1156

approaches can identify writing patterns in Darknet1157

ads. Since languages are represented by charac-1158

ters, tokens, and sentence-level elements, we com-1159

pute string, token, and sequence-based similarities1160

between ads using the Damerau-Levenshtein dis-1161

tance, Jaccard Index, and Ratcliff-Obershelp pat-1162

tern recognition technique from textdistance. We1163

define the similarity between two vendor ads as1164

the average of the above three metrics. For a ven-1165

dor with multiple ads, say vendor A, we compute1166

average similarity as the mean of similarities be-1167

tween all their ads. Similarly, for vendor B, existing1168

across multiple markets, we take all the ads from1169

market X and compute their similarity with ads1170

of market Y (one at a time). Finally, we compute1171

the average similarity as the mean of similarities1172

between the ads for vendor B across all markets.1173

Algorithm 1 explains the pseudo-code for comput-1174

ing similarity between the ads within and across1175

the Darknet markets.1176

Figure 5 demonstrates the performance of tradi-1177

tional stylometric approaches on a box plot. The1178

plot represents the average similarity distribution1179

and its skewness within the ads of Alphabay-1180

Alphabay, Dreams-Dreams, Silk Road-Silk Road1181

and across Alphabay-Dreams, Dreams-Silk Road,1182

and Alphabay-Silk Road markets. As can be seen,1183

most ads have an average similarity below 0.20.1184

While there are outliers with higher similarities,1185

only one vendor, "cyanspore", has a similarity score1186

of 1.0 for the Alphabay-Dreams and Dreams-Silk1187

datasets. Since the ads from this vendor are ex-1188

actly similar, we remove them from all our further 1189

analyses. 1190

Algorithm 1: TextDistance-based algo-
rithm for computing stylometric similarity
Data: Alphabay (A), Dreams (D), and Silk

Road-1 (S)
Input: len(A), len(D), len(S) > 1, and

operation(Op)
∀Op ∈ [within, across]

Output: Average similarity

/* For computing similarity within

w and across a markets */

1 listw, lista = [], []

2 Def Similarity(textA, textB):
3 return normalized-mean(

Levenshtein(textA, textB),
jaccard(textA, textB),
obershelp(textA, textB) )

4 if Op == within then
/* Computing average similarity

for a vendor within a Darknet

market (say A) */

5 allVendors = uniqueVendors(A)
6 for vendor in allVendors do
7 for adA1 in A[vendor] do
8 for adA2 in A[vendor] do
9 listw.append(Similarity(adA1,

adA2))

10 averageSimilarity = MEAN(listw)

11 else
/* Computing average similarity

for a vendor across multiple

markets (say A and D) */

12 allVendors = commonVendors(A, D)
13 for vendor in allVendors do
14 for adA in A[vendor] do
15 for adD in D[vendor] do
16 lista.append(Similarity(adA,

adD))

17 averageSimilarity = MEAN(listacross)

1191
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Figure 5: Performance of traditional stylometric tech-
niques average similarity in ads for vendors within and
across Darknet datasets.

1192

The low similarity scores within and across datasets1193

indicate the limited capabilities of traditional stylo-1194

metric frameworks and suggest the need for mathe-1195

matical models that can abstract features on higher1196

levels. The low scores also serve as a sanity check1197

indicating that vendors on Darknet use different1198

vocabulary and styles in their ads within and across1199

different markets, indicating the need for more pro-1200

found feature-abstraction techniques.1201

A.2.2 Applying Knowledge Transfer:1202

adapting to verify vendors from High1203

Resource (HR) emerging markets1204

Models Layer Micro-F1 Macro-F1
Zero-Shot Baselines

Architectural - 0.7305 0.2173
Methodological - 0.6498 0.1563

End-to-End Baselines
BERT-cased - 0.8750 0.8700

BiGRU-Fasttext - 0.6577 0.6539
Transfer Baselines
Embedding 0.6707 0.6698

Last 0.7061 0.7153
Transfer-BiGRU Second-to-Last 0.6992 0.6911

Weighted Sum All 12 0.6698 0.6703
Weighted Sum Last 4 0.8065 0.8177

Table 7: Performance of Zero-Shot, End-to-End, and
Transfer baselines on the Traderoute-Agora dataset.

GPU Models Trainable Training time
parameters (Hrs:Mins)

Tesla- BERT-cased 112M 32:30
V100 BiGRU-Fasttext 31M 2:25

(32 GB) Transfer-BiGRU 42M 17:23

Table 8: Computational details of trained classifiers on
the Traderoute-Agora dataset.

In this research, we demonstrate the ability of 1205

our approach to adapt and verify migrating ven- 1206

dors from emerging LR markets using a compute- 1207

efficient network (transfer-BiGRU) with SOTA per- 1208

formance. Similar to the results presented in Sec- 1209

tion 5.2, tables 7 and 8 shows the performance 1210

and computational details of transfer-BiGRU clas- 1211

sifier on a HR emerging, Traderoute-Agora, dataset. 1212

As can be seen, despite the lesser trainable pa- 1213

rameters and training time, our transfer-BiGRU 1214

underperforms compared to the end-to-end BERT- 1215

cased baseline. Therefore, we do not claim that our 1216

knowledge transfer approach scales to emerging 1217

vendors in HR Darknet markets. 1218

A.2.3 Model Explanations 1219

Figure 6: Inconsistency in model explanations within
different explainability frameworks.

1220

We also conduct various word attributions-based 1221

explainability experiments on our BERT-cased 1222

methodological classifier to understand our model’s 1223

decisions. Figure 6 illustrates the word attributions 1224

of the same advertisement from a vendor, "pck- 1225

abml", generated through the captum (Kokhlikyan 1226

et al., 2020) and transformers-interpret (Pierse, 1227

2021) frameworks. As can be seen, despite the 1228

ads being the same, different explainability frame- 1229

works generates different word attributions causing 1230

inconsistency in our explanations. 1231

On the other hand, figure 7 illustrates the 1232

captum-based word attributions for similar ads 1233

from a vendor, "uridol". As can be seen, despite 1234

the similarity in ads and generating explanations 1235

from the same framework, we get different 1236

word attributions causing inconsistency in our 1237

explanations. We suppose that computing the word 1238

attributions through the [CLS] token instead of the 1239

entire advertisement could be one of the reasons 1240

for these inconsistencies. While we do not clearly 1241

understand the reasoning behind the discrepancy 1242

in our explanations, we plan to investigate it in the 1243
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future.1244

1245

Figure 7: Inconsistency in model explanations for simi-
lar ads from the same vendor.

1246

A.3 Infrastructure & Schedule1247

Data: We perform our experiments using the1248

standard splitting ratio of 0.75:0.05:0.20 ratio for1249

the train, validation, and test dataset.1250

Training: We perform the training and evalua-1251

tion of our Neural Networks on a single Tesla V1001252

GPU with 32 GBs of memory. The training and1253

evaluation of statistical classifiers are performed1254

on a server with one Intel Xeon Processor E5-26981255

v4 and 512 GBs of RAM. Finally, we train our dis-1256

tilled transfer-BiGRU model for the Low-Resource1257

setting on a GeForce-MX110 graphic card with 21258

GBs of memory.1259

We use Adam optimizer with β1 = 0.9, β2 =1260

0.999, L2 weight decay of 0.01, and a learning rate1261

of 0.001 with warm-up over the first 500 steps, and1262

a linear decay.1263

Architectures & Hyperparameters 8: We train1264

all our statistical models using unigrams and bi-1265

8All the models are implemented in python (Van Rossum
and Drake Jr, 1995) using Sklearn (Pedregosa et al., 2011),
PyTorch (Paszke et al., 2019), and Hugging-face (Wolf et al.,
2020) frameworks.

grams features and balanced class weights. We 1266

experiment SVMs with both linear and Radial ba- 1267

sis function (RBF) kernels, Random Forest with 1268

n_estimators of 100 and 1000, max_depth of 5, 1269

10, and 20, and MLP with 100 layers and 100 1270

neurons each. Finally, we evaluate our statistical 1271

models on the test dataset using a 5-fold nested 1272

cross-validation technique. 1273

Our CNN architecture operates on sequences of 1274

n-grams characters extracted from the Darknet ads. 1275

We then pass the extracted embeddings through 1276

six convolutional with max-pooling and three fully 1277

connected layers. Inspired by (Zhang et al., 2016), 1278

we kept the input length to 1,014, dropout to 0.5 for 1279

the fully connected layers with 768 neurons each, a 1280

kernel size of 7 in the first two convolutional layers 1281

and 3 for the remaining layers. Finally, we set the 1282

filter size to 32 and train our models with a batch 1283

size of 32 until convergence. 1284

The RNN architecture contains a two-layer 1285

Bidirectional-GRU model with two fully connected 1286

layers and fasttext embeddings. We first pack and 1287

pad the input sequence with variable length through 1288

a PyTorch function and then pass it to the embed- 1289

ding layer. After generating the text representation 1290

from the Bi-GRU layers, we finally pass the output 1291

through a softmax layer and perform classification 1292

over it. After some experimentations, we set the 1293

number of hidden units to 768, dropout to 0.65, 1294

batch size to 32, and trained the model until con- 1295

vergence. 1296

Finally, we train several transformers mod- 1297

els (BERT-base-cased, BERT-base-uncased, 1298

RoBERTa-base, and DistilBERT-base-cased) with 1299

a sequence classification head on top at a batch 1300

size of 32 9 for 40 epochs (due to computational 1301

reasons) for the architectural baselines and till 1302

convergence for the methodological baselines. 1303

We also train a BERT-base-uncased model 1304

on the language task for 20 epochs. All the 1305

transformer-based architectures are initialized 1306

from a pre-trained model checkpoint. 1307

Computational Details: Tables 9 and 10 1308

presents details about the number of trainable pa- 1309

rameters and execution time for all the trained mod- 1310

els in the architectural and methodological base- 1311

lines. 1312

9The maximum batch size allowed by our resources with-
out running into memory issues.
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Models (trained on Trainable Training
Dreams data) parameters time in hrs.
Multinomial
Naive Bayes - 53:56

Random Forest - 68:27
Logistic Regression - 79:42

SVM - 81:08
MLP - 94:18

Character-CNN 16M 0:54
GRU-Fasttext 39M 1:12

BERT 110M 25:14
RoBERTa 125M 23:40

DistilBERT 68M 17:57

Table 9: Number of trainable parameters and training
time for architectural baselines.

Models (trained on Trainable Training
Alphabay-Dreams parameters time in hrs.
-Silk Road dataset)

BERT-uncased 111M 67:02
BERT-cased 112M 66:58

DarkBERT-LM 108M 156:14
DarkBERT Classifier 112M 49:39

Adapter BERT 4M 51:00

Table 10: Number of trainable parameters and training
time for methodological baselines.

Evaluation Metrics: We evaluate our trained1313

classifiers against accuracy, micro-average F1, and1314

macro-average F1 (commonly known as macro-F11315

and micro-F1) using the classification report from1316

scikit-learn. We argue that macro-F1 computes the1317

score independently for each class and then takes1318

the average (treating majority and minority classes1319

equally). Given the class imbalance we have in our1320

dataset, we heavily emphasize our trained models’1321

performance on macro-F1 scores. Furthermore, we1322

evaluate the BERT-base language model on loss1323

and perplexity. Finally, we use Centered Kernel1324

Alignment (CKA) to evaluate and compute corre-1325

spondences between our methodological baseline1326

representations before and after finetuning.1327

A.4 Assumptions1328

This work applies a lower-case transformation1329

to the vendor names during the pre-processing1330

step and assumes vendor accounts "agentq" and1331

"AgentQ" to be from the same entity. However,1332

in reality, these entities can refer to two different1333

vendors. Additionally, we train our classifier in a1334

multi-class classification setting, assuming that ads 1335

correspond to only one individual vendor account. 1336

However, our experiments uncover the existence 1337

of copycats on Darknet markets. In reality, it is 1338

always possible for multiple vendors to co-exist 1339

with similar vendor names and hence any super- 1340

vised approach will only generate askew results. In 1341

future, we plan to look toward contrastive learning 1342

approaches (Pan et al., 2021; Zhou et al., 2021) to 1343

avoid these assumptions. 1344

A.5 Limitations 1345

Architectural limitations: This research estab- 1346

lishes a BERT-base-cased classifier to verify mi- 1347

grating vendors across existing and emerging Dark- 1348

net markets. While we acknowledge that using a 1349

bigger BERT model with a sliding window may 1350

improve our classification’s performance, given 1351

the resources at our disposal, we decided against 1352

it. Moreover, as mentioned earlier, most of the 1353

ads used in this research are in English, with a 1354

few exceptions where the vendors use multiple lan- 1355

guages. Therefore, we believe that applying a mul- 1356

tilingual transformer-based model to the classifica- 1357

tion task (Wang and Banko, 2021) can improve our 1358

approach’s performance. 1359

Unsupervised and HR settings: As described in 1360

the appendix section A.4, the core of our approach 1361

lies in the availability of gold labels. VendorLink 1362

utilizes the supervised pre-training step to perform 1363

knowledge transfer and semi-supervised similarity 1364

tasks. Therefore, our approach suffers a significant 1365

limitation in the absence of these ground labels / 1366

unsupervised settings. Furthermore, as described in 1367

A.2.2, our approach could not scale well to verify 1368

vendor migrants in HR emerging datasets. In future, 1369

we plan to expose VendorLink to contrastive learn- 1370

ing approaches to learn universal representations 1371

and overcome the problem. 1372

Diverse Advertisements: In the semi-supervised 1373

task, we compute the likelihood of two vendor ac- 1374

counts being from the same entity by calculating 1375

the similarity between the advertisements of two 1376

vendors. Since one of the novelties of this research 1377

lies in the direction of End-to-End training, we 1378

have avoided using handcrafted labels for the trade 1379

categories of the advertisements. However, as ex- 1380

plained in section 4.3, an advertisement from the 1381

drug category will, by default, be very different 1382

from that of the weapon category. Therefore, in 1383
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future, we plan to train another classifier to clas-1384

sify Darknet advertisements into different trade1385

categories before performing the semi-supervised1386

similarity task.1387

XAI limitations: eXplainaible Artificial Intelli-1388

gence (XAI) is integral in promoting trust and un-1389

derstanding amongst the end-users. From LEA’s1390

perspective, its absence can be viewed as arguably1391

negligent and unreliable. While we acknowledge1392

that our approach currently lacks an XAI feature,1393

in future, we plan to build upon our experiments in1394

A.2.3 and establish a reliable approach for under-1395

standing and explaining our model’s decision.1396

A.6 CKA Algorithm1397

Algorithm 2: Computing CKA similarity
between layers of BERT classifier
Data: Alphabay (A), Dreams (D), and Silk

Road-1 (S)
Input: len(A), len(D), len(S) > 1
Output: CKA similarity

1 similarity = []
2 X ← A+D + S
3 N ← len(X)

4 Def CKA(EmbA, EmbB):
/* Embedding shape :- (N, 13,

512, 768) */

/* Extracting embeddings from

the CLS token */

5 α← CLS(EmbA)
6 β ← CLS(EmbB)

7 CKARBF (αβ)←
⟨Kα,Kβ⟩F

||Kα||F ||Kβ ||F
8 return CKARBF (αβ)

/* Extracting embeddings for the

Darknet ads before and after

training of BERT classifier */

9 EmbA ← BERTClassifierbefore(X)
EmbB ← BERTClassifierafter(X)

/* Computing similarity between

layers :- 13x13 matrix */

10 CKALayers ← CKA(EmbA, EmbB)

1398
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