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Abstract

In-context learning (ICL) has become a classic001
approach for enabling LLMs to handle vari-002
ous tasks based on a few input-output exam-003
ples. The effectiveness of ICL heavily relies004
on the quality of these examples, and previous005
works which focused on enhancing example re-006
trieval capabilities have achieved impressive007
performances. However, two challenges re-008
main in retrieving high-quality examples: (1)009
Difficulty in distinguishing cross-task data dis-010
tributions, (2) Difficulty in making the fine-011
grained connection between retriever output012
and feedback from LLMs. In this paper, we pro-013
pose a novel framework called TDR. TDR de-014
couples the ICL examples from different tasks,015
which enables the retrieval module to retrieve016
examples specific to the target task within a017
multi-task dataset. Furthermore, TDR mod-018
els fine-grained feedback from LLMs to su-019
pervise and guide the training of the retrieval020
module, which helps to retrieve high-quality ex-021
amples. We conducted extensive experiments022
on a suite of 30 NLP tasks, the results demon-023
strate that TDR consistently improved results024
across all datasets and achieves state-of-the-025
art performance. Meanwhile, our approach is026
a plug-and-play method, which can be easily027
combined with various LLMs to improve ex-028
ample retrieval abilities for ICL.029

1 Introduction030

Large language models (LLMs) like GPT-031

4(OpenAI et al., 2024) have demonstrated excep-032

tional performance across a wide range of language033

tasks. These models are typically trained on vast034

datasets, implicitly storing a significant amount of035

world or domain knowledge within their parame-036

ters. However, they are also prone to hallucina-037

tions and cannot fully represent long-tail knowl-038

edge from their training corpora(Xie et al., 2021).039

In-context learning (ICL)(Brown et al., 2020; Black040

et al., 2021; Luo et al., 2023) has emerged as a041

Figure 1: Comparison with previous methods. (a) KL
divergence-based method: Uses LLM scores with KL
divergence minimization, Performance is limited by the
large distributional gap between retriever scores and
LLM scores (b) Reward model-based KL method: Ap-
plies a reward model to smooth scores but still uses
KL divergence, improving performance over (a) while
facing similar alignment challenges. (c) Our method:
Selects retrieval candidates using LLM scores, establish-
ing positive correlation without distribution fitting, thus
avoiding misalignment and improving performance.

transformative approach for LLMs, enabling them 042

to effectively leverage long-tail knowledge learned 043

during training with minimal input-output exam- 044

ples, thereby significantly reducing model hallu- 045

cinations without requiring any updates to model 046

parameters. The effectiveness of ICL heavily de- 047

pends on the quality of the provided examples(Liu 048

et al., 2021; Work). As proposed by (Wang et al., 049

2023) and (Shi et al., 2023), the task of retriev- 050

ing in-context examples for LLMs is specifically 051

designed to improve the quality of retrieved exam- 052

ples. Our work builds on these foundations and 053

focuses on enhancing the retrieval capability of 054

high-quality in-context examples to maximize the 055

potential and performances of LLMs. 056

Despite these advances, several challenges re- 057

main to understand and improve the effectiveness 058

of ICL, which limits its potential. One such chal- 059
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lenge is distinguishing data from different tasks. In060

real-world scenarios, retrieval pools often contain061

examples from multiple tasks, with significant dif-062

ferences in data distribution and characteristics. Re-063

trieving examples from other tasks can negatively064

impact LLMs learning from in-context examples.065

However, this challenge is barely investigated in066

previous work. Table 7 in the Appendix shows spe-067

cific examples retrieved from other tasks, which068

have texts similar to the query and significantly069

different answer patterns, making it difficult for070

LLMs to learn from these retrieval examples.071

Another challenge is how to make the fine-072

grained connection between retriever output and073

feedback from LLMs. The relationship between074

the scores output by retriever and LLM feedback075

scores can be highly correlated. The retriever076

trained with LLM feedback exhibits a more con-077

sistent scoring pattern when compared to the LLM078

feedback scores(Wang et al., 2023). In contrast,079

the scatter distribution of E5(Wang et al., 2022)080

which is not trained with fine-grained LLM feed-081

back shows greater fluctuation and instability. It is082

crucial to establish a direct and efficient relation-083

ship between the output of retriever and LLM to084

enhance the quality of retrieved samples.085

In this paper, we propose a novel framework086

for retrieving high-quality in-context examples for087

large language models, named TDR. We start with088

a bi-encoder(Devlin, 2018) as the initial dense re-089

triever to obtain a candidate set of examples. By090

decoupling the training of examples from different091

tasks, TDR enable the retriever to focus on retriev-092

ing relevant data specific to the target task within a093

multi-task dataset, thereby improving the precision094

and relevance of retrieved examples. Besides, TDR095

employs a specific loss function TDR to model the096

fine-grained feedback from LLMs and guide the097

training of the dense retriever. This process can be098

iterated multiple times to enhance the retriever’s099

ability to retrieve high-quality examples from the100

specific task.101

Following the task setting of (Wang et al., 2023),102

we conducted experiments on a dataset comprising103

30 diverse NLP tasks, spanning nine categories in-104

cluding question answering, natural language infer-105

ence, commonsense reasoning, and summarization,106

etc. Extensive experimental results obtained using107

LLaMA-7B (Touvron et al., 2023) demonstrate that108

our method outperforms the previous state-of-the-109

art approach, showing consistent improvements in110

in-context learning performance across all tasks.111

Similar gains are observed for unseen tasks during 112

training and across LLMs of varying sizes, further 113

validating the effectiveness and versatility of our 114

strategy. 115

Contributions of this paper can be summarized 116

as follows: 117

-We analyze the key factors affecting the capa- 118

bilities of retrieving in-context examples for large 119

language models and observe that distinguishing 120

data from different tasks and making fine-grained 121

connection between the outputs of retriever and 122

LLMs count most. 123

-We propose TDR, a novel scheme to promote re- 124

trieving high-quality contextual examples for large 125

language models. Specifically, decoupling the train- 126

ing of examples from different tasks is developed to 127

further distinguishing data from different domains. 128

Meanwhile, we employ a correlation-enhanced loss 129

function to model the fine-grained feedback from 130

LLMs, which can make better use of feedback from 131

LLMs. 132

-Extensive evaluation on 30 NLP tasks demon- 133

strates that TDR outperforms previous state-of-the- 134

art method, achieving a state-of-art performance 135

across all tasks including seen and unseen tasks 136

during training. 137

2 Related Work 138

2.1 In-context learning 139

In-context learning (ICL) is an emergent capabil- 140

ity of large language models (LLMs) that allows 141

them to solve tasks by conditioning on input-output 142

demonstrations without parameter updates. This 143

phenomenon has been widely studied in models 144

like GPT-3(Brown et al., 2020), PaLM(Chowdhery 145

et al., 2023), and LLaMA(Touvron et al., 2023). 146

Research on ICL primarily focuses on two direc- 147

tions: mechanistic interpretation and example opti- 148

mization strategies. 149

For mechanistic understanding, Studies(Xie 150

et al., 2021) proposes diverse theoretical frame- 151

works and interprets ICL as implicit Bayesian in- 152

ference, where models update latent task repre- 153

sentations based on demonstrations. Concurrently, 154

(Von Oswald et al., 2023) argues that transform- 155

ers implicitly perform gradient descent during ICL, 156

mimicking meta-optimization processes. Recent 157

work(Park et al., 2024) further reveals that LLMs 158

dynamically reconfigure semantic representations 159

when contextual examples scale, shifting from pre- 160

trained priors to task-specific structures. 161
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Figure 2: TDR Framework for Retriever Fine-Tuning and Inference. Training: The retriever selects task-specific
examples based on queries, while the LLM generates corresponding probabilities. TDR optimizes the retriever to
maximize the likelihood of correct answers given queries and examples (Section 3.3). Inference: The fine-tuned
retriever retrieves in-context examples from pool P, which are concatenated with the query and fed to the LLM for
prediction.

In example optimization, researchers explore162

strategies to enhance ICL performance through163

prompt engineering and data selection. Retrieval-164

based methods, such as BM25-based selec-165

tion(Reimers, 2019) and contrastive retriev-166

ers(Rubin et al., 2021), aim to identify seman-167

tically relevant examples. Advanced techniques168

like determinantal point processes(Ye et al., 2023)169

model inter-example interactions, while structured170

prompting(Hao et al., 2022) extends context length171

to thousands of tokens. The LLM-R frame-172

work(Wang et al., 2023) introduced a novel ap-173

proach using a reward model to iteratively train174

dense retrievers for identifying high-quality in-175

context examples. Our work aligns with this di-176

rection, proposing a novel method for dynamic177

example selection.178

2.2 Retrieval-augmented Models179

Retrieval-augmented large language models180

(RALMs) integrate generative capabilities with181

external knowledge to enhance factual accuracy182

and timeliness(Guu et al., 2020; Borgeaud et al.,183

2022). This paradigm addresses hallucinations184

and outdated knowledge in LLMs while enabling185

source attribution(Lewis et al., 2020). Methods186

like (Guu et al., 2020; Borgeaud et al., 2022)187

pretrain retrievers jointly with LLMs, encoding188

retrieved documents into latent representations for 189

generation. Alternatively, kNN-LM(Khandelwal 190

et al., 2019) interpolate model predictions with 191

retrieved token distributions. While kNN-LM 192

avoids additional training, it still requires access 193

to internal model representations. Recently, the 194

utilization of feedback from LLMs received 195

attention from researchers, (Shi et al., 2023) 196

directly applies LLM probabilities as LLM 197

feedback. While (Wang et al., 2023) introduced a 198

novel approach to iteratively train dense retrievers 199

for identifying high-quality in-context examples, 200

studies have shown that training retrievers to 201

leverage fine-grained LLM feedback significantly 202

enhances in-context learning performance com- 203

pared to traditional methods like BM25(Reimers, 204

2019) that do not utilize such feedback. 205

3 Proposed Method 206

In this section, we introduce the training pipeline 207

of our method as illustrated in Figure 2, including 208

architecture, training data generation, correlation- 209

enhanced loss, task-mask mechanism. 210

3.1 Architecture 211

Retriever We adopt a bi-encoder based dense 212

retriever architecture initialized with E5base due 213
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to its excellent performance. Given a query x and214

the candidate examples {ci}ni=1, our retriever en-215

codes the query x into an embedding E(x) and216

each of the candidate examples into embeddings217

E(ci). The retriever score between the query and218

each example is computed via the dot product:219

s(x, ci) = E(x) · E(ci) (1)220

Large Language Model To make a fair compar-221

ison with other existing approaches, we opt specifi-222

cally for LLAMA (Touvron et al., 2023).223

3.2 Training data generation224

For each training example (x, y), we retrieve top-225

n candidates {(xi, yi)}ni=1 from a diverse pool P ,226

excluding (x, y). Candidates are represented as227

(xi, yi), and retrieval is based on x. The candi-228

dates are ranked using a frozen LLM by computing229

the log-likelihood of y given x and each candidate230

(xi, yi):231

PLLM (y|ci, x) = Task( pllm(y|x, ci) ),

log pllm(y|x, ci) =
n∑

j=1

log pllm(yj |x, ci, y<j),

(2)232

where Task() assigns a low score if ci is from a233

different task than x. This method requires only234

a single forward pass, making it computationally235

efficient and task-agnostic.236

3.3 Correlation-enhanced Loss237

To provide fine-grained supervision for the retriever238

based on LLM probabilities, we propose a novel239

correlation-enhanced loss. This loss function is240

designed to align the retriever’s behavior with the241

language model’s preferences by explicitly model-242

ing the relationship between retrieval likelihoods243

and LLM probabilities. In the following, we detail244

the computation of our proposed loss function.245

3.3.1 Probabilities of the retrieved examples246

Each candidate example ci is selected according247

to its similarity score s(x, ci) with respect to the248

query x, where {s(x, ci)}ni=1 represents the set of249

similarity scores for the top-n candidates. These250

scores serve as the foundation for computing the251

retrieval likelihood. Specifically, the retrieval like-252

lihood for each candidate ci is calculated as:253

PR(ci | x) =
es(x,ci)/γ∑

cj∈D′ es(x,cj)/γ
, (3)254

where γ is a hyperparameter that controls the 255

temperature of the softmax. This retrieval likeli- 256

hood reflects the retriever’s confidence in the rele- 257

vance of each candidate example to the query. Ide- 258

ally, the retrieval likelihood should be computed by 259

marginalizing over all examples in the corpus D, 260

but this is computationally intractable in practice. 261

Therefore, we approximate the retrieval likelihood 262

by marginalizing only over the retrieved candidate 263

examples D′. And also in our framework, since 264

the retrieval results are pre-computed, we avoid the 265

need to encode the entire corpus during training. 266

3.3.2 Align probabilities 267

To align the retriever’s behavior with the language 268

model’s preferences, we utilize pre-computed LLM 269

probabilities derived from the previously con- 270

structed dataset. For each candidate example 271

ci ∈ D′, where D′ denotes the set of retrieved 272

candidates, we employ the pre-computed probabil- 273

ity PLLM (y | ci, x) as defined in Equation 2. This 274

probability quantifies the likelihood of the ground 275

truth output y given the input context x ∈ B and the 276

candidate example ci. These probabilities are com- 277

puted using a frozen language model during the 278

dataset construction phase, ensuring consistency 279

and efficiency in training. 280

The correlation-enhanced loss is defined as the 281

element-wise product of two components: (1) 282

the retrieval likelihood PR(c | x) ∈ Rn×m, 283

where n = |B| denotes the batch size and m = 284

|D′| represents the number of retrieved candi- 285

dates, and (2) the pre-computed LLM probability 286

PLLM (y | c, x) ∈ Rn×m. Formally, the loss is 287

expressed as: 288

QCE(c | x, y) = PR(c | x) ·PLLM (y | c, x), (4) 289

This formulation ensures that examples with 290

high LLM probabilities are prioritized during train- 291

ing. The training objective is to optimize the re- 292

triever to prioritize candidates with the highest 293

PLLM (y | c, x) for better LLM predictions, which 294

is achieved by minimizing the following loss func- 295

tion: 296

LCE = − 1

|B|
∑
x∈B

∑
d∈D′

QCE(d | x, y), (5) 297

where B is a batch of input contexts. By min- 298

imizing this loss, we encourage the retriever to 299
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# of datasets→ CQA Comm. Coref. NLI Para. RC Sent. D2T Summ. Avg
task number 3 3 3 5 3 4 3 3 3 30
Zero-shot 29.0 71.5 66.8 44.0 60.0 41.3 50.5 25.6 17.5 44.9
Random 40.4 77.6 67.2 50.9 56.6 58.1 88.8 47.0 38.9 57.9
K-means 41.6 79.5 66.0 50.8 52.6 53.6 90.9 42.5 40.5 57.0
BM25 45.9 78.1 62.9 54.7 66.1 59.9 89.6 49.3 50.0 61.3
E5base 49.0 79.8 64.6 53.6 58.0 60.2 94.4 48.0 50.0 61.4
SBERT 48.5 79.3 64.2 57.5 64.1 60.6 91.9 47.4 49.3 62.1
EPR 48.4 79.3 64.4 64.3 65.1 59.8 91.7 49.7 50.0 63.5
LLM-R 48.7 80.4 70.4 72.5 71.5 59.0 93.6 49.9 51.1 66.5
Ours(1 iter) 55.2 80.1 64.7 71.3 80.8 65.0 92.2 49.9 51.3 68.0
Ours(2 iter) 55.1 80.5 69.1 71.0 81.9 64.3 92.1 49.3 51.3 68.3
Ours(3 iter) 54.5 79.9 70.5 71.5 82.2 63.5 90.4 49.0 51.1 68.1

Table 1: Main results on a suite of 30 NLP tasks. Other results come from (Wang et al., 2023).

prioritize examples that are not only relevant to the300

input context but also beneficial for the language301

model’s predictions.302

3.4 Task-Mask Mechanism303

LCE solves the problem of aligning probabilities304

between our retriever and the LLM, but a crucial305

issue is observed. Specifically, when calculating306

LCE , examples from different tasks are inherently307

assigned very large negative values which results308

in disproportionately high loss values compared to309

those from the same task. It aids our retriever in310

learning to penalize the selection of examples from311

different tasks, but hinders its ability to find more312

suitable examples within the same task.313

To mitigate this issue, we design a Task-Mask314

Mechanism that separates the loss computation by315

introducing loss mask M ∈ RB:316

M = {M1,M2, · · · ,MB}

Mx =

{
1, if pmin < t

0, otherwise
, x ∈ B

(6)317

Here, t denotes the task threshold, a large nega-318

tive value, and {} signifies the concatenation oper-319

ation. The term pmin ∈ R1 denotes the minimum320

of PLLM with a single batch. LCE is then divided321

into two components: the different-task loss Ld,322

which discourages retrieving from different tasks,323

and the same-task loss Ls, which encourages re-324

trieving better examples within the same task:325

Ld = − 1

|B|
∑
x∈B

(∑
d∈D′

QCE(d | x, y) · Mx

)
,

Ls = − 1

|B|
∑
x∈B

(∑
d∈D′

QCE(d | x, y) · (1−Mx)

)
,

(7) 326

And then in alignment with (Wang et al., 2024), 327

we integrate an InfoNCE-based contrastive loss 328

Lcont (Chen et al., 2020) to incorporate the in- 329

batch negatives by designing the candidate with 330

the highest LLM probabilities as the positive ex- 331

ample. Thus, the final training objective for the 332

retriever can be formally expressed as: 333

Lretriever = λ · Lcont + α · Ld + β · Ls (8) 334

where {λ, α, β} are the hyperparameters that deter- 335

mine the relative weighting of the three loss func- 336

tions. 337

4 Experiments 338

4.1 Evaluation Setup 339

Following the task setting of (Wang et al., 2024), 340

we verify the merit of the proposed TDR for a 341

diverse collection of 30 publicly available NLP 342

tasks(Wei et al., 2021; Cheng et al., 2023; Wang 343

et al., 2024), which span 9 distinct categories and 344

include up to 10k examples per dataset. The train- 345

ing retrieval pool is constructed by combining 346

all training examples, excluding the four datasets 347

QNLI, PIQA, WSC273, and Yelp, aiming to assess 348

the models’ generalization ability on unseen tasks. 349

Detailed task classification is shown in Table 2. 350
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Category Datasets
Close QA ARC Challenge ARC Easy NQ
Commonsense COPA HellaSwag PIQA
Coreference Winogrande WSC WSC273
Paraphrase MRPC PAWS QQP
Sentiment Sentiment140 SST2 Yelp
Data-to-text CommonGen DART E2E NLG
Summarize AESLC AGNews Gigaword
Reading Comp. BoolQ MultiRC OpenBook QA SQuAD v1
NLI MNLI (m) MNLI (mm) QNLI RTE SNLI

Table 2: Detailed datasets used in this paper. The bold texts display four held-out datasets which are unseen during
training periods.

# LCE Task-Mask CQA Comm. Coref. NLI Para. RC Sent. D2T Summ. Avg
1 48.0 79.4 67.0 67.0 74.0 60.5 91.5 49.6 50.3 65.2
2 ✓ 54.7 79.6 66.0 71.2 76.4 63.4 91.4 50.2 51.3 67.3
3 ✓ ✓ 55.2 80.1 64.7 71.3 80.8 65.0 92.2 49.9 51.3 68.0

Table 3: Ablation study of our proposed TDR on the test set. The values in the table show the average performance
of the model across 9 categories consisting of 30 tasks.

During training, we initialize the retriever using351

the pre-trained E5base model (Wang et al., 2022).352

The retriever is fine-tuned on the generated dataset353

with a batch size of 32 and 4 examples per batch.354

Training is conducted for 12,000 steps on 8 V100355

GPUs, completing in approximately two hours,356

with a learning rate of 3 × 10−5. To mitigate the357

influence of random seeds, we report the average358

performance metrics across each task category. For359

task evaluation, we employ LLaMA-7B (Touvron360

et al., 2023) as the standard language model to361

ensure consistency and fairness in comparisons.362

Following prior work (Wang et al., 2023), we re-363

trieve 8 in-context examples for each test input in364

all evaluations except zero-shot settings.365

Building upon this foundation, our method TDR366

addresses the insufficient utilization of LLM feed-367

back in complex training procedures by explicitly368

modeling LLM-generated feedback to supervise369

retriever training. Additionally, we decouple the370

training of examples across distinct tasks, further371

enhancing performance across all evaluated tasks.372

We perform three iterative training cycles, as the373

second iteration yields the best performance. The374

experimental results are recorded as "Ours 1 iter,"375

"Ours 2 iter," and "Ours 3 iter" in Table 1. The376

results demonstrate that our approach achieves sig-377

nificant improvements across seven task categories,378

delivering an average accuracy gain of 1.8% over379

the previous state-of-the-art method. Notably, TDR380

surpasses previous SOTA method by 10.7% on the 381

task category Paraphrase, validating its significant 382

effectiveness. 383

Furthermore, as shown in Figure 3, our method 384

significantly outperforms the "Random" baseline, 385

achieving an average improvement of 22.2% across 386

all 30 tasks, highlighting its effectiveness in lever- 387

aging task - specific information. It also demon- 388

strates robust generalization, consistently beating 389

the random baseline on four unseen training tasks, 390

indicating its ability to handle open - set scenarios. 391

However, it performs relatively poorly on the WSC 392

and RTE tasks, likely due to the limited number 393

of training examples (554 for WSC and 2,490 for 394

RTE) in a 600,000 - example retrieval pool, which 395

may impede the retriever. Despite this, our method 396

still yields competitive results, showing its robust- 397

ness across diverse tasks. 398

Detailed experimental results for all 30 tasks are 399

provided in Table 5 of the supplementary material. 400

In the subsequent experiments, we consistently re- 401

fer to our method as TDR, which corresponds to 402

the "Ours 2 iter" configuration. 403

5 Analysis 404

5.1 Ablation Study 405

Here, we study how each component in TDR influ- 406

ences the overall performance. We consider one or 407

more components at each stage and Table 3 summa- 408

rizes the results on training set of the 9 categories 409
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consisting of 30 NLP tasks. Note that baseline at410

Row #1 is a dense bi-encoder retriever finetuned by411

minimize the KL-Divergence between the retriever412

score distribution and the LLM preference.413

By incorporating the LCE that appropriately414

aligns the retriever probabilities PR and task-415

specific LLM probabilities PLLM , the variant at416

Row #2 makes the absolute improvement over the417

base model at Row #1 on the average score. This418

is not surprised as the correlation-enhanced loss419

LCE can establish a positive correlation between420

the retriever probabilities and the LLM probabili-421

ties while avoiding the direct use of KL divergence422

to fit the distributions, given the significant differ-423

ences between them. Specifically, the retriever ac-424

tively adjusts its vector space to bring the example425

c, which maximizes the probability of the answer426

y, closer to the given query x.427

The task-mask mechanism further enhances the428

retriever by dividing the training objective into429

two parts: distinguishing between different tasks430

and finding better examples within the same task,431

achieving the best results as shown in Row #3.432

5.2 Main Results433

Table 1 presents the main results of our experi-434

ments. We report the average metrics for Close QA435

(CQA), Commonsense Reasoning (Comm.), Coref-436

erence (Coref.), NLI, Paraphrase (Para.), Reading437

Comprehension (RC), Sentiment (Sent.), Data-to-438

text (D2T), Summarize (Summ.). We adopt “Ran-439

dom” as a benchmark for comparison, which ran-440

domly selects examples for in-context learning eval-441

uation. Dense retriever baselines include E5(Wang442

et al., 2022), SBERT(Reimers, 2019), EPR (Rubin443

et al., 2021) and LLM-R(Wang et al., 2023).444

5.3 Universality and Performance Analysis of445

TDR446

Our method TDR is initially trained using feed-447

back from LLaMA-7B. To validate its universality,448

we evaluate TDR on the aforementioned dataset in449

conjunction with larger language models GPT-Neo-450

2.7B(Black et al., 2021) and LLaMA-13B without451

training. As shown in Table 4 the results reveal that452

our method TDR achieves average performance453

improvements of 0.5% and 1.1% over LLM-R, and454

surpasses the representative sparse retriever method455

BM25 by 7.9% and 5.3%, respectively. These find-456

ings underscore the versatility of our approach,457

which seamlessly integrates with diverse LLMs458

to enhance in-context learning capabilities by re- 459

trieving high-quality examples. 460

Notably, our method exhibits pronounced ad- 461

vantages in task types requiring semantically rich 462

contexts, such as Paraphrase (Para.) and Read- 463

ing Comprehension (RC) — where retrieved ex- 464

amples exhibit patterns closely aligned with the 465

LLM’s response patterns. This performance gain 466

is attributed to the higher-quality context retrieval 467

enabled by our framework. Conversely, tasks of 468

categories like Commonsense Reasoning (Comm.) 469

and Data-to-text (D2T), where retrieved examples 470

diverge significantly from the desired answer pat- 471

terns and performance relies more heavily on the 472

inherent reasoning capabilities of LLMs, the advan- 473

tages of our method diminish. This phenomenon is 474

corroborated by Table 1 and Figure 3. Table 6 in 475

the Appendix further illustrates this dichotomy by 476

presenting representative retrieval examples from 477

these two task types. 478

5.4 Visualization of Training Effects 479

To evaluate our correlation-enhanced loss, we an- 480

alyze the retriever’s performance before and after 481

training using two metrics: (1) the proportion of 482

retrieved examples from incorrect tasks, and (2) 483

their impact on the language model’s output proba- 484

bilities. The results are shown in Figure 4. In our 485

setup, the retriever retrieves top-40 examples for 486

10,000 queries. The figure (a) shows the propor- 487

tion of examples from incorrect tasks decreased 488

from 6.67% to 2.23% after training, demonstrating 489

our loss function’s ability to focus on same-task 490

examples. This aligns with our first objective.The 491

figure (b) compares the output probabilities before 492

(blue dots) and after (red dots) training. The red 493

dots are more concentrated in the upper-left trian- 494

gular region and overall higher, indicating that post- 495

training examples lead to higher probabilities for 496

the correct output y. This is expected, as retrieved 497

examples should maximize y’s probabilities, align- 498

ing with our second objective. 499

6 Conclusion 500

In this work, we address two critical challenges in 501

in-context learning (ICL) for large language models 502

(LLMs): (1) difficulty in distinguishing cross-task 503

data distributions and (2) underutilized fine-grained 504

feedback from LLMs. To tackle these issues, we 505

propose TDR, a novel framework that systemati- 506

cally enhances example retrieval for ICL through 507
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CQA Comm. Coref. NLI Para. RC Sent. D2T Summ. Avg
gpt-neo-2.7b
BM25 41.1 67.0 53.2 47.6 64.5 51.2 78.3 45.4 47.3 54.4
LLM-R 42.2 68.0 59.7 71.5 73.0 51.6 91.6 46.9 48.8 61.8
Ours 41.4 67.8 60.4 70.2 82.0 53.4 90.9 46.0 48.8 62.3
llama-13b
BM25 49.6 80.1 61.1 67.0 69.9 60.5 92.5 49.9 50.9 64.6
LLM-R 52.0 83.7 71.2 76.8 73.3 62.2 94.2 50.7 52.0 68.8
Ours 59.2 83.3 70.4 74.3 82.2 64.6 93.2 49.8 51.9 69.9

Table 4: Generalization to LLMs that are not used for training.

Figure 3: Performance gains of TDR over the random selection baseline.

Figure 4: Visualization of Training Effects: (a) Propor-
tion of Cross-Task Retrieval Before and After Training;
(b) Correspondence Between Retrieved Examples and
LLM Probabilities Before and After Training.

feedback-aware training and task-specific decou-508

pling. The task-decoupled training strategy ensures509

precise retrieval of domain-relevant examples from510

multi-task datasets. Simultaneously, by designing511

a specialized correlation-enhanced loss function to512

model fine-grained LLM feedback, our method en-513

ables retrievers to learn patterns that retrieve better514

examples for LLMs.515

Extensive experiments across 30 diverse NLP516

tasks demonstrate the superiority of TDR, achiev-517

ing state-of-the-art performance over existing meth-518

ods. Notably, our framework shows strong gener- 519

alization capabilities, maintaining consistent gains 520

on unseen tasks and across LLMs of varying scales. 521

These results validate that explicit modeling of 522

LLM feedback and task-decoupled training strat- 523

egy are crucial for unlocking the full potential of 524

ICL. 525

7 Limitations 526

The inherent feature discrepancies across different 527

tasks presenting persistent challenges in developing 528

task decoupling strategies. In our framework, TDR 529

considers retrieval examples as two categories: be- 530

longing to the current task and not belonging to 531

the current task, which may result in the ICL abil- 532

ity not benefiting from examples of similar tasks. 533

More research remains necessary to develop adap- 534

tive penalty mechanisms that adjust penalty co- 535

efficients based on inter-task feature divergence 536

magnitude, such as applying stronger regulariza- 537

tion for tasks with significant feature disparities 538

while reducing constraints for those with minimal 539

discrepancies. 540

8



Another limitation of our study is related to the541

utilization of high-quality examples retrieved dur-542

ing evaluation periods. Based on previous stud-543

ies, we set the number of in-context examples to 8544

and used it for a single round inference evaluation.545

However, the mutual coordination and influence546

among retrieval examples, as well as the way in547

which LLMs utilize these retrieval examples, such548

as using multiple rounds of evaluation instead, can549

be a promising direction for further exploration.550
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achieved a 1.8% improvement in average perfor-767

mance across all tasks, demonstrating the effec-768

tiveness and potential of this in-context example769

retriever paradigm.770

B Pattern analysis of retrieved examples771

from different task types772

As shown in Table 6, for the examples in the two773

lines above, which come from category Paraphrase774

(Para.) and Reading Comprehension (RC) respec-775

tively, retrieved examples exhibit patterns closely776

aligned with the patterns of queries and LLM’s re-777

sponses. For the examples in the two lines below,778

which come from category Commonsense Reason-779

ing (Comm.) and Data-to-text (D2T) respectively,780

retrieved examples diverge significantly from the781

desired answer patterns and performance relies782

more heavily on the inherent reasoning capabili-783

ties of LLMs.784

C Analysis of retrieval examples from785

other tasks786

As shown in Table 7, examples retrieved from other787

tasks have similar text content with the queries, but788

patterns and contents of the retrieved answers are789

significantly different from those required for the790

answer corresponding to the query, which makes791

distinguishing retrieval examples from different792

tasks an important factor limiting in-context learn-793

ing performance of LLMs.794
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Dataset Zero-shot Random Kmeans BM25 E5base SBERT EPR LLM-R Ours
AESLC 5.8 19.4 19.0 26.8 27.0 25.3 26.0 27.3 27.0
AGNews 31.5 67.4 71.9 90.6 90.6 90.2 91.8 93.5 94.0
ARC Challenge 35.6 39.7 40.5 40.3 44.6 42.8 43.0 43.6 48.8
ARC Easy 51.0 60.0 61.8 59.9 63.0 63.1 63.1 63.3 78.0
BoolQ 64.7 70.0 69.0 74.7 72.4 73.9 74.8 75.1 74.2
CommonGen 19.2 36.3 34.4 37.6 37.4 37.6 39.2 37.7 37.8
COPA 66.0 80.0 85.0 78.0 83.0 82.0 82.0 84.0 85.0
DART 22.9 52.0 46.6 55.9 54.7 54.4 56.2 57.2 56.6
E2E NLG 34.6 52.7 46.4 54.5 51.8 50.2 53.6 54.7 53.4
Gigaword 15.3 30.0 30.7 32.7 32.5 32.6 32.4 32.5 32.9
HellaSwag 71.5 73.9 74.0 74.9 75.2 75.3 75.2 75.5 76.1
MNLI (m) 35.8 46.3 44.2 50.1 44.5 50.8 59.9 70.2 73.7
MNLI (mm) 35.6 48.1 45.4 48.3 44.7 49.3 61.5 72.0 74.5
MRPC 69.1 49.5 38.0 61.8 41.2 52.7 55.9 75.3 78.7
MultiRC 57.0 48.5 34.1 54.2 56.0 55.3 50.4 51.5 55.9
NQ 0.3 21.5 22.6 37.6 39.3 39.4 39.2 39.1 38.5
OpenBook QA 41.6 49.8 49.0 49.6 51.4 51.4 49.6 52.2 63.6
PAWS 53.2 57.0 56.6 56.6 55.4 58.2 57.7 56.6 81.6
PIQA 77.0 79.1 79.4 81.3 81.3 80.7 80.5 81.6 80.3
QNLI 49.2 56.4 53.4 62.2 61.5 61.9 65.0 69.6 67.7
QQP 57.7 63.4 63.3 79.8 77.5 81.3 81.7 82.6 85.4
RTE 59.6 59.9 58.5 65.7 63.9 67.2 66.8 68.6 56.0
Sentiment140 49.3 88.6 89.4 90.8 93.9 92.2 91.4 91.1 89.1
SNLI 39.8 43.7 52.5 47.1 53.5 58.4 68.4 82.0 83.1
SQuAD v1 2.1 64.1 62.3 61.2 60.8 61.6 64.3 57.3 63.5
SST2 54.4 85.9 89.7 84.4 92.1 87.6 88.7 93.8 92.5
Winogrande 62.0 66.7 66.5 67.5 66.9 66.5 66.5 68.1 68.0
WSC 64.4 60.6 56.7 56.7 61.5 63.5 61.5 63.5 79.9
WSC273 74.0 74.4 74.7 64.5 65.2 62.6 65.2 79.5 59.6
Yelp 47.9 92.0 93.5 93.5 97.3 95.9 95.1 95.9 94.7
Average 44.9 57.9 57.0 61.3 61.4 62.1 63.5 66.5 68.3

Table 5: Detailed experimental results for all 30 tasks of our main experiment.
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Task name QQP

Test Input
"How will I contact a good hacker?" "How do l contact a hacker?"
Would you say that these questions are the same?

Test Answer Yes

Retrieved Example
"How will I contact a genuine hacker?" "How do l contact a hacker?"
Would you say that these questions are the same? Yes

Task name BoolQ

Test Input
Tinker Bell (film series) – A live-action film, with Reese Witherspoon playing
Tinker Bell and Victoria Strouse writing the script, is in the works.
Can we conclude that are there going to be more tinkerbell movies?

Test Answer Yes

Retrieved Example
Tinker Bell (film series) – A live-action film, with Reese Witherspoon playing
Tinker Bell and Victoria Strouse writing the script, is in the works.
Can we conclude that are there going to be any more tinkerbell movies? Yes

Task name COPA
Test Input The horse bucked. What is the cause?
Test Answer The rider stroked the horse.
Retrieved Example The rider fell to the ground. What is the cause? The bull bucked the rider.
Task name DART

Test Input
Triple: Belgium, LANGUAGE, German language
What is a sentence that describes this triple?

Test Answer German is the spoken language in Belgium.

Retrieved Example
Triple: Belgium, LANGUAGE, French language
What is a sentence that describes this triple?
French is the spoken language in Belgium.

Table 6: The bold texts are the ground-truth answers for the test inputs and retrieved candidates. These four
examples belong to the category Paraphrase, Reading Comprehension, Commonsense Reasoning and Data-to-text
respectively.
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Task name DART

Test Input
Triple: Clowns, priceRange, cheap; Clowns, familyFriendly, yes; Clowns,
near, Café Sicilia. What is a sentence that describes this triple?

Test Answer A family friendly place is Clowns. It’s cheap. It’s near Café Sicilia.

Retrieved Context
Attributes: name = Clowns, priceRange = cheap, familyFriendly = yes,
near = Café Sicilia. Produce a detailed sentence about this restaurant.

Retrieved Answer
A newly-opened venue near Café Sicilia, Clowns offers cheap, family
-friendly dining.

Task name NQ
Test Input Question: who do you play as in halo 5? Answer:
Test Answer a Spartan
Retrieved Context @5toSucceed @halo9 thank you. What is the sentiment of this tweet?
Retrieved Answer Positive
Task name MultiRC

Test Input

{ { lang } } centers on a man who roams the street night after night.
Hidden under his hat and rain jacket he strives for one goal :
to find the culprit - the one whom he can make responsible for his suffering .
If he wanted to , he could confront him , but he lacks the audacity to do so .
He considers suicide , but his courage fails him once again .
The options do not appear to present him with a way out and would not
personally satisfy him . Finley blames not himself , but only others .
In this case he looks to his girlfriend , Violet . He drowns Violet in the bath
whilst giving her a massage , Which had become a common ritual for them .
On one hand he does this out of malice , on the other to be close to her just one
more time. Through this action he wishes to break the growing distance he has
come to feel between them , though the actual outcome is the infliction of the
greatest possible loneliness , as he turns into a monster . Finley only realizes
with hindsight that his misdeeds far surpass those of Violet .
Question: "What was Finley doing with Violet before he killed her?"
Response: "They were in bed together"
Does the response correctly answer the question?

Test Answer No

Retrieved Context

Write a short summary for this text: or how about a girl who is equally obsessed
with this guy even though he continually tells her he ’s dangerous , could
inadvertently kill her and treats her as if she were a child ? this same girl becomes
so depressed when her boyfriends breaks up with her that she begins to take
risks, some seemingly suicidal , because such behavior summons visions of him.

Retrieved Answer some scholars find disturbing elements in twilight books

Table 7: Retrieved examples from other tasks. The bold texts are the ground-truth answers for the test inputs and
retrieved candidates.
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