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ABSTRACT

Multimodal intent recognition poses significant challenges, requiring the incorpo-
ration of non-verbal modalities from real-world contexts to enhance the compre-
hension of human intentions. However, most existing multimodal intent bench-
mark datasets are limited in scale and suffer from difficulties in handling out-of-
scope samples that arise in multi-turn conversational interactions. In this paper,
we introduce MIntRec?2.0, a large-scale benchmark dataset for multimodal intent
recognition in multi-party conversations. It contains 1,245 high-quality dialogues
with 15,040 samples, each annotated within a new intent taxonomy of 30 fine-
grained classes, across text, video, and audio modalities. In addition to more than
9,300 in-scope samples, it also includes over 5,700 out-of-scope samples appear-
ing in multi-turn contexts, which naturally occur in real-world open scenarios,
enhancing its practical applicability. Furthermore, we provide comprehensive in-
formation on the speakers in each utterance, enriching its utility for multi-party
conversational research. We establish a general framework supporting the orga-
nization of single-turn and multi-turn dialogue data, modality feature extraction,
multimodal fusion, as well as in-scope classification and out-of-scope detection.
Evaluation benchmarks are built using classic multimodal fusion methods, Chat-
GPT, and human evaluators. While existing methods incorporating nonverbal in-
formation yield improvements, effectively leveraging context information and de-
tecting out-of-scope samples remains a substantial challenge. Notably, powerful
large language models exhibit a significant performance gap compared to humans,
highlighting the limitations of machine learning methods in the advanced cogni-
tive intent understanding task. We believe that MIntRec2.0 will serve as a valuable
resource, providing a pioneering foundation for research in human-machine con-
versational interactions, and significantly facilitating related applications.

1 INTRODUCTION

Understanding human intentions in multimodal scenarios holds significant research importance and
has broad applications, such as human-computer interaction (Xul [2019), intelligent transportation
system (Kaffash et al., 2021), and medical diagnosis (Tiwari et al.| [2022; [Moon et al.| [2022). For
instance, perceiving user tones, expressions, and body language enables better capture of user needs
in intelligent customer systems. This also leads to more personalized, efficient, and natural interac-
tions (Luo et al.,|2022). While there emerge numerous multimodal language datasets in recent years,
particularly in multimodal sentiment analysis and emotion recognition (Li et al.,|2019; (Chudasama;
et al.| [2022; Hu et al., 2022b), few datasets provide high-quality multimodal intent resources, which
significantly hampers related research. Zhang et al.|(2022) pioneered this area by formulating intent
taxonomies in multimodal conversational scenarios and providing 2,224 annotated utterances with
text, video, and audio information. However, it has three major limitations: First, its scale is rela-
tively small compared to other multimodal datasets (Zadeh et al.| 2018bj |Poria et al.,2019), leading
to potential overfitting and impacting the generalization ability. Second, it only includes utterances
from single-turn dialogues, neglecting context and multi-party information. Third, it fails to con-
sider out-of-scope utterances, which commonly occur in dialogue systems (Larson et al.| 2019) and
are crucial for improving system robustness.
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Glenn | Hey. dina, is something wrong? ’ Religious cr-oh, this?

You know the rules. no With a baby jesus and three
religious crap in the store. wise men?
____________________________________________ >
Turn: 1 Turn: 2 Turn: 3 Turn: 4 t

Figure 1: An example from the MIntRec2.0 dataset. More examples are provided in the Appendix

To address these issues, we propose MIntRec2.0, a large-scale multimodal multi-party benchmark
dataset that comprises 1,245 high-quality dialogues, totaling 12.3 hours. A representative sample is
depicted in Figure[I] The construction of this dataset involves four main steps. Initially, raw videos
from three TV series are collected and segmented into utterance-level portions based on timestamps.
These segments are then manually grouped into dialogues in alignment with the conversational
scenes and events. Subsequently, each utterance is annotated with speaker identity information
to leverage specific contextual information. Following this, we propose a new intent taxonomy
incorporating 30 fine-grained intent classes. An OOS tag is also added to identify utterances that
do not belong to any known classes, a phenomenon commonly occurred in real-world, open-ended
scenarios. Lastly, six experienced workers annotate each piece of data using text, video, and audio
information. The final dataset contains 9,304 in-scope and 5,736 out-of-scope samples.

We develop a general framework for multimodal intent recognition and out-of-scope detection
within single-turn and multi-turn conversations. First, data inputs are organized at both utterance and
dialogue levels, where the latter retrieves all the context information corresponding to the speaker
in the current dialogue turn. Secondly, we extract text, video, and audio features for each utter-
ance. For multi-turn dialogues, context information is concatenated to the utterance in the current
turn using a special token as a separator. Third, we perform multimodal fusion on the extracted
features. Specifically, we employ two strong multimodal fusion methods (Tsai et al., 2019} [Rah-
man et al.| |2020) to leverage nonverbal information by capturing cross-modal interactions. In the
training stage, in addition to the multimodal fusion loss, cross-entropy loss is applied under the su-
pervision of hard and soft targets for learning in-scope and out-of-scope data, respectively. During
inference, a threshold-based method (Shu et al.,|2017) is adopted to both identify high-confidence in-
scope and detect low-confidence out-of-scope samples. Experimental results demonstrate that using
multimodal information can effectively improve in-scope intent recognition accuracy and enhance
out-of-scope detection robustness. Furthermore, we evaluate ChatGPT and human performance un-
der a challenging setting with few-shot samples as prior knowledge. The results reveal a significant
performance gap of over 30% absolute scores between large language models (LLMs) and humans.
Humans achieve the state-of-the-art benchmark performance of 71% accuracy with merely 7% of the
training data, indicating this dataset is extremely challenging for existing machine learning methods.

Contributions. (1) This paper presents MIntRec2.0, the first large-scale multimodal multi-party
conversational intent dataset. This dataset provides detailed annotations for both intent and speaker
identity for each utterance within multimodal contexts and enables out-of-scope detection in open-
world scenarios. (2) We establish a universal framework for in-scope classification and out-of-scope
detection, applicable to both single-turn and multi-turn conversations, and introduce strong bench-
mark baselines. (3) Extensive experiments demonstrate the effectiveness of leveraging multimodal
information in intent recognition. However, considerable opportunities for enhancement persist in
existing methods when compared with human performance, highlighting the challenges inherent in
high-level cognitive intent recognition tasks and underscoring the value of this dataset in advancing
related research. This dataset will be released under the CC BY-NC-SA 4.0 license, and codes will
be publicly available as open source. A portion of the data are accessible in supplementary materials.
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Table 1: Comparison of the MIntRec2.0 dataset with previous intent datasets. #I and #U represent
the number of intent classes and utterances. Conv. denotes the conversational nature of the dataset.
OOS and Multi-Party indicate the inclusion of out-of-scope examples and multiple speakers per
dialogue, respectively. T, V, and A represent text, video, and audio information.

Datasets #1 #U Conv. Scenes Conv. Type 00Ss Multi-Party T \' A
ATIS (Tiir et al.|2010) 17 6,371 v Single-turn x X v X X
Snips (Coucke et al.}[2018) 7 14,484 v Single-turn X X 4 X X
CLINC150 (Larson et al.}|2019) 150 23,700 v Single-turn v X v X X
MDID (Kruk et al.;[2019) 7 1,299 X X X VA ¢
Intentonomy (Jia et al.}[2021) 28 14,455 X B X X X v X
MintRec (Zhang et al.}2022) 20 2224 v Single-turn x X v v/
MIntRec2.0 30 15,040 v Multi-turn v v v v/

2 RELATED WORK

This section provides a brief overview of the existing literature in benchmark datasets, multimodal
fusion methods, and multimodal multi-turn conversations. Further related works focusing on video
understanding and out-of-scope intent detection are detailed in Appendix

Benchmark Datasets. Intent recognition is a substantial task in NLP, supported by numerous bench-
mark datasets. These datasets can be broadly categorized into two branches. The first branch, origi-
nating from task-oriented dialogues, includes datasets like ATIS (Tiir et al.,|2010), SNIPS (Coucke
et al.l 2018)), CLINC150 (Larson et al.l 2019), BANKING77 (Casanueva et al.l 2020). Notably,
CLINC150 incorporates out-of-scope data to test system robustness. SIMMC 2.0 (Kottur et al.,
2021) is a multimodal dataset focusing on the shopping domain but lacks intent annotations. The
second branch derives from open-ended dialogues, represented by multi-turn dialogue datasets such
as DailyDialog (Li et al., 2017) and SWBD (Godfrey et al., |1992). However, these datasets primar-
ily offer dialogue acts and are less suited for specific intent classes. Recent trends show a growing
interest in multimodal language datasets for both single-turn (Zadeh et al., 2016} 2018b; [Yu et al.,
2020) and multi-turn dialogues (Busso et al.l 2008 [Poria et al.l 2019; Saha et al., [2020). A ma-
jor difference between these two branches is that the former usually stems from human-computer
interactions, while the latter originates from human-human interactions (detailed in Appendix [C).
Some studies have also explored visual or multimodal intents using image modality (Jia et al., | 2021}
Kruk et al 2019). MIntRec (Zhang et al [2022) stands as the first multimodal intent recognition
dataset for open-ended dialogues. MIntRec2.0 significantly expands in scale from 2,224 to 15,040
utterances and is designed to handle both out-of-scope utterances and multi-turn dialogues. A com-
parison between MIntRec2.0 and other benchmark intent datasets is presented in Table[I]

Multi-modal Fusion Methods. Multimodal fusion presents prosperous development in multimodal
language understanding. Early methods aim to learn cross-modal relations and single-modal prop-
erties (Fukui et al.| [2016; Zadeh et al., 2017 [2018a; Hazarika et al., [2020) or efficient multimodal
representations (Liu et al.,|2018)). MulT (Tsai et al., 2019) designs an effective crossmodal attention
module to learn adaptations across different modalities. MAG-BERT (Rahman et al., 2020) inte-
grates nonverbal information into pre-trained language models using a multimodal adaptation gate.
Deep-HOSeq (Verma et al., 2020) combines LSTMs and CNNs to capture intra-modality and inter-
modality dynamics, incorporating temporal-granularity information. MBT (Nagrani et al., [2021)
restricts cross-modal information flow through tight fusion bottlenecks, facilitating the connection
of relevant inputs in each modality. We also explore state-of-the-art methods in multimodal senti-
ment analysis (MSA), such as Self-MM (Yu et al.| 2021) and MMIM (Han et al.| 2021). However,
these methods rely on specific sentiment properties (e.g., polarity) that are not applicable to our task.

Multimodal Multi-turn Conversations. Leveraging multimodal information is a hot topic in multi-
turn conversations (Ghosal et al.| 2019; Majumder et al.| 2019; |Ghosal et al., |2020a)). For instance,
DialogueRNN (Majumder et al., 2019) uses GRU networks to track important temporal informa-
tion, including the history of speaker states and global states. MM-DFN (Hu et al., [2022a)) proposes
a graph-based dynamic fusion module to reduce historical redundancy while tracking the history
of speaker states. Another approach is to construct multimodal fusion networks to integrate con-
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Table 2: Expanded intent classes in the MIntRec2.0 dataset with brief interpretations.

Intent Categories Interpretations
Doubt Convey a sense of mistrust or uncertainty regarding someone or something (e.g., questioning with an expression of disbelief).
e];:r):glrif)s:s Acknowledge Indicate comprehension or agreement (e.g., using affirming words such as alright, well).
or Refuse Show unwillingness or rejection (e.g., using negative words to decline an offer or request).
attitudes ~ Warn Alert to potential dangers or risks (e.g., signaling alarm with a serious expression and tone).
Emphasize Highlight the importance or significance of something (e.g., speaking with stress and a determined attitude).

Ask for opinions  Request others’ views or thoughts on a particular matter (e.g., asking for others’ perspectives).

i Confirm Validate or ascertain the truth or accuracy of something (e.g., affirming certainty without raising doubts).
Achieve . . . - p
goals Explain Provide an elaborate account or clarification (e.g., using explanatory and causal words such as because).
Invite Offer someone to participate in an activity or event (e.g., asking someone to join in activities like going out).
Plan Organize or schedule an event or action (e.g., deliberating on schedules and making commitments for the future).

textual information between different modalities, such as M2FNet (Chudasama et al.| [2022)) and
MMGCN (Hu et al., 2021). However, modeling temporal contextual information with multimodal
fusion representations does not yield good results (see Appendix[D). Therefore, we propose a simple
baseline that concatenates the context information of inputs before multimodal fusion.

3 THE MINTREC2.0 DATASET

Data Sources & Dialogue Division. First, we collect raw videos from three different TV series:
Superstore, The Big Bang Theory, and Friends on YouTube and obtain subtitles from OpenSubtitles.
These TV series cover a range of various scenes and topics relevant to daily life (Appendix [E).
We ensure that the selected videos do not infringe on user privacy and are free from malicious
content (Appendix [F). The videos are segmented into continuous clips according to timestamps in
the transcripts, and we take care to exclude audience signals, such as laugh tracks, to maintain the
quality of the dataset. We then organize these clips into a series of dialogues for multi-turn dialogue
intent analysis. Specifically, we manually annotate the start and end points of video segments for
each dialogue and distinguish different dialogues based on whether they occur in the same scene
and episode, as suggested in (Poria et al., [2019). Additionally, we establish a baseline to estimate
the utterance boundary in each segmented dialogue (Appendix [G).

Table 3: Data statistics. # de-

notes the total number.
254 o o
oo # data sources 3
sasoue # intents classes 30
s = # dialogues 1,245
e £ # utterances 15,040
= # in-scope utterances 9,304
o I I I I I l - # out-of-scope utterances 5,736
L2 # words in utterances 118,477
5 Fd S K CEFESSESS # unique words in utterances 9,524
g Average length of utterances 7.9
Maximum length of utterances 46
. . . . . . . Average video clip duration 3.0 (s)
Figure 2: In-scope and out-of- Figure 3: Distribution of in-scope in-  Maximum video clip duration 1.9 (s)
Video hours 12.3 (h)

scope data distribution. tents in the MIntRec2.0 dataset.

Speaker Information. In multi-turn conversations, we can leverage context information to help
analyze the intent conveyed by the speaker in each dialogue turn. However, context information may
involve multiple speakers (e.g., there are a total of 51.5% dialogues with more than two speakers).
As using context information of speakers is helpful for intent analysis (Ghosal et al., 2020b), we
aim to differentiate different speakers in each dialogue and annotate the identities of the speakers.
Specifically, we perform annotation of 21, 7, and 6 main characters in Superstore, The Big Bang
Theory, and Friends, respectively, which account for 90.4% of the data. The remaining data include
other characters with fewer appearances (Refer to Appendix [H]for statistics of different characters).

Expanded Intent Classes. In this work, we utilize the established intent taxonomy from the
MlintRec dataset (Zhang et al.,[2022). However, as the dataset primarily focuses on discrete single-
turn conversations, and the existing 20 intent classes are insufficient for capturing the diverse range
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of intents in continuous multi-turn conversations. To address this issue, we conduct a comprehen-
sive analysis of the divided dialogues and collect 10 additional high-frequency intent tags for the two
coarse-grained intent classes (i.e., express emotions or attitudes and achieve goals). Specifically, we
add doubt, acknowledge, refuse, warn, emphasize to the former category, and ask for opinions,
confirm, explain, invite, plan to the latter. Interpretations of both the expanded and existing intent
categories can be found in Table [2] and Appendix [l respectively. Notably, these newly introduced
classes account for 37.3% of the utterances in our dataset, highlighting their significance in intent
understanding. The intent taxonomies are highly applicable across various domains, offering con-
siderable promise for real-world applications (Further discussions can be found in Appendix [J)).

Out-of-scope Utterances. Given that intents usually reside within particular contextual
events (Schroder et al., |2014), there inevitably exist some utterances that fall outside the predefined
intent categories in continuous conversational interactions, as suggested in (Larson et al., [2019).
There are two common types of such utterances. First, there are statements that primarily convey
personal views or factual information, which correspond to the statement-opinion and statement-
non-opinion categories, as defined in the 42 dialogue acts (Godfrey et al.| [1992). While this type
of dialogue act covers a significant proportion of utterances in multi-turn conversations, it provides
limited contribution to understanding specific and applicable intents. Second, given the diversity
and uncertainty of human intentions, the predefined intent classes cannot encompass all possible
intentions in an open-world environment (Zhang et al.,2023)), and there may exist utterances falling
under open intent classes (e.g., help, drive person away, wish). Given the ambiguous boundary in
determining specific out-of-scope utterances, we adopt a similar manner as in (Larson et al., [2019)
and define them as those that do not belong to any of the existing intent classes. Incorporating these
utterances in multi-turn conversations brings us closer to real-world scenarios and presents many
practical applications.

Annotation Process. We employ six college students proficient in English for multimodal label
annotation. They receive a detailed guidebook explaining interpretations of intents and relevant
scenarios and begin annotation only after demonstrating high accuracy with seed examples. The
annotators are split into two groups, with each group responsible for a distinct half of the data. A
user-friendly annotation platform with a unified database is used to assist their work (details on the
platform are in Appendix [K)). Each annotator assesses the speaker’s intention in a video segment by
considering text, video, audio, and context information. The relative importance of these modalities
during annotation is discussed in Appendix [[] Annotators select from 30 predefined intent tags or
an OOS tag for each utterance. The final label is assigned by majority vote, requiring a consensus
of at least two out of three annotators. We assume each utterance expresses a single intent. The
reasoning behind not using multi-intent labeling is detailed in Appendix [M] Utterances receiving
three differing votes are excluded from the dataset to ensure labeling consistency.

Annotation Results. We have successfully collected 1,245 high-quality dialogues to create the
MintRec2.0 dataset. This dataset consists of 9,304 in-scope and 5,736 out-of-scope utterances with
multimodal labels. The statistics of the dataset are presented in Table[3] To assess annotation relia-
bility, we calculate the Fleiss’s kappa statistics for each of our six annotators to measure interrater
reliability. The Fleiss’s kappa scores range from 0.66 to 0.70, averaging 0.69. This indicates a
level of substantial agreement, as defined in (McHugh| [2012). The distribution of the dataset across
three different data sources is illustrated in Figure[2| Superstore, The Big Bang Theory, and Friends
contribute 53%, 22%, and 25% of the dataset, respectively. Each data source contains between
54.5% and 67.9% of in-scope utterances. The intent distribution of in-scope utterances is depicted
in Figure [3] demonstrating a common long-tailed distribution similar to real-world scenarios. As
expected, some intents such as inform, explain, doubt, and complain are more prevalent in daily life,
while others like warn, refuse, emphasize, and flaunt tend to occur less in specific occasions and
scenes. To ensure adequate training, each intent class contains more than 90 samples.

4 BENCHMARK FRAMEWORK

This section presents a general benchmark framework, illustrated in Figure[d] It includes data orga-
nization, multimodal feature extraction, multimodal fusion, training, and evaluation.
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Figure 4: Overview of the benchmark framework for the MIntRec2.0 dataset.

Data Organization. In the case of single-turn dialogues, we utilize the pre-segmented utterance-
level samples. Each individual utterance represents a complete turn of dialogue and includes corre-
sponding text, video, and audio information of one speaker. For multi-turn dialogues, we employ
well-divided dialogues as described in Section [3| In particular, the utterances within each dialogue
are arranged chronologically based on the order in which the speakers take their turn. To further
leverage the context of the respective speaker, we attribute the corresponding speaker identity infor-
mation to each utterance, as suggested in (Poria et al., 2019).

Text Feature Extraction. We select the pre-trained BERT (Devlin et al., [2018) language model as
a powerful backbone for processing the text modality, which has demonstrated strong performance
when fine-tuned on our dataset. For each text utterance s, we first tokenize it in the required format,

i.e., [CLS], s1,- -+, Sn, [SEP], and then obtain the token embeddings ET ¢ RLTXDT, where L7 is
the sequence length, and D7 is the feature dimension.

Video Feature Extraction. Video features are extracted at the frame-level, as suggested in (Yu
et al., 2020; |[Zadeh et al.| [2018b). Since video frames often contain multiple individuals, we begin
by identifying regions of interest (Rols) for the speakers, using a sequence of automated procedures.
This involves scene detection, object detection (Ren et al.,2015]), face detection (Zhang et al.,|2017),
face tracking, and audio-visual active speaker detection (Tao et al., |2021)), as described in (Zhang
et al. 2022). This process can generate more than 1,000K high-quality keyframes with speaker
bounding boxes in approximately 5 days. Next, we use these annotated Rols and employ the instance
segmentation method, Mask R-CNN (He et al., 2017), pre-trained on the COCO (Lin et al., 2014)
dataset to extract visual features. We utilize the well-initialized Swin Transformer (Liu et al.| 2021),
pre-trained on the ImageNet-1K (Deng et al., | 2009) dataset, as the backbone due to its superior vision
task performance. We use it to extract feature maps of each keyframe and apply RolAlign (He et al.,
2017) to convert them into fixed sizes using annotated Rols. Finally, applying average pooling to

these feature maps yields the overall Rol feature embeddings EV € R DY,

Audio Feature Extraction. To process the audio modality, we first use the librosa toolkit (McFee
et al., 2015) to load the audio waveform data with a sampling rate of 16,000 Hz. Then, we employ
WavLM (Chen et all 2022), a speech pre-trained model to extract audio feature representations.
Due to its masked speech prediction and denoising pre-training strategy, it has shown remarkable
performance in a wide range of speech tasks, outperforming other powerful speech pre-trained mod-
els such as wav2vec 2.0 (Baevski et al.| [2020) and HuBERT (Hsu et al.| 2021). Notably, it excels
in speaker verification and speech separation tasks, which is suitable for conversational scenarios

involving multiple speakers. By utilizing WavLM, we acquire audio embeddings E4 € RL" xD*

Incorporating Context Information. In single-turn dialogues, we can directly extract embeddings
for text, video, and audio modalities, as mentioned previously. However, in multi-turn dialogues, it is
substantial to consider the context information of different modalities to gain a better understanding
of the conversation. To address this, we utilize the context information based on different speakers,
as suggested in (Majumder et al.| 2019} |Ghosal et al., 2019). Specifically, for the utterance in the
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current turn, we first obtain the speaker identity information and then retrieval all the content from
the previous dialogue turns corresponding to this speaker, which serves as the context information.
Next, we employ a simple and effective method to leverage the context information by concatenating
it with the utterance in the current turn. Taking the context information from one turn of utterance
as an example, for the text modality, the first sequence comprises all the token embeddings in the

T T Ty T, . .
current turn: E[é}js] JE(Y - By, E[S%)P]. The second sequence comprises the context infor-

mation. We remove the first token [CLS] and concatenate the remaining embeddings with the first

sequence: Efpc(}js]’ e ,E[I;E)P],ElT(z),~-~ ,E[TS%)P]. Besides, we include segment embeddings to aid
in understanding the relationships between current and contextual utterances. The segment embed-
dings for the first and second sequences are encoded as zero and one vectors, respectively, with the
same length as the token embeddings. For nonverbal modalities, we insert a one-dimensional zero
vector between the feature embeddings of the two sequences to distinguish them. If additional con-
text information is available, such as more contextual utterances, we append each of them to the end
of the latest context utterance using the same operation as the second sequence.

Multimodal Fusion. After extracting multimodal features, our goal is to utilize multimodal fusion
techniques to capture cross-modal interactions and exploit complementary information from differ-
ent modalities to further enhance intent recognition capability. Specifically, we use E7, EV, and
E# as inputs and feed them into a multimodal fusion network F to obtain multimodal representa-
tions z = F(ET,EY,E4). In this work, we adopt two strong multimodal fusion methods, namely
MAG-BERT (Rahman et al., [2020) and MulT (T'sa1 et al.,[2019) as baselines.

Training. Following multimodal fusion, we employ the multimodal representations z for training.
For in-scope samples z™* = {z;|y; € Y}, we perform classification on z* using the cross entropy
loss Lcog, where N is the number of training samples, and ) is the set of K known intent labels. For
out-of-scope samples z°"* = {z;|y; ¢ Y} |, we apply the outlier exposure (OE) (Hendrycks et al.,
2018) loss, denoted as LoE, to distinguish them from the in-scope samples and enhance the model’s
robustness and its generalization ability for out-of-scope samples. Specifically, we use a uniform
distribution over the K known classes as soft targets. The definitions for losses are as follows:

1 & exp(p(zi")¥) 1 e 1 exp(6(z9")7)
Locp=—— Y 1 ¢ Log = —— —1 d
on =~y 2,108 S epoEry) TN ;; K SR exp(o(ze)m)’

where ¢(+) is the classifier with a linear layer. The training 108S L1vain = Lcr + LoE + LFusions
where Lpysion 18 the loss specified in different multimodal fusion methods. Besides, we also conduct
experiments by training a (K +1)-way classifier with out-of-scope samples grouped as the (K+1)th
class, resulting in significant decrease in the performance of in-scope classification (Appendix [N).

Inference. During inference, our goal is to both identify in-scope classes and detect out-of-scope
samples. To accomplish this, we employ a threshold-based open world classification method in NLP
called DOC (Shu et al., 2017), which performs well in our experiments. This method rejects low-
confidence samples, assigning statistical thresholds to each known class. For each sample z;, the
predicted probability of the k™" class is given by p(k|z;) = Sigmoid(¢(z;)*). We use the output
probabilities from each class of the training samples to calculate the corresponding class threshold
0. Specifically, we fit them to one half of the Gaussian distribution with pz = 1 and calculate the
standard deviations o, using two symmetric halves of the probabilities. The class threshold is then
given by 0 = max(0.5,1 — awoy), where @ = 1 usually works well. A test sample is detected
as out-of-scope if p(k|z;) < dx,Vk € Y. Otherwise, it is considered as an in-scope sample and is
assigned the predicted class with the maximum probability, denoted as y, = argmax;,cy, p(k|z;).

5 EXPERIMENTS

Implementation Details. We partition our dataset into training, validation, and testing sets, main-
taining an approximate ratio of 7:1:2 for both dialogues and utterances. (Further details are provided
in Appendix [O). For the text modality, we utilize BERT ArGE as a powerful backbone consisting
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Table 4: Benchmark baseline results on the MIntRec2.0 dataset.

In-scope Classification ‘ In-scope + Out-of-scope Classification
Train Methods F1 P R ACC WF1 WP | FIL-IS ACC F1-00S F1
TEXT 51.60 55.47 51.31 59.30 58.01 58.85 43.37 43.24 30.40 42.96
MAG-BERT 55.17 5778 55.10 60.58 59.68 59.98 46.48 44.80 34.03 46.08
w/000S A (MAG-BERT) 3.571 2311 3.791 1.281 L6717 L1314 3111 1561 3.631 3121
MulT 54.12 58.02 53.77 60.66 59.55 60.12 45.65 46.14 38.57 4542
A (MulT) 2.521 2.55¢ 2.461 1.361 1.541 1.271 2.281 2.901 8.171 2.461
TEXT 52.08 54.57 52.11 59.99 58.62 58.65 45.83 55.61 61.54 46.34
MAG-BERT 53.64 54.84 53.79 60.12 59.11 58.83 47.52 56.20 62.47 48.00
w 00S A (MAG-BERT) 1.561 0.271 1.681 0.131 0.491 0.181 1.691 0.591 0.931 1.661
MulT 5272 56.45 52.56 60.18 58.82 59.38 46.88 56.00 61.66 47.35
A (MulT) 0.641 1.881 0.451 0.191 0.201 0.731 1.051 0.391 0.129 1011
Context TEXT 53.61 54.46 54.10 59.04 58.69 59.27 46.42 56.12 63.56 46.98
Context MAG-BERT 53.89 5572 54.21 59.84 59.41 60.22 46.74 56.20 62.52 4725
w 00S A (Context MAG-BERT) 0.281 1.261 0.111 0.801 0.721 0.951 0.321 0.081 1.04) 0.271
Context MulT 53.96 54.91 54.15 59.48 59.33 60.04 46.45 56.07 62.93 46.98
A (Context MulT) 0.351 0.451 0.051 0.441 0.641 0.771 0.031 0.05) 0.63] 0.00

of 24 transformer layers implemented in the Huggingface transformers library (Wolf et al., [2020),
to extract features with the dimension D7 of 1024. For the video modality, we employ well-trained
checkpoints of Mask R-CNN from the MMDetection toolbox (Chen et al.,|2019a)) to extract features
with the dimension DY of 256. For the audio modality, we use the pre-trained model WavLM,
implemented in (Wolf et al., [2020) to extract features with the dimension D4 of 768. In single-
turn dialogues, we apply zero-padding with a maximum sequence length of 50, 180, and 400 for
text, video, and audio features, respectively. The number of training epochs is set to 40, and the
training batch size is set to 16 for all baselines. We employ AdamW (Loshchilov & Hutter, [2019)
for optimization, implement our approach using PyTorch 1.13.1, and conduct experiments on Tesla
V100-SXM2-32GB GPUs. For all experiments, we report the results averaged over five runs, using
random seeds ranging from 0 to 4 (Additional hyper-parameters details are available in Appendix [P).

Benchmark Baselines. As text is the predominant modality in conversational multimodal intent
recognition (Zhang et al., [2022)), we establish a robust baseline by fine-tuning BERT, ArgEg, com-
paring its performance with two multimodal fusion methods: MAG-BERT and MulT. We evaluate
these methods in both single-turn and multi-turn conversations, focusing on in-scope classification
and out-of-scope detection. For single-turn conversations, we use only in-scope utterances for train-
ing. The out-of-scope utterances are included in the testing set and treated as a separate class,
following (Lin & Xul 2019} [Zhang et al., [2023). For multi-turn conversations, we consider both
in-scope and out-of-scope samples at the dialogue-level during training, and all the baselines uti-
lize the context information as described in section[dl We conduct additional baselines related to
dialogue intent classification in NLP and out-of-distribution detection across different sources in
Appendices [Q] and [R] respectively. Besides, we test the performance of ChatGPT on our dataset
using both zero-shot and few-shot settings. In the zero-shot setting, ChatGPT is provided with the
prompts of the label sets (e.g., 30 intent labels and one OOS) and an introduction to the task. In the
few-shot setting, we use 10 dialogues with 227 utterances that cover all intent classes for learning
(Details of the utilized prompts can be found in Appendix [S). Finally, we invite ten evaluators to
assess human performance. Each worker is assigned an equal portion of the testing set, ensuring
they have not seen the data before. They receive the same background information of 10 dialogues
as that provided to ChatGPT to ensure a fair comparison. Besides, we provide them with more prior
knowledge, consisting of 100 dialogues and 997 utterances, to explore human potential in addressing
this complex problem. We average the predictions from all evaluators to obtain the final score.

Evaluation Metrics. To evaluate the in-scope classification performance, we adopt six commonly
used metrics: Fl-score (F1), Precision (P), Recall (R), Accuracy (ACC), Weighted F1 (WF1), and
Weighted Precision (WP). To evaluate out-of-scope detection performance, we utilize four metrics
commonly employed in open intent classification (Shu et al.l |2017; Zhang et al., 2023)): Accuracy,
Macro Fl-score over all classes, In-scope classes (F1-IS), and the Out-of-scope class (F1-O0S).

Results. Table {] shows the MIntRec2.0 dataset performance, with A indicating improvements of
multimodal fusion methods over the text baseline. In single-turn dialogues, we test two scenarios:
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without out-of-scope (OOS) samples (w / o OOS) and with OOS samples (w OOS). Multimodal
fusion methods outperform the text baseline significantly in the in-scope only setting, with 1-4%
score increases across all metrics. When including OOS samples, these methods show even larger
improvements, suggesting enhanced in-scope identification and out-of-scope detection robustness
due to cross-modal interactions. Training with OOS data leads to slight decreases in some in-scope
metrics but a notable over 30% increase in F1-OOS scores for all baselines, highlighting the chal-
lenges in leveraging multimodal information for OOS data. Additionally, we conduct a case study
on a selected dialogue, as detailed in Appendix [I} to further explore the effect of incorporating
multimodal information.

In multi-turn dialogues, multimodal methods improve all in-scope metrics compared to the text base-
line but have minimal or negative effects when testing with mixed in-scope and OOS data. This sug-
gests further potential for multimodal information in conversational contexts. For detailed analysis
on fine-grained intent performance in single-turn and multi-turn conversations, see Appendix [U.T}

ChatGPT v.s. Humans. Finally, we present the performance of ChatGPT and humans in Table [3]
Humans typically excel at learning from few-shot samples and quickly grasping new concepts (Lake
et al., |2015), leading us to apply a challenging setting of only 10 dialogues comprising 227 utter-
ances. Multimodal fusion baselines, such as MAG-BERT-10, struggle significantly in this setting
by easily overfitting and resorting to trivial solutions, like predicting the most frequent in-scope
or out-of-scope class, due to the challenges posed by imbalanced and few-shot training samples.
In contrast, ChatGPT demonstrates better performance

even without prior knowledge of labeled data (ChatGPT- Typle 5: Performance of ChatGPT and
0), exhibiting strong language understanding and reason-  humans on the MIntRec?2.0 dataset.

ing capabilities, comprehending complex textual seman-
tics and understanding human intentions (Bang et al.,
2023). However, ChatGPT shows slight improvements
or, in some cases, a decrease in most metrics with merely GBI o5 1o iwilaas s i
10 dialogues for learning (ChatGPT-10). This indicates a  chuGpro 3527 37.10 4822|27.68 2121 2834
struggle in learning from limited prior knowledge to en-  (hOPTI0- 3453 369 492713072 2785 2841
hance intent recognition capability. Notably, it achieves  Humans-100 7103 75.63 8183 |71.86 7541 69.49
a significant 6% improvement in F1-OOS, underscoring
its improved robustness in out-of-scope detection. When provided with the same prior knowledge as
ChatGPT-10, humans (Humans-10) achieve an increase of over 30% in scores across almost all met-
rics compared to ChatGPT. This highlights the significant limitations of existing AI methods in this
challenging task, as humans effectively leverage limited multimodal information to understand high-
level intentions and discern between known and unknown boundaries. To further explore human
potential, we observe the performance of Humans-100 with additional knowledge of 100 dialogues
comprising 997 utterances. Compared with Humans-10, Humans-100 achieve 7-13% improvements
in almost all metrics and attain state-of-the-art benchmark performance. This underscores the advan-
tages of humans in mastering this complex task by leveraging multimodal information. Additionally,
we conduct experiments on fine-grained intent performance with ChatGPT and humans, which are
detailed in Appendix[U.2]

In-scope ‘ In-scope + Out-of-scope

Methods ACC WFl WP | ACC FI-00S Fl

6 CONCLUSIONS

This paper presents MIntRec2.0, a pioneering dataset for multimodal intent recognition, encompass-
ing 1,245 dialogues and 15,040 multimodal utterances. This marks MIntRec2.0 as the first large-
scale dataset in this domain. The dataset includes annotations for speaker identity and introduces
a comprehensive taxonomy of 30 intent classes, spanning 9,304 in-scope utterances. To evaluate
model robustness, 5,736 out-of-scope utterances are also annotated. We propose a general frame-
work for organizing data, extracting multimodal features, and performing multimodal fusion for
in-scope classification and out-of-scope detection in both single-turn and multi-turn conversations.
Extensive experiments reveal the substantial potential of using multimodal information and uncover
significant opportunities for improvement in effectively utilizing out-of-scope data and context in-
formation. Moreover, even with a strong LLM such as ChatGPT, using text-only modality remains
challenging in scenarios with limited prior knowledge, highlighting the importance and challenge
of using multimodal information compared to human performance. The limitations and potential
negative societal impacts of this work are discussed in Appendix
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A SAMPLE SELECTION WITHIN THE MINTREC2.0 DATASET

Figure [5]illustrates a diverse selection of samples from our MIntRec2.0 dataset to showcase repre-
sentative examples. The selected samples cover all 30 intent categories and the OOS label.
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B ADDITIONAL RELATED WORK

Video Understanding. As a significant research field within computer vision, video understanding
involves the extraction of valuable information from video content. Numerous methods have been
developed to handle spatial and temporal data in videos, including the Two-Stream method, which
comprises TDD (Wang et al., [2015), LRCN (Donahue et al., |2015), Fusion (Feichtenhofer et al.,
2016), and TSN (Wang et al.L[2016). This methodology integrates a secondary path to learn a video’s
temporal information by training a convolutional neural network on the optical flow stream. How-
ever, these methods require extensive computation and storage capacity due to the pre-computation
of optical flow.

To address this, researchers introduce 3D convolutional neural networks (3D CNNSs) such as
13D (Carreira & Zisserman, 2017), R3D (Hara et al., [ 2018)), S3D (Xie et al.,[2018]), Non-local (Wang
et al., |2018)), and SlowFast (Feichtenhofer et al., 2019)). More recently, self-attentive mechanisms
like TimeSformer (Bertasius et al.,|2021)) and Video Swin Transformer (Liu et al.| 2022) are demon-
strating exceptional performance in image and video tasks. TimeSformer encodes video frames into
a sequence of two-dimensional images, employing temporal self-attention to understand temporal
relationships, while Video Swin Transformer partitions the input video into two-dimensional spa-
tial and one-dimensional temporal patches, applying self-attention and cross-attention to manage
long-distance temporal dependencies. X-CLIP (Ni et al.| [2022), a CLIP-based method, has achieved
state-of-the-art performance in video understanding by processing video content through matching
video frames with text data.

While these techniques show proficiency in action recognition, they encounter difficulties when at-
tempting to understand fine-grained intentions with high-level semantics and require considerable
computational resources. For instance, X-CLIP demonstrates subpar performance on our task and
demands a substantial amount of GPU memory, underscoring the need to incorporate other modal-
ities such as language and acoustics in multimodal intent recognition tasks. Consequently, we have
established baselines using multimodal fusion methods in this work.

Out-of-scope Intent Detection. As a significant task in natural language processing (NLP), out-of-
scope intent detection has attracted considerable attention in recent years. |Lin & Xu|(2019)) pioneers
this task by employing margin loss to detect unknown intent. Zhang et al.|(2021b)) learns adaptive
decision boundaries for each known class, thereby further reducing the open space risk. [Yan et al.
(2020) uses Gaussian mixture models to tackle this problem and extends the task to zero-shot intent
detection. (Cheng et al|(2022) constructs out-of-scope samples using manifold mixup technologies
and employed soft labels for representation learning. |[Zhou et al.| (2022) enhances intent represen-
tations to balance both empirical and open space risks with the aid of contrastive learning in the
K-nearest neighbors space.

C HuMAN-COMPUTER V.S. HUMAN-HUMAN INTERACTION DATASETS

The difference between human-computer and human-human interaction datasets is substantial, pri-
marily due to the inherent differences in the nature of communication and interaction in each setting.
Here are the primary three distinctions:

* Interaction Dynamics. In human-computer interactions, the dynamics are typically uni-
directional or asymmetrical. Users often lead the conversational directions and give com-
mands to generate dialogue utterances (e.g., in goal-oriented dialogue systems (Coucke
et al., 2018 [Larson et al., [2019)). In contrast, human-human interactions are more dy-
namic and bidirectional (e.g., in open-ended dialogue systems Busso et al.| (2008)); [Poria
et al. (2019)), with both parties actively contributing, responding, and adapting to the con-
versation flow.

e Complexity of Communication. Human-computer interactions are generally more struc-
tured and predictable, with a limited range of intents that follow specific orders or needs and
relatively simple responses. Human-human interactions are far more complex, involving a
wider range of intents, subtleties, emotions, and unpredictability.

* Non-Verbal Cues. Non-verbal cues are often limited or absent in human-computer inter-
actions, as seen in many task-oriented datasets in NLP |Coucke et al.| (2018)); |Larson et al.
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Figure 5: Samples of the MIntRec2.0 dataset.
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(2019)); [Casanueva et al.| (2020). Even with advanced multimodal fusion algorithms, inter-
preting non-verbal cues from humans remains challenging for computers. In human-human
interactions, non-verbal cues play a crucial role in understanding intent, with nuances in
body language, facial expressions, and tone carrying significant information.

Therefore, constructing a human-human interaction dataset for multimodal intent recognition is
more appropriate, as it satisfies interaction dynamics, supports complex communication, and in-
corporates non-verbal cues. MIntRec2.0 makes a pioneering contribution in this area and aims to
facilitate related research and application.

D PERFORMANCE OF DIALOGUERNN

Table 6: Results of DialogueRNN on the MIntRec2.0 dataset.

In-scope Classification ‘ In-scope + Out-of-scope Classification
Setting F1 P R ACC WF1 WP \ F1-IS ACC F1-00S F1

K+l 0.67 0.58 3.34 10.7 2.15 1.77 0.36 16.65 34.82 1.47
Outlier Exposure 2.75 4.19 3.74 3.89 3.23 529 221 11.10 23.67 291

To leverage context information, existing methods typically use multimodal fusion representations
to directly model the temporal information of contexts. However, we find this approach to be in-
effective for our task. Specifically, we select DialogueRNN (Majumder et all, [2019), a method
specifically designed for multimodal emotion detection in conversations, for evaluation. We con-
duct experiments under two settings: K+1 and Outlier Exposure. The former treats the out-of-scope
class as the (/(+1)*" class and trains using both K intent classes and one out-of-scope class, while
the latter employs the outlier exposure loss on out-of-scope data during training.

As illustrated in Table[6] DialogueRNN demonstrates significantly low performance across all met-
rics. Furthermore, we observe that it tends to fall into trivial solutions, predominantly predicting
most utterances as the out-of-scope class. This observation suggests that leveraging temporal in-
formation with fused multimodal representations remains a considerable challenge. Consequently,
we adopt a simple method to leverage context information by concatenating the context information
from the inputs of each modality.

E CONVERSATIONAL SCENES AND TOPICS

The MIntRec2.0 dataset contains three popular TV series, Superstore, Friends and The Big Bang
Theory. With 34 main characters and more than 10 primary types of conversational scenes and 15
distinct topics, covering a wide range of common intents encountered in daily life. Specifically,
these conversational scenes and topics are diverse and include:

E.1 SCENES AND SETTINGS

Superstore provides a unique retail environment with scenes in the store, cash registers, break room,
parking lot, managerial offices, and warehouse, reflecting workplace dynamics and customer inter-
actions. Friends showcases diverse social settings like the Central Perk, apartments, travel locations,
and various city spots, emphasizing personal and relational interactions. The Big Bang Theory of-
fers academic and living spaces, including apartments and the university, highlighting intellectual
and social engagements.

Each of these series brings a unique set of environments and interaction dynamics, ranging from per-
sonal and intimate to professional and public. The diversity in character backgrounds, professions,
and social settings across these shows ensures a wide-ranging exploration of human interactions and
conversational intents. Moreover, these series are culturally iconic and have significantly influenced
societal communication patterns, making them highly relevant for studying contemporary conver-
sational trends. Their popularity also ensures that the dataset is relatable and accessible for a broad
range of researchers and applications.
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E.2 Toprics AND THEMES

Superstore touches on workplace relations, management challenges, customer service scenarios,
labor issues, and social issues like immigration and corporate dynamics. Friends explores friend-
ship, romantic relationships, career challenges, and urban living, offering insights into a variety of
emotional and relational topics. The Big Bang Theory delves into scientific discourse, geek cul-
ture, technological advancements, scientific research, social awkwardness, and the balance between
intellectual pursuits and everyday life.

The combination of these series presents an extensive range of human experiences and topics, from
the mundane to the complex. This diversity enriches our dataset, making it an invaluable tool for
studying and understanding the nuances of multimodal intent recognition in varied conversational
contexts. Furthermore, these series, with their wide cultural impact, provide a relatable and real-
istic reflection of contemporary social dynamics, essential for developing robust and applicable Al
models in the field of human-computer interaction.

In summary, the chosen TV series offer a balanced mix of scenes and topics, providing a compre-
hensive resource that captures the complexity of human interactions and conversational intents. We
are confident that our dataset’s scope and diversity significantly contribute to the advancement of
multimodal intent recognition research.

F DATA PRIVACY AND CONTENT CONSIDERATIONS

Our dataset is meticulously curated and consists exclusively of character names and dialogues
sourced from television shows, ensuring no infringement on the privacy or disclosure of personal in-
formation pertaining to real individuals. We have rigorously reviewed the content to maintain a high
standard of decorum, assiduously avoiding any material that could be construed as offensive. Our
focus remains strictly confined to the dialogues and interactions, all contextualized within the nar-
rative framework of the respective shows, allowing for a comprehensive understanding of character
dynamics without compromising ethical standards.

G UTTERANCE BOUNDARY ESTIMATION

To further validate the accuracy of these boundaries, we conduct additional experiments using a
metric known as Speaker Boundary Error Rate (SBER), commonly employed in speech diarization
tasks (Sturm et al.l 2007). This metric quantifies the difference between predicted and reference
speaker boundaries, with a lower SBER indicating better performance and serving as a proxy for
sentence boundary accuracy. We utilize an end-to-end method implemented with pyannote (Bredin
et al.l |2020; Bredin & Laurent, 2021)), a pre-trained speaker change detection model, to predict
speaker IDs, starting times, and durations for each utterance within a dialogue segment. These
predictions are then compared to the ground truth.

The results show an average SBER of 0.59 across all dialogues, suggesting considerable room for
improvement in automatic sentence boundary segmentation. We believe this approach offers a rea-
sonable method for evaluating utterance boundary performance.

H STATISTICS OF CHARACTERS

To further analyze the character distribution in each of the three data sources (i.e., Superstore,
Friends, The Big Bang Theory) within our dataset, we present the proportions of characters from
these sources in Figure[6] Figure[7] and Figure([§]

In Superstore, seven main characters and 21 recurring characters are observed. It can be noted that
the seven main characters represent a significant proportion of nearly 80%, distributed uniformly.
Friends have six main characters who constitute about 85% of the data, also distributed uniformly.
The Big Bang Theory has seven main characters, while their distribution is imbalanced, a property
we preserve due to the distinctive nature of each speaker. It is worth noting that there are other
characters involved in the conversations, contributing 9.3%, 14.4%, and 5.9% respectively in each of
the three TV series. These characters are also differentiated within each dialogue in our experiments.
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I INTENT TAXONOMIES DEFINED IN THE MINTREC DATASET

The MIntRec dataset (Zhang et al.} 2022) introduces a hierarchical intent taxonomy, including two
coarse-grained and 20 fine-grained intent categories. The two coarse-grained classes include Ex-
press Emotions or Attitudes and Achieve Goals. Based on these, it further includes 11 and 9
fine-grained classes for them, respectively. In particular, Express Emotions or Attitudes contains
complain, praise, apologize, thank, criticize, care, agree, oppose, taunt, flaunt, and joke. Achieve
Goals contains inform, advise, arrange, introduce, comfort, leave, prevent, greet, and ask for help.
The interpretations of these categories are shown in Table[7] referring to (Zhang et all 2022).

Superstore's characters

= Cheyenne 6.7%

= Tate 0.9%
= Dina 14.2%
= Myrtle  0.6%
= Garrett ~ 8.9%
“Justine  0.5%
= Glenn 18.3%
g A = Janet 0.3%
= Jerry 0.0%
= Sandra  2.8%
/ = Carol 0.4%
= . = Jeff 43%
’/—'l “Emily  0.0%
i ~ = Marcus  3.2%
 Gleen 0.0%
= Nico 9.2%
= Adam 0.5%
Kelly 2.4%
=Bo 1.0%
= Jonah 16.1%
= Cody 0.1%

= Others 9.3%

Figure 6: Proportions of characters from the TV series of Superstore.
Friends's characters

= Rachel  13.5%

= Chandler 16.0%

= Phoebe  12.2%

= Monica 14.6%

= Joey 13.5%

= Ross 15.8%

= Others  14.4%

Figure 7: Proportions of characters from the TV series of Friends.

J APPLICATION OF INTENT LABELS

Our intent labels can be generalized to many domains, including intelligent customer service, health-
care, mental health therapy, hazard detection, virtual assistants, and personalized recommendation
systems. For instance:

* complain, criticize, comfort: These labels are instrumental in identifying potential mental
health concerns in patients and can be pivotal in healthcare settings.

* warn, prevent, OOS: These labels can be employed effectively in systems designed for
hazard detection.
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The Big Bang Theory's characters

= Penny 11.5%
= Howard 6.0%
Leonard 17.4%
= Sheldon 22.7%
= Amy 31.5%
Bernadette  0.9%

= Rajes 4.0%

= Others 5.9%

Figure 8: Proportions of characters from the TV series of The Big Bang Theory.
Table 7: Intent taxonomies of the MIntRec dataset with brief interpretations.

Intent Categories

Interpretations

Complain Express dissatisfaction with someone or something (e.g., saying unfair encounters with a sad expression and helpless motion).
Praise Express admiration for someone or something (e.g., saying with an appreciative expression).
Apologize Express regret for doing something wrong (e.g., saying words of apology such as sorry).
Thank Express gra!ilude in word or deed for the convenience or kindness given or offered by others (e.g., saying words
of appreciation such as thank you).
e]f;(gtl;s;s Criticize Point out and emphasize someone’s mistakes (e.g., yelling out someone’s problems).
or Care Concern about someone or be curious about something (e.g., worrying about someone’s health).

attitudes ~ Agree Have the same attitude about something (e.g., saying affirmative words such as yeah and yes).
Oppose Have an inconsi attitude about something (e.g., saying negative words to express disagreement)
Taunt Use metaphors and exaggerations to accuse and ridicule (e.g., complimenting someone with a negative expression).
Flaunt Boast about oneself to gain admiration, envy, or praise (e.g., saying something complimentary about oneself arrogantly).
Joke Say something to provoke laughter (e.g., saying something funny and exaggerated with a cheerful expression).
Inform Tell someone to make them aware of something (e.g., broadcasting something with a microphone).
Advise Offer suggestions for consideration (e.g., saying words that make suggestions).
Arrange Plan or organize something (e.g., requesting someone what they should do formally).

. Communicate to make someone acquaintance with another or recommend something (e.g., describing the identify of a person
Achieve  Introduce or the properties of an object).
goals Comfort Alleviate pain with encour or compassion (e.g., describing something is hopeful).
Leave Get away from somewhere (e.g., saying where to go while turning around or getting up).
Prevent Make someone unable to do something (e.g., stop someone from doing something with a hand).
Greet Express mutual kindness or recognition during the encounter (e.g., waving to someone and saying hello).
Ask for help  Request someone to help (e.g., asking someone to deal with the trouble).
* ask for help, inform: These labels are particularly suited for customer service platforms.

* praise, complain, agree: These labels can be harnessed in personalized recommendation

engines.

the majority of these intent labels: These labels are ideal for virtual robots designed to

interact naturally with users.

K MULTIMODAL INTENT ANNOTATION PLATFORM

We have developed an efficient platform featuring a unified database for multimodal label annota-
tion, aiming to facilitate seamless interaction between annotators and the diverse set of multimodal
data. The interface of this platform is depicted in Figure[9] This user-friendly interface allows anno-
tators to access transcripts and associated videos from the dialogues and data sources easily, thereby
ensuring accurate and consistent annotations. Annotators simply need to select one label from the
30 intent classes and an out-of-scope (OOS) tag by clicking a button. This intuitive design mini-
mizes the learning curve for annotators and accelerates the annotation process. Once annotation is

complete, the selected labels are automatically recorded in the database for statistical analysis.
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Figure 9: The interface of the annotation platform.

Table 8: Annotator rankings on the significance of modalities and background information in mul-
timodal intent annotation.

rank spoken language facial expressions lone\context information body language conversational scenes

1 6 0 2 1 0 0
2 2 4 1 0 0
3 1 3 3 1 1 0
4 0 2 1 4 2 0
5 0 0 0 2 6 1
6 0 0 0 0 1 8

This systematic approach ensures the reliability and consistency of the annotated data, which is
crucial for training robust and high-performing models. The platform not only aids in the efficient
collection of annotated data but also serves as a valuable tool for exploring and understanding the
intricate relationships between different modalities and intents.

L THE SIGNIFICANCE OF MODALITIES AND BACKGROUND INFORMATION

Intent recognition originates from natural language processing, with significant foundational re-
search and advancements in this area (Chen et al 2019b; [Qin et all, 2019 [Zhang et al. [2023),
including high performance in some goal-oriented dialogue systems. As a result, the text modality
often plays a central role in deciphering complex human intentions, as evidenced in
. Nevertheless, in real-world settings, integrating non-verbal modalities, such as video and
audio, along with background information, such as conversational context and scene information,
is crucial to accurately infer intentions. Recognizing the limitations of existing datasets, which are
often small-scale, single-turn, and limited to closed-world classification, our MIntRec2.0 dataset
aims to facilitate research into the effectiveness of non-verbal modalities in multi-turn conversations
and in contexts that more closely resemble real-world situations, including out-of-scope utterances.
To investigate the relative importance of different modalities in understanding conversational intent,
we gather insights on key aspects including text modality (spoken language), video modality (facial
expressions and body language), audio modality (fone), and background information (context in-
formation and conversational scenes). We ask 9 annotators involved in both annotation and human
evaluation to rank these six aspects based on their importance in understanding human intentions,
drawing from their experience.
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As shown in Table [§] the results suggest that spoken language is the most critical factor, followed
by facial expressions, tone, context information, body language, and conversational scenes. While
spoken language is predominant, non-verbal cues like facial expressions and fone are valuable in
perceiving emotions or attitudes, especially in the express emotions or attitudes coarse-grained cat-
egory. context information provides essential background knowledge about the speakers, aiding in
a more profound understanding of intentions. body language, though complex and implicit, is also
insightful, particularly in the achieve goals coarse-grained category. Conversational scenes, while
less critical in open-ended dialogues, still contribute to understanding intent in specific contexts.

M SINGLE-INTENT ASSUMPTION

In real-world scenarios, it is possible for multiple intents coexist among the 30 pre-defined classes
in a single utterance. In this work, we obey the single-intent assumption due to the following two
reasons:

* Single vs. Multi-Intent Datasets: Most existing single-turn intent datasets in NLP, such
as SNIPS, CLINC, and BANKING, focus on single-intention labeling. This is also true for
multi-turn dialogue datasets like SWBD (Godfrey et al.,[1992) and DailyDialog (Li et al.,
2017), which generally assume a single dialogue act label at the utterance level. Therefore,
while multiple intentions could theoretically exist in an utterance, the prevailing practice is
to identify a primary intent for the sake of clarity and brevity.

* Applicability to Real-World Scenarios: We have examined multi-intent datasets like
Standford LU (Hou et al., 2021) and (Xu & Sarikayal [2013). These datasets often in-
clude action and slot labels (e.g., find music or movie, request address or route), which are
more suited for task-oriented dialogue systems. Such labeling is generally not applicable
in real-world multimodal scenarios, as suggested in (Zhang et al., [2022)).

To verify our assumption, we conduct an additional multi-intent annotation on the testing set. Six
annotators are asked to identify up to three probable intents for each utterance. The results are shown
in Table

Table 9: Statistics of multiple intents in one utterance.

Express | Classes complain, praise, apologize, thank, criticize, care, agree, warn
emotions | Number 9,572,1,8,1,6, 1,
or Classes | oppose, taunt, flaunt, joke, doubt, acknowledge, refuse, emphasize
attitudes | Number 7,4,1,2,14,3,1,8
Classes inform, advise, arrange, introduce, comfort, leave, prevent
Achieve | Number 51,1,1,2,4,0
goals Classes | greet, ask for help, ask for opinions, confirm, explain, invite, plan
Number 1,1,4,5,35,1,2

The results show that only 136 out of 3,230 utterances (4.2%) have a second most probable intent,
and none have a third. This suggests that multi-intent scenarios are relatively rare, reinforcing the
adequacy of our single-intent taxonomy. In summary, our findings align with those of most existing
benchmark intent datasets, indicating that our intent taxonomy is both general and distinguishable
enough for real-world applications.

N (K+1)-WAY CLASSIFICATION PERFORMANCE

We also investigate another prevalent method, the (/{+1)-way classification, to utilize the out-of-
scope samples during training. In other words, we train on both the K known classes and one
out-of-scope class. The results of this approach are displayed in Table[I0] A noticeable decrease of
approximately 10% in in-scope classification performance across numerous metrics (e.g., F1-score,
recall, accuracy, weighted F1) is observed, compared to the results obtained with outlier exposure
(OE) as depicted in Table ] in the paper. Although there are slight improvements in F1-OOS (2%
score increase) for out-of-scope detection in most methods, these methods still underperform when
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recognizing known classes and in overall performance. Therefore, we opt for outlier exposure as a
more effective technique to deal with out-of-scope samples and adopt this approach in our work.

Table 10: K+1 classification results on the MIntRec2.0 dataset.

In-scope Classification In-scope + Out-of-scope Classification

Methods Fl P R ACC  WFI WP | FIIS ACC  FI-00S Fl

TEXT 4223 5534 3742 4384 4960 6428 | 4052  55.69 64.28 4129
MAG-BERT 4068 5334 3657 4375 4895  63.14 | 3887 5576 64.41 39.70
MulT 3948 5496 3490 4247 4804  64.17 | 3826 5633 65.48 39.14
Context TEXT 4033 5045 3697 4372 4780  59.18 | 3821 5465 63.79 39.04
Context MAG-BERT 4314 5320 3934  47.09 5170 6253 | 4087 5565 64.04 41.62
Context MulT 4246 5472 3828 3154 3580 6588 | 4038 4259 50.02 40.69

O DATA SPLITS

We partition our dataset into training, validation, and testing sets at an approximate ratio of 7:1:1
for both utterances and dialogues. Detailed statistics for each set, encompassing both in-scope and
out-of-scope data, are presented in Table [T1]

Table 11: Data splits of the MIntRec2.0 dataset. # denotes the number.

Item # Dialogues  # Utterances # In-scope Utterances # Out-of-scope Utterances
Total 1,245 15,040 9,304 5,736
Training 871 9,989 6,165 3,824
Validation 125 1,821 1,106 715
Testing 249 3,230 2,033 1,197

P HYPER-PARAMETER CONFIGURATIONS

The comprehensive configurations of hyper-parameters used in our experiments are presented in

Table[12} Table[13] Table [14] Table[T5} Table[16] and Table

Table 12: The hyperparameters of the TEXT baseline in single-turn conversations.

Setting hyperparameters value Setting  hyperparameters value
eval_monitor: accuracy eval_monitor: accuracy
train_batch_size: 16 train_batch_size: 16
eval_batch_size: 8 eval_batch_size: 8
test_batch_size: 8 test_batch_size: 8

w/00OOS  wait_patience: 8 w OOS  wait_patience: 8
num_train_epochs: 40 num-_train_epochs: 40
warmup _proportion: 0.1 warmup _proportion: 0.1
Ir: 2e-5 Ir: le-5
weight_decay: 0.1 weight_decay: 0.1

Q DIALOGUE INTENT CLASSIFICATION IN NLP

We have conducted experiments to benchmark our dataset with two state-of-the-art algorithms in
open intent detection for NLP: DA-ADB (Zhang et al.,[2023)) and KNNCL (Zhou et al.| 2022) with
the open-source TEXTOIR platform (Zhang et al., 2021a). Consistent with the original settings of
these algorithms, they are trained on in-scope samples and tested on both in-scope and out-of-scope
samples. The results are shown in Table
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Table 13: The hyperparameters of the MAG-BERT baseline in single-turn conversations.

Setting hyperparameters value Setting  hyperparameters value
need_aligned: True need_aligned: True
eval_monitor: accuracy eval_monitor: accuracy
train_batch_size: 16 train_batch_size: 16
eval_batch_size: 8 eval_batch_size: 8
test_batch_size: 8 test_batch_size: 8
wait_patience: 8 wait_patience: 8
num_train_epochs: 40 num-_train_epochs: 40

w/o00S i shifi 0.005 wOOS  ota_shifi 0.005
dropout_prob: 0.5 dropout_prob: 0.5
warmup_proportion: 0.1 warmup _proportion: 0.1
Ir: Se-6 Ir: Se-6
aligned_method: ctc aligned_method: ctc
weight_decay: 0.03 weight_decay: 0.1

Table 14: The hyperparameters of the MulT baseline in single-turn conversations.

Setting hyperparameters value Setting  hyperparameters value
padding_mode: zero padding_mode: zero
padding _loc: end padding _loc: end
need_aligned: False need_aligned: False
eval_monitor: accuracy eval_monitor: accuracy
train_batch_size: 16 train_batch _size: 16
eval_batch_size: 8 eval_batch_size: 8
test_batch_size: 8 test_batch_size: 8
wait_patience: 8 wait_patience: 8
num_train_epochs: 40 num_train_epochs: 40
dst_feature_dims : 80 dst_feature _dims : 80
nheads: 4 nheads: 4
n_levels: 8 n_levels: 8
attn_dropout: 0.0 attn_dropout: 0.0

w/000S attndrolpjout,v: 0.1 w00s atm,droﬁout,v: 0.1
attn_dropout_a: 0.1 attn_dropout_a: 0.1
relu_dropout: 0.3 relu_dropout: 0.3
embed_dropout: 0.0 embed_dropout: 0.0
res_dropout: 0.0 res_dropout: 0.0
output_dropout: 0.2 output_dropout: 0.0
text_dropout: 0.1 text_dropout: 0.0
grad_clip: 0.5 grad_clip: 0.5
attn_mask: True attn_mask: True
convld_kernel_size l: 5 convld_kernel_size l: 5
convld_kernel_size_v: 1 convld_kernel_size_v: 1
convld_kernel_size_a: 1 convld_kernel_size_a: 1
Ir: 5e-6 Ir: Se-6

The results show that even state-of-the-art methods for open intent detection generally underperform
compared to the BERT srgE text classifier across most metrics. However, they do excel in iden-
tifying out-of-scope utterances, typically achieving higher F1-OOS scores. Notably, KNNCL also

scores higher in accuracy.

R OUT-OF-DISTRIBUTION DETECTION ACROSS DIFFERENT SOURCES

We also explore the model performance in an out-of-distribution (OOD) setting across different
sources. To address this, we have conducted experiments where we use data from one source as
the in-distribution dataset for training, validation, and testing. We then use data from the other
two sources exclusively for OOD testing, in accordance with (Hendrycks & Gimpel, [2017} |Liang
et al.| [2018)). For evaluation, we utilize a comprehensive set of metrics: AUROC (Area Under the
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Table 15: The hyperparameters of the TEXT baseline in multi-turn conversations.

hyperparameters  value

eval_monitor: accuracy
train_batch _size: 2
eval_batch_size: 2
test_batch _size: 2
wait_patience: 3
num_train_epochs: 40
warmup_proportion: 0.1
Ir: le-5
weight_decay: 0.1
train_batch_size: 16

Table 16: The hyperparameters of the MAG-BERT baseline in multi-turn conversations.

hyperparameters value

need_aligned: True
eval_monitor: accuracy
train_batch_size: 2
select_batch_size: 16
eval_batch _size: 2
test_batch_size: 2
wait_patience: 3
num_train_epochs: 40
context_len: 0.5
beta_shift: 0.05
dropout_prob: 0.05
warmup _proportion:  0.01
Ir: 4e-6
aligned_method: convld
weight_decay: 0.1

Receiver Operating Characteristic Curve), AUPR-In (Area Under the Precision-Recall Curve for
in-distribution detection), AUPR-Out (Area Under the Precision-Recall Curve for OOD detection),
FPR-95 (False Positive Rate at 95% True Positive Rate), and EER (Equal Error Rate). Higher scores
are preferable for the first three metrics, while lower scores are desirable for the last two.

As shown in Table [I9] the results indicate that MAG-BERT shows lower performance on OOD
detection compared with the text baseline on most metrics. Both text and multimodal fusion methods
achieve very low performance on OOD detection metrics, highlighting the substantial challenges
presented by this setting. This opens up an intriguing avenue for future research in OOD detection
under these conditions.

S CHATGPT PROMPTS

We provide prompts for both zero-shot (ChatGPT-0) and few-shot (ChatGPT-10) settings of Chat-
GPT. The detailed prompts are as follows:

ChatGPT-0 Prompts: Here is a set of given intent labels: [ Acknowledge, Advise, Agree, Apologise,
Arrange, Ask for help, Asking for opinions, Care, Comfort, Complain, Confirm, Criticize, Doubt,
Emphasize, Explain, Flaunt, Greet, Inform, Introduce, Invite, Joke, Leave, Oppose, Plan, Praise,
Prevent, Refuse, Taunt, Thank, Warn, OOS]. Additionally, OOS represents an unknown intent that
does not belong to the known set of intents. Next, I will provide you with a collection of dialogs:
utterances. The collection contains multiple utterances presented in sequential order, and they can be
considered as contextualized conversations. When considering each sample and taking into account
its contextual information, please select an appropriate label from the intent label set (emphasis: you
can only choose intent labels from the given set of intent labels). If there are no suitable labels in the
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Table 17: The hyperparameters of the MulT baseline in multi-turn conversations.

hyperparameters value
padding _mode: zero
padding_loc: end
need_aligned: False
eval_monitor: accuracy
train_batch_size: 2
select_batch_size: 16
eval_batch_size: 2
test_batch_size: 2
wait_patience: 3
context_length: 1
num_train_epochs: 40
dst_feature_dims: 80
nheads: 4
n_levels: 8
attn_dropout: 0.0
attn_dropout _v: 0
attn_dropout_a: 0.1
relu_dropout: 0.2
embed_dropout: 0.1
res_dropout: 0
output_dropout: 0
text_dropout: 0.4
grad_clip: 0.5
attn_mask: True
convld_kernel_size l: 5
convld_kernel_size v: 1
convld_kernel_size_a: 1
Ir: Se-6

Table 18: Performance of open intent detection on the MIntRec2.0 dataset.

In-scope Classification

\ Out-of-scope Classification

Methods F1 P R ACC WF1 WP | FI-IS ACC FI-00S Fl

TEXT 51.60 55.47 5131 5930 58.01 58.85 | 4337 4324 3040 4296
DA-ADB 46.16 51.28 46.08 57.44 5496 55.66 | 39.60 39.18 36.17 39.49
KNNCL  50.64 51.19 50.71 56.54 5627 56.39 | 3558 4858 5577 36.23

set, assign the label of the sample as OOS. Please provide the output in the following format: Serial
number and original text of the sample: Intent label. Apart from that, do not output anything else.

ChatGPT-10 Prompts: Here is a list of multiple multi-turn conversations. Each dictionary in the
list represents a conversation paragraph, where each key-value pair represents an intent example as

Table 19: OOD detection performance across different sources.

ID source  OOD source(s) Methods AUROC AUPR-In AUPR-Out FPR95 EER
Suverstore Bisbane & Friends  TEXT 5133 21.75 80.25 9347 49.43
up 1gbang & i MAG-BERT 5096  21.28 80.14  93.74 4921
Bicbane  Superstore & Friends TEXT 5133 21.75 80.25 9347 49.43
gbang  Sup MAG-BERT 5096  21.28 80.14  93.74 4921
Friends Biebane & Superstore TEXT 5597  26.17 80.56  91.22 45.40
gbang & Sup MAG-BERT 5101  25.62 7981  92.57 45.90
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a key and its corresponding label as a value. Next time I will enter my request, please only reply
“received”.

Table 20: Case study on the impact of multimodal information.

TEXT: MAG-BERT: Ground
Index Speaker Utterance Video Predicted Label / Predicted Label /
Truth
Confidence Confidence
Greet / 00s/
0 Glenn Salvatore kazlauskas. 0.0735 0.8289 00S
. . Confirm / Confirm /
£ al?
1 Nico Wait, you mean creepy sal? 0.9563 0.6321 Confirm
. Inform / Inform /
2 Glenn The man is dead. 0.4575 0.3950 Inform
3 Dina Police said he’s been dead for at Inform / Inform / Inform
least a year. 0.9842 0.6941 °
. Care / Doubt /
9
4 Amy Are you crying? 0.7637 0.3580 Confirm
Taunt / Taunt /
5 Kelly poor guy. 0.1573 0.1045 00S
- . Comfort / Explain /
6 Amy But you didn’t know him. 0.0932 01131 00s
. Emphasize / Introduce /
7 Kelly But he was a human being. 0.0693 0.0603 00s
When he looked at you, it felt like Complain / Complain /
8 Cheyenne he was grabbing you. 0.3858 0.1209 008
Apparently he was doing some
work behind the drywall outside Inform / Inform /
9 Glenn the women’s washroom and then Inform
- - 0.3145 0.5194
his foot got caught in a beam, and
he starved to death.
N Inform / Inform /
10 Glenn ‘We’re not sure. 0.1238 0.1233 00S
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He drilled a hole into the women’s Inform / Inform /

1 Glenn washroom so... 02779 0.1861 Inform
12 Glenn Why? 0D(9>1711;12/ ODggl;lﬁl Doubt
13 Dina Tknow we allazslill‘xmed that was grggggsize / g)(();;lga%n / Explain
14 Amy ‘Why-why me? ODglzlglﬁ/ OD(;ZH;IZI Doubt
15 Dina Cause, you know... g)g;lga:‘n ! g)gl%n ! Explain
oo Tt e L
17 Cheyenne Wait, so il’sjuss[toio;ng to sit in the ODgggIS/ ODggl;;/ Doubt
18 Nico Uh... i'm x;(:a:ivobt)l;i;g nextto a 881;2575 / 82[;(;;5/ Taunt
I D oo dead body ot past Bplsin Bpin o
year.

20 Dina Nobody complained until now. ggg;jsize ! én(f)(;l;g / 00s
21 Jonah That must’veﬂl})::g-sal’s foot we él?g(;rgm/ g?ir:f;ce / 00S
» Dina Actually he Stfi'ile l:ad both of his gggtsnl/ én(f)(érsrz/ Oppose

This is a list of given intent labels: [Acknowledge, Advise, Agree, Apologise, Arrange, Ask for help,
Asking for opinions, Care, Comfort, Complain, Confirm, Criticize, Doubt, Emphasize, Explain,
Flaunt, Greet, Inform, Introduce, Invite, Joke, Leave, Oppose, Plan, Praise, Prevent, Refuse, Taunt,
Thank, Warn, OOS], where OOS represents an unknown intent that is not intended otherwise. Now,
you need to learn from the conversations that you were given in the last Q& A, and then I’ll provide
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Table 21: Results of the text and MAG-BERT baselines for each fine-grained intent category in
single-turn conversations.

Methods ‘ Acknowledge Advise Agree Apologise  Arrange Ask for help  Ask for opinions Care Comfort Complain  Confirm
TEXT 49.51 55.03 50.45 88.96 48.34 57.97 47.89 45.98 4355 31.02 46.38
MAG-BERT 5486  53.86 54.54 93.02 52.04 61.14 48.89 50.05 41.69 3226 45.68
A (MAG-BERT) 5.357 1174 4.097 4.067 3701 3.171 1.007 4.077 1.861 1.247 0.700
Methods ‘ Criticize Doubt Emphasize  Explain Flaunt Greet Inform Introduce  Invite Joke Leave
TEXT 33.84 5238 1.10 46.43 13.41 74.59 40.83 30.26 27.85 3.14 47.26
MAG-BERT 3724 50.68 1.18 47.80 23.70 77.09 41.25 31.80 47.36 8.85 47.61
A (MAG-BERT) 3.407 1.704 0.087 1.377 10.297 2.507 0.427 1.547 19.511 5717 0.357
Methods ‘ Oppose  Plan Praise Prevent Refuse Taunt Thank Warn 00s

TEXT 56.88 5143 61.03 5241 20.64 12.61 91.12 18.97 30.40

MAG-BERT 56.60 5473 63.30 51.32 29.37 13.76 91.85 30.89 34.03

A (MAG-BERT) 028 3307 2271 1.090 8.731 1157 0.731 11.927 3.637

Table 22: Results of the text and MAG-BERT baselines for each fine-grained intent category in
multi-turn conversations.

Methods ‘ Acknowledge Advise Agree Apologise  Arrange Ask for help  Ask for opinions Care Comfort Complain Confirm
TEXT 55.04 5528 5143 91.65 48.00 56.94 45.71 55.76 48.98 40.30 47.66
MAG-BERT 61.67 5545 53.22 91.98 52.78 60.65 51.88 56.72 50.50 40.82 46.85
A (MAG-BERT) 6.637 0177 1.791 0.337 4.787 3717 6.1717 0.967 1.527 0.527 0.81]
Methods ‘ Criticize Doubt  Emphasize  Explain Flaunt Greet Inform Introduce  Invite Joke Leave
TEXT 3632 49.89 2.86 47.28 15.46 78.15 43.40 32.85 39.58 4.98 5343
MAG-BERT 3722 5146 2.11 48.60 8.34 79.43 45.64 3235 36.46 4.66 52.01
A (MAG-BERT) 0901 1571 0.75] 1.327 7120 1.287 2.247 0.504 3120 0.32) 1420
Methods ‘ Oppose  Plan Praise Prevent Refuse Taunt Thank ‘Warn 00s

TEXT 58.00 5191 66.23 56.90 31.60 15.33 84.72 27.01 63.56

MAG-BERT 55.87 4844 67.65 46.67 21.36 13.27 85.23 28.19 62.52

A (MAG-BERT) 213, 347] 14217 10.23] 10.24] 2.06 0.5117 1.187 1.04)

you with a dialog that contains utterances in it, and these utterances are given in order and can be
considered as contextual. Now, for each utterance that requires you to use the knowledge you gained
from the given conversations, select a label as output from the given list of labels: for the following
given dialog, in this format: Original sample: Intent labels output.

T CASE STUDY

To investigate the impact of multimodal information in intent recognition, we select a specific dia-
logue from our dataset for a detailed case study. We compare the predicted intent and ground truth
for each utterance using the text and MAG-BERT models, calculate the accuracy scores, and use the
predicted probabilities as confidence scores for both models.

As Table 20] shows, MAG-BERT generally achieves high accuracy in most in-scope classes, except
for some with complex semantics like Taunt, Oppose, and Confirm. Furthermore, in many correctly
predicted in-scope classes, MAG-BERT demonstrates a high confidence level, often exceeding a 0.5
probability. In contrast, the text model exhibits higher confidence and more errors than MAG-BERT
in certain utterances, such as the dialogues with indices 4, 5, 8, and 18. This comparison highlights
the effectiveness of incorporating non-verbal modalities over relying solely on textual information.
However, it is important to note that MAG-BERT struggles with out-of-scope (OOS) utterances,
often making errors in these categories. This observation suggests that while existing multimodal
fusion methods have capabilities in recognizing known intents, their performance in detecting out-
of-scope utterances is limited, pointing to a significant area for future research and development.
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Table 23: Comparison of ChatGPT-10, Humans-10, and Humans-100 across fine-grained intent
categories.

Methods ‘ Acknowledge Advise Agree Apologise  Arrange  Ask for help  Ask for opinions Care Comfort Complain Confirm
ChatGPT-10 2444 30.84 35.29 62.94 17.39 28.39 22.95 0.00 40.00 34.16 25.00
Humans-10 46.27  67.76 61.90 93.02 55.46 69.33 50.00 50.57 66.67 49.54 60.19
A (Humans-10) 21831  36.927 26.6117 30.087 38.077 40.941 27.051 50.571 26.671T 15.387 35.197
Humans-100 69.23  70.73 65.67 93.02 64.22 79.45 61.11 62.34 77.23 64.11 62.43
A (Humans-100) 447917 39.897 30.387 30.087 46.837 51.067 38.167 62.347 37.231 29.951 37.431
Methods ‘ Criticize Doubt  Emphasize  Explain Flaunt Greet Inform Introduce  Invite Joke Leave
ChatGPT-10 14.12 15.05 6.45 33.55 18.46 64.52 31.76 8.22 47.06 16.00 3333
Humans-10 59.05  60.67 31.03 55.67 40.00 86.13 50.41 47.76 38.71 28.17 71.30
A (Humans-10) 44937 45.627 24.581 22121 21.547 21.6117 18.657 39.547 8350 12,177 37.971
Humans-100 67.96 6835 42.86 65.79 67.92 90.91 67.09 66.67 70.97 50.00 79.28
A (Humans-100) 53.8417 53307 364117 32241 49.467 26.397 35.331 58457 23911 34.007 45.957
Methods ‘ Oppose  Plan Praise Prevent Refuse Taunt Thank Warn 00S

ChatGPT-10 25.00  29.27 50.00 12.12 16.87 13.48 59.09 37.04 27.85

Humans-10 67.51 57.78 73.06 70.77 47.83 44.62 93.91 34.78 62.83

A (Humans-10) 425117 28517 23.061 58.651 30.967 31.141 34.821 2.260 34.981

Humans-100 67.56  70.89 79.65 7797 53.66 63.93 94.83 62.86 75.41

A (Humans-100) 42,567 41627 29.651 65.857 36.797 50.457 35.741 25.827 47.567

U FINE-GRAINED INTENT PERFORMANCE

U.1 TEXT V.S. MULTIMODAL FUSION METHODS

To further demonstrate the effectiveness of nonverbal modalities, we conduct experiments across 30
specific intent classes and one out-of-scope category, using the Fl-score as the evaluation metric,
similar to (Zhang et al}, 2022). The average performance over 5 experimental runs is presented
in Table 21] The results show significant enhancements in understanding 26 intent classes when
integrating nonverbal modalities. Notably, 14 classes show improvements of over 3 points, including
Acknowledge, Agree, Apologise, Arrange, Ask for help, Care, Criticize, Flaunt, Invite, Joke, Plan,
Refuse, Warn, and OOS. These classes represent a mix of common and challenging scenarios, as well
as out-of-scope instances, all requiring high-level cognitive inference and semantic understanding.
Remarkably, we observe substantial improvements of over 10 points in challenging classes like
Flaunt, Invite, and Warn. This underscores the importance of nonverbal modalities in recognizing
human intentions. While some classes show lesser improvements or rely more on text modality, the
performance with non-verbal modalities is competitive, demonstrating their substantial benefit in
intent recognition in multimodal scenarios.

Furthermore, we extend our research to multi-turn conversations, maintaining the same experimental
settings as in single-turn conversations and show the results in Table 22} In these settings, MAG-
BERT outperforms the text-only modality in 18 classes. Specifically, it achieves improvements
of over 3 points in four classes, including Acknowledge, Arrange, Ask for help, and Ask for opin-
ions, and 1-2% improvements in 8 classes, such as Agree, Comfort, Doubt, Explain, Greet, Inform,
Praise, and Warn. These classes encompass a significant portion of common interaction intents.
However, the gains from nonverbal modalities in multi-turn conversations are not as pronounced as
in single-turn conversations, indicating existing methodological limitations in handling out-of-scope
utterances and fully utilizing context information. Addressing these challenges is crucial for future
research and highlights both the importance and complexity of the MIntRec2.0 dataset.

U.2 CHATGPT v.s. HUMANS

To delve deeper into the performance on specific intent classes, we conduct experiments for
ChatGPT-10, Humans-10, and Humans-100. We calculate the F1-score for each class and present
these results in Table[23] The results illustrate that humans significantly outperform ChatGPT. With
the same foundational knowledge of 10 dialogues encompassing 227 utterances, Humans-10 ex-
hibits superior performance across nearly all intent classes and the out-of-scope category, outper-
forming ChatGPT-10 by over 10 points in most cases. Notably, 15 intent classes and one out-
of-scope category show improvements of over 30 points. Classes like Care and Prevent achieve
improvements of over 50 points, while Ask for help, Criticize, Doubt, and Oppose see over 40 points
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improvement. These findings highlight a significant gap between ChatGPT and human capabilities,
underscoring humans’ adeptness at using limited prior knowledge from multimodal contexts, such
as body language and facial expressions, to infer and synthesize complex intents at a cognitive level,
a skill where current machine learning methods, including large language models, fall short.

Additionally, with more extensive prior knowledge of 100 dialogues comprising 997 utterances,
Humans-100 performs even better compared to Humans-10 and achieves state-of-the-art perfor-
mance across all classes. This includes markedly improved performance of over 10 points in 16
intent classes and the out-of-scope category. This demonstrates the remarkable potential of humans
to leverage multimodal knowledge and their ability to learn effectively with only a marginally larger
dataset (7% of all training data). This proficiency even surpasses current fully supervised multi-
modal fusion methods, as shown in Table ] The detailed intent performance comparison between
ChatGPT and humans further validates the challenges presented by the MIntRec2.0 dataset, indi-
cating that there is still considerable progress to be made in Al for the complex task of multimodal
intent recognition.

V LIMITATIONS AND POTENTIAL NEGATIVE SOCIETAL IMPACTS

Limitations: This study presents several limitations that warrant acknowledgment. First, deploying
this system in real-world settings necessitates collecting personal data, including facial expressions,
voice, and text, thereby raising critical privacy concerns requiring meticulous attention. Second, the
issue of liability remains ambiguous, especially in sensitive applications such as medical diagnosis,
should the technology produce erroneous results. Third, our training dataset may lack comprehen-
sive representation across diverse cultural backgrounds, potentially resulting in misunderstandings
or the perpetuation of stereotypes. Lastly, substantial opportunities exist for enhancing the system’s
performance, particularly in effectively utilizing context information and out-of-scope sample data
and incorporating non-verbal modalities.

Potential Negative Societal Impacts: While our work contributes valuable advancements in the
field of multimodal intent recognition, it also has the potential to introduce negative societal impacts.

Firstly, there is the potential for misuse of our dataset if it becomes publicly available under an open-
source license. Such misuse could include unauthorized commercial applications or other nefarious
purposes that could result in harm. To mitigate this, we strongly urge users to adhere strictly to the
licensing terms associated with this dataset.

Secondly, as Al systems like ours become increasingly sophisticated and prevalent, there is the risk
of over-reliance on these technologies. This could lead to a decline in certain human skills, especially
those related to understanding and interpreting conversational cues. As researchers and developers,
we must continue to balance the advancement of Al with the preservation and enhancement of
human capabilities.

Thirdly, the baseline system might be used with malicious intent. While any technology can be
used for both beneficial and harmful purposes, our system is designed to detect out-of-scope (OOS)
categories, which could be exploited to identify harmful or malicious intents. By integrating robust
OOS detection, our system can flag conversations or utterances that deviate from predefined, accept-
able intents. This feature could act as a first line of defense against technology misuse, as it can be
tailored to detect and flag potentially harmful conversation intents.

Furthermore, establishing a benchmark in this field can have numerous positive societal impacts,
such as enhancing human-computer interactions, aiding mental health assessments, and improving
customer service automation. We believe the ethical deployment of this technology largely hinges
on implementation safeguards and the specific contexts in which it is used.
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