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Abstract

Offline reinforcement learning (ORL) has gained
attention as a means of training reinforcement
learning models using pre-collected static data.
To address the issue of limited data and im-
prove downstream ORL performance, recent work
has attempted to expand the dataset’s coverage
through data augmentation. However, most of
these methods are tied to a specific policy (policy-
dependent), where the generated data can only
guarantee to support the current downstream ORL
policy, limiting its usage scope on other down-
stream policies. Moreover, the quality of synthetic
data is often not well-controlled, which limits the
potential for further improving the downstream
policy. To tackle these issues, we propose HIgh-
quality POlicy-DEcoupled (HIPODE), a novel
data augmentation method for ORL. On the one
hand, HIPODE generates high-quality synthetic
data by selecting states near the dataset distri-
bution with potentially high value among candi-
date states using the negative sampling technique.
On the other hand, HIPODE is policy-decoupled,
thus can be used as a common plug-in method
for any downstream ORL process. We con-
duct experiments on the widely studied TD3BC
and CQL algorithms, and the results show that
HIPODE outperforms the state-of-the-art policy-
decoupled data augmentation method and most
prevalent model-based ORL methods on D4RL
benchmarks.
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1. Introduction
Offline Reinforcement Learning (ORL) (Lange et al., 2012)
has garnered significant attention in recent years as it aims
to learn from a dataset of previously collected experiences
without further interaction with the environment. ORL is
believed to be promising (Fu et al., 2020; Fujimoto et al.,
2019), since online learning is not feasible due to the high
cost of failures, and collecting new data is often expensive
or even dangerous (Prudencio et al., 2023).

In the offline setting, prior off-policy RL methods are known
to fail on fixed offline datasets (Haarnoja et al., 2018; Fuji-
moto et al., 2018), even on expert demonstrations (Fujimoto
et al., 2019). The main reason of this could be the lim-
ited coverage of offline data. This can cause the policy
visiting states that are out of the distribution (OOD) of the
dataset, and suffer from the extrapolation error on these
states (Fujimoto et al., 2019; Kumar et al., 2019). To al-
leviate extrapolation errors, most ORL researches attempt
to avoid out-of-distribution states or actions, focusing on
policy constraint (Fujimoto et al., 2019; Wu et al., 2019;
Liu et al., 2020; Fujimoto & Gu, 2021), support constraint
(Kostrikov et al., 2022; Kumar et al., 2019), value regu-
larization (Kumar et al.; Ma et al., 2021b;a; Kumar et al.,
2021; Kostrikov et al., 2021; An et al., 2021), and others.
However, these approaches face the problem of the loss of
generalization capability (Lyu et al., 2022).

Different from mitigating the extrapolation error, data aug-
mentation has been applied in ORL recently to expand the
coverage of the dataset. The simplest approach is to add
noise to the original dataset to obtain augmented data (Sinha
et al., 2022; Weissenbacher et al., 2022), which could result
in inaccurate dynamics transition that may not match the real
environment. In contrast, dynamics models used in model-
based RL can augment the dataset by rolling out synthetic
samples. Inspired by this, existing works use the forward or
backward dynamics models (Yu et al., 2021; 2020; Kidambi
et al., 2020; Lyu et al., 2022; Wang et al., 2021; 2022; Lu
et al., 2022; Guo et al., 2022; Rigter et al., 2022; Fu et al.)
to generate synthetic data and incorporate them into the
policy training process. However, most of these methods
are policy-dependent since they have to explicitly deal with
unreliable data derived from inaccurate models to adapt to
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the downstream policy, thus limiting their data’s application
to augment other ORL algorithms. Among them, (Wang
et al., 2021; Lyu et al., 2022) achieve policy-decoupled data
augmentation. However, these methods lack explicit con-
straints to ensure the quality of the generated data, making
the underlying mechanism by which they work unclear and
limiting the potential of further improvement to the down-
stream policy.

To overcome the above-mentioned issues, we investigate
the data augmentation method that is not dependent on the
downstream ORL policy, which also ensures the quality
of generated data. We first empirically analyze that high-
quality data is beneficial for enhancing ORL performance.
Then, we propose the HIgh-quality POlicy-DEcoupled
(HIPODE) data augmentation approach.
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Figure 1. Outline of our data augmentation for ORL.

We present the outline of our policy-decoupled data aug-
mentation process for ORL in Fig.1, which involves using
specific augmentation policy to generate synthetic datasets
based on the original dataset. These synthetic datasets are
then used to expand the training data for any downstream
ORL algorithm. Throughout this process, our key insight
is to generate high-quality synthetic augmented data while
ensuring authenticity (i.e. the proximity level between the
synthetic data and the real data) as much as possible in
such a policy-decoupled way. To this end, HIPODE uses
a state transition model to generate next states and select
the ones near the dataset distribution with potential highest
value identified using a value network trained with nega-
tive sampling technique (Luo et al., 2019). Then the action
and reward in the synthetic transition is replenished via
inverse dynamics model and generative reward model, re-
spectively. Note that data generation process of HIPODE
does not need any information from the downstream policy,
thus it’s decoupled from the downstream offline policy learn-
ing process and can be used as a common plug-in method,
similar to the role of data augmentation in Computer Vi-
sion (CV). Experimental results on D4RL benchmarks (Fu
et al., 2020) demonstrate that HIPODE significantly im-
proves different baselines’ performance and outperforms
existing policy-decoupled data augmentation methods for

ORL. To show the benefit of policy-decoupled approach, we
also conduct experiments to show that synthetic data gener-
ated from HIPODE can benefit several downstream offline
policy learning processes while existing policy-dependent
augmentation methods may fail.

To summarize, the contributions of this paper are:

• We investigate the impact of different types of augmented
data on downstream ORL algorithms. Our findings indi-
cate that high-quality data, as opposed to noisy data with
high diversity, benefits downstream offline policy learning
performance more.

• We propose a novel policy-decoupled data augmentation
method HIPODE for ORL. HIPODE serves as a common
plugin that can augment high-quality synthetic data for
any ORL algorithm, and is decoupled with downstream
offline policy learning process.

• We evaluate HIPODE on D4RL benchmarks and it sig-
nificantly improves several widely used model-free ORL
baselines. Furthermore, HIPODE outperforms state-of-
the-art (SOTA) policy-decoupled data augmentation ap-
proaches for ORL.

2. Related Work
Data augmentation in ORL. To address the challenge of
limited data in ORL, various methods have been proposed
to generate more sufficient data. Most of these approaches
are policy-dependent, meaning they generate data based
on the current policy and use it to refine the training of
the same policy. These policy-dependent data augmenta-
tion methods can be divided into two categories. The first
category seeks to generate pessimistic synthetic data that
would be pessimistic enough if it is OOD, thus expand the
dataset’s coverage while mitigating the extrapolation error
caused by such OOD data. The literature (Yu et al., 2020;
Kidambi et al., 2020) rely on the disagreement of dynamics
ensembles or Q ensembles to construct a pessimistic MDP,
and (Yu et al., 2021; Rigter et al., 2022; Guo et al., 2022)
achieve the underestimation of synthetic data by unrolling
the current policy in the model. The second category does
not explicitly pursue the underestimation of synthetic data.
Among them, (Fu et al.) generates and selected synthetic
data with low model disagreement, and BooT (Wang et al.,
2022) augments TT (Janner et al., 2021) with the synthetic
data generated by itself. Besides, S4RL (Sinha et al., 2022)
and KFC (Weissenbacher et al., 2022) add noise in a local
area of states to smooth the critic.

An obvious drawback of these aforementioned approaches,
which are all policy-dependent, is that the generated data is
closely related on the policy itself, causing that applying the
generated data directly to the learning process of other poli-
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cies is not guaranteed to perform well. To overcome this lim-
itation, recent studies have explored policy-decoupled data
augmentation techniques, which is the focus of this paper.
Bi-directional rolling proposed in (Lyu et al., 2022) induce
the double-check mechanism into offline data augmentation
ensure that the generated data is within the distribution and
avoids inauthentic samples. In (Wang et al., 2021), a reverse
dynamics model is proposed for ORL, and performs better
than CQL (Kumar et al.) on maze environments. However,
these two methods only consider the reliability of the syn-
thetic data and neglect the quality of generated data, which
may limit the performance. In contrast, HIPODE takes into
account both the reliability and quality of the data.

Model-free ORL. Disregarding data augmentation, the
model-free ORL algorithm investigates how to constrain
the policy to approach the behavioral policy or support in
static offline datasets. Existing methods implement this by
policy constraint (Fujimoto et al., 2019; Wu et al., 2019;
Liu et al., 2020; Fujimoto & Gu, 2021), support constraint
(Kostrikov et al., 2022; Kumar et al., 2019), value regular-
ization (Kumar et al.; Ma et al., 2021b;a; Kumar et al., 2021;
Kostrikov et al., 2021; An et al., 2021), and others. Among
them, we choose widely-used TD3BC (Fujimoto & Gu,
2021) and CQL (Kumar et al.) to be the downstream policy
learning algorithm to evaluate different data augmentation
methods.

3. What Kind of Augmented Data Can Help
Improve ORL?

As mentioned before, data augmentation methods in ORL
often neglect the data quality. However, high-quality data
are regarded as beneficial for learning (Fu et al., 2020).
Accordingly, we pose the question of whether the generation
of high-quality data is also beneficial for ORL policies when
compared to high-diversity data. We primarily investigate
this question in this section.

Table 1. Results of downstream ORL algorithm using different aug-
mented data. Original denotes using the original dataset; Original
+ Diversity σ and Original + Quality denote using high-diversity
or high-quality augmented data; -r and -m-r denotes -random-v0
and -medium-replay-v0.

Task Name Augmenting Type TD3BC CQL

halfcheetah-r

Original 12.8 17.0
Original + Diversity 0.01 12.1 2.0
Original + Diversity 0.1 12.0 16.1
Original + Diversity 1.0 9.2 3.0
Original + Quality 25.8 23.8

halfcheetah-m-r

Original 43.3 42.5
Original + Diversity 0.01 44.6 38.4
Original + Diversity 0.1 44.3 1.8
Original + Diversity 1.0 41.8 25.6
Original + Quality 46.8 52.6

To fairly investigate the effect of high-diversity data and
high-quality data on the downstream ORL algorithm, we
generate two types of data from real environments, instead
of generating from other data augmentation techniques, to
prevent potential bias due to inauthentic data impacting our
findings. Moreover, to more closely match the offline set-
ting, we limit the data generated in this section to only those
that are not far away from the original dataset. Concretely,
we choose the following two types of augmentation poli-
cies: (1) Policy of high diversity, where random noise with
different scales is added to the behavioral policy. Formally,
πnoise := N (a, σI), s.t., a ∼ πβ , where πβ denotes the be-
havioural policy, N denotes the Gaussian distribution and
I denotes a identity matrix. The dataset after augmentation
by this policy exhibits higher diversity compared to the
original dataset. We refer to this type of method as ‘Di-
versity σ’, where σ belongs to 0.01, 0.1, 1.0. (2) Policy
of high-quality, a well-trained ORL policy, to ensure the
action quality, i.e., return, derived from the ORL policy is
similar to or higher than that of the actions in the dataset
overall. Meanwhile, the generated data is also ensured to be
close to the dataset. We refer this as ‘Quality’.
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Figure 2. Action distributions of the original dataset, noise-policy-
augmented data and quality-policy-augmented data. Brighter color
indicates higher reward in a single time-step.

The augmented data and the original data are together used
to train the downstream ORL algorithms. Normalized score
reported in Table 1 shows that using ORL policy to augment
data can always benefit down stream offline policy learn-
ing performance while using random noise policy may not.
We further visualize the distribution of the original dataset,
the noise-policy-augmented data, and the quality-policy-
augmented data through t-Distributed Stochastic Neighbor
Embedding (t-SNE) (Hinton & Roweis, 2002) in Fig.2. As
we can see from it, compared with the distribution of the
original data, the distribution of the noise-policy-augmented
data is similar to the original dataset’s while the distribution
of the quality-policy-augmented data is relatively concen-
trated in several clusters. In addition, the quality-policy-
augmented data indeed has higher rewards in a single time-
step, as the color of the most triangle points are brighter.
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Based on these observations, we present the following take-
away:

Takeaway: in the case that the augmented data
is completely realistic, data with higher quality may
be more beneficial than that of more diversity in
improving downstream ORL algorithm.

4. Method
According to the takeaway above, we propose HIPODE
to generate augmented data that maximizes its quality, i.e.,
return, while maintaining as much authenticity as possible
in a policy-decoupled way. We illustrate HIPODE in Fig.3.
Specifically, given any state s, we first generate several
candidate next states S̃′

cand = {s̃′1, ..., s̃′n} (Step 1 in Fig.3).
Then we select the one with the highest value as s̃′ (Step
2). Finally, given s and s̃′, the action ã and the reward r̃ are
produced using generative models (Step 3), thus generating
a transition {s, ã, r̃, s̃′}. In the following, we introduce Step
1 and 2 in Section 4.1 and Step 3 in Section 4.2.

4.1. Next State Generation with Negative Sampling

Given a state s, we generate the next state through a state
transition model, and filter the high-quality data for our
purpose. In the following, we describe these two steps in
detail.

The forward state transition model. We first train a state
transition model p̃ψ(s′|s) to generate candidate next states.
To guarantee the authenticity of generated next state, we
model the state transition within the dataset with a condi-
tional variational auto-encoder (CVAE) following (Zhang
et al., 2022), to ensure the generated next states are near
the distribution of the dataset. Specifically, CVAE consists
of an encoder and a decoder: the encoder takes the current
state and the next state as input and manages to output an
latent variable z under the Gaussian distribution; the de-
coder takes z and the current state as input and manages to
map the latent variable z to the desired space. We denote
the encoder as Eψ(s, s′) and the decoder as Dψ(s, z). The
state transition model is then trained by maximizing its vari-
ational lower bound, which is equivalent to minimizing the
following loss:

L(ψ) =E(s,s′)∼Denv,z∼Eψ(s,s′)[(s
′ −Dψ(s, z))

2

+DKL(Eψ(s, s
′)∥N (0, I))].

(1)

where I represents an identity matrix and Denv represents the
original dataset. The first term of RHS of Eq.(1) represents
the reconstruction loss where the approximated next state is
decoded from z, given the current state. The second term
of RHS represents the KL distance between the distribution

of z and the Gaussian distribution so that a sampled z from
a Gaussian distribution can be decoded to the desired state
space when generating. Thus, given a state s, n candidate
next states S̃′

cand = {s̃′1, ..., s̃′n}, s.t., s̃′i ∼ Dψ(s̃
′
i|s, z) are

sampled.

Value Approximation with Negative Sampling. To filter
out the generated next states and form synthetic transitions,
a value approximator is trained using SARSA-style updating
to predict the value of different states. Since the generated
next states may not be present in the dataset, the negative
sampling technique (Luo et al., 2020) is employed to avoid
overestimation of states outside the dataset. Specifically, for
states within the dataset, standard TD-learning is performed
as demonstrated in Eq.2:

Ltd
θ (s) = E(s,r,s′)∼Denv [r + γVθ̄(s

′)− Vθ(s)]
2, (2)

where Vθ̄ is the target value function and γ is the discount
factor. Furthermore, to conservatively estimate the value
of states outside the dataset distribution, we sample states
around the dataset states by adding Gaussian noise and
evaluate the L2 distances between the sampled noisy states
and the original states. The greater the distance between
the sampled state and the original state, the more severe the
penalties imposed on the sampled state, as shown in Eq.(3):

Lns
θ (s) =Es∼N (sd,σI),(sd,r,s′)∼Denv [r + γVθ̄(s

′)

− α∥s− sd∥ − Vθ(s)]
2,

(3)

where sd denotes the state sampled from the original dataset
and α denotes the penalty weight. Thus, the optimization ob-
jective of the value approximator to minimize is represented
by Eq.(4):

L(θ) = L(θ)td + L(θ)ns. (4)

After training, all the candidate next states S′
cand are input

into the value approximator to obtain their values. Then
the candidate next state with the highest value estimation is
selected, formally s̃′ = argmaxs̃′cand

V (s̃′cand), s̃
′
cand ∈ S̃′

cand .
Intuitively, a state can be selected in two cases:

• States within the dataset. This is because other candidate
states that not in the dataset are severely underestimated.
In this case, the selected state can be considered reliable.

• States with high true value near the dataset distribution.
Since its estimated value is significantly penalized during
training, there is a high probability that a selected state
close to the distribution has a high true value.

Therefore, by filtering the candidate next states generated by
the state transition model using the value approximator, we
can obtain the augmented next state with similar or higher
quality than that in the datasets while maintaining as much
authenticity as possible.
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Figure 3. Illustration of HIPODE.

4.2. Replenishing Transitions with Action Selector

Based on the selected high-quality next state, in this sec-
tion, we aim to generate an authentic action that can lead
the current state to the generated next state. Specifically,
an inverse model Minv = p̃ϵ(a|s, s′) is trained to generate
actions conditioned on s and the selected s̃′. Similar to the
state transition model, we also use a CVAE for generating
actions. We denote the encoder as Eϵ(a, s, s′) and the de-
coder as Dϵ(s, s

′, z). The inverse model is then trained by
maximizing its variational lower bound, which is equivalent
to minimizing the following loss shown as Eq.(5):

L(ϵ) =E(a,s,s′)∼Denv,z∼Eϵ(a,s,s′)[(a−Dϵ(s, s
′, z))2

+DKL(Eϵ(a, s, s
′)∥N (0, I))].

(5)

Besides, rewards are generated the same way as actions,
using another model with encoder Eζ(r, s, s′) and decoder
Dζ(s, s

′, z).

Although the generated state have high quality and authen-
ticity as described in Section 4.1, the action generated by the
inverse dynamics model may be inauthentic, i.e. the gener-
ated action can not lead to the selected next state. Therefore,
a filtering mechanism is imposed on actions for their re-
liability. We further draw on a forward dynamics model
Mfor dyna = p̃w(s̃

′
dyna|s, a) representing the probability of

the next state given the current state and action. The dynam-
ics model is optimized by maximizing the log-likelihood of
the static dataset, formally shown in Eq.(6):

L(w) = E(s,a,s′)∼Denv [−log p̃w(s
′|s, a)]. (6)

Combining the forward dynamics model Mfor dyna and the
inverse dynamics model Minv, an action is assumed to be
reliable to lead to the selected state s̃′ when the distance
between the selected state s̃′ and the forward-predicted state
s̃′dyna =Mfor dyna(s, ã) is small enough. In practice, instead
of setting a threshold for measuring the distance between s̃′

and s̃′dyna, we pick up in a batch λ-portion of the generated
data with the lowest ∥s̃′dyna − s̃′∥ values and consider them

the most reliable subset of the batch. Then this subset of
data is used as the final augmented data.

HIPODE is summarized in Algorithm 1, where N(Denv) is
the amount of data in the original dataset. Line 5-7 refers to
selecting the next state with negative sampling, described
in Section 4.1 for generating synthetic next states that are
close to the dataset distribution and have the potential for
the highest value. Line 8-10 and 12 refer to replenishing
transitions with an action selector, as described in Section
4.2 for generating synthetic actions and rewards. Line 13-14
refers to merging the synthetic data with the original dataset
for downstream offline policy training to obtain the offline
policy π.

5. Experiments
In this section, we evaluate HIPODE based on two repre-
sentative and widely-used offline policy learning algorithm:
TD3BC (Fujimoto & Gu, 2021) and CQL (Kumar et al.).We
aim to answer these questions:

Q1: Can our proposed algorithm HIPODE improve exist-
ing ORL algorithms and exhibit consistent superiority in
comparison to other data augmentation technique?

Q2: Is augmenting synthetic data or high-quality synthetic
data critical for ORL policy?

Q3: Does our policy-decoupled data augmentation al-
gorithm HIPODE outperform the conventional policy-
dependent data augmentation methods?

Q4: In HIPODE, what roles do the negative sampling and
transition selector components play?

In the following, we answer Q1 in Section 5.1, showing
the effectiveness and superiority of HIPODE by combining
it with offline RL algorithms on MuJoCo (Todorov et al.,
2012) tasks. Then, we present an ablation study in details
in Section 5.2 to answer Q2. We answer Q3 in Section 5.3
by comparing HIPODE with policy-dependent data aug-
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Algorithm 1 HIPODE
Input: Offline dataset Denv = {(s, a, r, s′)}, penalty
wieght α, synthetic rate η, action selecting rate λ, number
of candidate next states n
Output: Policy π
Train state transition model Dψ(s, z) by minimizing
Eq.(1), value estimator Vθ(s) by minimizing Eq.(4), dy-
namics model p̂w(s′|s, a) by minimizing Eq.(6) and in-
verse action model Dϵ(s, s

′, z) as well as inverse reward
model Dζ(s, s

′, z) by minimizing Eq.(5) and a similar
loss for reward generation respectively
repeat

Sample a batch of s from Denv
Sample S̃′

cand containing n s̃′i from s̃′i ∼ Dψ(s, z), z ∼
N (0, I)
s̃′ = argmaxs̃′cand

V (s̃′cand), s̃
′
cand ∈ S̃′

cand

Sample actions ã ∼ Dϵ(s, s
′, z), z ∼ N (0, I) and

sample rewards r̃ ∼ Dζ(s, s
′, z), z ∼ N (0, I)

Sample s̃′dyna from s̃′dyna ∼ p̃w(s̃
′
dyna|s, a)

until reaching maximum generating amount, which is
ηN(Denv)
Select top λ-portion authentic actions to construct
Dsynthetic with least ∥s̃′dyna − s̃′∥
Merge the synthetic dataset and the original dataset D =
D ∪Dsynthetic
Use any model-free offline policy learning algorithm to
obtain π
return π

mentation methods. Finally, we answer Q4 in Appendix
B.

5.1. Performance on MuJoCo

Evaluation settings. We demonstrate the benefits of
HIPODE on D4RL MuJoCo-v0 tasks (Fu et al., 2020), com-
paring with several baselines that augment data for policy
training:

• CABI (Lyu et al., 2022), the SOTA policy-decoupled data
augmentation algorithm for ORL. we reproduce CABI
following their paper (Lyu et al., 2022) based on CORL
(Tarasov et al., 2022).

• COMBO (Yu et al., 2021) and MOPO (Yu et al., 2020),
two widely studied model-based ORL methods, which are
policy-dependent. we re-run COMBO (Yu et al., 2021)
using code of (Sun, 2023), and take the reported results of
MOPO directly from the original paper (Yu et al., 2020).
Additionally, We re-run MOPO on expert datasets using
OfflineRL-Kit (Sun, 2023).

To ensure the fairness of the comparison, we implement
HIPODE and the downstream ORL algorithms (TD3BC and
CQL) based on CORL (Tarasov et al., 2022). We present

detailed discussion about benchmark tasks and implementa-
tion in Appendix A.
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Figure 4. Density of different synthetic data and the original
dataset.
Main results. Table 2 shows the results on 15 MuJoCo
tasks comparing between the above-mentioned algorithms.
HIPODE achieves remarkable improvements over base-
lines (TD3BC, CQL), and also significant gain outperform-
ing SOTA data augmentation method (CABI), which con-
firm the effectiveness of HIPODE in handling these offline
tasks. In this experiment, in order to make a fair compari-
son, we reproduce the CABI algorithm based on the same
downstream policy learning process and the same hyper-
parameters to demonstrate HIPODE’s superiority. Under
the premise of controlling downstream implementation and
consistent hyper-parameters, the advantage of HIPODE per-
formance all comes from the data augmentation process.
On the other hand, compared to the reported results in (Lyu
et al., 2022), our advantage remains consistent, as detailed
in Appendix B. HIPODE is also effective in the Adroit tasks.
Details are presented in Appendix B.

Also, HIPODE’s predominance over the model-based
policy-dependent baseline algorithms (COMBO, MOPO)
demonstrates its strength. Noting that COMBO and MOPO
need to access the true terminal function to ensure algorithm
performance, whereas HIPODE achieves better performance
without the need for such a function, by uniformly setting
terminal flag of HIPODE’s synthetic data to False.

To show HIPODE indeed generates high-quality transitions,
we visualize the distribution of estimated discounted cu-
mulative rewards of trajectories in the original dataset and
synthetic data generated by HIPODE and CABI. Specifi-
cally, we train online SAC to converge to obtain the optimal
value function V ∗ as authoritative value function. For each
state-action pair (s, a), we use r + V ∗(s′) to represent the
discounted cumulative reward, where r, s′ ∼ p(r, s′|s, a)
are the true reward and next state in the environment respec-
tively. Fig.4 illustrates the density of synthetic data gener-
ated by CABI and HIPODE on halfcheetah-medium-replay-
v0, as well as the original dataset, where X axis represents
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Table 2. Normalized average score and standard deviation over 3 random seeds of HIPODE based on CQL and TD3BC and of baseline
performance. In the table, -m-e, -m-r, -m, -r, -e denote -medium-expert, -medium-replay, -medium, -random, -expert respectively.

Task Name CQL
+ HIPODE

CQL
+ CABI CQL TD3BC

+ HIPODE
TD3BC
+ CABI TD3BC COMBO MOPO

halfcheetah-m-e 99.5± 4.5 101.0 94.8 102.6± 2.2 94.6 98.0 38.7 63.3
hopper-m-e 112.1± 0.1 112.0 111.9 112.4± 0.3 102.8 112.0 75.1 23.7
walker2d-m-e 94.0± 4.0 92.3 70.3 105.3± 4.0 99.6 105.4 2.3 44.6
halfcheetah-m-r 46.0± 0.1 42.8 42.5 44.0± 0.7 43.4 43.3 46.9 53.1
hopper-m-r 34.7± 2.9 29.7 28.2 36.2± 0.8 32.7 32.7 19.7 67.5
walker2d-m-r 21.7± 6.5 12.7 5.1 36.4± 11.1 37.7 19.6 19.5 39.0
halfcheetah-m 39.3± 0.2 36.7 39.2 43.7± 0.5 43.0 43.7 27.4 42.3
hopper-m 30.4± 0.9 30.5 30.3 99.9± 0.3 99.7 99.9 71.6 28.0
walker2d-m 75.7± 5.1 46.8 66.9 80.1± 0.7 80.3 79.7 71.8 17.8
halfcheetah-r 23.1± 1.5 2.8 17.0 15.5± 0.9 12.5 12.8 5.5 35.4
hopper-r 10.4± 0.1 10.2 10.4 10.9± 0.2 10.9 10.9 7.5 11.7
walker2d-r 10.5± 0.6 -0.1 1.7 6.6± 1.0 3.0 0.37 1.6 13.6

Total 592.9 517.4 518.3 693.6 660.2 658.3 387.5 440.0

halfcheetah-e 109.1±0.14 109.1 109.8 106.5± 0.5 106.3 107.0 44.2 102.1
hopper-e 112.2± 0.2 112.3 112.0 112.3± 0.5 110.8 107.3 112.3 0.7
walker2d-e 109.3± 2.0 98.7 104.7 106.6± 5.2 102.5 98.7 37.3 2.1

Total 929.0 837.5 844.9 1019.0 979.8 971.5 581.3 544.9

V ∗ and Y represents the density of synthetic transitions on
V ∗. Form the figure, the green shadow almost coincide with
the red one, showing that CABI’s data distribution almost
coincide with the original dataset, while HIPODE indeed
generates more high-quality data. In conjunction with the
results in Table 2, the advantage of HIPIDE performance
comes from more high-quality data in augmentation process,
which sequentially demonstrates that high-quality data is
more suitable rather than high diversity data as augmented
data for ORL.

5.2. Ablation Study

In this section, we aim to further investigate how the gener-
ated data improves downstream offline policy. We con-
duct ablation experiments from three perspectives: not
generating synthetic data (Repeat), generating vanilla syn-
thetic data (NoV), and generating high-quality synthetic
data (HIPODE). and the results are shown in Table 3.

Specifically, the difference of Repeat and HIPODE is that
the synthetic data is replaced by 10% high-quality data from
the original dataset in Repeat. The difference between NoV
and HIPODE is that the value maximization mechanism is
removed in NoV, i.e., the quality of generated data is not
controlled. Generating high-quality synthetic data is exactly
HIPODE.

As the results in Table 3, Repeat+TD3BC, i.e., repeating
high-quality data in the dataset, brings little performance
gain and even hurts performance on walker2d-medium-

Table 3. Normalized average score of generating different types of
augmented data over 3 seeds on MuJoCo -v0 tasks.

Task Name Repeat
+TD3BC

NoV
+TD3BC

HIPODE
+TD3BC TD3BC

halfcheetah-m-e 97.4 99.1 102.6 98.0
hopper-m-e 111.9 110.5 112.4 112
walker2d-m-e 38.0 102.5 105.3 105.4
halfcheetah-m-r 42.5 44.0 44.0 43.3
hopper-m-r 36.5 36.2 36.2 32.7
walker2d-m-r 18.0 30.0 36.4 19.6
halfcheetah-m 43.6 43.1 43.7 43.7
hopper-m 99.8 99.7 99.9 99.9
walker2d-m 79.5 79.7 80.1 79.7
halfcheetah-r 11.7 13.1 15.5 12.8
hopper-r 11.1 10.9 10.9 10.9
walker2d-r 1.9 2.1 6.6 0.4
halfcheetah-e 104.2 105.3 106.5 107.0
hopper-e 112.5 112.3 112.3 107.3
walker2d-e 78.1 104.9 106.6 98.7

Total 886.8 993.3 1019.0 971.4

expert and walker2d-expert. Thus it’s not effective for im-
proving ORL performance. Besides, NoV+TD3BC achieves
an improvement over TD3BC, indicating the importance
of generating new synthetic data for data augmentation.
However, the performance of NoV+TD3BC is worse than
HIPODE, indicating the importance of generating high-
quality data. To summarize, the result suggests that generat-
ing synthetic data is more effective than simply repeat data,
but the pursuit of generating higher quality synthetic data
can bring more significant performance improvements for
downstream ORL performance.
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Table 4. Normalized score comparison of policy-dependent methods for data augmentation v.s. HIPODE and the baseline on MuJoCo -v0
tasks. We report average normalized score over 3 random seeds each task. Full results consists of -random and -expert tasks are presented
in Appendix B.

Task Name MB+2.5
TD3BC

MB+0.001
TD3BC MBPO HIPODE+

TD3BC TD3BC BooT
+CQL CQL

halfcheetah-m-e 26.0 73.0 9.7 102.6 98.0 5.0 94.8
hopper-m-e 1.1 42.6 56 112.4 112.0 0.8 111.9
walker2d-m-e 42.9 8.5 7.6 105.3 105.4 26.4 70.3
halfcheetah-m-r 45.8 23.1 47.3 44 43.3 4.3 42.5
hopper-m-r 4.8 20.9 49.8 36.8 32.7 5.0 28.2
walker2d-m-r 0.0 7.5 22.2 36.4 19.6 5.8 5.1
halfcheetah-m 45.4 36.7 28.3 43.7 43.7 30.0 39.2
hopper-m 0.7 30.2 4.9 99.9 99.9 79.8 30.3
walker2d-m 4.3 16.9 12.7 80.1 79.7 6.4 66.9

Total 171.0 259.4 238.5 661.2 634.3 163.5 489.2

5.3. Comparison with Policy-Dependent Data
Augmentation Methods

In policy-dependent data augmentation methods, the data
generation process is tightly tied to the downstream ORL
policy, which limits the applicability of the generated data.
In this section we aim to illustrate the strength of our policy-
decoupled data augmentation method, compared to policy-
dependent methods on different downstream ORL policies.
Specifically, on the downstream TD3BC algorithm, we eval-
uate the effect of data generated with some model-based
policy dependent algorithms; on the downstream CQL al-
gorithm, we analyze the effect of the more advanced policy
dependent algorithm Boot (Wang et al., 2022).

We first evaluate the performance of dynamics-model-
enhanced TD3BC based on the data generated by a pre-
viously trained dynamics model, by rolling-out current
TD3BC policy on the dynamics model. The results are
reported as MB+αTD3BC in Table 4, where α is a hyper-
parameter in TD3BC (Fujimoto & Gu, 2021). Results in
Table 4 indicate that using dynamics-model-generated data
as augmentation will damage the offline agent, and such
damage can be mitigated when the policy of the offline
agent is closed to the behavioural policy of the dataset. This
suggests that the damage is caused by the difference be-
tween the policy the dynamics model trained on and the
policy it generates data on, which these model-based policy-
dependent methods fail to address.

We then directly take results report in (Wang et al., 2022)
to form the BooT+CQL column in Table 4. BooT+CQL
means directly using synthetic data generated by BooT on
CQL. The results show that synthetic data generated by Boot
has poor results as augmented data combined with CQL.
This indicates that synthetic data generated by a policy-
dependent data augmentation method can damage another

offline agent. In contrast, HIPODE is policy-decoupled
and our augmented data can benefit different offline agent
without changing, as shown in Table 2.

In summary, synthetic data generated by policy-dependent
data augmentation methods may have a detrimental effect
on ORL processes, while the synthetic data generated by
HIPODE can improve their performance, demonstrating the
superiority of HIPODE.

6. Conclusions and Limitations
In this paper, we investigate the issues of data augmenta-
tion for ORL. We conduct extensive experiments to demon-
strate that, in the context of ORL, high-quality data is a
more suitable choice for augmented data than high-diversity
data when the authority of the data is the same. Based
on this observation, we propose a novel data augmentation
method called HIPODE, which selects states with higher
values as augmented data. This ensures that the synthetic
data is both authentic and of high-quality and is generated
in a policy-decoupled manner. Our experimental results
on D4RL benchmarks demonstrate that HIPODE signifi-
cantly improves the performance of several widely used
model-free ORL baselines without changing the augmented
data, thereby achieving policy-decoupled data augmenta-
tion and demonstrating superiority over policy-dependent
methods. Furthermore, HIPODE outperforms SOTA policy-
decoupled data augmentation methods for ORL, demonstrat-
ing the benefits by generating high-quality data.

The limitation of our work lies in the complexity of the
method, as it requires several models to generate synthetic
data. Additionally, HIPODE is outperformed by vanilla
model-based ORL methods (e.g., MBPO) on -random
datasets because the value penalty is excessively strict on
those datasets. We believe that adjusting the penalty weight
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to be state-dependent instead of initially setting it to a fixed
value is a potential solution to this issue, which we leave for
future work.
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A. Detailed Settings of Experiments
A.1. D4RL Tasks

In this section, we describe details about the MuJoCo and Adroit tasks in the D4RL (Fu et al., 2020) benchmark suite, on
which we evaluate HIPODE.

MuJoCo contains a series of continuous locomotion tasks. Among them, Walker2d is a bipedal robot control task, where
the goal is to maintain the balance of robot body and move as fast as possible. Hopper is a single-legged robot control task
where the goal is to make the robot jump as fast as possible. Halfcheetah is to make a simulated robot perform a running
motion that resembles a cheetah’s movement, while trying to maximize the distance traveled within a fixed time period. In
the MuJoCo-v0 tasks of D4RL, each environment has 5 different types of datasets: expert, medium-expert, medium-replay,
medium and random. Expert: a large amount of data collected by a well-trained SAC agent. Medium: a large amount of
data collected by a early-stopped SAC agent. Medium-expert: a large amount of mixed data of medium and expert at a
50-50 ratio. Medium-replay: replay buffer of a early-stopped SAC agent. Random: a large amount of data collected by a
random policy.

Adroit contains a series of continuous and sparse-reward robotic environment to control a 24-DoF simulated Shadow Hand
robot to twirl a pen, hammer a nail, open a door or grab a ball. These environments are even hard for online learning due
to sparse rewards and exploration challenges (Fu et al., 2020). There are three types of datasets for each environment:
expert, human and cloned. Among them, we evaluate HIPODE on human datasets, where a small number of demonstrations
operated by a human (25 trajectories per task) is collected.

We report normalized score based on the protocol described in (Fu et al., 2020). A score of 0 represents the average return
of random policies, and a score of 100 represents the return of a domain-specific expert. In our experiments, all score is the
final performance of the downstream offline reinforcement learning (ORL) algorithms, which is the average cumulative
reward of ten final policy rollouts.

Table 5. Hyper-parameters of HIPODE+CQL on 15 MuJoCo -v0 tasks.

HIPODE+CQL
Task Name

synthetic
rate η

selecting
rate λ

candidate
number n

penalty
weight α

penalty
scope σ

CQL
α

halfcheetah-e 0.2 0.2 10 1.0 1.0 10.0
halfcheetah-m-e 0.1 0.2 10 1.0 1.0 10.0
halfcheetah-m-r 0.2 1.0 10 1.0 1.0 10.0
halfcheetah-m 0.2 1.0 10 1.0 1.0 10.0
halfcheetah-r 0.1 0.2 10 1.0 1.0 10.0
hopper-e 0.2 1.0 10 1.0 1.0 10.0
hopper-m-e 0.2 0.2 10 1.0 1.0 10.0
hopper-m-r 0.2 1.0 10 1.0 1.0 10.0
hopper-m 0.2 0.2 10 1.0 1.0 10.0
hopper-r 0.2 1.0 10 1.0 1.0 10.0
walker2d-e 0.2 0.2 10 1.0 1.0 10.0
walker2d-m-e 0.1 1.0 10 1.0 1.0 10.0
walker2d-m-r 0.2 1.0 10 1.0 1.0 10.0
walker2d-m 0.2 1.0 10 1.0 1.0 10.0
walker2d-r 0.2 1.0 10 1.0 1.0 10.0

A.2. Hyper-Parameters

In this section, we provide the key hyper-parameters used for HIPODE in the main experiments. They are listed in Table
5 and Table 6. Unless specified otherwise, all results in this paper are obtained using the hyper-parameters listed here.
To reproduce CABI, we follow the hyper-parameters provided in (Lyu et al., 2022). For COMBO, we use the Offline-
RL-Kit’s code (Sun, 2023) and follow (Yu et al., 2021) to set the real ratio to 0.8 for both walker2d-medium-expert and
walker2d-expert while 0.5 for other tasks. For all other hyper-parameters in COMBO and MOPO -expert, we use the default
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Table 6. Hyper-parameters of HIPODE+TD3BC on 15 MuJoCo -v0 tasks and 4 Adroit-human-v0 tasks.

Task Name synthetic
rate η

selecting
rate λ

candidate
number n

penalty
weight α

penalty
scope σ

TD3BC
α

halfcheetah-e 0.15 0.2 10 1.0 1.0 2.5
halfcheetah-m-e 0.15 0.2 10 1.0 1.0 2.5
halfcheetah-m-r 0.5 0.2 10 1.0 1.0 2.5
halfcheetah-m 0.2 0.2 10 1.0 1.0 2.5
halfcheetah-r 0.7 0.2 10 1.0 1.0 2.5
hopper-e 0.2 0.2 10 1.0 1.0 2.5
hopper-m-e 0.5 0.2 10 1.0 1.0 2.5
hopper-m-r 0.5 0.2 10 1.0 1.0 2.5
hopper-m 0.1 0.2 10 1.0 1.0 2.5
hopper-r 0.15 0.2 10 1.0 1.0 2.5
walker2d-e 0.2 0.2 10 1.0 1.0 2.5
walker2d-m-e 0.05 0.2 10 1.0 1.0 2.5
walker2d-m-r 0.5 0.2 10 1.0 1.0 2.5
walker2d-m 0.15 0.2 10 1.0 1.0 2.5
walker2d-r 0.4 0.2 10 1.0 1.0 2.5

door-human 0.4 0.2 10 1.0 1.0 0.001
hammer-human 0.2 0.2 10 1.0 1.0 0.001
pen-human 0.8 0.2 10 1.0 1.0 0.001
relocate-human 0.4 0.2 10 1.0 1.0 0.001

hyper-parameters provided in the Offline-RL-Kit’s code 1.

A.3. Implementation Details

In this section, we describe details of the implementation to our experiments.

Data compression. For data augmentation, generating and storing large amount of synthetic data in a static dataset before
the downstream ORL process can be resource-intensive. To address this issue, in practice, HIPODE is integrated into the
downstream ORL process by generating synthetic data in real-time during the ORL process. This technique compress
the size of synthetic data to the parameters of several generative models in HIPODE. In the data generating process, the
synthetic rate η denotes the rate of synthetic data in every batch fed into downstream ORL algorithms. Therefor, a batch of
size N contains ηN synthetic transitions and (1− η)N real transitions.

Models in HIPODE. Here we describe the details about the models in HIPODE. There are 5 independent models in
HIPODE:

• Value network. The value network is implemented using a Multi-Layer Perceptron (MLP) with one hidden layer of 256
units. We update the target value network every 2 gradient steps using the soft update method θ̄ = τθ + (1− τ)θ̄, where
τ = 0.005 is the update rate.

• Inverse action model. The inverse action model is implemented using a CVAE (Sohn et al., 2015) to generate an action
from a given state and next state. The encoder and decoder of the CVAE both have one hidden layer of 750 units, and the
latent dimension is twice the state dimension of each task.

• Inverse reward model. The inverse reward model is implemented using a CVAE to generate a reward from a given state
and next state. Its structure is similar to the inverse action model, but the two models are trained separately. Together, they
are referred to as the ‘inverse dynamics model’.

• Forward dynamics model. The forward dynamics model predicts the next state from a given current state and action. For

1CORL code URL: https://github.com/tinkoff-ai/CORL

https://github.com/tinkoff-ai/CORL
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a fair comparison, the implementation of the forward dynamics model is identical for both CABI and HIPODE and we
refer to the implementation of the dynamics model in the D3RLPY (Seno & Imai, 2022) library 2 for the implementation
of this part.

• State transition model. The state transition model is implemented using a CVAE to generate the next state from a given
current state, following (Zhang et al., 2022). Its structure is the same as that of the inverse action model, except that the
input dimension of the encoder and the output dimension of the decoder are different.

From the details of the HIPODE models, it can be seen that, although the data generating process is integrated into the
downstream ORL process, the training process and data generating process of all the models in HIPODE is decoupled from
the downstream ORL process, thus achieving policy-decoupled data augmentation.

B. Additional Results
B.1. HIPODE on Adroit Tasks

Table 7. Average normalized score and standard deviation of
HIPODE+TD3BC v.s. TD3BC over 3 random seeds on Adroit-
human tasks.

Task Name HIPODE+TD3BC TD3BC

door-human 2.7 ± 2.6 1.3 ± 1.2
hammer-human 3.5 ± 4.0 3.9 ± 5.6
pen-human 85.0 ± 14.3 60.8 ± 14.0
relocate-human 0.2 ± 0.1 0.1 ± 0.1

Total 91.4 66.1

To further demonstrate the effectiveness of HIPODE, we
also conduct experiments on Adroit-human tasks to eval-
uate its performance in a more challenging setting with
limited human demonstrations and sparse rewards.

As shown in Table 7, HIPODE is effective, improving the
baseline TD3BC on three out of four challenging Adroit
tasks. However, the performance of HIPODE+TD3BC on
Adroit-human datasets is less effective. We attribute this
to the poor performance of the baseline offline agent on
Adroit tasks due to the tasks’ complexity (Fu et al., 2020).

B.2. HIPODE V.S. Reported CABI Results

In Table 2, we report score of reproduced CABI for a fair
comparison. However, our reproduced results are slightly worse than those reported in the original CABI paper. To provide
a more comprehensive view of performance, we list the results reported in the original CABI paper in Table 8. As shown in
Table 8, HIPODE’s advantage compared to CABI is still significant when combined with CQL, while comparable when
combined with TD3BC.

Additionally, to further demonstrate the strong potential of HIPODE, we also conduct experiments tuning the penalty
weight α. We find that adjusting the penalty weight α on some tasks (e.g. walker2d-expert-v0 in Table 11) can improve the
performance, leading to a higher total score than that of reported CABI+TD3BC. For the sake of fair comparison and ease
of use, we only report the results of penalty-weight-non-tuned experiments in this paper.

B.3. Full Results for Policy-Dependent Methods V.S. HIPODE

In this section, we present the results of all 15 MuJoCo tasks to compare the performance of HIPODE with policy-dependent
data augmentation methods, and the results are shown in Table 9. We begin by evaluating the performance of dynamics-
model-enhanced TD3BC, using data generated by a previously trained dynamics model. Specifically, we roll out the current
TD3BC policy on the dynamics model. The results are reported in Table 9 as MB+αTD3BC, where α is a hyper-parameter
in TD3BC (Fujimoto & Gu, 2021). The MB+αTD3BC results, together with those from MBPO, suggest that using
dynamics-model-generated data as augmentation can harm the offline agent. However, we find that the damage can be
reduced when the policy of the offline agent is close to the behavioural policy of the dataset. This suggests that the damage
is caused by the mismatch between the policy that the dynamics model was trained on and the policy it uses to generate data,
which cannot be addressed by model-based policy-dependent methods.

We then conduct experiments on a more advanced policy-dependent data augmentation method, BooT (Wang et al., 2022).
We directly take results report in (Wang et al., 2022) to form the BooT+CQL column in Table 4. BooT+CQL presents the
use of synthetic data generated by BooT as augmentation data for CQL. The results indicate that the synthetic data generated

2D3RLPY code URL: https://github.com/takuseno/d3rlpy
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Table 8. Average normalized score of HIPODE over 3 random seeds v.s. reported CABI on 15 MuJoCo -v0 tasks.

Task Name HIPODE
+CQL

CABI
+CQL

HIPODE
+TD3BC

CABI
+TD3BC

halfcheetah-m-e 99.5 35.3 102.6 105.0
hopper-m-e 112.1 112.0 112.4 112.7
walker2d-m-e 94.0 107.5 105.3 108.4
halfcheetah-m-r 46.0 44.6 44.0 44.4
hopper-m-r 34.7 34.8 36.2 31.3
walker2d-m-r 21.7 21.4 36.4 29.4
halfcheetah-m 39.3 42.4 43.7 45.1
hopper-m 30.4 57.3 99.9 100.4
walker2d-m 75.7 62.7 80.1 82.0
halfcheetah-r 23.1 30.2 15.5 15.1
hopper-r 10.4 10.7 10.9 11.9
walker2d-r 10.5 7.3 6.6 6.4
halfcheetah-e 109.1 99.2 106.5 107.6
hopper-e 112.2 112.0 112.3 112.4
walker2d-e 109.3 110.2 106.6 108.6

Total 928.0 887.6 1019.0 1020.7

by BooT performs poorly when used as augmentation data combined with CQL.This suggests that synthetic data generated
by a policy-dependent data augmentation method can have a detrimental effect on ORL algorithms. In contrast, HIPODE’s
synthetic data can benefit them without causing harm, as demonstrated in the HIPODE+TD3BC and HIPODE+CQL column
in Table 9.

In summary, the synthetic data generated by policy-dependent data augmentation methods can have a negative impact on
ORL processes, while HIPODE’ synthetic data can improve them, demonstrating the superiority of HIPODE.

B.4. More Ablation Study

In this section, we investigate how HIPODE enhances downstream offline policy learning performance by examining two key
components: the negative sampling mechanism and the state transition model. We analyze the impact of these components
as independent variables of downstream offline policy learning performance.

Is the state transition model critical? To investigate the importance of state transition model, we remove the
state transition model and randomly generate candidate next states inside the hypercube formed by the states in
the original dataset with the other mechanisms and hyper-parameters stay the same. Results in Table 10 shows
that removing state transition model severely drops compare to the baseline. In terms of the results in Table
10, although the negative sampling mechanism penalizes the OOD states in the no-state-transition-model condi-
tion, randomly choosing candidate next states can damage the downstream offline policy learning process, demon-
strating the necessity of a state transition model. We believe the following reasons are responsible for this:
(1) The value function is not authentic on randomly sampled next states, so the value is not very effective;

Table 10. Normalized results over 3 random seeds of
HIPODE with randomly sampling next state v.s. HIPODE
with CVAE next state.

Name HIPODE(no stm)
+TD3BC

HIPODE+
TD3BC TD3BC

halfcheetah-m-r 0.6±0.1 44 43.3
halfcheetah-m 27.3±2.9 43.7 43.7
halfcheetah-m-e 58.2±3.0 102.6 98.0

(2) few in-support next states are generate so the winning next
state may still be an OOD state resulting in a inauthentic syn-
thetic transition; (3) The synthetic transition can lead the policy
to a randomly state during evaluation. Hence, state transition
model is significantly critical to ensure an authentic augmenta-
tion. This resembles the necessity of a behavioral policy in CABI
and consistent with their conclusions (Lyu et al., 2022).

Is negative sampling critical? In negative sampling, the penalty
weight controls the severity of the penalty added to the value
of OOD states. A larger penalty weight makes it less likely for
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Table 9. Full results of normalized score comparison of policy-dependent methods for data augmentation v.s. HIPODE and the baseline.
We report average score over 3 random seeds each task.

Task Name mb+2.5
TD3BC

mb+0.001
TD3BC MBPO HIPODE+

TD3BC TD3BC BooT
+CQL CQL HIPODE+

CQL

halfcheetah-m-e 26.0 73.0 9.7 102.6 98.0 5.0 94.8 99.5
hopper-m-e 1.1 42.6 56 112.4 112.0 0.8 111.9 112.1
walker2d-m-e 42.9 8.5 7.6 105.3 105.4 26.4 70.3 94.0
halfcheetah-m-r 45.75 23.1 47.3 44 43.3 4.3 42.5 46.0
hopper-m-r 4.8 20.9 49.8 36.8 32.7 5.0 28.2 34.7
walker2d-m-r 0.0 7.5 22.2 36.4 19.6 5.8 5.1 21.7
halfcheetah-m 45.4 36.7 28.3 43.7 43.7 30.0 39.2 39.3
hopper-m 0.7 30.2 4.9 99.9 99.9 79.8 30.3 30.4
walker2d-m 4.3 16.9 12.7 80.1 79.7 6.4 66.9 75.7

Total 171.0 259.4 238.5 661.2 634.3 163.5 489.2 553.4

halfcheetah-r 27.2 2.3 30.7 15.5 12.8 - 17.0 23.1
hopper-r 4.7 9.6 4.5 10.9 10.9 - 10.4 10.4
walker2d-r 0.1 1.3 13.6 6.4 0.4 - 1.7 10.5

Total 203.0 272.6 287.3 694.0 658.4 518.3 597.4

halfcheetah-e -2.1 106.8 - 106.5 107.0 - 109.8 109.1
hopper-e 1.3 111.9 - 112.3 107.3 - 112.0 112.2
walker2d-e 49.3 84.4 - 106.6 98.7 - 104.7 109.3

Total 251.0 575.7 - 1019.4 971.4 - 844.9 929.0

Table 11. Normalized score of TD3BC combined with different penalty weight for data augmentation. The numbers in the headline
denotes the penalty weight. We report average score over 3 random seeds each task.

Task Name -1+TD3BC 0+ TD3BC 1+ TD3BC 2+ TD3BC 4+ TD3BC 8+ TD3BC TD3BC

walker2d-e 105.2±2.1 102.9±8.1 106.6±5.2 105.2±2.2 106.6±1.0 109.1±0.2 98.7
halfcheetah-m-r 43.0±0.3 40.6±2.2 44.0±0.4 44.0± 0.7 43.8±0.6 43.8±0.3 43.3

HIPODE to generate an OOD next state. We change the penalty
weight in {−1, 0, 1, 2, 4, 8} and run the downstream offline policy learning algorithm, without changing the other hyper-
parameters on walker2d-expert-v0 and halfcheetah-medium-replay-v0. The results in Table 11 show that penalty weights
greater than 0 outperforms the others, but overall, the score difference is marginal. This indicates that penalizing the value
function on OOD states can indeed benefit downstream offline policy learning process. On the other hand, the state transition
model generates candidate states near the dataset, which makes the effect of the penalty insignificant.


