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ABSTRACT

Large-scale Text-to-Video (T2V) diffusion models have recently demonstrated
unprecedented capability to transform natural language descriptions into stunning
and photorealistic videos. Despite these promising results, a significant challenge
remains: these models struggle to fully grasp complex compositional interactions
between multiple concepts and actions. This issue arises when some words dom-
inantly influence the final video, overshadowing other concepts. To tackle this
problem, we introduce Vico, a generic framework for compositional video gen-
eration that explicitly ensures all concepts are represented properly. At its core,
Vico analyzes how input tokens influence the generated video, and adjusts the
model to prevent any single concept from dominating. Specifically, Vico extracts
attention weights from all layers to build a spatial-temporal attention graph, and
then estimates the influence as the max-flow from the source text token to the video
target token. Although the direct computation of attention flow in diffusion models
is typically infeasible, we devise an efficient approximation based on subgraph
flows and employ a fast and vectorized implementation, which in turn makes the
flow computation manageable and differentiable. By updating the noisy latent to
balance these flows, Vico captures complex interactions and consequently produces
videos that closely adhere to textual descriptions. We apply our method to multiple
diffusion-based video models for compositional T2V and video editing. Empirical
results demonstrate that our framework significantly enhances the compositional
richness and accuracy of the generated videos.

1 INTRODUCTION

Humans recognize the world compositionally. That is to say, we perceive and understand the world
by identifying parts of objects and assembling them into a whole. This ability to recognize and
recombine elements—making “infinite use of finite mean”—is crucial for understanding and modeling
our environment. Similarly, in the realm of generative AI, particularly in video generation, it is crucial
to replicate this compositional approach.

Despite advancements in generative models, current diffusion models fail to capture the true compo-
sitional nature of inputs. Typically, some words disproportionately influence the generative process,
leading to visual content that does not reflect the intended composition of elements. While the
compositional text-to-image sythesis (Liu et al., 2022; Chefer et al., 2023; Kumari et al., 2023;
Feng et al., 2023; Huang et al., 2023) has been more studied, the challenge of compositional video
generation has received less attention. This oversight is largely due to the high-dimensional nature of
video and the complex interplay between concepts and motion.

As an illustration, we highlight some failure cases in Figure 1 (Left), where certain words dominate
while others are underrepresented. Common issues include missing subject and spatial confusion,
where some concepts do not appear in the video. Even with all concepts present, semantic leakage
can occur, causing attributes amplified incorrectly, for example, the prompt of a bird and a cat is
misinterpreted as a bird looks like a cat. A challenge specific to T2V is Motion Mixing, where
the action intended for one object mistakenly interacts with another, such as generating a flying
wale instead of flying balloon.
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VideoCrafterv2 + Vico (Ours)

A wildlife conservationist observing the behavior of a leopard in a dense rainforest.

A camel walking under the sea.

A bird and a cat
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A whale flying a hot air balloon over the ocean.

Figure 1: Examples for compositional video generation of Vico on top of VideCrafterv2 (Chen et al.,
2024). We identify four types of typical failure in compositional T2V (Row 1) Missing Subject (Row
2) Spatial Confusion (Row 3) Semantic Leakage and (Row 4) Motion Mixing. Vico provides a unified
solution to these issues by equalizing the contributions of all text tokens.

To address these challenges, we present Vico, a novel framework for compositional video generation
that ensures all concepts are represented equally. Vico operates on the principle that, each textual
token should have an equal opportunity to influence the final video output. At our core, Vico
first assesses and then rebalances the influence of these tokens. This is achieved through test-time
optimization, where we assess and adjust the impact of each token at every reverse time step of our
video diffusion model. As shown in 1, Vico resolves the above questions and provides better results.

One significant challenge is accurately attributing text influence. While cross-attention (Tang et al.,
2023; Mokady et al., 2022; Feng et al., 2023; Rassin et al., 2024) provides faithful attribution in text-
to-image diffusion models, it is not well-suited for video models. It is because such cross-attention is
only applied on spatial modules along, treating each frame independently, without directly influencing
temporal dynamics.

To surmount this, we develop a new attribution method for T2V model, termed Spatial-Temporal
Attention Flow (ST-flow). ST-flow considers all attention layers of the diffusion model, and views it
as a spatiotemporal flow graph. Using the maximum flow algorithm, it computes the flow values, from
input tokens (sources) to video tokens (target). These values serve as our estimated contributions.

Unfortunately, this naive attention max-flow computation is, in fact, both computationally expensive
and non-differentiable. We thus derive an efficient and differentiable approximation for the ST-Flow.
Rather than computing flow values on the full graph, we instead compute the flow on all subgraphs.
The ST-Flow is then estimated as the maximum subgraph flow. Additionally, we have develop a
special matrix operation to compute this subgraph flow in a fully vectorized manner, making it
approximately 100× faster than the exact ST-flow.

Once we obtain these attribution scores, we proceed to optimize the model to balance such contribu-
tions. We do this as a min-max optimization, where we update the latent code, in the direct that, the
least represented token should increase its influence.

We implement Vico on multiple video applications, including text-to-video generation and video
editing. These applications highlight the framework’s flexibility and effectiveness in managing
complex prompt compositions, demonstrating significant improvements over traditional methods in
both the accuracy of generated video. Our contributions can be summarized below:
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• We introduce Vico, a framework for compositional video generation. It optimizes the model
to ensure each input token fairly influences the final video output.

• We develop ST-flow, a new attribution method that uses attention max-flow to evaluate the
influence of each input token in video diffusion models.

• We derive a differentiable method to approximate ST-flow by calculating flows within
subgraphs. It greatly speed up computations with a fully vectorized implementation.

• Extensive evaluation of Vico in diverse settings has proven its robust capability, with
substantial improvements in video quality and semantic accuracy.

2 PRELIMINARIES

Denoising Diffusion Probabilistic Models. Diffusion model reverses a progressive noise process
based on latent variables. Given data x0 ∼ q(x0) sampled from the real distribution, we consider
perturbing data with Gaussian noise of zero mean and βt variance for T steps/ At the end of day,
xT → N (0, I) converge to isometric Gaussian noise. The choice of Gaussian provides a close-form
solution to generate arbitrary time-step xt through

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, where ϵ ∼ N (0, I) (1)

where αt = 1 − βt and ᾱt =
∏t

s=1 αs. A variational Markov chain in the reverse process
is parameterized as a time-conditioned denoising neural network ϵθ(x, t) with pθ(xt−1|xt) =
N (xt−1;

1√
1−βt

(xt + βtϵθ(x, t)), βtI). The denoiser is trained to minimize a re-weighted evidence
lower bound (ELBO) that fits the noise

LDDPM = Et,x0,ϵ

[
||ϵ+

√
1− ᾱtϵθ(x, t)||22

]
(2)

Training with denoising loss, ϵθ equivalently learns to recover the derivative that maximize the data
log-likelihood (Song & Ermon, 2019; Hyvärinen & Dayan, 2005; Vincent, 2011). With a trained
ϵθ∗(x, t) ≈ ∇xt log p(xt), we generate the data by reversing the Markov chain

xt−1 ←
1√

1− βt

(xt + βtϵθ∗(x, t)) +
√

βtϵt; (3)

The reverse process could be understood as going along∇xt
log p(xt) to maximize the likelihood.

Text-to-Video (T2V) Diffusion Models. Given a text prompt y, T2V diffusion models progressively
generate a video from Gaussian noise. This generation typically occurs within the latent space of
an autoencoder (Rombach et al., 2022) to reduce the complexity. The architecture design of T2V
models often follows either a 3D-UNet (Ho et al., 2022b; Blattmann et al., 2023b; Ho et al., 2022a;
Harvey et al., 2022; Wu et al., 2023a) or diffusion transformer (Gupta et al., 2023; Peebles & Xie,
2023; Ma et al., 2024). For computational efficiency, these architectures commonly utilize separate
self-attention (Vaswani et al., 2017) for spatial and temporal tokens. Moreover, cross-attentions is
applied on each frame separately, thereby injecting conditions into the model. More related work is
in Appendix C.

Maximum-Flow Problem. (Harris & Ross, 1955; Ford & Fulkerson, 1956; Edmonds & Karp, 1972)
Consider a directed graph G(V,E) with a source node s and a target node t. A flow is function on
edge f : E → R that satisfies both conservation constraint and capacity constraint at every vertex
v ∈ V \{s, t}. This means the total inflow into any node v must equals its total outflow, and the flow
on any edge cannot exceed its capacity. The flow value |f | =

∑
es,v∈E f(s, u) is defined as the total

flow out of the source s, which is equal to the total inflow into the target t, |f | =
∑

eu,t∈E f(u, t).
The maximum flow problem is to find a flow f∗ that maximizes this value.

3 VICO: COMPOSITIONAL VIDEO GENERATION AS FLOW EQUALIZATION

In this paper, we solve the problem of compositional video generation by equalizing influence among
tokens. We calculate this influence using max-flow within the attention graph of the T2V model
and ensure efficient computation. We define our problem and optimization scheme in Sec 3.1. The
definition of ST-Flow and its efficient computation are discussed in Sections 3.2 and 3.3.
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Figure 2: Overall pipeline of our Vico. Before each denoising step, Vico extracts attention maps from
each layer to build a spatiotemporal graph. We calculate the attribution scores as max-flow in the
graph and adjust the noisy latent code to balance this flows.

3.1 OVERALL PIPELINE AND OPTIMIZATION

Our goal is to generate a video from a given input prompt P . Rather than focusing on all tokens in
the prompt, we target a subset of K key tokens of interest, V = v1, . . . , vK , such as subjects and
verbs. We aim to ensure that those token fairly contributes to the final video. This process is detailed
in Figure 2.

Objectives. To achieve this, we define an attribution function Ai = A(vi) ∈ R for each token vi.
Intuitively, Ai represents the importance for each token within the model, quantifying its impact on
the video. We optimize the attribution scores to ensure fairness:

max
xt

Lfair(A1, . . . , AK) = max
xt

min
vi
{A1, . . . , AK}; (4)

Here, Lfair = minvi{A1, . . . , AK} serves as the fairness function, focusing on the least represented
token. By updating the noisy latent xt to maximize Lfair, we ensure equal contributions across all
tokens. The measurement of Ai could be general. Specific to our paper, we estimate Ai as flow in
attention graph, which will be discussed in Section 3.2.

Optimization. To implement Eq 4, we perform test-time optimization. Before each denoising
step, we first feed xt into the model, extract the Ai, and update xt through gradient ascent: x̂t ←
xt + η∇xt

Lfair(A1, . . . , AK). η is the step size. Then, x̂t is going through a denoising step to get
xt−1 according to Eq 3. We repeat these steps until the video is generated.

3.2 ATTENTION FLOW ACROSS SPACE AND TIME

With above formulation, our focus is to develop an efficient and precise attribution Ai. Recognizing
issues with cross-attention, we instead calculate Ai as the flow through the entire attention graph.

Flawed Cross-Attention in Text-to-Video Models. Cross-attention score has been instrumental
in attributing (Tang et al., 2023) and controlling layout and concept composition in text-to-image
models (Hertz et al., 2022; Chefer et al., 2023; Rassin et al., 2024). However, applying it to T2V
diffusion model introduces new problem.

This problem arises because T2V models typically employ cross-attention on spatial tokens
only (Wang et al., 2023a; Chen et al., 2023; Wang et al., 2023b). It treats the video as a sequence of
independent images, and temporal self-attention mixes tokens across different frames. Consequently,
this separation hinders cross-attention’s ability to capture video dynamics, making it challenging to
manage actions across frames.

For example, applying the cross-attention-based DAAM attribution (Tang et al., 2023) on
VideoCrafterv2 reveals significant issues in visualization. As shown in Figure 3 (Left), cross-
attention leads to a flickering pattern in the attention maps, failing to consistently highlight the target
object across frames.
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A playful kitten chasing a butterfly in a wildflower meadow 

kitten

meadow 

DAAM (Cross-Attention Only) ST-Flow (Cross & Self Attention)

A joyful dog is running gracefully, adorned with a regal crown and stylish glasses.

dog

running

DAAM (Cross-Attention Only) ST-Flow (Cross & Self Attention)

VideoCrafterv2

Animate-Diff

Figure 3: Attribution heatmap comparison between DAAM and our ST-Flow.

Recognizing these limitations, we propose a new measurement termed Spatial-Temporal Flow (ST-
Flow), which estimates the influence throughout the entire spatiotemporal attention graph in the video
diffusion model. As seen in Figure 3 (Right), ST-Flow gets heatmap with improved consistency.

Attention as a Graph Over Space and Time. In our approach, we conceptualize the stacked
attention layers as a directed graph G = (V,E), where nodes represent tokens and edges weighted
by the influence between tokens. A 4-layer example is illustrated in Figure 2 (Right).

Its adjacency matrix is built using attention weights and skip connections (Abnar & Zuidema, 2020).
Suppose watt

i,j is the i-th row j-th column element of attention matrix averaged across heads. For
self-attention, the edge weight ei,j between any two tokens, i and j, is ei,j = watt

i,j + 1 if i = j,
indicating a skip-connection, and ei,j = watt

i,j if i ̸= j. In the case of cross-attention, edge ei,j = watt
i,j

connects text to video, and ei,i = 1 for connections within video tokens due to skip connections.
Given that connections only exist from one layer to the next, the resulting matrix exhibits block-wise

sparsity pattern. This is expressed as W =


0 Et,1 0 . . . Et,l−1 0
0 0 E2 . . . 0 0

0 0 0 . . .
...

...
0 0 0 . . . 0 El

.

Here, W is a block matrix composed of smaller matrices El and Et,l. Each element within El and
Et,l represents the edge weight between two tokens. Specifically, El denotes the edge weights within
video tokens at l-th layer, and Et,l indicates the influence from text to video at l-th cross-attention
layer. In this structure, the text tokens correspond to the first row and first column of W , while the
video tokens are represented by the remaining rows and columns. The remaining values are set to 0,
because there are no direct connections between tokens from different layers.

Attribution as Flow on Graph. Given graph G, we compute the attribution Ai by analyzing all paths
from a text token vi to video tokens at the output layer. As such, we formulate it as a max-flow problem
with capacity matrix W . To facilitate this, we add an auxiliary target node vt to G, connecting it to
all output video tokens with inflow edges ev+

t
= 11. We treat each text token vi as the source, and vt

as the sink. The max-flow from source to sink quantifies the influence of vi, termed ST-Flow.

Definition 1 (ST-Flow). In attention graph G with capacity matrix W , a input token vi as source
and sink node vt, the attribution value of Ai = |f |∗ is computed as the maximum flow from vi to vt.

Our ST-Flow can be considered as an extension of Attention Flow (Abnar & Zuidema, 2020), incor-
porating all attention layers in diffusion model. It is proved to be a kind of Shapley Value (Ethayarajh
& Jurafsky, 2021), which is an ideal contribution allocation in game theory (Shapley et al., 1953;

1The maximum inflow is 1 for each node due to softmax normalization in the attention.
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Myerson, 1977; Young, 1985) and interpretable AI model (Lundberg & Lee, 2017b; Sundararajan
et al., 2017).

Exact ST-Flow Computation is infeasible. While theoretically possible, calculating the ST-Flow in
T2V diffusion models faces practical issues that render it infeasible:

• Non-Differentiable. The max-flow algorithm, by its nature, is non-differentiable. This is a problem
when we do gradient-based optimization in Eq 4.

• Efficiency Issue. Solving max-flow for each input token is slow. Even with the Dinic’s algo-
rithm (Dinic, 1970) 2, the time complexity is O(K|V |2|E|) for large attention graphs in video.

Despite these obstacles, in Sec 3.3, we derive a min-max approximation to circumvent these issues.

3.3 DIFFERENTIABLE ST-FLOW WITH MIN-MAX PATH FLOW

As discussed above, exact computation of ST-Flow is challenging. Instead of directly estimating the
ST-Flow, we approach this by focusing on approximating its lower bound, which is computationally
feasible. This is made possible, since any sub-graph has max-flow smaller than that of full graph.

Theorem 1 (Sub-Graph Flow)3. For any sub-graph g of a graph G, g ⊆ G, the maximum flow f∗
g in

g is less than or equal to the maximum flow f∗
G in G, |f∗

g | ≤ |f∗
G|.

Based on this theorem, we need not compute the ST-Flow directly. Instead, we sample multiple
subgraphs g from G, calculate the maximum flow for each, and take the highest value among these:

|fG| ≥ Ai = max
∀g⊆G

|fg|; (5)

This approach allows for a more efficient calculation by focusing on a manageable number of
subgraphs, solving the max-flow for each, and identifying the maximum flow.

In this work, we focus on the simplest type of subgraph in graph G: a path from a vi to target vt. We
efficiently approximate the ST-Flow by computing the max path flow for each path. We propose two
min-max strategies to achieve this:

• Hard Flow Strategy. For each text token v, we sample all paths vi to vt. The max-flow on each
path is calculated as the minimum edge capacity along the path, |f | = minj ej . And the best
approximated Ai = max |f | is the maximum of these minimums across all paths.

• Soft Flow Strategy. Instead of get the hard min-max flow, we use soft-min and soft-max operations
using the log-sum-exp trick. This approach provides a smoother approximation of flow values,
which can be especially useful in our gradients-based optimization. The soft-min/max is computed
as below, with τ as a temperature

softmax(e1, e2, . . . ; τ) = τ log
(∑

j

exp (
ej
τ
)
)
; (6)

softmin(e1, e2, . . . ; τ) = −softmax(−e1,−e2, . . . ; τ), (7)

Vectorized Path Flow Computation. While depth-first and breadth-first searches can identify all
paths for above min-max optimization, these methods are slow and cannot be parallelized. Instead,
we define a special operation called min-max multiplication on the capacity matrix to calculate the
maximum flow for each path in a vectorized manner.

Definition 2 (Min-max Multiplication). Given two matrices A ∈ Rm×k and B ∈ Rk×n, min-max
multiplication C = A⊙B ∈ Rm×n is defined where each element Ci,j = maxr(min(Ai,r, Br,j)).

This operation computes the minimum value across all r for the i-th row of A and the j-th column of
B, and maxr selects the maximum of these minimum values for each Ci,j . We call it a multiplication
because it resembles matrix multiplication but replaces element-wise multiplication with a minimum
operation and summation with maximization.

2Given that the attentions has more edge than tokens, Dinic is best choice in theory. However, our implemen-
tation shows that max-flow on each token takes ∼8s.

3Proof in Appendix A
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A very good property is that, the min-max multiplication of capacity matrix W k = W k−1 ⊙W can
be interpreted as the max path flow for all k-hop paths.

Proposition 1 (Max Path Flow using Min-max Multiplication)4. For min-max power of capacity
W k = W k−1 ⊙W , element W k

i,j equals the max path flow for all k-hop path from vi to vj .

For attention graph that current layer’s node is only connect to the next layer, all path from text
token to output video token has exactly the length of l. In this way, what we do is just to extract the
attention graph G, do l times Min-max Multiplication on its flow matrix, and we consider the value
as a approximation of ST-Flow. A tine complexity analysis is prepared in Appendix G.

In this way, we get all pieces to build Vico. We first compute attribution using the approximated
ST-Flow, then using Eq 4 to update the latent to equalize such flow.

4 EXPERIMENTS

In our experiments section, we evaluate Vico through a series of tests. We start by assessing its
performance on generating videos from compositional text prompts. Next, we demonstrate ST-Flow
accurately attributes token influence through video segmentation and human study. We also conduct
an ablation study to validate our key designs. More application results are provide in Appendix E and
Appendix D.

4.1 EXPERIMENT SETUP

Baselines. We build our method on several open-sourced video diffusion model, including
VideoCrafterv2 (Chen et al., 2024), AnimateDiff (Guo et al., 2024) and Zeroscopev2 5. Since
no current compositional generation method are specifically designed for video, we re-implement
several methods designed for text-to-image diffusion models and compare with them. These methods
include:

• Original Model. We directly ask the original base model to produce video based on prompts.

• Token Re-weight. We use the compel 6 package to directly up-lift the weight of specific concept
token, with a fixed weight of 1.5.

• Compositional Diffusion (Liu et al., 2022). This method directly make multiple noise predictions
on different text, and sum the noise prediction as the compositional direction for latent update. In
our paper, given a prompt, we first split into short phrases. For example “a dog and a cat”
is splitted into “a dog” and “a cat”, make individual denoising, and added up.

• Attend-and-Excite (Chefer et al., 2023). A&E refines the noisy latents to excite cross-attention
units to attend to all subject tokens in the text prompt.

Besides those training-free methods, we also includes some recent work that retrain the diffusion
model for compositional generation. These includes LVD (Lian et al., 2023) and VideoTetris (Tian
et al., 2024).

Evaluation and Metrics. We evaluate compositional generation using VBench (Huang et al., 2024)
and T2V-CompBench(Sun et al., 2024). Specifically, we focus on evaluating compositional quality in
terms of Spatial Relation, Multiple Object Composition. For both metrics, the model processes text
containing multiple concepts, generates a video. Then a caption model verifies the accuracy of the
concept representations within the generated video.

Additionally, we design a new metric, Motion Composition. This metric evaluates the generated video
based on the presence and accuracy of multiple objects performing different motions. We collect
70 prompts of the form "obj1 is motion1 and obj2 is motion2". Using GRiT (Wu et al., 2022),
we generate dense captions on video for each object and verify if each (object, motion) pair

4Proof in Appendix B
5https://huggingface.co/cerspense/zeroscope_v2_576w
6https://github.com/damian0815/compel
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A crab DJing at a beach party during sunset.

A falcon as a messenger in a sprawling medieval city.

Figure 4: Qualitative comparison of the videos generated by VideoCrafterv2 baseline, At-
tribute&Excite and our Vico with compositional textual descriptions.

appears in the captions. The score is computed as
∑

1,2(I(obji)+I(obji,motioni))

4 . Here, I(x) is an
indicator function that returns 1 if x is present in the generated captions, and 0 otherwise.

The overall video quality is measured using ViCLIP (Wang et al., 2023c) to compute a score based
on text and video alignment, denoted as Overall Consistency.

We also report the 5 metrics in T2V-CompBench, including Consistent-Attribute Bidding, Spatial
Relations, Motion Bidding, Action Bidding and Object Interations.

Implementation Details. We use the implementations on diffusers for video generation. All
videos are generated by a A6000 GPU. We sample videos from Zeroscopev2 and VideoCrafterv2
using 50-step DPM-Solver++ (Lu et al., 2022). AnimateDiff is sampled with 50-step DDIM (Song
et al., 2020). We optimize the latent at each sampling steps, and update the latent with Adam (Kingma
& Ba, 2014) optimizer at the learning rate of 1e− 5. We test both the soft and hard-min/max versions
of Vico, setting the temperature τ = 0.01 for the soft version. The NLTK package identify all nouns
and verbs for equalization.

4.2 COMPOSITIONAL VIDEO GENERATION

Quantitative Results. In Table 1, we present the scores achieved by Vico compared to other methods
across various base models on compositional text-to-video generation. Vico consistently surpasses
all baselines on every metric. Notably, our ST-flow based method surpasses cross-attention based
techniques like Attend&Excite, thanks to its ability to incorporating influences across full attention
graph. Additionally, the soft min-max version of Vico generally achieves better fidelity than the hard
version, as it is better suited for gradient optimization.

Surprisingly, Vico demonstrates its most significant improvements in multi-subject generation tasks.
For instance, on VideoCrafterv2, it shows a marked increase, improving scores from 40.66% →
73.55%. This suggests that our attention mechanism in T2V is more adept at managing object
arrangement. In contrast, compositional diffusion models often fail, as they assume conditions to be
independent, which is problematic for complex compositions.
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Table 1: Quantitative results for different methods on compositional text-to-video generation.
Name Spatial Relation↑ Multiple Object↑ Motion Composition↑ Overall Consistency↑

AnimateDiff (Guo et al., 2024) 24.80% 33.44% 33.90% 27.75%
+Compositional Diffusion (Liu et al., 2022) 19.43% 7.27% 23.58% 24.07%
+Attend-and-Excite (Chefer et al., 2023) 20.88% 31.25% 34.78% 28.05%
+Token-Reweight 28.11% 36.89% 37.45% 26.77%

+Vico (hard) 24.22% 29.95% 37.23% 28.85%
+Vico (soft) 31.47% 37.20% 37.95% 28.89%

ZeroScopev2 59.52% 52.52% 45.51% 25.83%
+Compositional Diffusion (Liu et al., 2022) 31.77% 8.23% 33.13% 23.02%
+Token-Reweight 57.48% 50.00% 40.42% 25.74%
+Attend-and-Excite (Chefer et al., 2023) 59.02% 62.27% 45.82% 25.84%

+Vico (hard) 63.60% 63.34% 46.32% 24.89%
+Vico (soft) 62.28% 69.05% 45.31% 26.15%

VideoCrafterv2 (Chen et al., 2023) 35.86% 40.66% 43.82% 28.06%
+Compositional Diffusion (Liu et al., 2022) 23.61% 10.59% 35.49% 24.49%
+Token-Reweight 46.08% 49.16% 44.33% 28.29%
+Attend-and-Excite (Chefer et al., 2023) 48.11% 66.62% 43.48% 28.33%

+Vico (hard) 49.85% 67.84% 44.46% 28.41%
+Vico (soft) 50.40% 73.55% 44.98% 28.52%

Table 2: Comparison of Models on T2V CompBench.
Model Consist-attr Spatial Motion Action Interaction
LVD (Lian et al., 2023) 0.5595 0.5469 0.2699 0.4960 0.6100
VideoTetris (Tian et al., 2024) 0.7125 0.5148 0.2204 0.5280 0.7600

VideoCrafterv2+Vico (soft) 0.6980 0.5432 0.2412 0.6020 0.7800

In addition, we compare our method combined with VideoCrafterv2 against advanced video diffusion
advanced video diffusion models like LVD (Lian et al., 2023) and VideoTetris (Tian et al., 2024).
These models use bounding box supervision or curated datasets. The results in Table 2 show that our
method performs similarly. It even outperforms on action binding and object interactions, without
relying on external data or additional training.

Qualitative Results. We compare the videos generated by different methods in Figure 4. At-
tend&Excite receive slightly improvements, but still mixes semantics of different subject. For
example, on the “a dog and a horse” example (Top Left), both Attend&Excite and the base-
line incorrectly combine a dog’s face with a horse’s body. Vico addresses this issue by ensuring each
token contributes equally, effectively separating their relationships.

Additionally, cross-attention often leads to temporal inconsistencies in the modified videos. For
instance, in the “spider panda” case (Bottom Left), Attend&Excite initially displays a Spider-
Man logo but it disappears abruptly in subsequent frames. In contrast, Vico captures dynamics across
both spatial and temporal attention, leading to better results. More results is in Appendix D and E.

4.3 ATTRIBUTION ON VIDEO DIFFUSION MODEL

In this section, we aim to demonstrate that our ST-Flow (hard) provides a more accurate measure of
token contribution compared to other attention-based indicators.

Objective Evaluation: Zero-shot Video Segmentation. We tested several attribution methods using
the VideoCrafterv2 model for zero-shot video segmentation on the Ref-DAVIS2017 (Khoreva et al.,
2019) dataset. To create these maps, we first performed a 25-step DDIM inversion (Mokady et al.,
2023) to extract noise patterns, followed by sampling to generate the attribution maps. We specifically
used maps from from end of text ([EOT]) token (Li et al., 2024) for segmentation. We used the mean
value of the map as a threshold for binary classification. We compare with cross-attention (Tang et al.,
2023) and Attention Rollout (Abnar & Zuidema, 2020). The more accurate the segmentation is, the
attribution is more reasonable for human.
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Attribution Method Temporal Consistency↑ Reasonability↑

Cross-Attention 2.62±0.12 2.87±0.23
Attention Rollout 3.77±0.20 3.36±0.20

ST-Flow (Ours) 4.12±0.13 3.76±0.19

Table 3: User study on attribution method.

Method Ref-DAVID2017

J&F ↑ J ↑ F ↑
Supervised Trained

ReferFormer-B 61.1 58.1 64.1
OnlineRefer-B 62.4 59.1 65.6

Zero-Shot
Cross-Attentionmean 32.1 29.8 34.7
Attention Rolloutmean 38.0 33.3 40.0
ST-Flow (Ours) mean 38.2 33.5 40.3

Table 4: Performance on Ref-DAVID2017.

Min Loss ST-Flow (soft) Multiple Object↑ Overall Consistency↑

✗ ✗ 57.86% 28.03%
✓ ✗ 63.62% 28.24%
✗ ✓ 69.75% 28.12%
✓ ✓ 73.55% 28.52%

Table 5: Ablation study on Vico.

ST
-F
lo
w
(O
ur
s)

Cr
os
s-
At
te
nt
io
n

Frame 1 Frame 5 Frame 24

Frame 1 Frame 5 Frame 24

Table 6: Segmentation results comparison.

Results are presented in Table 4. Our method outperformed the others, providing the highest
segmentation metrics in zero-shot setting. As visualized in Figure 6, cross-attention maps showed
inconsistent highlighting and flickering. Attention Rollout also concider the full attention graph, but
overly smoothed weights, resulting in less precise object focus.

Subjective Evaluation: User Study. Besides, segmentation-based validation, we conducted a
subjective user study to evaluate the quality of attribution maps generated by various methods. 43
participants rated maps from three different approaches across 50 video clips. The evaluation focused
on Temporal Consistency, assessing the presence of flickering, and Reasonability, determining
alignment with human interpretations. Ratings ranged from 1 to 5, with 5 as the highest. As
summarized in Table 3, Our ST-Flow method outperformed others, achieving the highest scores in
both Temporal Consistency (4.12) and Reasonability (3.76).

4.4 ABLATION STUDY

In this subsection, we ablate our two key designs: the loss function and the proposed ST-Flow.

Loss Function. We modified the loss function from using the “min” as a fairness indicator (as
described in Sec 3.1) to a variance loss, defined as Lfair = −

∑
i(Ai − Ā)2. This aims to minimize

the differences between each Ai and the average attribution value Ā, making it fair. The results is
shown in Table 5, row 3 and 4. We notice while the variance loss ensures uniformity across all tokens,
it overly restricts them, often degrading video quality. Conversely, our original min-loss focuses on
the least represented token, enhancing object composition accuracy without significantly affecting
overall quality.

ST-Flow v.s. Cross-Attention. A major contribution of our work is the development of ST-Flow and
its efficient computation. We compared it against a model using cross-attention, where cross-attention
maps are extracted and a mean score is computed for each token as Ai. As demotivated in Table 5,
row 2 and 4, using ST-Flow (soft) largely outperform cross-attention. We also provide the running
speed analysis in Appendix G, confirming the efficiency of our approach.

5 CONCLUSION

In this paper, we present Vico, a framework designed for compositional video generation. Vico starts
by analyzing how input tokens influence the generated video. It then adjusts the model to ensure
that no single concept dominates. To implement Vico practically, we calculate each text token’s
contribution to the video token using max flow. This computation is made feasible by approximating
the subgraph flow with a vectorized implementation. We have applied our method across various
diffusion-based video models, which has enhanced both the visual fidelity and semantic accuracy of
the generated videos.
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A PROOF OF THEOREM 1: SUB-GRAPH FLOW

In a network G = (V,E) with a capacity function c : E → R+, and a subgraph g of G, the maximum
flow fg in g is less than or equal to the maximum flow fG in G.

PROOF

1. Definition of a Subgraph: A subgraph g of G can be defined as g = (V ′, E′) where
V ′ ⊆ V and E′ ⊆ E. All capacities in g are inherited from G, i.e., c′(e) = c(e) for all
e ∈ E′.

2. Flow Conservation: Both G and g must satisfy the flow conservation law at all intermediate
nodes. That is, the sum of the flow entering any node must equal the sum of the flow
exiting that node, except for the source (where flow is generated) and the sink (where flow
is absorbed).

3. Reduced Set of Paths: Since E′ ⊆ E, every path through g is also a path through G, but
not every path through G is necessarily a path through g. This reduction in the number of
paths (or edges) in g implies that some routes available for flow in G are not available in g.

4. Capacity Limitations: For any edge e in E′, the capacity in g (i.e., c′(e)) equals the
capacity in G (i.e., c(e)). Therefore, no edge in g can support more flow than it can in G.
Additionally, since some edges might be missing in g, the overall capacity of pathways from
the source to the sink might be less in g than in G.

5. Maximum Flow Reduction: Given the reduction in paths and capacities, any flow that is
feasible in g is also feasible in G, but not vice versa. Hence, the maximum flow fg that can
be pushed from the source to the sink in g must be less than or equal to the maximum flow
fG that can be pushed in G.

Conclusion: From these points, it follows directly that the maximum flow in a subgraph g cannot
exceed the maximum flow in the original graph G. This proves that fg ≤ fG.

B PROOF OF PROPOSITION 1: MAX PATH FLOW USING MIN-MAX
MULTIPLICATION

Definitions and Proposition: Let W be a capacity matrix of a graph where Wi,j is the capacity
of the edge from vertex i to vertex j. If there is no edge between i and j, Wi,j = 0 or some
representation of non-connectivity. A k-hop path between two vertices i and j is a path that uses
exactly k edges.

Proposition: The k-th min-max power of W, denoted Wk, calculated as Wk = Wk−1 ⊙W, has
elements Wk

i,j that represent the maximum flow possible on any k-hop path from vertex i to j.

Min-max Multiplication: Given matrices A and B, C = A⊙B is defined such that:

Ci,j = max
r

(min(Ai,r,Br,j))

Proof by Induction:

Base Case (k = 1):

• Claim: W1
i,j represents the capacity of the edge from i to j, which is the maximum flow on

a 1-hop path.

• Proof: By definition, W1 = W, and W1
i,j = Wi,j , which directly corresponds to the edge

capacity between i and j. Hence, the base case holds.

Inductive Step:

• Assumption: Assume that for k − 1, Wk−1
i,j correctly represents the maximum flow on any

k − 1-hop path from i to j.
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• To Prove: Wk
i,j represents the maximum flow on any k-hop path from i to j.

Proof: From the definition of min-max multiplication,

Wk
i,j = max

r
(min(Wk−1

i,r ,Wr,j))

• Wk−1
i,r is the maximum flow from i to r using k − 1 hops.

• Wr,j is the capacity of the edge from r to j (1-hop).

Interpretation: min(Wk−1
i,r ,Wr,j) finds the bottleneck flow for the path from i to j through r using

k hops. The minimum function ensures the path’s flow is constrained by its weakest segment.

Maximization Step: maxr over all possible intermediate vertices r selects the path with the highest
bottleneck value, thus ensuring the selected path is the most capable among all possible k-hop paths.

Conclusion: The inductive step confirms that the flow represented by Wk
i,j is indeed the maximum

possible flow across any k-hop path from i to j. Hence, by induction, the proposition holds for all k.

C RELATED WORK

Video Diffusion Models. Video diffusion models generate video frames by gradually denoising a
noisy latent space (Ho et al., 2022b). One of the main challenges with these models is their high
computational complexity. Typically, the denoising process is performed in the latent space (Zhou
et al., 2022; Blattmann et al., 2023b;a). The architectural commonly adopt either a 3D-UNet (Ho et al.,
2022b; Blattmann et al., 2023b; Ho et al., 2022a; Harvey et al., 2022; Wu et al., 2023a) or diffusion
transformer (Gupta et al., 2023; Peebles & Xie, 2023; Ma et al., 2024). To enhance computational
efficiency, these architectures often employ separate self-attention mechanisms for managing spatial
and temporal tokens. Conventionally, training these models involves fine-tuning an image-based
model for video data (Wu et al., 2023a; Khachatryan et al., 2023; Guo et al., 2024). This process
includes adding a temporal module while striving to preserve the original visual quality.

Despite their ability to generate photorealistic videos, these models frequently struggle with under-
standing the complex interactions between elements in a scene. This shortcoming can result in the
generation of nonsensical videos when responding to complex prompts.

Compositional Generation. Current generative models often face challenges in creating data from a
combination of conditions, with most developments primarily in the image domain. Energy-based
models (Du et al., 2020; 2023; Liu et al., 2023), for example, are mathematically inclined to be
compositionally friendly, yet they require the conditions to be independent. In practice, many
image-based methods utilize cross-attention to effectively manage the composition of concepts (Feng
et al., 2023; Chefer et al., 2023; Wu et al., 2023b; Rassin et al., 2024). However, when it comes to
video, compositional generation introduces additional complexities. Some video-focused approaches
concentrate specific form of composition, including object-motion composition (Wei et al., 2023),
subject-composition (Wang et al., 2024b), utilize explicit graphs to control content elements (Bar
et al., 2021). Others incorporate multi-modal conditions (Wang et al., 2024a), additional training
data (Tian et al., 2024), or auxiliary modules (Lian et al., 2023). Despite these efforts, a generic
solution for accurately generating videos from text descriptions involving multiple concepts is still
lacking. We present the first training-free solution for compositional video generation using complex
text prompts, an area that remains largely under-explored.

Attribution Methods. Attribution methods clarify how specific input features influence a model’s
decisions. gradient-based methods (Sundararajan et al., 2017; Simonyan et al., 2013; Selvaraju et al.,
2017) identify influential image regions by back-propagating gradients to the input. Attention-based
methods (Chefer et al., 2021; Abnar & Zuidema, 2020) that utilize attention scores to emphasize
important inputs. Ablation methods(Ramaswamy et al., 2020; Zeiler & Fergus, 2014) modify data
parts to assess their impact. Shapley values (Lundberg & Lee, 2017a) distribute the contribution
of each feature based on cooperative game theory. In our paper, we extend existing techniques of
attention flow to video diffusion models. We develop an efficient approximation to solve the max-flow
problem. This improvement helps us more accurately identify and balance the impact of each textual
elements on synthesized video.
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D COMPOSITIONAL VIDEO EDITING

Our system, Vico, can be integrated into video editing workflows to accommodate text prompts that
describe a composition of concepts.

Setup. We begin by performing a 50-step DDIM inversion on the input video. Following this, we
generate a new video based on the given prompt.

Results. An example of this process is illustrated in Figure 9. The original video demonstrates
a strong bias towards a single presented object, making editing with a composition of concepts
challenging. However, by applying Vico, we successfully enhance the video to accurately represent
the intended compositional concepts.

E MORE VISUALIZATIONS

Here we provide more example for compositional T2V in Figure 5

A kite surfer practicing on a quiet lake at dawn, the sky just beginning to brighten.

A wildlife photographer capturing close-up shots of a rare bird in a dense jungle.

A zebra conducting traffic in a busy urban intersection.
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Figure 5: Video visualization for compositional video generation

E.1 MOTION COMPOSITION

We visualize examples generated under motion composition scenarios, where the diffusion model is
given text description that multiple objects exhibit distinct movement patterns. We compared results
generated with VideoCrafterv2 to those produced by our method, Vico, using prompts from our
motion composition evaluation.

The results are shown in Figure 8. Our method demonstrates clear improvements by effectively
binding different actions to their respective subjects.
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A small boy, head bowed and determination etched on his face, sprints through the torrential downpour as 
lightning crackles and thunder rumbles in the distance. The relentless rain pounds the ground, creating a 
chaotic dance of water droplets that mirror the dramatic sky's anger. In the far background, the silhouette of 
a cozy home beckons, a faint beacon of safety and warmth amidst the fierce weather. The scene is one of 
perseverance and the unyielding spirit of a child braving the elements.

On a brilliant sunny day, the lakeshore is lined with an array of willow trees, their slender branches swaying 
gently in the soft breeze. The tranquil surface of the lake reflects the clear blue sky, while several elegant 
swans glide gracefully through the still water, leaving behind delicate ripples that disturb the mirror-like 
quality of the lake. The scene is one of serene beauty, with the willows' greenery providing a picturesque 
frame for the peaceful avian visitors.

Create a visually stunning video that captures the journey of a lone traveler exploring diverse landscapes. 
Begin with a serene sunrise over a mountain range, transition to bustling city streets, and conclude with a 
tranquil seaside sunset. Incorporate dynamic camera movements, natural lighting, and rich textures to evoke 
a sense of adventure and serenity. Blend realistic visuals with a touch of artistic flair to create an engaging 
and emotive visual narrative.

Figure 6: Videos generated with long prompts.

E.2 LONG PROMPT

We also demonstrate the capability of Vico to handle extremely long textual prompts. As shown in
Figure 6, Vico effectively generates complex interactions between various concepts even with lengthy
input prompts.

F ADAPTATION OF VICO TO DIFFUSION TRANSFORMER MODELS

While our method is initally presented in UNet architecture, we can build it on recent video diffusion
model with transformer. For example, we built Vico on top of Open-Sora (Zheng et al., 2024) and
CogVideoX (Yang et al., 2024), adapting it to their respective architectures.

Open-Sora Adaptation . Open-Sora (Zheng et al., 2024) employs STDiT architecture, which
separates spatial and temporal attention. This straightforward design made it relatively simple to adapt
Vico for integration. By leveraging its design, we seamlessly incorporated Vico’s token re-weighting
mechanism into Open-Sora.

CogVideoX Adaptation . CogVideoX (Yang et al., 2024), in contrast, employs a more complex 3D
MM-DiT architecture. It processes all text and video tokens jointly through a unified attention layer,
without explicit cross-attention mechanisms. This design posed a unique challenge for traditional
cross-attention control methods. However, Vico’s graphical abstraction approach proved highly
effective in this setting, as the model still fundamentally operates on token-to-token attention.
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To adapt Vico to CogVideoX, we redefined the graph construction rules as follows:

Wl =

[
Ett,l Etv,l

Evt,l Evv,l

]
,

W =


W1 0 . . . 0
0 W2 . . . 0
...

...
. . .

...
0 0 . . . WL

 .

Here, Wl represents the adjacency matrix at layer l, where Ett,l, Etv,l, Evt,l, and Evv,l correspond
to text-to-text, text-to-video, video-to-text, and video-to-video connections, respectively. Each E is
calculated as described in Line 236 of the main text. Stacking these matrices across all layers yields
the final capacity matrix W.

Results on VBench . We evaluated Vico with these adapted models on VBench, focusing on the
Multiple Object Composition score. Due to the high memory requirements of MM-DiT, we used an
80GB A100 GPU for inference. The results, shown in Table 7, demonstrate that Vico significantly
enhances performance across different architectures.

We also visualize several videos generated by CogVideoX using Vico in Figure 7. Even with modern
video diffusion models like CogVideoX, compositional errors are still apparent. For instance, it
blends a boat and an airplane into a single object, such as a seaplane, or generates only a pizza while
neglecting a tie.

In contrast, Vico effectively resolves these conflicting objects and represents all concepts more
accurately and fairly.

Method Multiple Object Composition Score
Open-Sora 33.64
Open-Sora + Vico 48.21
CogVideoX 2B 53.70
CogVideoX 2B + Vico 63.21

Table 7: Performance comparison on VBench.

G SPEED ANALYSIS

Attribution Speed. In this section, we assess the running speed of our ST-flow. To assess its
computational efficiency, we compare ST-flow with cross-attention and Attention Rollout (Abnar &
Zuidema, 2020) computation, by reporting the theoretical complexity and empirical running time. We
assume we have 1 cross attention map of mxn and L self-attention map of n× n, and demonstrated
the theoretical results. Specifically, we measure the average running time required for each diffusion
model inference, focusing solely on the time taken for attribution computation, excluding the overall
model inference time. We use the VideoCrafterv2 as the base model.

As detailed in Table 8, the cross-attention computation is fast, as it processes only a single layer. Both
Attention Rollout and our approximated ST-Flow involve matrix multiplications and consequently
share a similar time complexity. However, our ST-Flow approximation benefits from the relatively
faster speed of element-wise min-max operations compared to the floating-point multiplications used
in Attention Rollout, leading to slightly quicker execution times.

In contrast, the exact ST-Flow method is much slower. This is because it requires independently
estimating the flow for each sink-source pair, a process that takes considerable time.

Diffusion Inference Speed. Our Vico framework includes a iterative optimization process alongside
with the denoising. As expected, it should results in longer inference time. We evaluated this using a
50-step DPM denoising process on the VideoCrafterv2 model, at a resolution of 512× 320 for 16
frames, on a single A6000 GPU.
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a toaster and a teddy bear.

Figure 7: Compositional generation results on CogVideoX-2B.

Method Complexity sec/inference

Cross-Attn. O(1) 0.002s
Attention Rollout O(Lmn2) 0.042s
Exact-ST-Flow O(L3mn4) 8s
ST-Flow (soft) O(Lmn2) 0.037s

Table 8: Speed comparison for attribution method.
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a boat is sailing and a flag is waving.

a goat is climbing and a kid is jumping.

a crocodile is swimming and a bird is flying.
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a child is laughing and a dog is wagging.

Figure 8: Video visualizations for prompts with motion composition.

In
pu

t V
id

eo
Vi

de
oC

ra
ft

er
v2

DD
IM

In
ve

rs
e

+
 V

ic
o

A vintage car driving on a winding road through a lush forest, with a standing cat.

Figure 9: Video edit results with compositional prompts.

The results, shown in Table 9, reveal that the baseline VideoCrafterv2 completed in 23 seconds.
Adding the Attend&Excite increased the duration to 48 seconds. In comparison, our Vico framework
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Method Time

VideoCrafterv2 23s
+ Attend&Excite 48s
+ Vico (soft&hard) 45s

Table 9: Text-to video model inference time comparison.

finished in a comparable time of 50 seconds. Despite its additional complexity, Vico’s efficient design
keeps the inference time within a reasonable range.

H IMPLEMENTATION DETAILS OF VICO

ST-Flow Computation. To compute the ST-Flow, we begin by extracting attention weights from all
layers. These weights are averaged across all heads and then upscaled to the image size using bicubic
interpolation. Due to the block-wise sparse pattern of the connections, min-max matrix multiplication
is applied to the capacity matrix for connected layers. Furthermore, given that cross-attention layers
include skip connections from previous layers, we divide the network into multiple groups. Within
each group, min-max matrix Multiplication is performed. Finally, we aggregate the scores across all
groups to obtain the results. The pseudocode for the min-max multiplication is in Algorithm 1.

Algorithm 1 Batched Min-Max Matrix Multiplication
1: function BATCHMINMAXMATRIXMULTIPLICATION(A,B)
2: Input:
3: A is a tensor of shape [B,m, k]
4: B is a tensor of shape [B, k, n]
5: Output:
6: Tensor of shape [B,m, n] containing the maximum values

7: Aexpanded ← A.unsqueeze(2) ▷ Shape becomes [B,m, 1, k]
8: Bexpanded ← B.permute(0, 2, 1).unsqueeze(1) ▷ Shape becomes [B, 1, n, k]

9: min_vals← torch.min(Aexpanded, Bexpanded) ▷ Shape becomes [B,m, n, k]
10: max_vals← torch.max(min_vals, dim = 3).values ▷ Shape becomes [B,m, n]

11: return max_vals
12: end function

Latent Step. During the first half of the sampling process, we update the latent variables. We
establish a loss threshold of 0.2; once this threshold is reached, no further updates are made.

I BASELINES

Token Re-weighting. Token Re-weighting method manually adjusts the weights of certain tokens to
control their influence.

Specifically, a CLIP text encoder embeds the input text into a sequence of tokens s = {v1, . . . , vK}.
Token Re-weighting multiplies a scalar α with specific embeddings, for example, modifying the first
token to s′ = {αv1, . . . , vK}. The updated sequence is then used as a new conditioning input for the
diffusion model. This is implemented by the compel package.

J LIMITATIONS

Although Vico effectively allocates attribution across different tokens, it does not explicitly bind
attributes to subjects. Moreover, there is a critical balance to maintain between latent updates and
semantic coherence. Excessive updating can lead to the generation of nonsensical videos.
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K BROADER APPLICATIONS

Technically, the computation of attention flow proposed in our system is versatile and can be efficiently
applied to a variety of other applications like erase certain concept in diffusion models. Additionally,
the principle of fairly distributing the contribution of different input parts can be extended to other
domains, such as language modeling.
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