
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

INSTANCE-WISE ADAPTIVE SCHEDULING VIA
DERIVATIVE-FREE META-LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep Reinforcement Learning has achieved remarkable progress in solving NP-
hard scheduling problems. However, existing methods primarily focus on optimiz-
ing average performance over training instances, overlooking the core objective
of solving each individual instance with high quality. While several instance-wise
adaptation mechanisms have been proposed, they are test-time approaches only and
cannot share knowledge across different adaptation tasks. Moreover, they largely
rely on gradient-based optimization, which could be ineffective in dealing with
combinatorial optimization problems. We address the above issues by proposing
an instance-wise meta-learning framework. It trains a meta model to acquire a
generalizable initialization that effectively guides per-instance adaptation during
inference, and overcomes the limitations of gradient-based methods by leveraging a
derivative-free optimization scheme that is fully GPU parallelizable. Experimental
results on representative scheduling problems demonstrate that our method consis-
tently outperforms existing learning-based scheduling methods and instance-wise
adaptation mechanisms under various task sizes and distributions.

1 INTRODUCTION

Scheduling aims to optimize resource allocation for task completion within specified time constraints,
playing a pivotal role in a wide range of practical domains such as manufacturing, logistics, and
healthcare (Khadivi et al., 2025). As two fundamental models, Job-shop Scheduling Problem (JSP)
and its extension, Flexible Job-shop Scheduling Problem (FJSP) receive much attention. However,
solving JSP and FJSP optimally remains a significant challenge due to their well-known NP-hardness
(Michael, 1995; Mazyavkina et al., 2021). Especially for industrial level large-scale instances,
exact algorithms such as Mixed Integer Programming (MIP) and Constraint Programming (CP) are
often prohibitive due to the excessive computational cost (Da Col & Teppan, 2019). Heuristic and
metaheuristic methods could strike a balance between solution quality and computational time, but
they are typically less accurate due to their reliance on predefined rules and lack of adaptability to
specific scenarios (Li et al., 2024a).

Recently, Deep Reinforcement Learning (DRL), as an emerging alternative method, has been suc-
cessfully applied to complex scheduling problems. A notable direction is to use DRL to learn priority
dispatching rules (PDRs) (Zhang et al., 2020; Song et al., 2023; Wang et al., 2023). The learned
policies are often superior to manually designed PDRs, and can generate solutions within short run
time (Mazyavkina et al., 2021). However, the solution quality of existing learning based scheduling
methods are still relatively far from optimaliy. One reason is that they focus on training a deep policy
model to optimize its average performance over training instances. Given that currently DRL can
only obtain suboptimal policy, this means a well-trained policy can still produce poor solutions for
some testing instances, even when they come from the training distribution (Wang & Li, 2023).

One way to overcome this limitation is test-time adaptation, which is to fine-tune the pre-trained
model on each specific instance being solved. Active search (AS) (Bello et al., 2016) and Efficient
Active Search (EAS) (Hottung et al., 2021b) are two representative methods, and the latter shows
good performance on JSP. However, this popular paradigm suffers from two limitations. First, it
works as a pure test-time mechanism that fine-tunes the model on each instance separately, which is
inefficient since the adaptation knowledge is discarded and not reusable. Second, existing works use
gradient-based methods for adaptation, which performs well in conventional deep (reinforcement)

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

learning tasks but could fall short when dealing with the instance-wise search task for complex
combinatorial optimization problems such as JSP and FJSP, since they could easily fall into local
optimum.

In this paper, we address the above issues by proposing a meta-learning method driven by derivative-
free optimization, for solving complex scheduling problems. Our first contribution is an instance-wise
meta-learning framework based on Model-Agnostic Meta-Learning (MAML) (Finn et al., 2017),
which simulates the fine-tuning process during training so as to obtain a meta-model that explicitly
considers the needs of fine-tuning, thus providing a well-initialized model for each new instance. This
framework is model-agnostic, and is generally applicable to a wide range of deep policy model. Next,
motivated by the recent success of evolutionary strategies in DRL (Salimans et al., 2017; Song et al.,
2020; Kirsch et al., 2022), we design a fully derivative-free method to train the meta-model, which
not only overcomes the limitation of gradient-based methods in instance-wise searching but also
bypasses the complicated gradient computation in the original MAML. We design two Monte Carlo
(MC) strategies for gradient estimation in the inner loop, which effectively improves the training
performance. Finally, we design a population-parallel framework that shifts the CPU-intensive
computational tasks in traditional evolutionary strategies (Salimans et al., 2017) to GPU parallel
processing, significantly reducing the training overhead.

We validate the effectiveness of our method mainly on FJSP, which is much harder than JSP. Specif-
ically, we deploy our method to state-of-the-art FJSP PDR learning model in (Wang et al., 2023).
Experimental results demonstrate that the instance-wise fine-tuning strategy significantly improves
the model’s adaptability to unseen test instances. Moreover, our approach consistently achieves
superior performance across benchmark datasets of varying sizes and distributions, outperforming
existing instance-level adaptation methods. We also extend our method to JSP in a non-reinforcement
learning setting (Corsini et al., 2024), showcasing its strong compatibility and adaptability across
different learning paradigms.

2 RELATED WORK

Learning based scheduling. Motivated by the recent success of Neural Combinatorial Optimization
(NCO) (Bengio et al., 2021), researchers have begun to utilize deep (reinforcement) learning to
tackle JSP and FJSP. The most popular paradigm is PDR learning, which formulates the PDR based
schedule construction as a Markov Decision Process (MDP), and uses DRL to automatically train the
scheduling policy. A common choice in this direction is to represent construction states based on
disjunctive graph (e.g., (Zhang et al., 2020; Park et al., 2021; Song et al., 2023; Teichteil-Königsbuch
et al., 2023)), and design Graph Neural Network (GNN) based policy network to achieve size-
invariance. Besides GNN, other types of neural architecture based on Pointer Network (Corsini et al.,
2024) and Attention Mechanism (Wang et al., 2023; Chen et al., 2022; Pirnay & Grimm, 2024a;b)
have also been proposed and can achieve even better performance. Another direction is to learn
control policies for local search algorithms (Zhang et al., 2024a;b), which tend to deliver better
solutions than PDR learning methods at the cost of longer run time.

Instance-wise adaptation. Above methods follow the convention in machine learning to optimize the
average performance over training instances, which often leads to suboptimal performance on unseen
instances. This could be alleviated by Active Search (AS) (Bello et al., 2016) which dynamically
adjusts pre-trained model parameters on each testing instance. Efficient Active Search (EAS) (Hottung
et al., 2021b) improves AS by updating only a subset of model parameters to reduce computational
costs. However, AS and EAS do not change the original training objective of average performance
and the adaptation is purely test-time. Meta-models for more efficient adaptation have been explored
in other combinatorial optimization problems such as vehicle routing and graph optimization (Qiu
et al., 2022; Wang & Li, 2023; Son et al., 2023), but they rely on problem-specific techniques and are
not directly applicable here. Moreover, these methods use gradient-based optimization for fine-tuning,
whereas our method avoids strong assumptions about the problem or neural architecture and is the
first to employ gradient-free optimization for such tasks. Additionally, some research performs
instance-wise search in a learned continuous space for high-quality solution distributions (Hottung
et al., 2021a; Li et al., 2023; 2024b), but these methods focus less on adaptation, and models are not
updated per instance. Our approach is orthogonal to these works and could potentially be combined
for better performance.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3 PRELIMINARIES

Job-shop Scheduling Problem (JSP) involves a set of jobs J = {J1, J2, . . . , Jn} to be processed
on machines M = {M1,M2, . . . ,Mm}, where each job Ji consists of a sequence of operations
Oi = {Oi1, Oi2, . . . , Oini} to be assigned to machines. In JSP, each operation can only be assigned
to one specific machine, whereas FJSP allows multiple machine options. The goal is to minimize the
makespan, defined as the maximum completion time across all operations, i.e., Cmax = maxi,j{Cij}.
In this paper, we use the PDR learning model for FJSP in (Wang et al., 2023) to evaluate the problem.
The model treats scheduling as a sequential decision task. At each step t, a neural network receives
the state st (including operations and machines) and outputs an action at that assigns an unscheduled
operation to an available machine. This repeats until all operations are scheduled, with rewards based
on the final makespan. The policy πθ(at|st) is trained using Proximal Policy Optimization (PPO)
(Schulman et al., 2017) to maximize cumulative reward. After training, the policy can be used in
greedy or sampling modes. Greedy selects the best action at each state, while sampling generates
multiple schedules and returns the best solution, though at a higher computational cost.

Algorithm 1 ES Gradient Estimation

Require: Neural network parameter set
θ, noise standard deviation σ, popu-
lation size µ;

1: Sample : ε1, . . . , εµ ∼ N (0, I)
2: for i = 1, . . . , µ do
3: Compute fitness: Fi = F (θ+σεi)
4: end for
5: return 1

µσ

∑µ
i=1 Fiεi

Derivative-Free Optimization (DFO), also known as
zero-order optimization, encompasses methods that do
not rely on gradients. DFO is effective in optimiza-
tion problems where gradients are costly or inacces-
sible. Here we use OpenAI’s Evolutionary Strategy
(ES) (Salimans et al., 2017) for optimization, which be-
longs to the class of Natural Evolution Strategies (NES)
(Wierstra et al., 2014). Let F be the objective func-
tion over parameter vector θ. NES models the popula-
tion as a distribution pψ(θ), parameterized by ψ. The
optimization process aims to maximize the expected
objective Eθ∼pψ [F (θ)] by updating ψ via stochastic
gradient ascent, with the gradient ∇ψEθ∼pψ [F (θ)] = Eθ∼pψ [F (θ)∇ψ log pψ(θ)]. To avoid non-
smoothness from the environment or discrete policy actions, we follow OpenAI’s implementation
to use an isotropic multivariate Gaussian distribution for the population, with mean ψ and fixed
covariance σ2I (Salimans et al., 2017). This allows the expected objective to be expressed as
Eθ∼pψ [F (θ)] = Eε∼N (0,I)[F (θ+ σε)]. We optimize over θ directly using stochastic gradient ascent:
∇θ Eε∼N (0,I)[F (θ + σε)] = 1

σ Eε∼N (0,I)[F (θ + σε)ε], which can be approximated through the
Monte Carlo sampling procedure in Algorithm 1.

4 METHODOLOGY

In this section, we propose a general instance-wise meta-learning framework for well-adapted
parameter initialization in downstream fine-tuning, fully exploiting the potential of derivative-free
optimization in instance-level adaptation tasks. Additionally, we design an efficient population-based
parallelization strategy that significantly enhances computational efficiency.

4.1 INSTANCE-WISE DERIVATIVE-FREE META-LEARNING FRAMEWORK

We define a FJSP instance class as Ω = (n,m, o, t), where n and m denotes the number of jobs
and machines, o = [omin, omax] specifies the range of the number of operations in each job, while
t = [tmin, tmax] defines the processing time range for operations executed on different machines. We
denote Gτ ∈ Ω as a specific scheduling instance sampled from the defined instance class.

Unlike traditional methods that aim to learn a single model with optimal average performance
over training set, our goal is to learn an initialization of model parameters that enables efficient
adaptation to unseen instances at test time. This initialization allows the model to rapidly converge
to high-quality, instance-specific solutions through fine-tuning during inference, which offers more
potential than test-time only methods such as AS (Bello et al., 2016) and EAS (Hottung et al., 2021b).
Accordingly, our training problem is:

θ∗0 = argmin
θ0

EGτ∼Ω

[
F
(
θ(K)
τ

∣∣∣Gτ)] (1)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

�0

Training Instance Set
�1 �1

(�)

Inner-loop Optimization

. . . �0
(∗) ��

��
(0)

��
(�)

 Solution

Initialize

.... . .Meta-Model
ES Gradient

Initialize

Optimization of Parameter Distribution

 ES Gradient
Direction

Meta-Training Fine-Tuning

Test Instance

�

�

��
(0) ��

(1) ��
(�)

�� ��
(�)

��(��)

��(��+1)

Outer-loop Optimization

� instances

Figure 1: Overall framework of our method

where θ0 denotes the meta-model that provides a starting parameter for each instance, and θ(K)
τ is the

fine-tuned model obtained after K steps of gradient updates from θ0 on instance Gτ , which is then
used to generate the final solution (i.e., schedule) for Gτ .

We implement this learning task using the MAML framework (Finn et al., 2017). The meta-training
process consists of two stages: inner-loop optimization and outer-loop optimization. The inner loop
performs simulated fine-tuning on each individual instance to capture instance-specific features and
enable rapid adaptation. The outer loop aggregates feedback from multiple instances to update the
meta-model parameters, thereby enhancing its ability to quickly adapt to new, unseen instances. The
pseudocode for the meta-training process is presented in Algorithm 2.

Algorithm 2 Instance-wise Derivative-Free Meta-Training

Require: Training instance set Ω, mini-batch size B, number of inner-loop updates K, adaptation
step size α, meta step size β, noise standard deviation σ, number of epochs T ;

1: Randomly initialize the meta-model θ0
2: for t = 1, . . . , T do
3: for each randomly sampled instance Gτ ∈ Ω, τ = 1, . . . , B do
4: Initialize instance-specific model: θ(0)τ ← θ0
5: for k = 1, . . . ,K do
6: θ

(k)
τ ← θ

(k−1)
τ − α∇

θ
(k−1)
τ

Eε∼N (0,I)

[
F
(
θ
(k−1)
τ + σε

∣∣∣Gτ)]
7: end for
8: end for
9: θ0 ← θ0 − β

B

∑B
τ=1∇θ0 Eε∼N (0,I)

[
F
(
θ
(K)
τ + σε

∣∣∣Gτ)]
10: end for

A key issue in Algorithm 2 is how to compute the inner-loop and outer-loop gradients in Line 6
(computing gradients of the instance-wise model) and Line 9 (computing gradients of the meta-model
defined in Eq. 1). Unlike the mainstream gradient-based methods (e.g. (Manchanda et al., 2022;
Zhou et al., 2023; Qiu et al., 2022; Wang & Li, 2023)), we propose a full derivative-free method to
estimate these gradients. Leveraging the black-box nature of DFO, our framework relies solely on the
evaluability of the objective function, and makes no assumptions about the underlying MDP and the
environment’s structural priors, therefore is easy to implement and potentially applicable to various
scheduling problems. Moreover, using DFO in the inner loop is beneficial for finding high-quality
solution for each instance due to its strong global search ability. The overall architecture is illustrated
in Figure 1.

4.1.1 INNER-LOOP OPTIMIZATION

In our approach, inner-loop optimization updates instance-specific parameters. For a training instance
Gτ , its model is initialized to the meta-model, i.e., θ(0)τ ← θ0. Then, K steps of ES gradient updates
are applied to obtain a model θ(K)

τ . At each step k, a population of µ individuals is sampled from

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

the parameter distribution pψ(θ
(k)
τ), and their fitness Fi is evaluated. The ES gradient is computed

according to Algorithm 1 and used to update the instance-specific model θτ .

In standard NES (Wierstra et al., 2014; Salimans et al., 2017), fitness Fi is computed by a single
policy rollout. However, this single-sample strategy is unstable in complex scheduling problems
due to environmental stochasticity. To address this, we propose a parallel sampling mechanism,
generating L solutions per individual i by sampling its policy network θ + σεi, for more accurate
gradient estimation.

MC averaging estimation. Our first method computes the mean of the L objective values to obtain
the individual’s fitness, meaning that we use the following equation for fitness computation in Line 3
in Algorithm 1:

Fi = F (θ + σεi) =
1

L

L∑
l=1

F
(l)
i (θ + σεi) (2)

Where F (l)
i (θ + σεi) is the objective value (i.e., makespan) of the l-th solution. This simple strategy

effectively reduces variance in gradient estimation and improves training performance. However,
when the policy is used in the sampling mode, MC averaging is less effective since the mean value
cannot reflect the sampling result. To further enhance performance under sampling, we design
another ES gradient estimator that incorporates sampling information into the inner-loop optimization
process.

MC best-sample estimation. To better align with the sampling mode commonly used for NCO
policies, we replace the averaging of objective values across multiple feasible scheduling solutions
with a best-sample-based strategy. Specifically, during each inner-loop update, we exclusively utilize
the best objective value among the L solutions of each individual as its fitness estimate for ES gradient
computation. The fitness Fi of each individual in Algorithm 1 is then computed as follows:

Fi = F (θ + σεi) = min
l=1,...,L

{
F

(l)
i (θ + σεi)

}
(3)

4.1.2 OUTER-LOOP OPTIMIZATION

Algorithm 3 Meta-Level ES Gradient Estimation

Require: Population size µ, adaptation steps K, adaptation
step size α, noise standard deviations σ, η;

1: Sample ε1, . . . , εµ ∼ N (0, I), g1, . . . , gµ ∼ N (0, I)
2: for j = 1, . . . , µ do
3: for k = 1, . . . ,K do
4: for i = 1, . . . , µ do
5: F(i,j) = F (θk−1 + ηgj + σεi)
6: end for
7: θk + ηgj ← θk−1 + ηgj − α · 1

µσ

∑µ
i=1 F(i,j)εi

8: end for
9: Fj = F (θK + ηgj)

10: end for
11: return 1

µη

∑µ
j=1 Fj · gj

In Algorithm 2, the aim of the
outer-loop optimization is to update
the meta-parameters that govern the
model’s ability to rapidly adapt. Un-
like conventional task-distribution-
based meta-learning approaches that
primarily focus on task-level gener-
alization, our method shifts the op-
timization emphasis toward improv-
ing the model’s adaptability to individ-
ual instances. The outer loop aggre-
gates adaptation outcomes from the
inner loop across multiple training in-
stances to optimize the shared meta-
parameters, aiming to maximize the
expected performance of the model af-
ter instance-level fine-tuning. Specifi-
cally, for each training instance (treated as a pseudo-test instance) we optimize the meta-model by
maximizing the performance after K steps of ES gradient-based adaptation. The computation of the
meta ES gradient on a single instance is detailed in Algorithm 3. During training, the meta-parameters
are updated once after simulating the K-step adaptation process on a mini-batch of B instances
{Gτ}Bτ=1, as in Line 9 of Algorithm 2.

First-order Approximations. In our framework, DFO removes the need for second-order derivatives,
but both optimization loops remain population-based, introducing perturbations to form a distribution
of candidate solutions. This “perturbation-on-perturbation” mechanism resembles higher-order
differentiation, increasing the variance of ES gradient estimates. Moreover, given that derivative-free
methods are intrinsically slower to converge, the resulting computational overhead renders the training
process practically infeasible in real-world applications.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Policy
Network

Perturbation
Matrix

. . . Population
Network

…
…
…
…

…
…

. . .

s1

s2

s�St
at

e
M

at
rix

 (J
ob

, M
ac

hi
ne

)

������1

������2

�������

. . .A
ct

io
n

 M
at

rix

GPU-parallel
Environment

. . .

Fitness Values

Synchronized Update in Parallel Environment

 ES Gradient Estimation

. . .

GPU
Parallelism

Layer 1

Layer 2

Layer �

Figure 2: Overview of the GPU-based parallel ES framework

We address this challenge by utilizing the first-order approximation scheme in FOMAML (Finn et al.,
2017), which explicitly discards second-order terms and updates the meta-parameters using only
first-order gradients. Although originally developed for gradient-based methods, it can be analogously
applied to our derivative-free setting. Specifically, the first-order approximation of meta-model update
can be expressed as:

θ0 ← θ0 −
β

B

B∑
τ=1

∇θτEε∼N (0,I)

[
F
(
θ(K)
τ + σε

∣∣∣Gτ)] (4)

We use the above equation to replace the meta-model update in Line 9 of Algorithm 2. The only
notation difference is that we replace the full meta-gradient ∇θ0 in Line 9 of Algorithm 2 with the
instance-specific gradient∇θτ , which is the essence of first-order approximation and significantly
reduces the computational overhead.

4.2 GPU-BASED PARALLELIZATION

Population-based DFO methods such as ES are naturally parallelizable. However, traditional imple-
mentations (Salimans et al., 2017; Song et al., 2020) typically rely on CPU clusters and distributed
schedulers such as Dask or Ray for fitness evaluation and population evolution, limiting their ability
to fully utilize the parallization power of GPU. The associated communication and synchronization
overheads also become major performance bottlenecks.

In this paper, we develop a GPU-based framework for population-level parallel fitness evaluation,
as illustrated in Figure 2, which significantly improves the computational efficiency of ES by
parallelizing Line 2-4 in Algorithm 1 on GPU. The core idea is to replace the conventional per-
individual evaluation scheme with a batch inference mechanism applied to the entire population.
We adapt the neural network architecture to process all individuals’ input states in a single forward
pass, thereby achieving model-level full parallelism. Speficially, we construct a perturbation matrix
ε = [ε1, . . . , εµ] ∈ Rd×µ, where each column εi ∼ N (0, I) is the Gaussian noise added to the mean
parameter vector θ (of dimension d) to generate the parameter vector of the i-th individual, θi. We
then construct a population network, represented in matrix form as:

Θ = θ + σε (5)

The population network performs parallel forward propagation to produce action policies for all
individuals, denoted as Π = F(Θ, S), where S = [s1, . . . , sµ] is the collection of input states for
each individual, and Π is the resulting policy output matrix. The network is used solely for efficient
inference and does not involve backpropagation.

Furthermore, we vectorize the FJSP environment to support population-level parallel interactions. We
construct a vector of environments E = [E1, ..., Eµ], which receives the full batch of policy outputs
Π and synchronously executes the interaction process for each individual in the environment and
collect the corresponding individual fitness asR = E(Π), whereR = [r1, ..., rµ] ∈ Rµ denotes the
fitness vector of the population. Then we can compute the ES gradient in Algorithm 1 as:

∇θ Eε∼N (0,I)[F (θ + σε)] =
1

µσ
Rε⊤ (6)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

which is subsequently used to update the model parameters.

With this mechanism, the entire fitness evaluation process is offloaded to GPU, substantially reducing
CPU dependence and data transfer overhead, while improving overall efficiency and system through-
put. We will demonstrate the advantage of this implementation in the experiments. Remarkably, our
approach even outperforms the speed-focused EAS algorithm on most instances.

5 EXPERIMENTAL RESULTS

In this section, we perform evaluation on FJSP which is harder than JSP. We apply our method
to the state-of-the-art FJSP PDR learning model, Dual-Attention Network based reinforcement
learning (DANIEL) (Wang et al., 2023). In Appendix D, we also provide an evaluation using the
self-supervised training JSP model, Self-labeling Pointer Network (SPN) (Corsini et al., 2024), to
demonstrate the versatility of our method. Our source code will be publicly available.

5.1 EXPERIMENTAL SETUP

Dataset. Following (Wang et al., 2023), we generate six group of synthetic FJSP instance of sizes
10×5, 15×10, 20×5, 20×10, 30×10, and 40×10 for training and evaluation. Two types of datasets
are generated: SD1 (following (Song et al., 2023)) allows each job to contain a variable number of
operations, increasing structural diversity; while SD2 (adopted from (Wang et al., 2023)) fixes the
number of operations per job but significantly broadens the processing time range across alternative
machines for each operation, thereby increasing scheduling complexity. Model training is conducted
on the four smaller sizes, while the two larger sizes are reserved to assess generalization capability.
For testing, besides synthetic datasets, we also use four public benchmarks that differ substantially in
size (ranging from 10×5 to 30×10) and distribution, to assess cross-distribution generalization ability,
including the ten classic mk instances (mk01 to mk10) from (Brandimarte, 1993), and three groups of
la instances from (Hurink et al., 1994), namely rdata, edata, and vdata, each containing 40 instances.
More details can be found in Appendix A.

Training Setup. For our method, we set the population size µ = 100, noise standard deviation
σ = 0.2. Step size of the inner and outer loops are set to α = β = 5× 10−2. Each epoch generates
B = 20 training instances, and the inner loop is executed for K = 3 steps per instance. The training
runs for a total of 200 epochs. During the inner-loop adaptation phase, for the two proposed gradient
estimation methods, the number of parallel samples per population member is set to L = 20 for the
MC averaging and L = 100 for the MC best-sample. All hyperparameters are tuned on the smallest
instance size (10×5) and kept fixed across all instance sizes. All experiments are conducted on a
workstation with an Intel Core i9-9900K CPU and a single NVIDIA RTX 4090 GPU.

Baselines. We use four types of baselines for comparison: 1) Google OR-Tools (Da Col & Teppan,
2019), a high-performing exact constraint optimization solver with 3600 seconds run time limit; 2)
The best-performing manual PDR Most Work Remaining (MWKR) (Brandimarte, 1993; Montazeri
& Van Wassenhove, 1990) as reported in (Song et al., 2023; Wang et al., 2023); 3) the original
DANIEL model (Wang et al., 2023); and 4) two test-time fine-tuning strategies, Active Search
(AS) (Bello et al., 2016) and Efficient Active Search (EAS) (Hottung et al., 2021b). For the latter,
we implement EAS-EMB for comparison due to its superior performance in scheduling problems
as reported in (Hottung et al., 2021b). For fair comparison, all fine-tuning methods (AS, EAS and
ours) are performed with a fixed number of K = 10 adaptation steps per test instance. We use the
solutions generated by OR-Tools as reference to compute the objective gap of each method.

5.2 PERFORMANCE EVALUATION

Results on Synthetic Data. Table 1 reports the average makespan, relative optimality gap, and
average run time for solving an instance across all groups. Note that to assess the generalization
ability to larger problem sizes, we solve the unseen 30×10 and 40×10 instances using models trained
on the closest scale, 20×10. For all neural methods, we report their performance under the greedy
and sampling mode (100 solutions as in (Song et al., 2023; Wang et al., 2023)). For our method,
we use MC averaging and MC best-sample as the inner-loop gradient estimator for the greedy and
sampling mode, respectively. Clearly, all neural methods significantly outperform the MWKR rule.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Performance evaluation on synthetic test sets. Sizes marked with ∗ were unseen in training.

10×5 20×5 15×10 20×10 30×10∗ 40×10∗
Obj. (Gap) Time Obj. (Gap) Time Obj. (Gap) Time Obj. (Gap) Time Obj. (Gap) Time Obj. (Gap) Time

SD
1

Ortools 96.3 (0.00%) 0.91h 188.3 (0.00%) 1h 146.0 (0.00%) 0.95h 196.2 (0.00%) 1h 275.8 (0.00%) 1h 367.2 (0.00%) 1h
MWKR 113.2 (17.55%) 0.16s 209.7 (11.36%) 0.32s 171.1 (17.19%) 0.50s 216.1 (10.14%) 0.71s 312.9 (13.45%) 1.09s 414.9 (12.99%) 1.50s

G
re

ed
y DANIEL 106.7 (10.80%) 0.45s 197.6 (4.94%) 0.94s 161.3 (10.48%) 1.35s 198.5 (1.17%) 1.85s 281.5 (2.07%) 2.76s 371.5 (1.17%) 3.77s

AS 104.9 (8.93%) 0.27m 193.9 (2.97%) 0.47m 156.9 (7.47%) 0.85m 194.7 (-0.76%) 1.19m 278.4 (0.94%) 2.17m 368.6 (0.38%) 2.65m
EAS 103.7 (7.68%) 0.22m 194.0 (3.03%) 0.42m 156.4 (7.12%) 0.74m 194.5 (-0.87%) 1.10m 278.5 (0.98%) 1.78m 368.4 (0.33%) 2.55m
Ours 103.1 (7.06%) 0.14m 190.2 (1.01%) 0.31m 153.6 (5.21%) 0.55m 192.1 (-2.09%) 0.79m 275.3 (-0.18%) 1.62m 364.6 (-0.71%) 2.55m

Sa
m

pl
in

g DANIEL 101.7 (5.61%) 0.74s 192.8 (2.39%) 1.87s 153.2 (4.93%) 3.89s 193.9 (-1.17%) 6.35s 279.2 (1.23%) 12.37s 370.5 (0.90%) 21.38s
AS 100.5 (4.36%) 0.31m 191.5 (1.70%) 0.63m 151.5 (3.77%) 1.21m 192.5 (-1.89%) 1.80m 277.9 (0.76%) 3.42m 368.5 (0.35%) 5.12m
EAS 100.3 (4.15%) 0.26m 191.9 (1.91%) 0.55m 151.4 (3.70%) 1.10m 192.5 (-1.89%) 1.61m 277.7 (0.69%) 2.95m 368.5 (0.35%) 4.71m
Ours 99.5 (3.32%) 0.19m 188.6 (0.16%) 0.41m 149.0 (2.05%) 0.82m 189.1 (-3.62%) 1.34m 273.4 (-0.87%) 2.65m 363.0 (-1.14%) 4.55m

SD
2

Ortools 326.2 (0.00%) 0.51m 597.7 (0.00%) 1h 376.9 (0.00%) 0.77h 461.9 (0.00%) 1h 669.2 (0.00%) 1h 938.3 (0.00%) 1h
MWKR 549.4 (68.45%) 0.16s 1026.3 (71.76%) 0.33s 830.1 (120.27%) 0.52s 1041.1 (125.44%) 0.71s 1540.6 (130.22%) 1.09s 2036.5 (117.04%) 1.50s

G
re

ed
y DANIEL 408.4 (25.20%) 0.44s 671.0 (12.27%) 0.90s 591.2 (56.86%) 1.36s 610.1 (32.09%) 1.79s 774.6 (15.75%) 2.75s 962.6 (2.59%) 3.74s

AS 392.0 (20.17%) 0.25m 644.7 (7.87%) 0.47m 557.7 (47.97%) 0.86m 571.5 (23.73%) 1.22m 737.6 (10.22%) 2.17m 927.6 (-1.14%) 2.62m
EAS 380.5 (16.65%) 0.22m 640.8 (7.22%) 0.43m 547.7 (45.32%) 0.72m 569.1 (23.21%) 1.02m 739.5 (10.51%) 1.75m 922.9 (-1.64%) 2.53m
Ours 369.2 (13.18%) 0.13m 624.8 (4.53%) 0.28m 531.4 (41.00%) 0.55m 559.9 (21.22%) 0.81m 732.6 (9.47%) 1.58m 920.1 (-1.94%) 2.55m

Sa
m

pl
in

g DANIEL 366.7 (12.42%) 0.88s 629.9 (5.39%) 1.84s 521.8 (38.45%) 3.83s 552.6 (19.64%) 5.97s 725.3 (8.38%) 12.17s 914.0 (-2.59%) 21.09s
AS 356.1 (9.17%) 0.28m 620.7 (3.85%) 0.63m 502.6 (33.35%) 1.17m 537.1 (16.28%) 1.78m 712.8 (6.52%) 3.38m 902.8 (-3.78%) 5.03m
EAS 354.9 (8.80%) 0.26m 619.4 (3.64%) 0.53m 500.5 (32.79%) 1.03m 540.8 (17.08%) 1.62m 714.9 (6.83%) 2.92m 903.4 (-3.72%) 4.67m
Ours 347.7 (6.59%) 0.17m 607.9 (1.71%) 0.38m 499.2 (32.45%) 0.83m 529.9 (14.72%) 1.30m 703.3 (5.10%) 2.67m 889.5 (-5.20%) 4.52m

Table 2: Generalization performance evaluation on public benchmark datasets.

mk la (rdata) la (edata) la (vdata)
Obj. (Gap) Time Obj. (Gap) Time Obj. (Gap) Time Obj. (Gap) Time

Ortools 173.9 (0.00%) 0.51h 933.4 (0.00%) 0.71h 1026.9 (0.00%) 5.41m 920.6 (0.00%) 0.75h
MWKR 202.2 (16.27%) 0.49s 1052.8 (12.79%) 0.52s 1218.8 (18.69%) 0.52s 952.0 (3.41%) 0.52s

SD
1

10
×

5
m

od
el

G
re

ed
y DANIEL 185.7 (6.79%) 1.29s 1031.6 (10.52%) 1.37s 1194.9 (16.36%) 1.36s 944.9 (2.64%) 1.37s

AS 182.6 (5.00%) 0.85m 1008.2 (8.01%) 0.90m 1159.7 (12.93%) 0.91m 936.7 (1.75%) 0.91m
EAS 182.7 (5.06%) 0.73m 992.0 (6.28%) 0.80m 1139.9 (11.00%) 0.79m 930.3 (1.05%) 0.79m
Ours 182.3 (4.83%) 0.61m 982.8 (5.29%) 0.67m 1120.8 (9.14%) 0.68m 928.1 (0.81%) 0.67m

Sa
m

pl
in

g DANIEL 180.8 (3.97%) 4.13s 978.3 (4.97%) 4.71s 1122.6 (9.25%) 4.73s 925.4 (0.53%) 4.77s
AS 179.2 (3.15%) 1.30m 970.5 (4.00%) 1.42m 1107.6 (8.60%) 1.40m 923.0 (0.25%) 1.41m
EAS 179.3 (3.15%) 1.20m 969.5 (4.11%) 1.29m 1101.8 (7.32%) 1.38m 922.7 (0.23%) 1.32m
Ours 177.0 (2.25%) 0.95m 963.9 (3.28%) 1.13m 1086.0 (5.75%) 1.13m 921.9 (0.14%) 1.07m

SD
1

15
×

10
m

od
el

G
re

ed
y DANIEL 184.4 (6.06%) 1.30s 1040.0 (11.39%) 1.36s 1175.5 (14.88%) 1.38s 948.7 (3.05%) 1.37s

AS 182.4 (5.02%) 0.85m 1014.5 (8.63%) 0.89m 1152.9 (12.30%) 0.93m 934.8 (2.29%) 0.91m
EAS 182.2 (5.01%) 0.73m 1004.1 (7.57%) 0.81m 1140.0 (11.02%) 0.79m 932.0 (1.24%) 0.79m
Ours 181.5 (4.38%) 0.61m 984.9 (5.54%) 0.67m 1131.0 (10.18%) 0.67m 928.7 (0.88%) 0.67m

Sa
m

pl
in

g DANIEL 180.9 (3.99%) 4.08s 983.3 (5.35%) 4.73s 1119.7 (8.73%) 4.70s 925.7 (0.55%) 4.75s
AS 178.9 (2.91%) 1.31m 971.2 (4.25%) 1.42m 1109.1 (8.97%) 1.42m 922.9 (0.24%) 1.40m
EAS 178.7 (2.85%) 1.22m 971.6 (4.29%) 1.29m 1106.5 (8.74%) 1.36m 922.5 (0.22%) 1.32m
Ours 177.4 (2.03%) 0.95m 967.3 (3.64%) 1.13m 1094.1 (7.31%) 1.15m 921.7 (0.12%) 1.07m

AS and EAS can improve the original DANIEL model by test-time adaptation, and the latter is
better in most cases especially on SD2. Our method consistently outperforms all baselines across
all settings, because the meta-learning scheme explicitly considers the fine-tuning process and the
trained meta-model provides a good start point for instance-wise adaptation. Moreover, benefiting
from its gradient-free nature, our method allows full-parameter adaptation without backpropagation,
achieving superior efficiency and surpasses EAS in terms of both solution quality and run time. In
Appendix B, we provide results on much larger 50×20 and 100×20 instances,

Results on Public Benchmark Instances. We further evaluate the cross-distribution generalization
ability of our method on the widely used public benchmarks. We follow (Wang et al., 2023) and use
the meta-models trained on SD1 with sizes 10×5 and 15×10 for evaluation. As shown in Table 2,
our method consistently demonstrates strong performance as observed on the synthetic data. It
outperforms all baseline methods across all settings, with particularly notable improvements on the
edata task, highlighting its robust generalization ability in handling out-of-distribution instances.
Further statistical analysis can be found in Appendix E.

5.3 ANALYSES

Effectiveness of derivative-free meta-learning. Here we perform a more fine-grained analysis on the
two major parts of our method, i.e. the DFO method and the meta-learning framework. Specifically,
on SD2, we train and fine-tune the DANIEL model using the same DFO procedure as in our method,
namely ES. As shown in Table 3, this method can already surpass existing gradient-based training

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Effectiveness of derivative-free meta-learning.

10× 5 20× 5 15× 10 20× 10

DANIEL 25.20% 12.27% 56.86% 32.09%
AS 20.17% 7.87% 47.97% 23.73%
EAS 16.65% 7.22% 45.32% 23.21%

ES 14.38% 5.02% 44.81% 24.20%
Ours 13.18% 4.54% 41.00% 21.22%

Table 4: Inference time of GPU and
CPU implementation.

Instance GPU (Ours) CPU (Ray)

10× 5 0.5s 9.8s
20× 5 1.1s 29.8s
15× 10 2.4s 62.1s
20× 10 3.8s 122.3s

Table 5: Comparison with FOMAML (-G: greedy; -S: sampling).

10×5 20×5 15×10 20×10 30×10∗ 40×10∗
Obj. (Gap) Time Obj. (Gap) Time Obj. (Gap) Time Obj. (Gap) Time Obj. (Gap) Time Obj. (Gap) Time

FOMAML-G 394.4 (20.91%) 0.14m 646.6 (8.18%) 0.30m 557.1 (47.83%) 0.51m 583.8 (26.39%) 0.71m 757.6 (13.21%) 1.13m 949.3 (1.17%) 1.63m
Ours-G 369.2 (13.18%) 0.13m 624.8 (4.53%) 0.28m 531.4 (41.00%) 0.55m 559.9 (21.22%) 0.81m 732.6 (9.47%) 1.58m 920.1 (-1.94%) 2.55m

FOMAML-S 356.0 (9.13%) 0.16m 625.2 (4.61%) 0.37m 514.0 (36.36%) 0.68m 551.4 (19.36%) 1.01m 733.3 (9.58%) 1.83m 928.7 (-1.02%) 2.95m
Ours-S 347.7 (6.59%) 0.17m 607.9 (1.71%) 0.38m 499.2 (32.45%) 0.83m 529.9 (14.72%) 1.30m 703.3 (5.10%) 2.67m 889.5 (-5.20%) 4.52m

and fine-tuning methods, showing the effectiveness of DFO. Building upon this, the integration of
meta-learning further enhances the overall fine-tuning performance.

Comparison with standard meta-learning. We present a direct comparison between the instance-
wise adaptive meta-learning framework proposed in this work and the standard gradient-based
meta-learning method, FOMAML, on the challenging SD2 dataset. All experiments were conducted
under identical conditions, including the same model architecture, initialization, training epochs
(200) and fine-tuning steps (10) to ensure fairness. As shown in Table 5, under the same setting, our
method consistently outperforms FOMAML across all instance scales with comparable inference
speed. Training cost comparison with FOMAML is presented in Appendix C due to the space limit.

Figure 3: Comparison of different inner-
loop gradient estimators.

Analysis of inner-loop gradient estimators. Next, we
verify the effectiveness of our two inner-loop gradient esti-
mators proposed in Section 4.1.1, MC averaging and MC
best-sample. The evaluation is conducted on 10×5 in-
stances from SD2, and the standard NES implementation
(the single-sample estimator), AS and EAS are also incor-
porated for reference. All methods are evaluated under the
sampling mode. In Figure 3, we plot the average objective
value for each of the K = 10 fine-tuning steps. As shown
in Figure 3, the single-sample strategy performs only on
par with AS and EAS. With our two MC strategies, perfor-
mance of the meta-model is significantly boosted, and MC
best-sample demonstrated the strongest adaptation ability,
showing the effectiveness of our novel design.

Analysis of inference efficiency. We compare the efficiency of our GPU-based implementation with
the Ray-based CPU multithreading strategy commonly used in existing DFO methods. Specifically,
we measure the run time required to complete one forward pass for evaluating the fitness of 100
individuals. The Ray-based implementation utilizes all 16 available threads on our machine to
maximize CPU parallelism. As shown in Table 4, our GPU implementation is much faster than the
CPU-based method across various scales. Furthermore, as the problem scale increases, the advantage
of our implementation becomes even more prominent.

6 CONCLUSION AND FUTURE WORK

While deep reinforcement learning has been successfully applied in complex scheduling problems,
the per-instance solving performance is still far from optimality. In this paper, we propose a derivative-
free meta-learning framework to enhance the ability of learning-based scheduling models in adapting
to individual instances at test time. The trained meta-model provides a good start point for instance-
wise fine-tuning, and the strong empirical performance of our method is validated on both FJSP

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

(reinforcement learning) and JSP (self-supervised learning). One limitation of our method is that
derivative-free optimization is known to be relatively slower than gradient-based methods. In the
future, we will investigate more effective ways to improve training efficiency.

REFERENCES

Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial
optimization with reinforcement learning. arXiv preprint arXiv:1611.09940, 2016.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial optimization:
a methodological tour d’horizon. European Journal of Operational Research, 290(2):405–421,
2021.

Paolo Brandimarte. Routing and scheduling in a flexible job shop by tabu search. Annals of Operations
research, 41(3):157–183, 1993.

Ruiqi Chen, Wenxin Li, and Hongbing Yang. A deep reinforcement learning framework based on an
attention mechanism and disjunctive graph embedding for the job-shop scheduling problem. IEEE
Transactions on Industrial Informatics, 19(2):1322–1331, 2022.

Andrea Corsini, Angelo Porrello, Simone Calderara, and Mauro Dell’Amico. Self-labeling the job
shop scheduling problem. In Advances in Neural Information Processing Systems, 2024.

Giacomo Da Col and Erich C Teppan. Industrial size job shop scheduling tackled by present day cp
solvers. In Principles and Practice of Constraint Programming: 25th International Conference, CP
2019, Stamford, CT, USA, September 30–October 4, 2019, Proceedings 25, pp. 144–160. Springer,
2019.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In International Conference on Machine Learning, pp. 1126–1135. PMLR, 2017.

André Hottung, Bhanu Bhandari, and Kevin Tierney. Learning a latent search space for routing
problems using variational autoencoders. In International Conference on Learning Representations,
2021a.

André Hottung, Yeong-Dae Kwon, and Kevin Tierney. Efficient active search for combinatorial
optimization problems. In International Conference on Learning Representations, 2021b.

Johann Hurink, Bernd Jurisch, and Monika Thole. Tabu search for the job-shop scheduling problem
with multi-purpose machines. Operations-Research-Spektrum, 15:205–215, 1994.

Maziyar Khadivi, Todd Charter, Marjan Yaghoubi, Masoud Jalayer, Maryam Ahang, Ardeshir
Shojaeinasab, and Homayoun Najjaran. Deep reinforcement learning for machine scheduling:
Methodology, the state-of-the-art, and future directions. Computers & Industrial Engineering, pp.
110856, 2025.

Louis Kirsch, Sebastian Flennerhag, Hado Van Hasselt, Abram Friesen, Junhyuk Oh, and Yutian
Chen. Introducing symmetries to black box meta reinforcement learning. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 36, pp. 7202–7210, 2022.

Funing Li, Sebastian Lang, Yuan Tian, Bingyuan Hong, Benjamin Rolf, Ruben Noortwyck, Robert
Schulz, and Tobias Reggelin. A transformer-based deep reinforcement learning approach for
dynamic parallel machine scheduling problem with family setups. Journal of Intelligent Manufac-
turing, pp. 1–34, 2024a.

Yang Li, Jinpei Guo, Runzhong Wang, and Junchi Yan. T2t: From distribution learning in training
to gradient search in testing for combinatorial optimization. In Advances in Neural Information
Processing Systems, 2023.

Yang Li, Jinpei Guo, Runzhong Wang, Hongyuan Zha, and Junchi Yan. Fast t2t: Optimization
consistency speeds up diffusion-based training-to-testing solving for combinatorial optimization.
In Advances in Neural Information Processing Systems, 2024b.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Sahil Manchanda, Sofia Michel, Darko Drakulic, and Jean-Marc Andreoli. On the generalization of
neural combinatorial optimization heuristics. In Joint European Conference on Machine Learning
and Knowledge Discovery in Databases, pp. 426–442. Springer, 2022.

Nina Mazyavkina, Sergey Sviridov, Sergei Ivanov, and Evgeny Burnaev. Reinforcement learning for
combinatorial optimization: A survey. Computers & Operations Research, 134:105400, 2021.

Pinedo Michael. Scheduling. theory, algorithms and systems. ISBN0-13-706757-7, 1995.

Mrn Montazeri and LN Van Wassenhove. Analysis of scheduling rules for an fms. The International
Journal of Production Research, 28(4):785–802, 1990.

Junyoung Park, Jaehyeong Chun, Sang Hun Kim, Youngkook Kim, and Jinkyoo Park. Learning to
schedule job-shop problems: representation and policy learning using graph neural network and
reinforcement learning. International Journal of Production Research, 59(11):3360–3377, 2021.

Jonathan Pirnay and Dominik G Grimm. Self-improvement for neural combinatorial optimization:
Sample without replacement, but improvement. Transactions on Machine Learning Research,
2024a.

Jonathan Pirnay and Dominik G Grimm. Take a step and reconsider: Sequence decoding for self-
improved neural combinatorial optimization. In European Conference on Artificial Intelligence
(ECAI), 2024b.

Ruizhong Qiu, Zhiqing Sun, and Yiming Yang. Dimes: A differentiable meta solver for combinatorial
optimization problems. In Advances in Neural Information Processing Systems, 2022.

Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution strategies as a
scalable alternative to reinforcement learning. arXiv preprint arXiv:1703.03864, 2017.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Jiwoo Son, Minsu Kim, Hyeonah Kim, and Jinkyoo Park. Meta-sage: Scale meta-learning scheduled
adaptation with guided exploration for mitigating scale shift on combinatorial optimization. In
International Conference on Machine Learning, pp. 32194–32210. PMLR, 2023.

Wen Song, Xinyang Chen, Qiqiang Li, and Zhiguang Cao. Flexible job-shop scheduling via graph
neural network and deep reinforcement learning. IEEE Transactions on Industrial Informatics, 19
(2):1600–1610, 2023.

Xingyou Song, Wenbo Gao, Yuxiang Yang, Krzysztof Choromanski, Aldo Pacchiano, and Yunhao
Tang. Es-maml: Simple hessian-free meta learning. In International Conference on Learning
Representations, 2020.

Eric Taillard. Benchmarks for basic scheduling problems. european journal of operational research,
64(2):278–285, 1993.

Florent Teichteil-Königsbuch, Guillaume Povéda, Guillermo González de Garibay Barba, Tim
Luchterhand, and Sylvie Thiébaux. Fast and robust resource-constrained scheduling with graph
neural networks. In Proceedings of the International Conference on Automated Planning and
Scheduling, volume 33, pp. 623–633, 2023.

Haoyu Peter Wang and Pan Li. Unsupervised learning for combinatorial optimization needs meta
learning. In International Conference on Learning Representations, 2023.

Runqing Wang, Gang Wang, Jian Sun, Fang Deng, and Jie Chen. Flexible job shop scheduling via
dual attention network-based reinforcement learning. IEEE Transactions on Neural Networks and
Learning Systems, 35(3):3091–3102, 2023.

Daan Wierstra, Tom Schaul, Tobias Glasmachers, Yi Sun, Jan Peters, and Jürgen Schmidhuber.
Natural evolution strategies. The Journal of Machine Learning Research, 15(1):949–980, 2014.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Cong Zhang, Wen Song, Zhiguang Cao, Jie Zhang, Puay Siew Tan, and Xu Chi. Learning to dispatch
for job shop scheduling via deep reinforcement learning. In Advances in Neural Information
Processing Systems, 2020.

Cong Zhang, Zhiguang Cao, Wen Song, Yaoxin Wu, and Jie Zhang. Deep reinforcement learning
guided improvement heuristic for job shop scheduling. In International Conference on Learning
Representations, 2024a.

Cong Zhang, Zhiguang Cao, Yaoxin Wu, Wen Song, and Jing Sun. Learning topological representa-
tions with bidirectional graph attention network for solving job shop scheduling problem. In The
40th Conference on Uncertainty in Artificial Intelligence, 2024b.

Jianan Zhou, Yaoxin Wu, Wen Song, Zhiguang Cao, and Jie Zhang. Towards omni-generalizable
neural methods for vehicle routing problems. In International Conference on Machine Learning,
pp. 42769–42789. PMLR, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Table 6: SD1 instance generation distributions.

Size(n×m) |Oi| |Mij | p̄ij

10× 5 U(4, 6) U(1, 5) U(1, 20)
20× 5 U(4, 6) U(1, 5) U(1, 20)
15× 10 U(8, 12) U(1, 10) U(1, 20)
20× 10 U(8, 12) U(1, 10) U(1, 20)
30× 10 U(8, 12) U(1, 10) U(1, 20)
40× 10 U(8, 12) U(1, 10) U(1, 20)

Table 7: SD2 instance generation distributions.

Size(n×m) |Oi| |Mij | pijk

10× 5 5 U(1, 5) U(1, 99)
20× 5 5 U(1, 5) U(1, 99)
15× 10 10 U(1, 10) U(1, 99)
20× 10 10 U(1, 10) U(1, 99)
30× 10 10 U(1, 10) U(1, 99)
40× 10 10 U(1, 10) U(1, 99)

Table 8: Generalization to very large FJSP instances. For neural methods, values outside (inside)
parenthesis are greedy (sampling) results.

50×20 100×20

Ortools 972.8 1737.1
DANIEL 1013.9 (959.6) 1649.5 (1612.9)

AS 960.4 (930.7) OOM
EAS 970.1 (942.3) OOM

Ours (Zero-shot) 949.2 (904.9) 1609.1 (1562.2)
Ours (Fine-tune) 886.5 (875.4) 1510.5 (1492.2)

A FJSP DATASETS

In this study, we consider six synthetic instance sizes for training and testing the FJSP. For the SD1
dataset, the instance generation process follows the classical method proposed in (Brandimarte, 1993).
Specifically, for each instance size, the number of operations |Oi| in each job Ji, the number of
compatible machines |Mij | for each operation Oij , and the average processing time p̄ij of each
operation across its compatible machines are all independently sampled from uniform distributions
defined in Table 6. Then, the actual processing time pijk of operation oij on a specific compatible
machine Mk ∈ Mij is sampled from a bounded uniform distribution centered around the average
processing time, i.e., pijk ∼ U(0.8p̄ij , 1.2p̄ij). In contrast, for the SD2 dataset, the number of
operations in each job is set equal to the total number of machines in the shop. The processing
time pijk of each operation on each compatible machine is directly sampled from a wider uniform
distribution, resulting in greater variability in operation durations. The detailed parameter settings are
provided in Table 7.

B GENERALIZATION TO LARGE PROBLEMS

To further examine scalability at inference time, we conducted an experiment on very large FJSP
instances of sizes 50×20 and 100×20 using SD2 distribution. For our method and DANIEL, we
use the model trained on 20×10 instances. As shown in Table 8, our meta-model shows strong
generalization performance. It significantly outperforms DANIEL trained on the same size in both
greedy and sampling modes. Its zero-shot performance already exceeds the 1-hour results of Ortools,
and fine-tuning further boosts the performance. Notably, AS/EAS failed on the largest 100×20
instances (out-of-memory), since their gradient-based fine-tuning requires large GPU memory to
store gradients. In contrast, our gradient-free approach is much more memory friendly on these very
large problems.

C TRAINING COST COMPARISON

To assess the training efficiency of our method, we provide a detailed comparison of the training cost
against the FOMAML baseline, as shown in Table 9. The comparison considers training time (in
GPU hours) and GPU memory usage over 200 epochs. Our method incurs approximately 1.5-2 times
higher training time and GPU memory usage compared to FOMAML. This increase is attributed to
the nature of ES, which performs a population-based search and evaluates multiple perturbations
during each update. Nevertheless, we believe this additional training cost is modest and reasonable,

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 9: Training Cost Comparison with FOMAML on SD2.

10×5 20×5 15×10 20×10

Ours Training Time 2.1h 4.5h 7.2h 11.2h
GPU Memory Usage 1.3G 1.6G 2.0G 2.2G

FOMAML Training Time 1.5h 2.9h 3.7h 5.5h
GPU Memory Usage 0.9G 1.0G 1.0G 1.2G

Table 10: JSP Experiments on Taillard’s benchmarks. Instance sizes marked with ∗ were not seen
during training.

15×15 20×15 20×20 30×15∗ 30×20∗
Gap Time Gap Time Gap Time Gap Time Gap Time

G
re

ed
y SPN 16.86% 0.47s 16.13% 0.67s 19.01% 0.87s 21.16% 1.06s 22.03% 1.43s

AS 11.87% 0.21m 14.00% 0.28m 14.00% 0.39m 16.76% 0.43m 17.87% 0.58m
EAS 11.94% 0.16m 13.26% 0.23m 13.98% 0.28m 16.10% 0.32m 17.76% 0.43m
Ours 10.83% 0.13m 12.73% 0.19m 11.78% 0.26m 15.08% 0.32m 17.08% 0.42m

Sa
m

pl
in

g SPN 8.52% 0.53s 10.31% 0.71s 11.51% 0.96s 13.57% 1.20s 15.91% 1.57s
AS 7.54% 0.23m 9.24% 0.29m 9.43% 0.38m 12.38% 0.43m 14.52% 0.57m
EAS 7.06% 0.17m 9.28% 0.24m 9.84% 0.30m 12.21% 0.33m 14.33% 0.45m
Ours 6.31% 0.15m 8.76% 0.21m 9.24% 0.28m 11.80% 0.33m 14.07% 0.43m

since training is offline and the final solution quality during inference time is significantly better than
the baselines.

D JSP EXPERIMENTS

In this section, we apply our method to a self-supervised learning model for JSP, the Self-labeling
Pointer Network (SPN) (Corsini et al., 2024), to evaluate its effectiveness under a different learning
paradigm and model to further validate its generality and robustness. SPN is a self-supervised
neural scheduling framework tailored for JSP. A key advantage of SPN is that it eliminates the
need for external supervision or reinforcement learning signals. During training, SPN utilizes a
Pointer Network to construct scheduling solutions by sampling multiple candidate sequences for each
instance. It then selects the one with the lowest makespan as a pseudo-label and optimizes the model
via cross-entropy loss. This iterative process progressively improves the scheduling quality without
relying on ground-truth labels.

Dataset. To ensure a fair comparison, we train both SPN and our meta-model on the same dataset.
Following the protocol in (Corsini et al., 2024), we adopt a fixed training dataset composed of six
instance sizes (n × m): {10×10, 15×10, 15×15, 20×10, 20×15, 20×20}, with 500 randomly
generated instances per size, totaling 3,000 training instances per epoch. For evaluation, we assess
the generalization ability of the models using five instance sizes selected from Taillard’s benchmark
set (Taillard, 1993), ranging from 15×15 to 30×20.

Training Setup. For our method, the population size is set to µ = 100 and the noise standard
deviation to σ = 0.04. The step sizes for both the inner and outer loops are set to α = β = 5× 10−3.
The batch size is fixed to B = 10, consistent with the SPN training configuration. For each instance,
we perform K = 3 inner-loop adaptation steps. Given the fast convergence behavior of our method,
we train for a total of 10 epochs, while the SPN baseline is trained for 20 epochs as in the original
paper. During the inner-loop adaptation phase, we set the number of parallel samples L for the two
proposed gradient estimators as follows: L = 20 for the MC averaging, and L = 128 for the MC
best-sample, which aligns with the number of sampled solutions β used in SPN training.

Performance Evaluation. We compare our method against the original SPN model as well as
the two test-time fine-tuning strategies, AS and EAS. All fine-tuning methods, including AS, EAS,
and ours, perform a fixed number of K = 10 adaptation steps on each test instance. To evaluate

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 11: Average percentage gaps and standard deviations (mean ± std) on synthetic test sets.
Instance sizes marked with ∗ were not seen during training.

10×5 20×5 15×10 20×10 30×10∗ 40×10∗
SD

1 G
re

ed
y DANIEL 10.80%± 5.59% 4.94%± 1.90% 10.48%± 3.91% 1.17%± 2.04% 2.07%± 1.54% 1.17%± 1.45%

AS 8.93%± 3.13% 2.97%± 0.91% 7.47%± 3.38% −0.76%± 1.27% 0.94%± 1.27% 0.38%± 1.28%
EAS 7.68%± 2.38% 3.03%± 1.00% 7.12%± 2.98% −0.87%± 1.37% 0.98%± 1.30% 0.33%± 1.24%
Ours 7.06%± 1.88% 1.01%± 0.62% 5.21%± 2.55% −2.09%± 1.12% −0.18%± 1.19% −0.71%± 1.22%

Sa
m

pl
in

g DANIEL 5.61%± 2.01% 2.39%± 0.74% 4.93%± 1.92% −1.17%± 1.00% 1.23%± 1.25% 0.90%± 1.21%
AS 4.36%± 1.27% 1.70%± 0.59% 3.77%± 1.76% −1.89%± 0.94% 0.76%± 1.22% 0.35%± 1.23%
EAS 4.15%± 1.26% 1.91%± 0.59% 3.70%± 1.75% −1.89%± 0.92% 0.69%± 1.20% 0.35%± 1.38%
Ours 3.32%± 0.95% 0.16%± 0.41% 2.05%± 1.93% −3.62%± 0.94% −0.87%± 1.18% −1.14%± 1.25%

SD
2 G

re
ed

y DANIEL 25.20%± 9.09% 12.27%± 4.49% 56.86%± 11.63% 32.09%± 8.06% 15.75%± 5.51% 2.59%± 4.25%
AS 20.17%± 7.07% 7.87%± 3.06% 47.97%± 8.36% 23.73%± 4.77% 10.22%± 3.69% −1.14%± 3.11%
EAS 16.65%± 5.80% 7.22%± 2.73% 45.32%± 8.15% 23.21%± 4.49% 10.51%± 3.01% −1.64%± 2.94%
Ours 13.18%± 4.75% 4.53%± 1.79% 41.00%± 6.60% 21.22%± 3.99% 9.47%± 2.87% −1.94%± 2.86%

Sa
m

pl
in

g DANIEL 12.42%± 4.19% 5.39%± 2.06% 38.45%± 6.30% 19.64%± 3.34% 8.38%± 2.98% −2.59%± 2.84%
AS 9.17%± 3.42% 3.85%± 1.26% 33.35%± 5.68% 16.28%± 2.60% 6.52%± 2.51% −3.78%± 2.66%
EAS 8.80%± 3.62% 3.64%± 1.32% 32.79%± 5.30% 17.08%± 2.86% 6.83%± 2.36% −3.72%± 2.67%
Ours 6.59%± 2.61% 1.71%± 0.99% 32.45%± 5.08% 14.72%± 3.08% 5.10%± 2.01% −5.20%± 2.57%

Table 12: Average percentage gaps and standard deviations (mean ± std) on public benchmarks.

mk la (rdata) la (edata) la (vdata)
Gap Gap Gap Gap

SD
1

10
×

5
m

od
el

G
re

ed
y DANIEL 6.79%± 3.49% 10.52%± 8.20% 16.36%± 5.62% 2.64%± 3.02%

AS 5.00%± 2.84% 8.01%± 5.93% 12.93%± 5.65% 1.75%± 2.63%
EAS 5.06%± 2.26% 6.28%± 5.85% 11.00%± 5.48% 1.05%± 1.01%
Ours 4.83%± 1.52% 5.29%± 4.67% 9.14%± 5.09% 0.81%± 0.84%

Sa
m

pl
in

g DANIEL 3.97%± 1.34% 4.97%± 4.56% 9.25%± 4.51% 0.53%± 0.56%
AS 3.15%± 0.30% 4.00%± 4.12% 8.60%± 4.49% 0.25%± 0.49%
EAS 3.15%± 0.44% 4.11%± 3.93% 7.32%± 4.26% 0.23%± 0.38%
Ours 2.25%± 0.67% 3.28%± 3.65% 5.75%± 3.96% 0.14%± 0.37%

SD
1

15
×

10
m

od
el

G
re

ed
y DANIEL 6.06%± 2.43% 11.39%± 7.72% 14.88%± 5.41% 3.05%± 3.17%

AS 5.02%± 1.85% 8.63%± 7.10% 12.30%± 5.24% 2.29%± 2.07%
EAS 5.01%± 1.83% 7.57%± 5.54% 11.02%± 4.97% 1.24%± 1.93%
Ours 4.38%± 1.46% 5.54%± 4.87% 10.18%± 5.20% 0.88%± 1.09%

Sa
m

pl
in

g DANIEL 3.99%± 1.62% 5.35%± 4.12% 8.73%± 4.48% 0.55%± 0.61%
AS 2.91%± 0.59% 4.25%± 3.64% 8.97%± 4.49% 0.24%± 0.50%
EAS 2.85%± 1.19% 4.29%± 3.68% 8.74%± 4.30% 0.22%± 0.45%
Ours 2.03%± 0.66% 3.64%± 3.63% 7.31%± 4.90% 0.12%± 0.44%

Table 13: Average percentage gaps and standard deviations (mean ± std) on Taillard’s benchmarks.
Instance sizes marked with ∗ were not seen during training.

15×15 20×15 20×20 30×15∗ 30×20∗

G
re

ed
y SPN 16.86%± 2.75% 16.12%± 3.55% 19.01%± 3.26% 21.15%± 4.84% 22.03%± 2.89%

AS 11.86%± 1.94% 13.99%± 2.54% 14.00%± 2.17% 16.76%± 3.46% 17.87%± 2.64%
EAS 11.94%± 1.34% 13.26%± 2.43% 13.97%± 1.96% 16.10%± 2.74% 17.76%± 2.13%
Ours 10.83%± 2.42% 12.73%± 1.50% 11.78%± 2.00% 15.08%± 3.56% 17.08%± 1.51%

Sa
m

pl
in

g SPN 8.52%± 1.99% 10.31%± 2.13% 11.50%± 1.16% 13.57%± 2.90% 15.91%± 1.62%
AS 7.53%± 1.44% 9.23%± 1.73% 9.43%± 1.18% 12.38%± 2.92% 14.52%± 1.81%
EAS 7.06%± 1.77% 9.28%± 1.67% 9.84%± 1.05% 12.21%± 2.92% 14.33%± 1.50%
Ours 6.31%± 2.01% 8.75%± 1.10% 9.23%± 1.40% 11.80%± 2.87% 14.07%± 1.56%

performance, we use the best solution value of each instance as a reference and report the objective
gap accordingly. Table 10 summarizes the results of all methods under both greedy and sampling
modes, where the sampling mode generates 128 candidate solutions per instance following Corsini
et al. (2024). As shown in the table, our method consistently outperforms all baselines across both
evaluation settings, even when applied in this non-reinforcement learning paradigm. These results
highlight the effectiveness, generality, and model-agnostic nature of our approach.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 4: FJSP Gantt Chart with Makespan of 536 (Before Fine-Tuning)

Figure 5: FJSP Gantt Chart with Makespan of 459 (After Fine-Tuning)

E STATISTICAL RESULTS

Tables 11 , 12 and 13 present the average optimality gaps and standard deviations of all neural-based
methods across various instance sizes on the synthetic and public benchmark datasets, respectively.
These results confirm that our conclusions remain valid even when accounting for variance. Our
meta-learning framework explicitly incorporates the fine-tuning process during training, enabling it to
provide well-initialized parameters for each test instance. Moreover, by leveraging the gradient-free
nature of our optimization scheme, the method facilitates high-quality instance-wise adaptation.
Across all settings, our approach consistently outperforms all baseline methods.

F VISUALIZATION OF DECISION ADAPTATION IN FJSP

To illustrate the adaptation process of scheduling decisions in the FJSP, we selected a representative
10x5 FJSP instance and used Gantt charts to depict the changes in decision-making before and after
model fine-tuning. In the Gantt charts, blocks of the same color represent the operations of the same
workpiece, with the horizontal axis representing processing time and the vertical axis representing
different machines. Figure 4 shows the scheduling decisions before model fine-tuning. Since the
model was not optimized for a specific instance, it resulted in extended idle times for machines, and
the completion times of different machines varied significantly. After fine-tuning the model (as shown
in Figure 5), idle times were eliminated, and the completion times across different machines became
more consistent, leading to a significant reduction in makespan.

16

	Introduction
	Related Work
	Preliminaries
	Methodology
	Instance-wise Derivative-Free Meta-Learning Framework
	Inner-Loop Optimization
	Outer-Loop Optimization

	GPU-based Parallelization

	Experimental Results
	Experimental Setup
	Performance Evaluation
	Analyses

	Conclusion and Future Work
	FJSP Datasets
	Generalization to Large Problems
	Training Cost Comparison
	JSP Experiments
	Statistical Results
	Visualization of Decision Adaptation in FJSP

