
Deep Learning meets Nonparametric Regression:
Are Weight-Decayed DNNs Locally Adaptive?

Anonymous Author(s)
Affiliation
Address
email

Abstract

We study the theory of neural network (NN) from the lens of classical nonpara-1

metric regression problems with a focus on NN’s ability to adaptively estimate2

functions with heterogeneous smoothness — a property of functions in Besov or3

Bounded Variation (BV) classes. Existing work on this problem requires tuning4

the NN architecture based on the function spaces and sample sizes. We consider a5

“Parallel NN” variant of deep ReLU networks and show that the standard weight6

decay is equivalent to promoting the ℓp-sparsity (0 < p < 1) of the coefficient7

vector of an end-to-end learned function bases, i.e., a dictionary. Using this equiv-8

alence, we further establish that by tuning only the weight decay, such Parallel9

NN achieves an estimation error arbitrarily close to the minimax rates for both the10

Besov and BV classes. Notably, it gets exponentially closer to minimax optimal11

as the NN gets deeper. Our research sheds new lights on why depth matters and12

how NNs are more powerful than kernel methods.13

1 Introduction14

Why do deep neural networks (DNNs) work better? They are universal function approximators [6],15

but so are splines and kernels. They learn data-driven representations, but so are the shallower and16

linear counterparts such as matrix factorization. There is surprisingly little theoretical understanding17

on why DNNs are superior to these classical alternatives.18

In this paper, we study DNNs in nonparametric regression problems — a classical branch of statis-19

tical theory and methods with more than half a century of associated literature [25, 7, 46, 10, 23, 37,20

33]. Nonparametric regression addresses the following fundamental problem:21

• Let yi = f(xi) + Noise for i = 1, ..., n. How can we estimate a function f using data points22

(x1, y1), ..., (xn, yn) in conjunction with the knowledge that f belongs to a function class F?23

Function class F typically imposes only weak regularity assumptions such as smoothness, which24

makes nonparametric regression widely applicable to real-life applications under weak assumptions.25

Local adaptivity. A subset of nonparametric regression techniques were shown to have the property26

of local adaptivity [24] in both theory and practice. These include wavelet smoothing [10], locally27

adaptive regression splines [24], trend filtering [40, 47] and adaptive local polynomials [2, 3]. We28

say a nonparametric regression technique is locally adaptive if it can cater to local differences in29

smoothness, hence allowing more accurate estimation of functions with varying smoothness and30

abrupt changes.31

In light of such a distinction, it is natural to consider the following question.32

Are NNs locally adaptive, i.e., optimal in learning functions with heterogeneous33

smoothness?34

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

This is a timely question to ask, partly because the bulk of recent theory of NN leverages its asymp-35

totic Reproducing Kernel Hilbert Space (RKHS) in the overparameterized regime [21, 5, 1]. RKHS-36

based approaches, e.g., kernel ridge regression with any fixed kernels are suboptimal in estimating37

functions with heterogeneous smoothness [9]. Therefore, existing deep learning theory based on38

RKHS does not satisfactorily explain the advantages of neural networks over kernel methods.39

We build upon the recent work of Suzuki [39] and Parhi and Nowak [29] who provided encouraging40

first answers to the question above about the local adaptivity of NNs. Specifically, Parhi and Nowak41

[29, Theorem 8] showed that a two-layer truncated power function activated neural network with42

a non-standard regularization is equivalent to the locally adaptive regression splines (LARS) [24].43

This connection implies that such non-standard NNs achieve the minimax rate for the (higher order)44

bounded variation (BV) classes. We provide a detailed discussion about this work in Section B.45

Suzuki [39] showed that multilayer ReLU DNNs can achieve minimax rate for the Besov class,46

but requires the width, depth and an artificially imposed sparsity-level of the DNN weights to be47

carefully calibrated according to parameters of the Besov class, thus is quite different from how48

DNNs are typically trained in practice.49

In this paper, we aim at addressing the same locally adaptivity question for a more commonly used50

neural network with standard weight decayed training.51

Parallel neural networks. We restrict our attention on a special network architecture called parallel52

neural network [18, 15] which learns an ensemble of subnetworks — each being a multilayer ReLU53

DNNs. Parallel NNs have been shown to be more well-behaved both theoretically [18, 51, 16, 15, 14]54

and empirically [50, 44]. Moreover, the idea of parallel NNs was used in many successful NN55

architectures such as SqueezeNet, ResNext and Inception (see [15] and the references therein).56

Weight decay. Weight decay is a common method in deep learning to reduce overfitting. Em-57

pirically, the regularizer is not necessarily explicit. Many tricks in deep learning, including early58

stopping [48], quantization [20], and dropout [45] have similar effect as weight decay. In this paper,59

we make no assumption on the training method thus there is no (implicit) regularizers apart from60

weight decay.61

Summary of results. Our main contributions are:62

1. We prove that the (standard) weight decay in training an L-layer parallel ReLU-activated63

neural network is equivalent to a sparse ℓp penalty term (where p = 2/L) on the linear64

coefficients of a learned representation.65

2. We show that neural networks can approximate B-spline basis functions of any order with-66

out the need of choosing the order parameter manually. In other words, neural networks67

can adapt to functions of different order of smoothness, and even functions with different68

smoothness in different regions in their domain.69

3. We show that the estimation error of weight decayed parallel ReLU neural network de-70

creases polynomially with the number of samples up to a constant error for estimating71

functions with heterogeneous smoothness in the both BV and Besov classes, and the ex-72

ponential term in the error rate is close to the minimax rate. Notably, the method requires73

tuning only the weight decay parameter.74

4. We find that deeper models achieve closer to the optimal error rate. This result helps explain75

why deep neural networks can achieve better performance than shallow ones empirically.76

The above results separate NNs with any linear methods such as kernel ridge regression. To the77

best of our knowledge, we are the first to demonstrate that standard techniques (“weight decay”78

and ReLU activation) suffice for DNNs in achieving the optimal rates for estimating BV and Besov79

functions.80

2 Preliminary81

2.1 Notation and Problem Setup.82

We denote regular font letters as scalars, bold lower case letters as vectors and bold upper case letters83

as matrices. a ≲ b means a ≤ Cb for some constant C that does not depend on a or b, and a ≂ b84

denotes a ≲ b and b ≲ a. See Table 1 for the full list of symbols used.85

2

Table 1: Symbols used in this paper
symbol Meaning
a/a/A scalars / vectors / matrices. [a, b] {x ∈ R : a ≤ x ≤ b}
Bα

p,q Besov space. [n] {x ∈ N : 1 ≤ x ≤ n}.
| · |Bα

p,q
Besov quasi-norm . ∥ · ∥F Frobenius norm.

∥ · ∥Bα
p,q

Besov norm. ∥ · ∥p ℓp-norm.
Mm(·) mth order Cardinal B-spline bases. d Dimension of input.

Mm,k,s(·) mth order Cardinal B-spline basis M # subnetworks in a parallel NN.
function of resolution k at L # layers in a (parallel) NN.
position s. w Width of a subnetwork.

σ(·) ReLU activation function. n # samples.
W

(ℓ)
j , b

(ℓ)
j Weight and bias in the ℓ-th layer in

the j-th subnetwork.
R,Z,N Set of real numbers, integers, and

nonnegative integers.

Let f0 be the target function to be estimated. The training dataset is Dn := {(xi, yi), yi = f0(xi)+86

ϵi, i ∈ [n]}, where xi are fixed and ϵi are zero-mean, independent Gaussian noises with variance σ2.87

In the following discussion, we assume xi ∈ [0, 1]d, f0(xi) ∈ [−1, 1],∀i.88

We will be comparing estimators under the mean square error (MSE), defined as

MSE(f̂) := EDn

1

n

n∑
i=1

(f̂(xi)− f0(xi))
2.

The optimal worst-case MSE is described by R(F) := minf̂ maxf0∈F MSE(f̂), we say that89

f̂ is optimal if MSE(f̂) ≂ R(F). The empirical (square error) loss is defined as L̂(f̂) :=90
1
n

∑n
i=1(f̂(xi) − yi)

2. The corresponding population loss is L(f̂) := E[1n
∑n

i=1(f̂(xi) − y′i)
2|f̂]91

where y′i are new data points. It is clear that E[L(f̂)] = MSE[f̂] + σ2.92

2.2 Besov Spaces and Bound Variation Space93

Besov space, denoted as Bα
p,q , is a flexible function class parameterized by α, p, q whose definition94

is deferred to Section C.1. Here α ≥ 0 determines the smoothness of functions, 1 ≤ p ≤ ∞95

determines the averaging (quasi-)norm over locations, 1 ≤ q ≤ ∞ determines the averaging (quasi-96

)norm over scale which plays a relatively minor role. Smaller p is more forgiving to inhomogeneity97

and loosely speaking, when the function domain is bounded, smaller p induces a larger function98

space. On the other hand, it is easy to see from definition that Bα
p,q ⊂ Bα

p,q′ , if q < q′. Without loss99

of generalizability, in the following discussion we will only focus on Bα
p,∞.100

When p = 1, the Besov space allows higher inhomogeneity, and it is more general than the Sobolev101

or Hölder space.102

Bounded variation (BV) space is a more interpretable class of functions with spatially hetero-103

geneous smoothness [10]. It is defined through the total variation (TV) of a function. For104

(m + 1)th differentiable function f : [0, 1] → R, the mth order total variation is defined as105

TV (m)(f) := TV (f (m+1)) =
∫
[0,1]

|f (m+1)(x)|dx, and the corresponding mth order Bounded106

Variation class BV (m) := {f : TV (f (m)) < ∞}. The more general definition is given in Sec-107

tion C.2. Bounded variation class is tightly connected to Besov classes. Specifically [8]:108

Bm+1
1,1 ⊂ BV (m) ⊂ Bm+1

1,∞ (1)

This allows the results derived for the Besov space to be easily applied to BV space.109

Minimax MSE It is well known that minimax rate for Besov and 1D BV classes are O(n− 2α
2α+d)110

and O(n−(2m+2)/(2m+3)) respectively . The minimax rate for linear estimators in 1D BV classes is111

known to be O(n−(2m+1)/(2m+2)) [24, 10].112

3 Main Results: Parallel ReLU DNNs113

Consider a parallel neural network containing M multi layer perceptrons (MLP) with ReLU activa-114

tion functions called subnetworks. Each subnetwork has width w and depth L. The input is fed to115

3

x
W(1)

W(2)

. . .
W(L−1)

W(L)

W
(2)
1 W

(2)
M

. . .

W
(L−1)
1 W

(L−1)
M

. . .

W
(L)
1 W

(L)
M

y

minfj L(
∑

j fj) + λ
∑L

ℓ=1

∑M
j=1 ∥W

(ℓ)
j ∥2F .

W(ℓ):

W
(ℓ)
1

W
(ℓ)
2

W
(ℓ)
M

0 0

0

0

0

0
(c) Block diagonal weights

(a) Parallel NN with Weight Decay

x
W̄(1)

W̄(2)

. . .
W̄(L−1)

W̄(L)

W̄
(2)
1 W̄

(2)
M

. . .

W̄
(L−1)
1 W̄

(L−1)
M

. . .

W̄
(L)
1 W̄

(L)
M

. . .

. . .a1 aM

y

min{aj ,f̄j} L(
∑

j aj f̄j) s.t.
∑M

j=1 |aj |2/L ≤ P ′.

(b) Sparse Regression with Learned Representation

Figure 1: Parallel neural network and the equivalent sparse regression model we discovered.

all the subnetworks, and the output of the parallel NN is the summation of the output of each sub-116

network. The architecture of a parallel neural network is shown in Figure 1a. This parallel neural117

network is equivalent to a vanilla neural network with block diagonal weights in all but the first and118

the last layers (Figure 1(c)). Let W(ℓ)
j and b

(ℓ)
j denote the weight and bias in the ℓ-th layer in the119

j-th subnetwork respectively. Training this model with weight decay returns:120

argmin
{W(ℓ)

j ,b
(ℓ)
j }

L̂(f) + λ

M∑
j=1

L∑
ℓ=1

∥∥W(ℓ)
j

∥∥2
F
, (2)

where f(x) =
∑M

j=1 fk(x) denotes the parallel neural network, fj(·) denotes the j-th subnetwork,121

and λ > 0 is a fixed scaling factor.122

123

Theorem 1. For any fixed α− d/p > 1, q ≥ 1, L ≥ 3, for any f0 ∈ Bα
p,q , given an L-layer parallel124

neural network satisfying125

• The width of each subnetwork is fixed and large enough: w ≳ d. See Theorem 9 for the126

detail.127

• The number of subnetworks is large enough: M ≳ mdn
1−2/L

2α/d+1−2/(pL) where m = ⌈α− 1⌉.128

With proper choice of the parameter of weight decay λ, the solution f̂ parameterized by (2) satisfies129

130

MSE(f̂) = Õ
(
n− 2α/d(1−2/L)

2α/d+1−2/(pL)
)
+ Const. (3)

where Õ shows the scale up to a logarithmic factor, and the trailing constant term decreases expo-131

nentially with L.132

We explain the proof idea in the next section,but defer the extended form of the theorem and the full133

proof to Section F. Before that, we comment on a few interesting aspects of the result.134

Near optimal rates and the effect of depth. The first term in the MSE bound is the estimation error135

and the second term is (part of) the approximation error of this NN. Recall that the minimax rate of136

a Besov class is O(n− 2α
2α+d) thus as the depth parameter L increases it can get arbitrarily close to137

the minimax rate. The constant term would be a negligible if we choose L ≳ log n.138

Corollary 2. Under the conditions of Theorem 1, for any f0 ∈ Bα
p,q , there is a numerical constant

C such that when we choose C log n ≤ L ≤ 100C log n,

MSE(f̂) = Õ(n− 2α
2α+d (1−o(1))),

where Õ hides only logarithmic factors and the o(1) factor in the exponent is O(1/ log(n)).139

4

This result says that deeper parallel neural networks achieves lower error and gets closer to the140

statistical limit.141

Overparameterization and sparsity. We also note that the result does not depend on M as long142

as M is large enough. This means that the neural network can be arbitrarily overparameterized143

while not overfitting. The underlying reason is sparsity. As it will become clearer in the proof144

sketch, weight decayed training of a parallel L-layer ReLU NNs is equivalent to a sparse regression145

problem with an ℓp penalty assigned to the coefficient vector of a learned dictionary. Here p = 2/L146

which promotes even sparser solutions than an ℓ1 penalty.147

No architecture tuning. For any fixed L, the required architecture of the model does not depend148

on the dataset or the target function (n, α) expect the number of subnetworks M , for which the only149

requirement is being large enough. As a result, one can design a model using a large guess on M ,150

and achieve the claimed near-optimal error rate by only tuning the weight decay parameter.151

Bounded variation classes. Thanks to the Besov space embedding of the BV class (1), our theorem152

also implies the result for the BV class in 1D.153

Corollary 3. If the target function is in bounded variation class f0 ∈ BV (m), For any fixed L ≥ 3,154

for a neural network satisfying the requirements in Theorem 1 with d = 1 and with proper choice of155

the parameter of weight decay λ, the NN f̂ parameterized by (5) satisfies156

MSE(f̂) = Õ(n− (2m+2)(1−2/L)
2m+3−2/L) + Const.

where Õ shows the scale up to a logarithmic factor, and the trailing constant term decreases expo-157

nentially with L.158

It is known that any linear estimators such as kernel smoothing and smoothing splines cannot have159

an error lower than O(n−(2m+1)/(2m+2)) for BV (m) [10]. This partly explains the advantage of160

DNNs over kernels.161

Representation learning and adaptivity. The results also shed a light on the role of representation162

learning in DNN’s ability to adapt. Specifically, different from the two-layer NN in [29], which163

achieves the minimax rate of BV (m) by choosing appropriate activation functions using each m,164

each subnetwork of a parallel NN can learn to approximate the spline basis of an arbitrary order,165

which means that if we choose L to be sufficiently large, such Parallel NN with optimally tuned λ is166

simultaneously near optimal for m = 1, 2, 3, In fact, even if different regions of the space has167

different orders of smoothness, the paralle NN will still be able to learn appropriate basis functions168

in each local region. To the best of our knowledge, this is a property that none of the classical169

nonparametric regression methods possess.170

Synthesis v.s. analysis methods. Our result could also inspire new ideas in estimator design.171

There are two families of methods in non-parametric estimation. One called synthesis framework172

which focuses on constructing appropriate basis functions to encode the contemplated structures173

and regress the data to such basis, e.g., wavelets [10]. The other is called analysis framework which174

uses analysis regularization on the data directly (see, e.g., RKHS methods [37] or trend filtering175

[40]). It appears to us that parallel NN is doing both simultaneously. It has a parametric family176

capable to synthesizing an O(n) subset of an exponentially large family of basis, then implicitly177

use sparsity-inducing analysis regularization to select the relevant basis functions. In this way the178

estimator does not actually have to explicitly represent that exponentially large set of basis functions,179

thus computationally more efficient.180

4 Proof Overview181

We start by first proving that a parallel neural network trained with weight decay is equivalent to an182

ℓp-sparse regression problem with representation learning (Section 4.1); which helps decompose its183

MSE into an estimation error and approxmation error. Then we bound the two terms in Section 4.2184

and Section 4.3 respectively.185

4.1 Equivalence to ℓp Sparse Regression with a Learned Feature Representation186

It is widely known that ReLU function is 1-homogeneous: σ(ax) = aσ(x),∀a ≥ 0, x ∈ R. In any187

consecutive two layers in a neural network (or a subnetwork), one can multiply the weight and bias188

5

in one layer with a positive constant, and divide the weight in another layer with the same constant.189

The neural network after such transformation is equivalent to the original one:190

W(2)σ(W(1)x+ b(1) =
1

c
W(2)σ(cW(1)x+ cb(1)), ∀c > 0,x. (4)

This property allows us to reformulate (2) to an ℓp sparsity constraint problem:191

Proposition 4. Fix the input dataset Dn and a constant c1 > 0. There exists an one-to-one mapping192

between λ > 0 and P ′ > 0 such that (2) is equivalent to the following problem:193

argmin
{W̄(ℓ)

j ,b̄
(ℓ)
j ,aj}

L̂
(M∑

j=1

aj f̄j

)
=

1

n

∑
i

(yi − f̄1:M (xi)
Ta)2

s.t. ∥W̄(1)
j ∥F ≤ c1

√
d,∀j ∈ [M],

∥W̄(ℓ)
j ∥F ≤ c1

√
w,∀j ∈ [M], 2 ≤ ℓ ≤ L, ∥{aj}∥2/L2/L ≤ P ′

(5)

where f̄j(·) is a subnetwork with parameters W̄(ℓ)
j , b̄

(ℓ)
j .194

This equivalent model is demonstated in Figure 1b. The proof can be found in Section D.1. The195

constraint ∥W̄(1)
j ∥F ≲

√
d, ∥W̄(ℓ)

j ∥F ≲
√
w,∀ℓ > 1 is typical in deep learning for better numerical196

stability. The equivalent model in Proposition 4 is also a parallel neural network, but it appends one197

layer with parameters {ak} at the end of the neural network and the constraint on the Frobenius198

norm is converted to the 2/L norm on the factors {ak}. Since L ≫ 2 in a typical application,199

2/L ≪ 1 and this constraint can enforce a sparser model than that in Section B.200

There are two useful implications of Proposition 4. First, it gives an intuitive explanation on how201

a weight decayed Parallel NN works. Specifically, it can be viewed as a sparse linear regression202

with representation learning. Second, the conversion into the constrained form allows us to adapt203

generic statistical learning machinery (a self-bounding argument) from Suzuki [39, Proposition 4]204

for studying this constrained ERM problem.205

The adaptation is nontrivial because (1) our regression problem has a fixed design (so data points are206

not iid); (2) there is an unconstrained subspace with no bounded metric entropy. Specifically, our207

Proposition 15 shows that the MSE of the regression problem can be bounded by208

MSE(f̂) =O

(
inf
f∈F

MSE(f)︸ ︷︷ ︸
approximation error

+
logN (F∥, δ, ∥ · ∥∞) + d(F⊥)

n
+ δ︸ ︷︷ ︸

estimation error

)

in which F decomposes into F∥×F⊥, where F⊥ is an unconstrained subspace with finite dimension,209

and F∥ is a compact set in the orthogonal complement with a δ-covering number of N (F∥, δ, ∥·∥∞)210

in ∥·∥∞-norm. This decomposes MSE into an approximation errorand an estimation error. The novel211

analysis of these two represents the major technical contribution of this paper.212

4.2 Estimation Error Analysis213

The decomposition above reveals that to bound the estimation error, it suffices to compute the cov-214

ering number of the constraint set in the sup-norm of the function it represents.215

Previous results that bound the covering number of neural networks [49, 39] depends on the width216

of the neural networks explicitly, which cannot be applied when analysing a potentially infinitely217

wide neural network. In this section, we leverage the ℓp-norm bounded coefficients to avoid the218

dependence in M in the covering number bound.219

Theorem 5. The covering number of the model defined in (5) apart from the bias in the last layer220

satisfies221

logN (F , δ) ≲ w2+2/(1−2/L)L2
√
dP ′ 1

1−2/L δ−
2/L

1−2/L log(wP ′/δ). (6)

The proof can be found in Section D.2. It requires the following lemma:222

6

Lemma 6. logN (G, δ) ≲ k log(1/δ) for some finite c3, and for any g ∈ G, |a| ≤ 1, we have223

ag ∈ G. The covering number of F =
{∑M

i=1 aigi

∣∣∣gi ∈ G, ∥a∥pp ≤ P, 0 < p < 1
}

for any P > 0224

satisfies225

logN (F , ϵ) ≲ kP
1

1−p (δ/c3)
− p

1−p log(c3P/δ)

up to a double logarithmic factor.226

See Section D.3 for the proof of Lemma 6. The covering number in Theorem 5 does not depend227

on the number of subnetworks M . In other words, it provides a bound of estimation error for an228

arbitrarily wide parallel neural network as long as the total Frobenius norm is bounded.229

4.3 Approximation Error Analysis230

The approximation error analysis involves two steps. In Section 4.3.1, we analyse how a subnetwork231

can approximate a B-spline basis. Then in Section 4.3.2 we show that a sparse linear combination232

of B-spline bases approximates Besov functions. Both add up to the total error in approximating233

Besov functions with a parallel neural network (Theorem 9).234

4.3.1 Approximation Error of B-spline Basis Function235

As is shown in Section C.1, functions in Besov space can be alternatively represented in a sequence236

space via the coefficients of a cardinal B-spline basis. In this section we study the approximation237

ability of ReLU neural networks to B-spline basis function.238

Proposition 7. Let Mm,k,s be the B-spline of order m with scale 2−k in each dimension and position239

s ∈ Rd: Mm,k,s(x) := Mm(2k(x − s)), Mm is defined in (11). There exists a parallel neural240

network that has the structure and satisfy the constraint in Proposition 4 for d-dimensional input241

and one output, containing M = O(md) subnetworks, each of which has width w = O(d) and242

depth L = O(log(c(m, d)/ϵ)) for some constant w, c that depends only on m and d, denoted as243

M̃m(x),x ∈ Rd, such that244

• |M̃m,k,s(x)−Mm,k,s(x)| ≤ ϵ, if 0 ≤ 2k(xi − si) ≤ m+ 1,∀i ∈ [d],245

• M̃m,k,s(x) = 0, otherwise.246

• The weights in the last layer satisfy ∥a∥2/L2/L ≲ 2kmde2md/L.247

The proof can be found in Section E.1. Note that the product of the coefficients among all the layers248

are proportional to 2k, instead of 2km when approximating truncated power basis functions. This is249

because the transformation from Mm to Mm,k,s only scales the domain of the function by 2k, while250

the codomain of the function is not changed. To apply the transformation to the neural network, one251

only need to scale weights in the first layer by 2k, which is equivalent to scaling the weights in each252

layer bt 2k/L and adjusting the bias according.253

4.3.2 Approximation Error in Besov Space254

With the results given in Section 4.3.1, we can estimate the approximation error of parallel ReLU255

neural networks to functions in Besov space.256

Proposition 8. Let α − d/p > 1, r > 0. For any function in Besov space f0 ∈ Bα
p,q and any

positive integer M̄ , there is an M̄ -sparse approximation using B-spline basis of order m satisfying
0 < α < min(m,m− 1 + 1/p): f̌M̄ =

∑M̄
i=1 aki,si

Mm,ki,si
for any positive integer M̄ such that

the approximation error is bounded as ∥f̌M̄ − f0∥r ≲ M̄−α/d∥f0∥Bα
p,q

, and the coefficients satisfy

∥{2kiaki,si}ki,si∥p ≲ ∥f0∥Bα
p,q

.

257
The proof can be found in Section E.2.258

Remark 1. The requirement in Proposition 8: α− d/p > 1 is stronger than the condition typically259

found in approximation theorem α − d/p ≥ 0 [11], so-called “Boundary of continuity”, or the260

condition in Suzuki [39] α > d(1/p− 1/r)+ . This is because although the functions in Bα
p,q when261

7

0 ≤ α − d/p < 1 can be approximated by B-spline basis, the sum of weighted coefficients may not262

converge. One simple example is the step function fstep(x) = 1(x ≥ 0.5), fstep ∈ B1
1,∞. Although263

it can be decomposed using first order B-spline basis as in (10), the summation of the coefficients is264

infinite. Actually one only needs a ReLU neural network with one hidden layer and two neurons to265

approximate this function to arbitrary precision, but the weight need to go to infinity.266

Theorem 9. Under the same condition as Proposition 8, for any positive integer M̄ , any function267

in Besov space f0 ∈ Bα
p,q can be approximated by a parallel neural network with no less than268

O(mdM̄) number of subnetworks satisfying:269

1. Each subnetwork has width w = O(d) and depth L.270

2. The weights in each layer satisfy ∥W̄(ℓ)
k ∥F ≤ O(

√
w) except the first layer ∥W̄(1)

k ∥F ≤271

O(
√
d),272

3. The scaling factors have bounded 2/L-norm: ∥{aj}∥2/L2/L ≲ mde2md/LM̄1−2/(pL).273

4. The approximation error is bounded by274

∥f̃ − f0∥r ≤ (c4M̄
−α/d + c5e

−c6L)∥f∥Bα
p,q

where c4, c5, c6 are constants that depend only on m, d and p.275

Here M̄ is the number of “active” subnetworks, which is not to be confused with the number of276

subnetworks at initialization. The proof can be found in Section E.3.277

Using the estimation error in Theorem 5 and approximation error in Theorem 9, by choosing M̄ to278

minimax the total error, we can conclude the sample complexity of parallel neural networks using279

weight decay, which is the main result (Theorem 1) of this paper. See Section F for the detail.280

5 Experiment281

We empirically compare a parallel neural network (PNN) and a vanilla ReLU neural network (NN)282

with smoothing spline, trend filtering (TF) [40], and wavelet denoising. Trend filtering can be283

viewed as a more efficient discrete spline version of locally adaptive regression spline and enjoys the284

same optimal rates for the BV classes. Wavelet denoising is also known to be minimax-optimal for285

the BV classes. The results are shown in Figure 2. We use two target functions: a Doppler function286

whose frequency is decreasing(Figure 2(a)-(c)), and a combination of piecewise linear function and287

piecewise cubic function, or “vary” function (Figure 2(d)-(f)). We repeat each experiment 10 times288

and take the average. The shallow area in Figure 2(b)(e) shows 95% confidence interval by inverting289

the Wald’s test. The degree of freedom (DoF) is computed based on Tibshirani [41].290

As can be shown in the figure, both TF and wavelet denoising can adapt to the different levels of291

smoothness in the target function, while smoothing splines tend to be oversmoothed where the target292

function is less smooth (the left side in (a)(d), enlarged in (g)). The prediction of PNN is similar to293

TF and wavelet denoising and shows local adaptivity. Besides, the MSE of PNN almost follows the294

same trend as TF and wavelet denoising which is consistent with our theoretical understanding that295

the error rate of neural network is closer to locally adaptive methods. Notably PNN, TF and wavelet296

denoising achieve lower error at a much smaller degree-of-freedom than smoothing splines.297

In a vanilla NN, weight decay is equivalent to ℓ1 regularizer in any two successive layers, but to the298

best of our knowledge it does not lead to sparse representation learning unless some specific sparse299

structure is enforced. While our theory does not apply to vanilla neural networks, the results seem300

to suggest the NN behaves similar to smoothing spline and is not locally adaptive.301

There are some mild drops in the best MSE one can achieve with NN vs TF in both examples. We302

are surprised that the drop is small because NN needs to learn the basis functions that TF essentially303

hard-coded. The additional price to pay for using a more adaptive and more flexible representation304

learning method seems not high at all.305

In Figure 2(c)(f), we give the output all the “active” subnetwork, i.e. the subnetworks whose output is306

not a constant. Notice that the number of active subnetworks is much smaller than the initialization.307

This is because weight decay induces ℓp sparsity and the weight in most of the subnetworks reduces308

towards 0 after training. More details are shown in Section G.309

8

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

Observation
Target function
Trend Filtering
Wavelet Denosing
Smoothing Spline
Parallel Neural Network
Neural Network

(a) Dopler, DoF=30.

25 50 75 100 125150175200
Degree of freedom

0.00

0.05

0.10

0.15

0.20

0.25

M
SE

Parallel Neural Network
Neural Network
Trend Filter
Smoothing Spline
Wavelet Denoising

(b) MSE versus DoF.

0.0 0.2 0.4 0.6 0.8 1.0

1.0

0.5

0.0

0.5

1.0

1.5

2.0

(c) Active subnetworks.

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2 Observation
Target function
Trend Filtering
Wavelet Denosing
Smoothing Spline
Parallel Neural Network
Neural Network

(d) “Vary”, DoF=50.

25 50 75 100 125 150 175 200
Degree of freedom

10 3

10 2

M
SE

Parallel Neural Network
Neural Network
Trend Filter
Smoothing Spline
Wavelet Denoising

(e) MSE versus DoF

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.0

0.2

0.4

0.6

0.8

(f) Active subnetworks.

0.00 0.05 0.10 0.15 0.20

0

1

2

3

0.00 0.05 0.10 0.15 0.20

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(g) Zoom in to (a)(d)

102 103

0.03

0.05

0.1

M
SE

Parallel Neural Network
Neural Network
Trend Filter
Smoothing Spline

(h) MSE versus n, Dopler

102 103

Number of samples

0.0005

0.001

0.002
M

SE

Parallel Neural Network
Neural Network
Trend Filter
Smoothing Spline
Linear Minimax
Minimax

(i) MSE versus n, “Vary”

Figure 2: Numerical experiment results of the Doppler function (a-c,h), and “vary” function (d-f,g).
All the “active” subnetworks are plotted in (c)(f). The horizontal axis in (b) is not linear.

In Figure 2(h)(i), we plot the MSE versus the number of training samples for “Doppler” and “Vary”310

respectively. It is clear that parallel NN works the best overall. In (i), we further compare the scaling311

of the MSE against the minimax rate (n−4/5) and the minimax linear rate (n−3/4), i.e., the best rate312

kernel methods could achieve. As is predicted by our theory, when n is large, the MSE of parallel313

neural networks and trend filtering decreases at almost the same rate as the minimax rate, while314

smoothing splines, as expected, is converging at the (suboptimal) minimax linear rate. Interestingly,315

vanilla NN seems to converge at the optimal rate too on this example. It remains an open question316

whether vanila NN is merely “lucky” on this example, or it also achieves the minimax rate for all317

functions in BV(m).318

6 Conclusion and Discussion319

In this paper, we show that a deep parallel neural network can be locally adaptive by tuning only320

the weight decay parameter. This confirms that neural networks can be nearly optimal in learning321

functions with heterogeneous smoothness which separates them from kernel methods. We prove322

that training an L layer parallel neural network with weight decay is equivalent to an ℓ2/L-penalized323

regression model with representation learning. Since in typical application L ≫ 2, weight decay324

promotes a sparse linear combination of the learned bases. Using this method, we proved that a325

parallel neural network can achieve close to the minimax rate in the Besov space and bounded326

variation (BV) space. Our result reveals that one do not need to specify the smoothness parameter α327

(or m). Neural networks can adapt to different degree of smoothness, or choose different parameters328

for different regions of the domain of the target function. This is a new type of adaptivity not329

9

possessed by traditional adaptive nonparametric regression methods like locally adaptive regression330

spline or trend filtering.331

On the other hand, as the depth of neural network L increases, 2/L tends to 0 and the error rate332

moves closer to the minimax rate of Besov and BV space. This indicates that when the sample size333

is large enough, deeper models have smaller error than shallower models, and helps explain why334

empirically deep neural networks has better performance than shallow neural networks.335

References336

[1] Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Ruslan Salakhutdinov, and Ruosong Wang.337

On exact computation with an infinitely wide neural net. In Proceedings of the 33rd Interna-338

tional Conference on Neural Information Processing Systems, pages 8141–8150, 2019.339

[2] Dheeraj Baby and Yu-Xiang Wang. Online forecasting of total-variation-bounded sequences.340

In Neural Information Processing Systems (NeurIPS), 2019.341

[3] Dheeraj Baby and Yu-Xiang Wang. Adaptive online estimation of piecewise polynomial342

trends. Neural Information Processing Systems (NeurIPS), 2020.343

[4] Andrew R Barron. Approximation and estimation bounds for artificial neural networks. Ma-344

chine learning, 14(1):115–133, 1994.345

[5] Mikhail Belkin, Siyuan Ma, and Soumik Mandal. To understand deep learning we need to346

understand kernel learning. In International Conference on Machine Learning, pages 541–347

549. PMLR, 2018.348

[6] George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of349

control, signals and systems, 2(4):303–314, 1989.350

[7] Carl De Boor, Carl De Boor, Etats-Unis Mathématicien, Carl De Boor, and Carl De Boor. A351

practical guide to splines, volume 27. Springer-Verlag New York, 1978.352

[8] Ronald A DeVore and George G Lorentz. Constructive approximation, volume 303. Springer353

Science & Business Media, 1993.354

[9] David L Donoho, Richard C Liu, and Brenda MacGibbon. Minimax risk over hyperrectangles,355

and implications. The Annals of Statistics, pages 1416–1437, 1990.356

[10] David L Donoho, Iain M Johnstone, et al. Minimax estimation via wavelet shrinkage. The357

annals of Statistics, 26(3):879–921, 1998.358

[11] Dinh Dũng. Optimal adaptive sampling recovery. Advances in Computational Mathematics,359

34(1):1–41, 2011.360

[12] Tolga Ergen and Mert Pilanci. Implicit convex regularizers of cnn architectures: Con-361

vex optimization of two-and three-layer networks in polynomial time. arXiv preprint362

arXiv:2006.14798, 2020.363

[13] Tolga Ergen and Mert Pilanci. Convex geometry and duality of over-parameterized neural364

networks. Journal of machine learning research, 2021.365

[14] Tolga Ergen and Mert Pilanci. Global optimality beyond two layers: Training deep relu net-366

works via convex programs. In International Conference on Machine Learning, pages 2993–367

3003. PMLR, 2021.368

[15] Tolga Ergen and Mert Pilanci. Path regularization: A convexity and sparsity inducing regular-369

ization for parallel relu networks. arXiv preprint arXiv:2110.09548, 2021.370

[16] Tolga Ergen and Mert Pilanci. Revealing the structure of deep neural networks via convex371

duality. In International Conference on Machine Learning, pages 3004–3014. PMLR, 2021.372

[17] Jerome Friedman, Trevor Hastie, and Rob Tibshirani. Regularization paths for generalized373

linear models via coordinate descent. Journal of statistical software, 33(1):1, 2010.374

10

[18] Benjamin D Haeffele and René Vidal. Global optimality in neural network training. In Pro-375

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 7331–376

7339, 2017.377

[19] Daniel Hsu, Sham M Kakade, and Tong Zhang. An analysis of random design linear regression.378

arXiv preprint arXiv:1106.2363, 2011.379

[20] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Bina-380

rized neural networks. In Proceedings of the 30th international conference on neural informa-381

tion processing systems, pages 4114–4122. Citeseer, 2016.382

[21] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: convergence and383

generalization in neural networks. In Proceedings of the 32nd International Conference on384

Neural Information Processing Systems, pages 8580–8589, 2018.385

[22] Seung-Jean Kim, Kwangmoo Koh, Stephen Boyd, and Dimitry Gorinevsky. \ell_1 trend fil-386

tering. SIAM review, 51(2):339–360, 2009.387

[23] Stéphane Mallat. A wavelet tour of signal processing. Elsevier, 1999.388

[24] Enno Mammen and Sara van de Geer. Locally adaptive regression splines. The Annals of389

Statistics, 25(1):387–413, 1997.390

[25] Elizbar A Nadaraya. On estimating regression. Theory of Probability & Its Applications, 9(1):391

141–142, 1964.392

[26] Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever.393

Deep double descent: Where bigger models and more data hurt. Journal of Statistical Mechan-394

ics: Theory and Experiment, 2021(12):124003, 2021.395

[27] Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. In search of the real inductive bias:396

On the role of implicit regularization in deep learning. arXiv preprint arXiv:1412.6614, 2014.397

[28] Greg Ongie, Rebecca Willett, Daniel Soudry, and Nathan Srebro. A function space view of398

bounded norm infinite width relu nets: The multivariate case. In International Conference on399

Learning Representations, 2019.400

[29] Rahul Parhi and Robert D Nowak. Banach space representer theorems for neural networks and401

ridge splines. J. Mach. Learn. Res., 22:43–1, 2021.402

[30] Rahul Parhi and Robert D Nowak. What kinds of functions do deep neural networks learn?403

insights from variational spline theory. arXiv preprint arXiv:2105.03361, 2021.404

[31] Rahul Parhi and Robert D Nowak. Near-minimax optimal estimation with shallow relu neural405

networks. arXiv preprint arXiv:2109.08844, 2021.406

[32] Mert Pilanci and Tolga Ergen. Neural networks are convex regularizers: Exact polynomial-407

time convex optimization formulations for two-layer networks. In International Conference408

on Machine Learning, pages 7695–7705. PMLR, 2020.409

[33] Carl Edward Rasmussen and Christopher KI Williams. Gaussian processes for machine learn-410

ing. MIT Press, 2006.411

[34] Veeranjaneyulu Sadhanala, Yu-Xiang Wang, Addison J Hu, and Ryan J Tibshirani. Multivari-412

ate trend filtering for lattice data. arXiv preprint arXiv:2112.14758, 2021.413

[35] Pedro Savarese, Itay Evron, Daniel Soudry, and Nathan Srebro. How do infinite width bounded414

norm networks look in function space? In Conference on Learning Theory, pages 2667–2690.415

PMLR, 2019.416

[36] Johannes Schmidt-Hieber. Nonparametric regression using deep neural networks with relu417

activation function. The Annals of Statistics, 48(4):1875–1897, 2020.418

[37] Bernhard Scholkopf and Alexander J Smola. Learning with kernels: support vector machines,419

regularization, optimization, and beyond. MIT press, 2001.420

11

[38] Nathan Srebro, Jason DM Rennie, and Tommi S Jaakkola. Maximum-margin matrix factor-421

ization. In NIPS, volume 17, pages 1329–1336. Citeseer, 2004.422

[39] Taiji Suzuki. Adaptivity of deep relu network for learning in besov and mixed smooth besov423

spaces: optimal rate and curse of dimensionality. arXiv preprint arXiv:1810.08033, 2018.424

[40] Ryan J Tibshirani. Adaptive piecewise polynomial estimation via trend filtering. The Annals425

of Statistics, 42(1):285–323, 2014.426

[41] Ryan J Tibshirani. Degrees of freedom and model search. Statistica Sinica, pages 1265–1296,427

2015.428

[42] Ryan J Tibshirani. Equivalences between sparse models and neural networks. 2021. URL429

http://www.stat.cmu.edu/~ryantibs/papers/sparsitynn.pdf.430

[43] Ryan J Tibshirani. Personal communication, Jan. 24, 2022.431

[44] Andreas Veit, Michael J Wilber, and Serge Belongie. Residual networks behave like ensembles432

of relatively shallow networks. Advances in neural information processing systems, 29:550–433

558, 2016.434

[45] Stefan Wager, Sida Wang, and Percy Liang. Dropout training as adaptive regularization. arXiv435

preprint arXiv:1307.1493, 2013.436

[46] Grace Wahba. Spline models for observational data, volume 59. Siam, 1990.437

[47] Yu-Xiang Wang, Alex Smola, and Ryan Tibshirani. The falling factorial basis and its statistical438

applications. In International Conference on Machine Learning, pages 730–738. PMLR, 2014.439

[48] Yuan Yao, Lorenzo Rosasco, and Andrea Caponnetto. On early stopping in gradient descent440

learning. Constructive Approximation, 26(2):289–315, 2007.441

[49] Dmitry Yarotsky. Error bounds for approximations with deep relu networks. Neural Networks,442

94:103–114, 2017. ISSN 0893-6080. doi: https://doi.org/10.1016/j.neunet.2017.07.002. URL443

https://www.sciencedirect.com/science/article/pii/S0893608017301545.444

[50] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint445

arXiv:1605.07146, 2016.446

[51] Hongyang Zhang, Junru Shao, and Ruslan Salakhutdinov. Deep neural networks with multi-447

branch architectures are intrinsically less non-convex. In The 22nd International Conference448

on Artificial Intelligence and Statistics, pages 1099–1109. PMLR, 2019.449

Checklist450

1. For all authors...451

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s452

contributions and scope? [Yes]453

(b) Did you describe the limitations of your work? [Yes] See Section 6.454

(c) Did you discuss any potential negative societal impacts of your work? [N/A] This455

work does not have potential negative societal impacts to the best of our knowledge.456

(d) Have you read the ethics review guidelines and ensured that your paper conforms to457

them? [Yes]458

2. If you are including theoretical results...459

(a) Did you state the full set of assumptions of all theoretical results? [Yes]460

(b) Did you include complete proofs of all theoretical results? [Yes] All the proofs are in461

the appendix.462

3. If you ran experiments...463

12

http://www.stat.cmu.edu/~ryantibs/papers/sparsitynn.pdf
https://www.sciencedirect.com/science/article/pii/S0893608017301545

(a) Did you include the code, data, and instructions needed to reproduce the main exper-464

imental results (either in the supplemental material or as a URL)? [No] Although we465

did not publish the code, the experiments are very simple and can be easily reproduced466

using the information given in Section G.467

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they468

were chosen)? [Yes] See Section G.469

(c) Did you report error bars (e.g., with respect to the random seed after running experi-470

ments multiple times)? [Yes] We provided the confidence interval in Figure 2.471

(d) Did you include the total amount of compute and the type of resources used (e.g.,472

type of GPUs, internal cluster, or cloud provider)? [No] The experiments are light-473

weighted and can be finished in an ordinary PC in a reasonable time.474

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...475

(a) If your work uses existing assets, did you cite the creators? [N/A] We only used476

synthetic dataset.477

(b) Did you mention the license of the assets? [N/A]478

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]479

480

(d) Did you discuss whether and how consent was obtained from people whose data481

you’re using/curating? [N/A]482

(e) Did you discuss whether the data you are using/curating contains personally identifi-483

able information or offensive content? [N/A]484

5. If you used crowdsourcing or conducted research with human subjects...485

(a) Did you include the full text of instructions given to participants and screenshots, if486

applicable? [N/A]487

(b) Did you describe any potential participant risks, with links to Institutional Review488

Board (IRB) approvals, if applicable? [N/A]489

(c) Did you include the estimated hourly wage paid to participants and the total amount490

spent on participant compensation? [N/A]491

13

A Other related works492

Besides Parhi and Nowak [29] which we discussed earlier, Parhi and Nowak [30, 31] also leveraged493

the connections between NNs and splines. Parhi and Nowak [30] focused on characterizing the494

variational form of multi-layer NN. Parhi and Nowak [31] showed that two-layer ReLU activated495

NN achieves minimax rate for a BV class of order 1 but did not cover multilayer NNs nor BV class496

with order > 1, which is our focus.497

The connection between weight-decay regularization with sparsity-inducing penalties in two-layer498

NNs is folklore and used by Neyshabur et al. [27], Savarese et al. [35], Ongie et al. [28], Ergen and499

Pilanci [13, 16], Parhi and Nowak [29, 31], Pilanci and Ergen [32]. The key underlying technique500

— an application of the AM-GM inequality (which we used in this paper as well) — can be traced501

back to Srebro et al. [38] (see a recent exposition by Tibshirani [42]). [42] also generalized the502

result to multi-layered NNs, but with a simple (element-wise) connections. [14] generalized the503

results to a three-layer parallel neural network, and proved its equivalence to an ℓ1 sparse model, but504

this requires a non-standard regularizer. Besides, [12] proved that training a two-layer convolution505

neural network (CNN) with weight decay induces sparsity, and points to a potential extension to506

these works including our work.507

The approximation-theoretic and estimation-theoretic research for neural network has a long history508

too [6, 4, 49, 36, 39]. Most existing work considered the Holder, Sobolev spaces and their exten-509

sions, which contain only homogeneously smooth functions and cannot demonstrate the advantage510

of NNs over kernels. The only exception is Suzuki [39] which, as we discussed earlier, requires511

modifications to NN architecture for each class. In contrast, we require tuning only the standard512

weight decay parameter.513

B Two-layer Neural Network with Truncated Power Activation Functions514

We start by recapping the result of Parhi and Nowak [29] and formalizing its implication in esti-515

mating BV functions. Parhi and Nowak [29] considered a two layer neural network with truncated516

power activation function. Let the neural network be517

f(x) =

M∑
j=1

vjσ
m(wjx+ bj) + c(x), (7)

where wj , vj denote the weight in the first and second layer respectively, bj denote the bias in the518

first layer, c(x) is a polynomial of order up to m, σm(x) := max(x, 0)m. Parhi and Nowak [29,519

Theorem 8] showed that when M is large enough, The optimization problem520

min
w,v

L̂(f) +
λ

2

M∑
j=1

(|vj |2 + |wj |2m) (8)

is equivalent to the locally adaptive regression spline:521

min
f

L̂(f) + λTV (f (m)(x)), (9)

which optimizes over arbitrary functions that is m-times weakly differentiable. The latter was522

studied in Mammen and van de Geer [24], which leads to the following MSE:523

Theorem 10. Let M ≥ n − m, and f̂ be the function (7) parameterized by the minimizer of (8),524

then525

MSE(f̂) = O(n−(2m+2)(2m+3)).

We show a simpler proof in the univariate case due to Tibshirani [43]:526

Proof. As is shown in Parhi and Nowak [29, Theorem 8], the minimizer of (8) satisfy527

|vj | = |wj |m,∀k

14

so the TV of the neural network fNN is528

TV (m)(fNN) = TV (m)c(x) +

M∑
j=1

|vj ||wj |mTV (m)(σ(m)(x))

=

M∑
j=1

|vj ||wj |m

=
1

2

M∑
j=1

(|vj |2 + |wj |2m)

which shown that (8) is equivalent to the locally adaptive regression spline (9) as long as the number529

of knots in (9) is no more than M . Furthermore, it is easy to check that any spline with knots no530

more than M can be expressed as a two layer neural network (8). It suffices to prove that the solution531

in (9) has no more than n−m number of knots.532

Mammen and van de Geer [24, Proposition 1] showed that there is a solution to (9) f̂(x) such that533

f̂(x) is a mth order spline with a finite number of knots but did not give a bound. Let the number of534

knots be M , we can represent f̂ using the truncated power basis535

f̂(x) =

M∑
j=1

aj(x− tj)
m
+ + c(x) :=

M∑
j=1

ajσ
(m)
j (x) + c(x)

where tj are the knots, c(x) is a polynomial of order up to m, and define σ
(m)
j (x) = (x− tj)

m
+ .536

Mammen and van de Geer [24] however did not give a bound on M . Parhi and Nowak [29]’s537

Theorem 1 implies that M ≤ n − m. Its proof is quite technical and applies more generally to a538

higher dimensional generalization of the BV class.539

Tibshirani [43] communicated to us the following elegant argument to prove the same using elemen-540

tary convex analysis and linear algebra, which we present below.541

Define Πm(f) as the L2(Pn) projection of f onto polynomials of degree up to m, Π⊥
m(f) :=542

f −Πm(f). It is easy to see that543

Π⊥
mf(x) =

M∑
j=1

ajΠ
⊥
mσ

(m)
j (x)

Denote f(x1:n) := {f(x1), . . . , f(xn)} ∈ Rn as a vector of all the predictions at the sample points.544

Π⊥
mf̂(x1:n) =

M∑
j=1

ajΠ
⊥
mσ

(m)
j (x1:n) ∈ Π⊥

mconv{±σ
(m)
j (x1:n)} ·

M∑
j=1

|aj | =∈ conv{±Π⊥
mσ

(m)
j (x1:n)} ·

M∑
j=1

|aj |

where conv denotes the convex hull of a set. The convex hull conv{±σ
(m)
j (x1:n)} ·

∑M
j=1 |aj | is an545

n-dimensional space, and polynomials of order up to m is an m + 1 dimensional space, so the set546

defined above has dimension n−m− 1. By Carathéodory’s theorem, there is a subset of points in547

this space548

{Π⊥
mσ

(m)
jk

(x1:n)} ⊆ {Π⊥
mσ

(m)
j (x1:n)}, 1 ≤ k ≤ n−m

such that549

Π⊥
mf(x) =

n−m∑
k=1

ãkΠ
⊥
mσ

(m)
jk

(x),

n−m∑
k=1

|ak| ≤ 1

In other word, there exist a subset of knots {t̃j , j ∈ [n−m]} that perfectly recovers Π⊥
mf̂(x) at all550

the sample points, and the TV of this function is no larger than f̂ .551

This shows that

f̃(x) =

n−m∑
j=1

ãj(x− tj)
m
+ , s.t.f̃(xi) = f(xi)

15

for all xi in n onbservation points.552

The MSE of locally adaptivity regressive spline (9) was studied in Mammen and van de Geer [24,553

Section 3], which equals the error rate given in Theorem 10.554

This indicates that the neural network (7) is minimax optimal for BV (m).555

Let us explain a few the key observations behind this equivalence. (a) The truncated power functions
(together with an mth order polynomial) spans the space of an mth order spline. (b) The neural
network in (7) is equivalent to a free-knot spline with M knots (up to reparameterization). (c) A
solution to (9) is a spline with at most n − m knots [29, Theorem 8]. (d) Finally, by the AM-GM
inequality

|vj |2 + |wj |2m ≥ 2|vj ||wj |m = 2|cj |
where cj = vj |wj |m is the coefficient of the corresponding jth truncated power basis. The mth556

order total variation of a spline is equal to
∑

j |cj |. It is not hard to check that the loss function557

depends only on cj , thus the optimal solution will always take “=” in the AM-GM inequality.558

C Introduction To Common Function Classes559

In the following definition define Ω be the domain of the function classes, which will be omitted in560

the definition.561

C.1 Besov Class562

Definition 1. Modulus of smoothness: For a function f ∈ Lp(Ω) for some 1 ≤ p ≤ ∞, the r-th563

modulus of smoothness is defined by564

wr,p(f, t) = sup
h∈Rd:∥h∥2≤t

∥∆r
h(f)∥p,

565

∆r
h(f) :=

r∑

j=0

(rj)(−1)r−jf(x+ jh), if x ∈ Ω, x+ rh ∈ Ω,

0, otherwise.
Definition 2. Besov space: For 1 ≤ p, q ≤ ∞, α > 0, r := ⌈α⌉+ 1, define566

|f |Bα
p,q

=

(∫ ∞

t=0

(t−αwr,p(f, t))
q dt

t

) 1
q

, q < ∞

sup
t>0

t−αwr,p(f, t), q = ∞,

and define the norm of Besov space as:567

∥f∥Bα
p,q

= ∥f∥p + |f |Bα
p,q

.

A function f is in the Besov space Bα
p,q if ∥f∥Bα

p,q
is finite.568

Note that the Besov space for 0 < p, q < 1 is also defined, but in this case it is a quasi-Banach space569

instead of a Banach space and will not be covered in this paper.570

Functions in Besov space can be decomposed using B-spline basis functions. Any function f in571

Besov space Bα
p,q, α > d/p can be decomposed using B-spline of order m,m > α: let x ∈ Rd,572

f(x) =

∞∑
k=0

∑
s∈J(k)

ck,s(f)Mm,k,s(x) (10)

where J(k) := {2−ks : s ∈ [−m, 2k+m]d ⊂ Zd}, Mm,k,s(x) := Mm(2k(x−s)), and Mk(x) =573 ∏d
i=1 Mk(xi) is the cardinal B-spline basis function which can be expressed as a polynomial:574

Mm(x) =
1

m!

m+1∑
j=1

(−1)j
(
m+ 1

j

)
(x− j)m+

= ((m+ 1)/2)m
1

m!

m+1∑
j=1

(−1)j
(
m+ 1

j

)(x− j

(m+ 1)/2

)m
+
,

(11)

16

Furthermore, the norm of Besov space is equivalent to the sequence norm:575

∥{ck,s}∥bαp,q :=
(∞∑
k=0

(2(α−d/p)k∥{ck,s(f)}s∥p)q
)1/q

≂ ∥f∥Bα
p,q

.

See e.g. Dũng [11, Theorem 2.2] for the proof.576

The Besov space is closely connected to other function spaces including the Hölder space (Cα) and577

the Sobolev space (Wα
p). Specifically, if the domain of the functions is d-dimensional [39, 34],578

• ∀α ∈ N, Bα
p,1 ⊂ Wα

p ⊂ Bα
p,∞, and Bα

2,2 = Wα
2 .579

• For 0 < α < ∞ and α ∈ N , Cα = Bα
∞,∞.580

• If α > d/p, Bα
p,q ⊂ C0.581

C.2 Other Function Spaces582

Definition 3. Hölder space: let m ∈ N, the m-th order Holder class is defined as583

Cm =

{
f : max

|a|=k

|Daf(x)−Daf(z)|
∥x− z∥2

< ∞,∀x, z ∈ Ω

}
where Da denotes the weak derivative.584

Note that fraction order of Hölder space can also be defined. For simplicity, we will not cover that585

case in this paper.586

Definition 4. Sobolev space: let m ∈ N , 1 ≤ p ≤ ∞, the Sobolev norm is defined as587

∥f∥Wm
p

:=

 ∑
|a|≤m

∥Daf∥pp

1/p

,

the Sobolev space is the set of functions with finite Sobolev norm:588

Wm
p := {f : ∥f∥Wm

p
< ∞}.

Definition 5. Total Variation (TV): The total variation (TV) of a function f on an interval [a, b] is589

defined as590

TV (f) = sup
P

nP−1∑
i=1

|f(xi+1)− f(xi)|

where the P is taken among all the partitions of the interval [a, b].591

In many applications, functions with stronger smoothness conditions are needed, which can be mea-592

sured by high order total variation.593

Definition 6. High order total variation: the m-th order total variation is the total variation of the594

(m− 1)-th order derivative595

TV (m)(f) = TV (f (m−1))
Definition 7. Bounded variation (BV): The m-th order bounded variation class is the set of functions596

whose total variation (TV) is bounded.597

BV (m) := {f : TV (f (m)) < ∞}.

D Proof of Estimation Error598

D.1 Equivalence Between Parallel Neural Networks and p-norm Penalized Problems599

Proposition 4. Fix the input dataset Dn and a constant c1 > 0. There exists an one-to-one mapping600

between λ > 0 and P ′ > 0 such that (2) is equivalent to the following problem:601

argmin
{W̄(ℓ)

j ,b̄
(ℓ)
j ,aj}

L̂
(M∑

j=1

aj f̄j

)
=

1

n

∑
i

(yi − f̄1:M (xi)
Ta)2

s.t. ∥W̄(1)
j ∥F ≤ c1

√
d,∀j ∈ [M],

∥W̄(ℓ)
j ∥F ≤ c1

√
w,∀j ∈ [M], 2 ≤ ℓ ≤ L, ∥{aj}∥2/L2/L ≤ P ′

17

where f̄j(·) is a subnetwork with parameters W̄(ℓ)
j , b̄

(ℓ)
j .602

Proof. Using Lagrange’s method, one can easily find (2) is equivalent to a constrained optimization603

problem:604

argmin
{W(ℓ)

j ,b
(ℓ)
j }

L̂
(M∑

j=1

fj

)
, s.t.

M∑
j=1

L∑
ℓ=1

∥∥W(ℓ)
j

∥∥2
F
≤ P (12)

for some constant P that depends on λ and the dataset D.605

We make use of the property from (4) to minimize the constraint term in (12) while keeping this606

neural network equivalent to the original one. Specifically, let W(1), b(1), . . .W(L), b(L) be the607

parameters of an L-layer neural network.608

f(x) = W(L)σ(W(L−1)σ(. . . σ(W(1)x+ b(1)) . . .) + b(L−1)) + b(L),

which is equivalent to609

f(x) = αLW̃
(L)σ(αL−1W̃

(L−1)σ(. . . σ(α1W̃
(1)x+ b̃

(1)
) . . .) + b̃

(L−1)
) + b̃

(L)
,

as long as αℓ > 0,
∏L

ℓ=1 α
L =

∏L
ℓ=1 ∥W(ℓ)∥F , where W̃(ℓ) := W(ℓ)

∥W(ℓ)∥F
. By the AM-GM inequal-610

ity, the ℓ2 regularizer of the latter neural network is611

L∑
ℓ=1

∥αℓW̃
(ℓ)∥2F =

L∑
ℓ=1

α2
ℓ ≥ L

(
L∏

ℓ=1

aℓ

)2/L

= L

(
L∏

ℓ=1

∥W(ℓ)∥F

)2/L

and equality is reached when α1 = α2 = · · · = αL. In other word, in the problem (2), it suffices to612

consider the network that satisfies613

∥W(1)
j ∥F = ∥W(2)

j ∥F = · · · = ∥W(L)
j ∥F ,∀j ∈ [M], ℓ ∈ [L]. (13)

Using (4) again, one can find that the neural network is also equivalent to614

f(x) =

M∑
j=1

ajW̄
(L)σ(W̄

(L−1)
j σ(. . . σ(W̄

(1)
j x+ b̄

(1)
j) . . .) + b̄

(L−1)
j) + b̄

(L)
j ,

where615

∥W̄(ℓ)
j ∥F ≤ β(ℓ), aj =

∏L
ℓ=1 ∥W

(ℓ)
j ∥F∏L

ℓ=1 β
(ℓ)

=
∥W(1)

j ∥LF∏L
ℓ=1 β

(ℓ)
=

(
∑L

ℓ=1 ∥W
(ℓ)
j ∥2F /L)L/2∏L

ℓ=1 β
(ℓ)

, (14)

where the last two equality comes from the assumption (13). Choosing β(ℓ) = c1
√
w expect ℓ = 1616

where β(1) = c1
√
d, and scaling b̄

(ℓ) accordingly and taking the constraint in (12) into (14) finishes617

the proof.618

D.2 Covering Number of Parallel Neural Networks619

Theorem 5. The covering number of the model defined in (5) apart from the bias in the last layer620

satisfies621

logN (F , δ) ≲ w2+2/(1−2/L)L2
√
dP ′ 1

1−2/L δ−
2/L

1−2/L log(wP ′/δ).

622

The proof relies on the covering number of each subnetwork in a parallel neural network
(Lemma 11), observing that |f(x)| ≤ 2L−1wL−1

√
d under the condition in Lemma 11, and

then apply Lemma 6. We argue that our choice of condition on ∥b(ℓ)∥2 in Lemma 11 is suf-
ficient to analyzing the model apart from the bias in the last layer, because it guarantees that√
w∥W(ℓ)Aℓ−1(x)∥2 ≤ ∥b(ℓ)∥2. This leads to

∥W(ℓ)Aℓ−1(x)∥∞ ≤ ∥W(ℓ)Aℓ−1(x)∥2 ≤
√
w∥b(ℓ)∥2 ≤ ∥b(ℓ)∥∞

18

If this condition is not met, W(ℓ)Aℓ−1(x) + b(ℓ) is either always positive or always negative623

for all feasible x along at least one dimension. If (W(ℓ)Aℓ−1(x) + b(ℓ))i is always negative,624

one can replace b(ℓ))i with −maxx ∥W(ℓ)Aℓ−1(x)∥∞ without changing the output of this model625

for any feasible x. If (W(ℓ)Aℓ−1(x) + b(ℓ))i is always positive, one can replace b(ℓ))i with626

maxx ∥W(ℓ)Aℓ−1(x)∥∞, and adjust the bias in the next layer such that the output of this model627

is not changed for any feasible x. In either cases, one can replace the bias b(ℓ) with another one with628

smaller norm while keeping the model equivalent except the bias in the last layer.629

Lemma 11. Let F ⊆ {f : Rd → R} denote the set of L-layer neural network (or a subnetwork in630

a parallel neural network) with width w in each hidden layer. It has the form631

f(x) = W(L)σ(W(L−1)σ(. . . σ(W(1)x+ b(1)) . . .) + b(L−1)) + b(L),

W(1) ∈ Rw×d, ∥W(1)∥F ≤
√
d, b(1) ∈ Rw, ∥b(1)∥2 ≤

√
dw,

W(ℓ) ∈ Rw×w∥W(ℓ)∥F ≤
√
w, b(ℓ) ∈ Rw, ∥b(ℓ)∥2 ≤ 2ℓ−1wℓ−1

√
dw, ∀ℓ = 2, . . . L− 1,

W(L) ∈ R1×w, ∥W(L)∥F ≤
√
w, b(L) = 0

(15)
and σ(·) is the ReLU activation function, the input satisfy ∥x∥2 ≤ 1, then the supremum norm632

δ-covering number of F obeys633

logN (F , δ) ≤ c7Lw
2 log(1/δ) + c8

where c7 is a constant depending only on d, and c8 is a constant that depend on d,w and L.634

Proof. First study two neural networks which differ by only one layer. Let gℓ, g′ℓ be two neural net-635

works satisfying (15) with parameters W1, b1, . . . ,WL, bL and W′
1, b

′
1, . . . ,W

′
L, b

′
L respectively.636

Furthermore, the parameters in these two models are the same except the ℓ-th layer, which satisfy637

∥Wℓ −W′
ℓ∥F ≤ ϵ, ∥bℓ − b′ℓ∥2 ≤ ϵ̃.

Denote the model as638

gℓ(x) = Bℓ(WℓAℓ(x) + bℓ), g
′
ℓ(x) = Bℓ(W

′
ℓAℓ(x) + b′ℓ)

where Aℓ(x) = σ(Wℓ−1σ(. . . σ(W1x+b1) . . .)+bℓ−1) denotes the first ℓ−1 layers in the neural639

network, and Aℓ(x) = WLσ(. . . σ(Wℓ+1σ(x)+bℓ+1) . . .)+bL) denotes the last L−ℓ−1 layers,640

with definition A1(x) = x,BL(x) = x.641

Now focus on bounding ∥A(x)∥. Let W ∈ Rm×m′
, ∥W∥F ≤

√
m′,x ∈ Rm′

, b ∈ Rm, ∥b∥2 ≤642 √
m643

∥σ(Wx+ b)∥2 ≤ ∥Wx+ b∥2
≤ ∥W∥2∥x∥2 + ∥b∥2
≤ ∥W∥F ∥x∥2 + ∥b∥2
≤

√
m′∥x∥2 +

√
m

where we make use of ∥ · ∥2 ≤ ∥ · ∥F . Because of that,644

∥A2(x)∥2 ≤
√
d+

√
dw ≤ 2

√
dw,

∥A3(x)∥2 ≤
√
w∥A2(x)∥2 + 2w

√
dw ≤ 4w

√
dw,

. . .

∥Aℓ(x)∥2 ≤
√
w∥Aℓ−1(x)∥2 ≤ 2

√
dw(2w)ℓ−2.

(16)

Then focus on B(x). Let W ∈ Rm×m′
, ∥W∥F ≤

√
m′,x,x′ ∈ Rm′

, b ∈ Rm, ∥b∥2 ≤
√
m.645

Furthermore, ∥x− x′∥2 ≤ ϵ, then646

∥σ(Wx+ b)− σ(Wx′ + b)∥2 ≤ ∥W(x− x′)∥2 ≤ ∥W∥F ∥x− x′∥2

which indicates that ∥B(x)− B(x)′∥2 ≤ (
√
w)L−ℓ∥x− x′∥2647

19

Finally, for any W,W′ ∈ Rm×m′
,x ∈ Rm′

, b, b′ ∈ Rm, one have648

∥(Wx+ b)− (W′x+ b′)∥2 = ∥(W −W′)x+ (b− b′)∥2
≤ ∥W −W′∥2∥x∥2 + ∥b− b′∥2.
≤ ∥W −W′∥F ∥x∥2 +

√
m∥b− b′∥∞.

In summary,649

|gℓ(x)− g′ℓ(x)| = |Bℓ(WℓAℓ(x) + bℓ)− Bℓ(W
′
ℓAℓ(x) + b′ℓ)|

≤ (
√
w)L−ℓ∥(WℓAℓ(x) + bℓ)− (W′

ℓAℓ(x) + b′ℓ)∥2
≤ (

√
w)L−ℓ(∥Wℓ −W′

ℓ∥F ∥Aℓ(x)∥2 + ∥bℓ − b′ℓ∥2)
≤ 2(ℓ−1)w(L+ℓ−3)/2d1/2ϵ+ w(L−ℓ)/2ϵ̄

Let f(x), f ′(x) be two neural networks satisfying (15) with parameters W1, b1, . . . ,WL, bL and650

W ′
1, b

′
1, . . . ,W

′
L, b

′
L respectively, and ∥Wℓ −W ′

ℓ∥F ≤ ϵℓ, ∥bℓ − b′ℓ∥F ≤ ϵ̃ℓ. Further define fℓ be the651

neural network with parameters W1, b1, . . . ,Wℓ, bℓ,W
′
ℓ+1, b

′
ℓ+1, . . . ,W

′
L, b

′
L, then652

|f(x)− f ′(x)| ≤ |f(x)− f1(x)|+ |f1(x)− f2(x)|+ · · ·+ |fL−1(x)− f ′(x)|

≤
L∑

ℓ=1

2(ℓ−2)d1/2w(L+ℓ−3)/2ϵ+ w(L−ℓ)/2ϵ̄

For any δ > 0, one can choose

ϵℓ =
δ

2ℓw(L+ℓ−3)/2d1/2
, ϵ̃ℓ =

δ

2w(L−ℓ)/2

such that |f(x)− f ′(x)| ≤ δ.653

On the other hand, the ϵ-covering number of {W ∈ Rm×m′
: ∥W∥F ≤

√
m′} on Frobenius norm654

is no larger than (2
√
m′/ϵ + 1)m×m′

, and the ϵ̄-covering number of {b ∈ Rm : ∥b∥2 ≤ 1} on655

infinity norm is no larger than (2/ϵ̄+ 1)m. The entropy of this neural network can be bounded by656

logN (f ; δ) ≤ w2L log(2L+1wL−1/δ + 1) + wL log(2L−1w(L−1)/2d1/2/δ + 1)

657

D.3 Covering Number of p-Norm Constrained Linear Combination658

Lemma 6. logN (G, δ) ≲ k log(1/δ) for some finite c3, and for any g ∈ G, |a| ≤ 1, we have659

ag ∈ G. The covering number of F =
{∑M

i=1 aigi

∣∣∣gi ∈ G, ∥a∥pp ≤ P, 0 < p < 1
}

for any P > 0660

satisfies661

logN (F , ϵ) ≲ kP
1

1−p (δ/c3)
− p

1−p log(c3P/δ)

up to a double logarithmic factor.662

Proof. Let ϵ be a positive constant. Without the loss of generality, we can sort the coefficients in663

descending order in terms of their absolute values. There exists a positive integer M (as a function664

of ϵ), such that |ai| ≥ ϵ for i ≤ M, and |ai| < ϵ for i > M.665

By definition, Mϵp ≤
∑M

i=1 |ai|p ≤ P so M ≤ P/ϵp, and |ai|p ≤ P, |ai| ≤ P 1/p for all i.666

Furthermore,667 ∑
i>m

|ai| =
∑
i>M

|ai|p|ai|1−p <
∑
i>M

|ai|pϵ1−p ≤ Pϵ1−p

Let g̃i = argming∈G̃ ∥g − ai

P 1/p gi∥∞ where G̃ is the δ′-convering set of G. By definition of the668

covering set,669 ∥∥∥∥∥
M∑
i=1

aigi(x)−
M∑
i=1

P 1/pg̃i(x)

∥∥∥∥∥
∞

≤

∥∥∥∥∥
M∑
i=1

(aigi(x)− P 1/pg̃i(x))

∥∥∥∥∥
∞

+

∥∥∥∥∥
M∑

i=M+1

aigi(x)

∥∥∥∥∥
∞

≤ MP 1/pδ′ + c3Pϵ1−p.
(17)

20

Choosing670

ϵ = (δ/2c3P)
1

1−p , δ′ ≂ P− 1
p(1−p) (δ/2c3)

1
1−p /2, (18)

we have M ≤ P
1

1−p (δ/2c3)
− p

1−p ,MP 1/pδ′ ≤ δ/2, c3Pϵ1−p ≤ δ/2, so (17) ≤ δ. One can671

compute the covering number of F by672

logN (F , δ) ≤ M logN (G, δ′) ≲ kM log(1/δ′) (19)

Taking (18) into (19) finishes the proof.673

E Proof of Approximation Error674

E.1 Approximation of Neural Networks to B-spline Basis Functions675

Proposition 7. Let Mm,k,s be the B-spline of order m with scale 2−k in each dimension and676

position s ∈ Rd: Mm,k,s(x) := Mm(2k(x − s)), Mm is defined in (11). There exists a parallel677

neural network that has the structure and satisfy the constraint in Proposition 4 for d-dimensional678

input and one output, containing M = O(md) subnetworks, each of which has width w = O(d)679

and depth L = O(log(c(m, d)/ϵ)) for some constant w, c that depends only on m and d, denoted680

as M̃m(x),x ∈ Rd, such that681

• |M̃m,k,s(x)−Mm,k,s(x)| ≤ ϵ, if 0 ≤ 2k(xi − si) ≤ m+ 1,∀i ∈ [d],682

• M̃m,k,s(x) = 0, otherwise.683

• The weights in the last layer satisfy ∥a∥2/L2/L ≲ 2kmde2md/L.684

We follow the method developed in Yarotsky [49], Suzuki [39], while putting our attention on bound-685

ing the Frobenius norm of the weights.686

Lemma 12 (Yarotsky [49, Proposition 3]). : There exists a neural network with two-dimensional687

input and one output f×(x, y), with constant width and depth O(log(1/δ)), and the weight in each688

layer is bounded by a global constant c1, such that689

• |f×(x, y)− xy| ≤ δ, ∀ 0 ≤ x, y ≤ 1,690

• f×(x, y) = 0,∀ x = 0 or y = 0.691

We first prove a special case of Proposition 7 on the unscaled, unshifted B-spline basis function by692

fixing k = 0, s = 0:693

Proposition 13. There exists a parallel neural network that has the structure and satisfy the con-694

straint in Proposition 4 for d-dimensional input and one output, containing M = ⌈(m+ 1)/2⌉d =695

O(md) subnetworks, each of which has width w = O(d) and depth L = O(log(c(m, d)/ϵ)) for696

some constant w, c that depends only on m and d, denoted as M̃m(x),x ∈ Rd, such that697

• |M̃m(x) − Mm(x)| ≤ ϵ, if 0 ≤ xi ≤ m + 1,∀i ∈ [d], while Mm(·) denote m-th order698

B-spline basis function, and c only depends on m and d.699

• M̃m(x) = 0, if xi ≤ 0 or xi ≥ m+ 1 for any i ∈ [d].700

• The weights in the last layer satisfy ∥a∥2/L2/L ≲ mde2md/L.701

Proof. We first show that one can use a neural network with constant width w0, depth L ≂702

log(m/ϵ1) and bounded norm ∥W (1)∥F ≤ O(
√
d), ∥W (ℓ)∥F ≤ O(

√
w),∀ℓ = 2, . . . , L to703

approximate truncated power basis function up to accuracy ϵ1 in the range [0, 1]. Let m =704 ∑⌈log2 m⌉
i=0 mi2

i,mi ∈ {0, 1} be the binary digits of m, and define m̄j =
∑i

j=0 mi, γ = ⌈log2 m⌉,705

21

then for any x706

xm
+ = x

m̄γ

+ ×
(
x2γ

+

)mγ

[x
m̄γ

+ , x2γ

+] = [x
m̄γ−1

+ ×
(
x2γ−1

+

)mγ−1
, x2γ−1

+ × x2γ−1

+]

. . .

[xm̄2
+ , x4

+] = [xm̄1
+ ×

(
x2
+

)m1
, x2

+ × x2
+]

[xm̄1
+ , x2

+] = [xm̄0
+ × xm0

+ , x+ × x+]

(20)

Notice that each line of equation only depends on the line immediately below. Replacing the707

multiply operator × with the neural network approximation shown in Lemma 12 demonstrates the708

architecture of such neural network approximation. For any x, y ∈ [0, 1], let |f×(x, y) − xy| ≤709

δ, |x− x̃| ≤ δ1, |y− δy| ≤ δ2, then |f×(x̃, ỹ)− xy| ≤ δ1 + δ2 + δ. Taking this into (20) shows that710

ϵ1 ≂ 2γδ ≂ mδ, where ϵ1 is the upper bound on the approximate error to truncated power basis of711

order m and δ is the approximation error to a single multiply operator as in Lemma 12.712

A univariate B-spline basis can be expressed using truncated power basis, and observing that it is713

symmetric around (m+ 1)/2:714

Mm(x) =
1

m!

m+1∑
j=1

(−1)j
(
m+ 1

j

)
(x− j)m+

=
1

m!

⌈(m+1)/2⌉∑
j=1

(−1)j
(
m+ 1

j

)
(min(x,m+ 1− x)− j)m+

=
((m+ 1)/2)m

m!

⌈(m+1)/2⌉∑
j=1

(−1)j
(
m+ 1

j

)(min(x,m+ 1− x)− j

(m+ 1)/2

)m
+
,

A multivariate (d-dimensional) B-spline basis function can be expressed as the product of truncated715

power basis functions and thus can be decomposed as716

Mm(x) =

d∏
i=1

Mm(xi)

=
((m+ 1)/2)md

(m!)d

d∏
i=1

(⌈(m+1)/2⌉∑
j=1

(−1)j
(
m+ 1

j

)(min(xi,m+ 1− x)− j

(m+ 1)/2

)m
+

)

=
((m+ 1)/2)md

(m!)d

⌈(m+1)/2⌉∑
j1,...,jd=1

d∏
i=1

(−1)ji
(
m+ 1

ji

)(min(x,m+ 1− x)− ji
(m+ 1)/2

)m
+

(21)

Using Lemma 12, one can construct a parallel neural network containing M = ⌈(m + 1)/2⌉d =717

O(md) subnetworks, and each subnetwork corresponds to one polynomial term in (21). Using the718

results above, the approximation of this constructed neural network can be bounded by719

((m+ 1)/2)md

(m!)d

⌈(m+1)/2⌉∑
j1,...,jd=1

d∏
i=1

(−1)ji
(
m+ 1

ji

)
ϵ1 ≲ emdϵ1

where we applied Stirling’s approximation and δ and ϵ1 has the same definition as above. Choosing720

δ = ϵ
d(e2m

√
m+1)

, and recall ϵ1 ≂ mδ proves the approximation error.721

To bound the norm of the factors ∥a∥2/L2/L, first observe that722

|aj1,...,jd | =
((m+ 1)/2)md

(m!)d
1

(m+ 1)/2

d∏
i=1

(
m+ 1

ji

)
≤ ((m+ 1)/2)md

(m!)d
2md

(m+ 1)/2
= O(emd)

22

where the first inequality is from
(
m+1
ji

)
≤ 2m+1, the last equality is from Stirling’s appropximation.723

Finally,724

∥a∥2/L2/L ≤ md max
j

|aj |2/L ≲ mde2md/L

which finishes the proof.725

The proof of the Proposition 7 for general k, s follows by appending one more layer in the front, as726

we show below.727

Proof of Proposition 7. Using the neural network proposed in Proposition 13, one can construct a728

neural network for appropximating Mm,k,s by adding one layer before the first layer:729

σ(2kIdx− 2ks)

The unused neurons in the first hidden layer is zero padded. The Frobenius norm of the weight is730

2k∥Id∥F = 2k
√
d. Following the proof of Proposition 4, rescaling the weight in this layer by 2−k,731

and the weight matrix in the last layer by 2k, and scaling the bias properly, one can verify that this732

neural network satisfy the statement.733

E.2 Sparse approximation of Besov functions using B-spline wavelets734

Proposition 8. Let α − d/p > 1, r > 0. For any function in Besov space f0 ∈ Bα
p,q and any

positive integer M̄ , there is an M̄ -sparse approximation using B-spline basis of order m satisfying
0 < α < min(m,m− 1 + 1/p): f̌M̄ =

∑M̄
i=1 aki,si

Mm,ki,si
for any positive integer M̄ such that

the approximation error is bounded as ∥f̌M̄ − f0∥r ≲ M̄−α/d∥f0∥Bα
p,q

, and the coefficients satisfy

∥{2kiaki,si}ki,si∥p ≲ ∥f0∥Bα
p,q

.

735

The proof is divided into three steps:736

1. Bound the 0-norm and the 1-norm of the coefficients of B-spline basis in order to approxi-737

mate an arbitrary function in Besov space up to any ϵ > 0.738

2. Bound p-norm of the coefficients of B-spline basis functions where 0 < p < 1 using the739

results above .740

3. Add the approximation to neural network to B-spline basis computed in Section 4.3.1 into741

Step 2.742

Proof. Dũng [11, Theorem 3.1] Suzuki [39, Lemma 2] proposed an adaptive sampling recovery743

method that approximates a function in Besov space. The method is divided into two cases: when744

p ≥ r, and when p < r.745

When p ≥ r, there exists a sequence of scalars λj , j ∈ P d(µ), Pd(µ) := {j ∈ Zd : |ji| ≤ µ,∀i ∈746

d} for some positive µ, for arbitrary positive integer k̄, the linear operator747

Qk̄(f,x) =
∑

s∈J(k̄,m,d)

ak̄,s(f)Mk̄,s(x), ak̄,s(f) =
∑

j∈Zd,Pd(µ)

λj f̄(s+ 2−k̄j)

has bounded approximation error748

∥f −Qk̄(f, x)∥r ≤ C2−αk̄∥f∥Bα
p,q

,

where f̄ is the extrapolation of f , J(k̄,m, d) := {s : 2k̄s ∈ Zd,−m/2 ≤ 2k̄si ≤ 2k̄ +m/2,∀i ∈749

[d]}. See Dũng [11, 2.6-2.7] for the detail of the extrapolation as well as references for options of750

sequence λj .751

Furthermore, Qk̄(f) ∈ Bα
p,q so it can be decomposed in the form (10) with M =

∑k̄
k=0(2

k +m−752

1)d ≲ 2k̄d components and ∥{c̃k,s}k,s∥ ≲ ∥Qk̄(f)∥Bα
p,q

≲ ∥f∥Bα
p,q

where c̃k,s is the coefficients of753

the decomposition of Qk̄(f). Choosing k̄ ≂ log2 M/d leads to the desired approximation error.754

23

On the other hand, when p < r, there exists a greedy algorithm that constructs755

G(f) = Qk̄(f) +

k∗∑
k=k̄+1

nk∑
j=1

ck,sj
(f)Mk,sj

where k̄ ≂ log2(M), k∗ = [ϵ−1 log(λM)] + k̄ + 1, nk = [λM2−ϵ(k−k̄)] for some 0 < ϵ <756

α/δ − 1, δ = d(1/p− 1/r), λ > 0, such that757

∥f −G(f)∥r ≤ M̄−α/d∥f∥Bα
p,q

and758
k̄∑

k=0

(2k +m− 1)d +

k∗∑
k=k̄+1

nk ≤ M̄.

See Dũng [11, Theorem 3.1] for the detail.759

Finally, since α− d/p > 1,760

∥{2kicki,si
}ki,si

∥p ≤
k̄∑

k=0

2k∥{cki,si
}si

∥p

=

k̄∑
k=0

2(1−(α−d/p))k(2(α−d/p)k∥{cki,si
}si

∥p)

≲
k̄∑

k=0

2(1−(α−d/p))k∥f∥Bα
p,q

≂ ∥f∥Bα
p,q

(22)

where the first line is because for arbitrary vectors ai, i ∈ [n], ∥
∑n

i=1 ai∥p ≤
∑n

i=1 ∥ai∥p, the761

third line is because the sequence norm of B-spline decomposition is equivalent to the norm in762

Besov space (see Section C.1) .763

Note that when α − d/p = 1, the sequence norm (22) is bounded (up to a factor of constant) by764

k∗∥f∥Bα
p,q

, which can be proven by following (22) except the last line. This adds a logarithmic term765

with respect to M̄ compared with the result in Proposition 8. This will add a logarithmic factor to766

the MSE. We will not focus on this case in this paper of simplicity.767

E.3 Sparse approximation of Besov functions using Parallel Neural Networks768

Theorem 9. Under the same condition as Proposition 8, for any positive integer M̄ , any function769

in Besov space f0 ∈ Bα
p,q can be approximated by a parallel neural network with no less than770

O(mdM̄) number of subnetworks satisfying:771

1. Each subnetwork has width w = O(d) and depth L.772

2. The weights in each layer satisfy ∥W̄(ℓ)
k ∥F ≤ O(

√
w) except the first layer ∥W̄(1)

k ∥F ≤773

O(
√
d),774

3. The scaling factors have bounded 2/L-norm: ∥{aj}∥2/L2/L ≲ mde2md/LM̄1−2/(pL).775

4. The approximation error is bounded by776

∥f̃ − f0∥r ≤ (c4M̄
−α/d + c5e

−c6L)∥f∥Bα
p,q

where c4, c5, c6 are constants that depend only on m, d and p.777

We first prove the following lemma.778

Lemma 14. For any a ∈ RM̄ , 0 < p′ < p, it holds that:

∥a∥p
′

p′ ≤ M̄1−p′/p∥a∥p
′

p .

24

Proof.

∑
i

|ai|p
′
= ⟨1, |a|p

′
⟩ ≤

(∑
i

1

)1− p′
p
(∑

i

(|ai|p
′
)

p
p′

) p′
p

= M̄1− p′
p ∥a∥p

′

p

The first inequality uses a Holder’s inequality with conjugate pair p
p′ and 1/(1− p′

p).779

Proof of Theorem 9. Using Proposition 8, one can construct M̄ number of PNN each O(md) sub-780

networks according to Proposition 7, and in each PNN, such that each PNN represents one B-spline781

basis function.The weights in the last layer of each PNN is scaled to match the coefficients in Propo-782

sition 8. Taking p′ in Lemma 14 as 2/L and combining with Proposition 7 finishes the proof.783

F Proof of the Main Theorem784

Theorem 1 extended form. For any fixed α− d/p > 1, q ≥ 1, L ≥ 3, for any f0 ∈ Bα
p,q , given an785

L-layer parallel neural network satisfying786

• The width of each subnetwork is fixed and large enough: w ≳ d. See Theorem 9 for the787

detail.788

• The number of subnetworks is large enough: M ≳ mdn
1−2/L

2α/d+1−2/(pL) where m = ⌈α− 1⌉.789

With proper choice of the parameter of weight decay λ, the solution f̂ parameterized by (2) satisfies790

MSE(f̂) = Õ

((w4−4/LL2−4/L

n1−2/L

) 2α/d
2α/d+1−2/(pL)

+ e−c6L

)

where Õ shows the scale up to a logarithmic factor, and c6 is the constant defined in Theorem 9.791

Proof. First recall the relationship between covering number (entropy) and estimation error:792

Proposition 15. Let F ⊆ {Rd → [−F, F]} be a set of functions. Assume that F can be decomposed793

into two orthogonal spaces F = F∥ × F⊥ where F⊥ is an affine space with dimension of N. Let794

f0 ∈ {Rd → [−F, F]} be the target function and f̂ be the least squares estimator in F:795

f̂ = argmin
f∈F

n∑
i=1

(yi − f(xi))
2, yi = f0(xi) + ϵi, ϵi ∼ N (0, σ2)i.i.d.,

then it holds that796

MSE(f̂) ≤ Õ
(
argmin

f∈F
MSE(f) +

N + logN (F∥, δ) + 2

n
+ (F + σ)δ

)
.

The proof of Proposition 15 is defered to the section below. We choose F as the set of functions797

that can be represented by a parallel neural network as stated, the (null) space F⊥ = {f : f(x) =798

constant} be the set of functions with constant output, which has dimension 1. This space captures799

the bias in the last layer, while the other parameters contributes to the projection in F∥. See Sec-800

tion D.2 for how we handle the bias in the other layers. One can find that F∥ is the set of functions801

that can be represented by a parallel neural network as stated, and further satisfy
∑n

i=1 f(xi) = 0.802

Because F∥ ⊆ F , N (F∥, δ) ≤ N (F , δ) for all δ > 0, and the latter is studied in Theorem 5.803

In Theorem 1, the width of each subnetwork is no less than what is required in Theorem 9, while the804

depth and norm constraint are the same, so the approximation error is no more that that in Theorem 9.805

Choosing r = 2, p = 2/L, and taking Theorem 5 and Theorem 9 into this Proposition 15, one gets806

MSE(f̂) ≲ M̄−2α/d +
w2+2/(1−2/L)L2

n
M̄

1−2/(pL)
1−2/L δ−

2/L
1−2/L (log(M̄/δ) + 3) + δ,

25

where ∥f∥Bα
p,q

,m and d taken as constants. The stated MSE is obtained by choosing

δ ≂
w4−4/LL2−4/LM̄1−2/(pL)

n1−2/L
, M̄ ≂

(n1−2/L

w4−4/LL2−4/L

) 1
2α/d+1−2/(pL)

Note that there exists a weight decay parameter λ′ such that the (2/L)-norm of the coefficients807

of the parallel neural network satisfy that ∥{aj}∥2/L2/L = mde2md/L∥{ãj,M̄}∥2/L2/L where {ãj,M̄}808

is the coefficient of the particular M̄ -sparse approximation, although {aj} is not necessarily M̄809

sparse. Empirically, one only need to guarantee that during initialization, the number of subnetworks810

M ≥ M̄ such that the M̄ -sparse approximation is feasible, thus the approximation error bound811

from Theorem 9 can be applied. Theorem 9 also says that ∥{aj}∥2/L2/L = mde2md/L∥{ãj,M̄}∥2/L2/L ≲812

M̄1−2/pL, thus we can apply the covering number bound from Theorem 5 with P ′ = M̄1−2/pL.813

Finally, if λ is optimally chosen, then it achieves a smaller MSE than this particular λ′, which has814

been proven to be no more than O(M̄−α/d) and completes the proof.815

816

Proof of Proposition 15. For any function f ∈ F , define f⊥ = argminh∈F⊥

∑n
i=1(f(xi) −817

h(xi))
2 be the projection of f to F⊥, and define f∥ = f − f⊥ be the projection to the orthogo-818

nal complement. Note that f∥ is not necessarily in F∥. However, if f ∈ F , then f∥ ∈ F∥. yi⊥ and819

yi∥ are defined by creating a function fy such that fy(xi) = yi,∀i, e.g. via interpolation. Because820

F∥ and F⊥ are orthononal, the empirical loss and population loss can be decomposed in the same821

way:822

L∥(f) =
1

n

n∑
i=1

(f∥(x)− f0∥(x))
2 +

n−N

n
σ2, L⊥(f) =

1

n

n∑
i=1

(f⊥(x)− f0⊥(x))
2 +

N

n
σ2,

L̂∥(f) =
1

n

n∑
i=1

(f∥(x)− yi∥)
2, L̂⊥(f) =

1

n

n∑
i=1

(f⊥(x)− yi⊥(x))
2,

MSE∥(f) = ED

[1
n

n∑
i=1

(f∥(x)− f0∥(x))
2
]
, MSE⊥(f) = ED

[1
n

n∑
i=1

(f⊥(x)− f0⊥(x))
2
]
,

such that L(f) = L∥(f) + L⊥(f), L̂(f) = L̂∥(f) + L̂⊥(f). This can be verified by de-823

composing f̂ , f0 and y into two orthogonal components as shown above, and observing that824 ∑n
i=1 f1⊥(xi)f2∥(xi) = 0,∀f1, f2.825

First prove the following claim826

Claim 16. Assume that f̂ = argminf∈F L̂(f) is the empirical risk minimizer. Then f̂⊥ =827

argminf∈F⊥
L̂⊥(f), f̂∥ = argminf∈F∥

L̂∥(f), where f̂⊥ is the projections of f̂ in F⊥, and828

f̂∥ = f̂ − f̂⊥ respectively.829

Proof. Since f̂ ∈ F , by definition f̂∥ ∈ F∥. Assume that there exist f̂ ′
⊥, f̂

′
∥, and either L̂⊥(f̂

′
⊥) <830

L̂⊥(f̂⊥), or L̂∥(f̂
′
∥) < L̂∥(f̂∥). Then831

L̂(f̂ ′) = L̂(f̂ ′
⊥ + f̂ ′

∥) = L̂∥(f̂
′
⊥ + f̂ ′

∥) + L̂⊥(f̂
′
⊥ + f̂ ′

∥) = L̂∥(f̂
′
∥) + L̂⊥(f̂

′
⊥)

< L̂∥(f̂∥) + L̂⊥(f̂⊥) = L̂∥(f̂⊥ + f̂∥) + L̂⊥(f̂⊥ + f̂∥) = L̂(f̂)

which shows that f̂ is not the minimizer of L̂(f) and violates the assumption.832

833

26

Then we bound MSE⊥(f). We convert this part into a finite dimension least square problem:834

f̂⊥ = argmin
f∈F⊥

L̂⊥(f)

= argmin
f∈F⊥

1

n

n∑
i=1

(f(xi)− f0⊥(xi)− ϵi⊥)
2

= argmin
f∈F⊥

1

n

n∑
i=1

(f(xi)− f0⊥(xi)− ϵi⊥)
2 + ϵ2i∥

= argmin
f∈F⊥

1

n

n∑
i=1

(f(xi)− f0⊥(xi)− ϵi⊥ − ϵi∥)
2

= argmin
f∈F⊥

1

n

n∑
i=1

(f(xi)− f0⊥(xi)− ϵi)
2

The forth line comes from our assumption that F⊥ is orthogonal to F∥, so ∀f ∈ F⊥, f + f0⊥ + ϵ⊥835

is orthogonal to ϵ∥.836

Let the basis function of F⊥ be h1, h2, . . . , hN , the above problem can be reparameterized as837

argmin
θ∈RN

1

n
∥Xθ − y∥2

where X ∈ Rn×N : Xi = hj(xi),y = y0⊥ + ϵ,y0⊥ = [f0⊥(x1), . . . , f0⊥(xn)], ϵ = [ϵ1, . . . , ϵn].838

This problem has a closed-form solution839

θ = (XTX)−1XTy

Observe that f0⊥ ∈ F⊥, let y0⊥ = Xθ∗,The MSE of this problem can be computed by840

L(f̂⊥) =
1

n
∥Xθ − y0⊥∥2 =

1

n
∥X(XTX)−1XT (Xθ∗ + ϵ)−Xθ∗∥2

=
1

n
∥X(XTX)−1XT ϵ∥2

Observing that Π := X(XTX)−1XT is an idempotent and independent projection whose rank is841

N , and that E[ϵϵT] = σ2I, we get842

MSE⊥(f̂⊥) = E[L(f̂⊥)] =
1

n
∥Πϵ∥2 =

1

n
tr(ΠϵϵT) =

σ2

n
tr(Π)

which concludes that843

MSE⊥(f̂) = O
(N
n
σ2
)
. (23)

See also [19, Proposition 1].844

Next we study MSE∥(f̂). Denote σ̃2
∥ = 1

n

∑n
i=1 ϵ

2
i∥, E = maxi |ϵi|. Using Jensen’s inequality and845

union bound, we have846

exp(tE[E]) ≤ E[exp(tE)] = E[max exp(t|ϵi|)] ≤
n∑

i=1

E[exp(t|ϵi|)] ≤ 2n exp(t2σ2/2)

Taking expectation over both sides, we get847

E[E] ≤ log 2n

t
+

tσ2

2

maximizing the right hand side over t yields848

E[E] ≤ σ
√

2 log 2n.

27

Let F̃∥ be the covering set of F∥ = {f∥ : f ∈ F}. For any f̃∥ ∈ F̃∥,849

L∥(fj)− L̂∥(fj) =
1

n

n∑
i=1

(fj∥(xi)− f0∥(xi))
2 − 1

n

n∑
i=1

(f̃∥(xi)− yi∥)
2 +

n−N

n
σ2

=
1

n

n∑
i=1

ϵi∥(2f̃∥(xi)− f0∥(xi)− yi∥) +
n−N

n
σ2

=
1

n

n∑
i=1

ϵi(2f̃∥(xi)− f0∥(xi)− yi∥) +
n−N

n
σ2

=
1

n

n∑
i=1

ϵi(2f̃∥(xi)− 2f0∥(xi)) +
n−N

n
σ2 − σ̃2

∥

The first term can be bounded using Bernstein’s inequality: let hi = ϵi(fj∥(xi) − f0∥(xi)), by850

definition |hi| ≤ 2EF ,851

Var[hi] = E[ϵ2i (f̃∥(xi)− f0∥(xi))
2]

= (f̃∥(xi)− f0∥(xi))
2E[ϵ2i]

= (f̃∥(xi)− f0∥(xi))
2σ2

using Bernstein’s inequality, for any f̃∥ ∈ F̃∥, with probably at least 1− δp,852

1

n

n∑
i=1

ϵi(2f̃∥(xi)− 2f0∥(xi)) =
2

n

n∑
i=1

hi

≤ 2

n

√√√√2

n∑
i=1

(
f̃∥(xi)− f0∥(xi)

)2
σ2 log(1/δp) +

8EF log(1/δp)

3n

= 2

√(
L∥(f̃∥)−

n−N

n
σ2
)2σ2 log(1/δp)

n
+

8EF log(1/δp)

3n

≤ ϵ
(
L∥(f̃∥)−

n−N

n
σ2
)
+

8σ2 log(1/δp)

nϵ
+

8EF log(1/δp)

3n

the last inequality holds true for all ϵ > 0. The union bound shows that with probably at least 1− δ,853

for all f̃∥ ∈ F̃∥,854

L∥(f̃∥)− L̂∥(f̃∥) ≤ ϵ
(
L∥(f̃∥)−

n−N

n
σ2
)
+

8σ2 log(N (F∥, δ)/δp)

nϵ
+

8EF log(N (F∥, δ)/δp)

3n

+
n−N

n
σ2 − σ̃2

∥.

By rearanging the terms and using the definition of L(f̃∥), we get855

(1− ϵ)
(
L∥(f̃∥)−

n−N

n
σ2
)
≤ L̂∥(f̃∥) +

8σ2 log(N (F∥, δ)/δp)

nϵ
+

8EF log(N (F∥, δ)/δp)

3n
− σ̃2

∥.

Taking the expectation (over D) on both sides, and notice that E[σ̃2
∥] =

n−N
n σ2. Furthermore, for856

any random variable X,E[X] =
∫∞
−∞ xdP (X ≤ x), we get857

max
f̃∥∈F̃∥

(
(1− ϵ)MSE∥(f̃∥)− E[L̂∥(f̃∥)]

)
≤
(8σ2

nϵ
+

8Fσ
√
2 log 2n

3n

)(
logN (F∥, δ)−

∫ 1

δ=0

log(δp)dδp

)
− n−N

n
σ2

=
(8σ2

nϵ
+

8Fσ
√
2 log 2n

3n

)
(logN (F∥, δ) + 1)− n−N

n
σ2.

(24)

where the integration can be computed by replacing δ with ex. Though it is not integrable under858

Riemann integral, it is integrable under Lebesgue integration.859

28

Similarly, let f̌∥ = argminf∈F∥
L∥(f),860

L∥(f̌∥)− L̂∥(f̌∥) =
1

n

n∑
i=1

ϵi(2f̌∥(xi)− 2f0∥(xi)) +
n−N

n
σ2 − σ̃2

∥

with probably at least 1− δq , for any ϵ > 0,861

− 1

n

n∑
i=1

ϵi(2f̌∥(xi)− 2f0∥(xi)) ≤ ϵ
(
L∥(f̌∥)−

n−N

n
σ2
)
+

8σ2 log(1/δp)

nϵ
+

8EF log(1/δp)

3n
,

L̂∥(f̌∥) ≤ (1 + ϵ)
(
L∥(f̌∥)−

n−N

n
σ2
)
+

8σ2 log(1/δp)

nϵ
+

8EF log(1/δq)

3n
+ σ̃2

∥.

Taking the expectation on both sides,862

E[L̂∥(f̌∥)] ≤ (1 + ϵ)MSE∥(f̌∥) +
8σ2

nϵ
+

8Fσ
√
2 log 2n

3n
+

n−N

n
σ2. (25)

Finally, let f̂∗ := argminf∈F̃∥

∑n
i=1(f̂∥(xi) − f(xi))

2 be the projection of f̂∥ in its δ-covering863

space,864

MSE∥(f̂∥) = E
[1
n

n∑
i=1

(f̂∥(xi)− f0∥(xi))
2
]

= E
[1
n

n∑
i=1

(f̂∗(xi)− f0∥(xi))
2 +

1

n

n∑
i=1

(f̂∥(xi)− f̂∗(xi))(f̂∥(xi) + f̂∗(xi)− 2f0∥(xi))
]

≤ E
[1
n

n∑
i=1

(f̂∗(xi)− f0∥(xi))
2
]
+ 4Fδ

= MSE∥(f̂∗(xi)) + 4Fδ,

and similarly865

L̂∥(f̂∗) ≤ L̂∥(f̂∥) + (4F + 2E)δ. (26)

We can conclude that866

MSE∥(f̂∥) ≤
1

1− ϵ

(
E[L̂∥(f̂∗)] +

(8σ2

nϵ
+

8Fσ
√
2 log 2n

3n

)
(logN (F∥, δ) + 1)− n−N

n
σ2
)

+ 4Fδ

≤ 1

1− ϵ

(
E[L̂∥(f̂∥)] + (4F + σ

√
8 log 2n)δ

+
(8σ2

nϵ
+

8Fσ
√
2 log 2n

3n

)
(logN (F∥, δ) + 1)− n−N

n
σ2
)
+ 4Fδ

≤ 1

1− ϵ

(
E[L̂∥(f̌∥)] + (4F + σ

√
8 log 2n)δ

+
(8σ2

nϵ
+

8Fσ
√
2 log 2n

3n

)
(logN (F∥, δ) + 1)− n−N

n
σ2
)
+ 4Fδ

≤ 1 + ϵ

1− ϵ
MSE∥(f̌∥) +

1

n

(8σ2

ϵ
+

8Fσ
√
2 log 2n

3

)(logN (F∥, δ) + 2

1− ϵ

)
+
(
4F +

4F + σ
√
8 log 2n

1− ϵ

)
δ,

where the first line comes from (24), and second comes from (26), the thid line is because867

f̂∥ = argminf∈F∥
L̂∥(f), and the last line comes from (25). We also use that fact that L̂∥(f̂) ≤868

L̂∥(f),∀f . Noticing that MSE(f̂) = MSE∥(f̂) + MSE⊥(f̂), combining this with (23) finishes the869

proof.870

29

G Detailed experimental setup871

G.1 Target Functions872

The doppler function used in Figure 2(d)-(f) is873

f(x) = sin(4/(x+ 0.01)) + 1.5.

The “vary” function used in Figure 2(g)-(i) is874

f(x) = M1(x/0.01) +M1((x− 0.02)/0.02) +M1((x− 0.06)/0.03)

+M1((x− 0.12)/0.04) +M3((x− 0.2)/0.02) +M3((x− 0.28)/0.04)

+M3((x− 0.44)/0.06) +M3((x− 0.68)/0.08),

where M1,M3 are first and third order Cardinal B-spline bases functions respectively. We uni-875

formly take 256 samples from 0 to 1 in the piecewise cubic function experiment, and uniformly876

1000 samples from 0 to 1 in the doppler function and “vary” function experiment. We add zero877

mean independent (white) Gaussian noise to the observations. The standard derivation of noise is878

0.4 in the doppler function experiment and 0.1 in the “vary” function experiment.879

G.2 Training/Fitting Method880

In the piecewise polynomial function (“vary”) experiment, the depth of the PNN L = 10, the width881

of each subnetwork w = 10, and the model contains M = 500 subnetworks. The depth of NN is also882

10, and the width is 200 such that the NN and PNN have almost the same number of parameters. In883

the doppler function experiment, the depth of the PNN L = 12, the width of each subnetwork w =884

10, and the model contains M = 2000 subnetworks, because this problem requires a more complex885

model to fit. The depth of NN is 12, and the width is 400. We used Adam optimizer with learning rate886

of 10−3. We first train the neural network layer by layer without weight decay. Specifically, we start887

with a two-layer neural network with the same number of subnetworks and the same width in each888

subnetwork, then train a three layer neural network by initializing the first layer using the trained889

two layer one, until the desired depth is reached. After that, we turn the weight decay parameter and890

train it until convergence. In both trend filtering and smoothing spline experiment, the order is 3,891

and in wavelet denoising experiment, we use sym4 wavelet with soft thresholding. We implement892

the trend filtering problem according to Tibshirani [40] using CVXPY, and use MOSEK to solve893

the convex optimization problem. We directly call R function smooth.spline to solve smoothing894

spline.895

G.3 Post Processing896

The degree of freedom of smoothing spline is returned by the solver in R, which is rounded to the897

nearest integer when plotting. To estimate the degree of freedom of trend filtering, for each choice898

of λ, we repeated the experiment for 10 times and compute the average number of nonzero knots as899

estimated degree of freedom. For neural networks, we use the definition [41]:900

2σ2df = E∥y′ − ŷ∥22 − E∥y − ŷ∥22 (27)

where df denotes the degree of freedom, σ2 is the variance of the noise, y are the labels, ŷ are901

the predictions and y′ are independent copy of y. We find that estimating (27) directly by sampling902

leads to large error when the degree of freedom is small. Instead, we compute903

2σ2d̂f = Ê∥y0 − ŷ∥22 − Ê∥y − ŷ∥22 + Ê∥y − ȳ0∥22 − ∥y0 − ȳ0∥22 (28)

where d̂f is the estimated degree of freedom, E denotes the empirical average (sample mean), y0 is904

the target function and ȳ0 is the mean of the target function in its domain.905

Proposition 17. The expectation of (28) over the dataset D equals (27).906

30

Proof.
2σ2d̂f = ED[Ê∥y0 − ŷ∥22 − Ê∥y − ŷ∥22 + Ê∥y − ȳ0∥22 − ∥y0 − ȳ0∥22]

= E∥y0 − ŷ∥22 − E∥y − ŷ∥22 + ED[Ê[(y − y0)(y + y0 − 2ȳ0)]]

= E∥y0 − ŷ∥22 − E∥y − ŷ∥22 + E
[n∑

i=1

ϵi(2yi + ϵi − 2ȳ0)
]

= E∥y0 − ŷ∥22 − E∥y − ŷ∥22 + nσ2

= E∥y′ − ŷ∥22 − E∥y − ŷ∥22
where D denotes the dataset. In the third line, we make use of the fact that E[ϵi] = 0,E[ϵ2i] = σ2,907

and in the last line, we make use of E[ϵ′i] = 0,E[ϵ′i
2
] = σ2, and ϵ′i are independent of yi and y0,i908

One can easily check that a “zero predictor” (a predictor that always predict ȳ0, and it always predicts909

0 if the target function has zero mean) always has an estimated degree of freedom of 0.910

In Figure 2(h)(i), we take the minimum MSE over different choices of λ, and plot the average over911

10 runs. Due to optimization issue, sometimes the neural networks are stuck at bad local minima912

and the empirical loss is larger than the global minimum by orders of magnitude. To deal with this913

problem, in Figure 2(h)(i), we manually detect these results by removing the experiments where914

the MSE is larger than 1.5 times the average MSE under the same setting, and remove them before915

computing the average.916

G.4 More experimental results917

G.4.1 Regularization weight vs degree-of-freedom918

As we explained in the previous section, the degree of freedom is the exact information-theoretic919

measure of the generalization gap. A Larger degree-of-freedom implies more overfitting.920

10 8 10 7 10 6 10 5 10 4 10 3 10 2
0

20

40

60

80

100

120

De
gr

ee
 o

f f
re

ed
om

(a)

10 8 10 7 10 6 10 5 10 4 10 3 10 2
0

50

100

150

200

250

300

De
gr

ee
 o

f f
re

ed
om

(b)

10 10 10 9 10 8 10 7 10 6 10 5
0

50

100

150

200

250

De
gr

ee
 o

f f
re

ed
om

(c)

10 10 10 9 10 8 10 7 10 6 10 5
0

100

200

300

400

500

De
gr

ee
 o

f f
re

ed
om

(d)

Figure 3: The relationship between degree of freedom and the scaling factor of the regularizer λ.
The solid line shows the result after denoising. (a)(b)in a NN. (c)(d) In trend filtering. (a)(c): the
piecewise cubic function. (b)(d) the doppler function.

In figure Figure 3, we show the relationship between the estimated degree of freedom and the scaling921

factor of the regularizer λ in a parallel neural network and in trend filtering. As is shown in the922

31

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

Neural network
Observation
Target function
prediction

(a)
0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

Smoothing spline
Observation
Target function
Prediction

(b)
0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

Parallel neural network
Observation
Target function
prediction

(c)

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

Trend filtering
Observation
Target function
prediction

(d)
0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

Wavelet denoising
Observation
Target function
Prediction

(e)
0.0 0.2 0.4 0.6 0.8 1.0

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Output of each subnetwork

(f)

Figure 4: More experiments results of Doppler function.

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Neural network

Observation
Target function
prediction

(a)
0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Wavelet denoising

Observation
Target function
Prediction

(b)
0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Parallel neural network

Observation
Target function
prediction

(c)

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Trend filtering

Observation
Target function
prediction

(d)
0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Smoothing spline

Observation
Target function
Prediction

(e)
0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.0

0.2

0.4

0.6

0.8
Output of each subnetwork

(f)

Figure 5: More experiments results of the “vary” function.

figure, generally speaking as λ decreases towards 0, the degree of freedom should increase too.923

However, for parallel neural networks, if λ is very close to 0, the estimated degree of freedom will924

not increase although the degree of freedom is much smaller than the number of parameters —925

actually even smaller than the number of subnetworks. Instead, it actually decreases a little. This926

effect has not been observed in other nonparametic regression methods, e.g. trend filtering, which927

overfits every noisy datapoint perfectly when λ → 0. But for the neural networks, even if we do928

not regularize at all, the among of overfitting is still relatively mild 30/256 vs 80/1000. In our929

experiments using neural networks, when λ is small, we denoise the estimated degree of freedom930

using isotonic regression.931

We do not know the exact reason of this curious observation. Our hypothesis is that it might be932

related to issues with optimization, i.e., the optimizer ends up at a local minimum that generalizes933

better than a global minimum; or it could be connected to the “double descent” behavior of DNN934

[26] under over-parameterization.935

G.4.2 Detailed numerical results936

In order to allow the readers to view our result in detail, we plot the numerical experiment results of937

each method separately in Figure 4 and Figure 5.938

32

G.4.3 Practical equivalence between the weight-decayed two-layer NN and L1-Trend939

Filtering940

In this section we investigate the equivalence of two-layer NN and the locally adaptive regression941

splines from Section B. In the special case when m = 1 the special regularization reduces to weight942

decay and the non-standard truncated power activation becomes ReLU. We compare L1 trend fil-943

tering [22] (shown to be equivalent to locally adaptive regression splines by Tibshirani [40]) and944

an overparameterized version of the neural network for all regularization parameter λ > 0, i.e.,945

a regularization path. The results are shown in Figure 6. It is clear that as the weight decay in-946

creases, it induces sparsity in the number of knots it selects similarly to L1-Trend Filtering, and the947

regularization path matches up nearly perfectly even though NNs are also learning knots locations.948

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

0.1

0.0

0.1

0.2

0.3

y

Ground truth
Training data
weight decay = 0
weight decay = 0.001
weight decay = 0.002
weight decay = 0.003
weight decay = 0.004
weight decay = 0.005
weight decay = 0.006
weight decay = 0.007
weight decay = 0.008
weight decay = 0.009
weight decay = 0.01

0.000 0.002 0.004 0.006 0.008 0.010
weight decay

0.10

0.05

0.00

0.05

0.10

co
ef

fic
ie

nt
s

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

0.1

0.0

0.1

0.2

0.3

y

Ground truth
Training data
lambda = 0
lambda = 0.42
lambda = 0.84
lambda = 1.26
lambda = 1.68
lambda = 2.1
lambda = 2.52
lambda = 2.94
lambda = 3.36
lambda = 3.78
lambda = 4.2

0 1 2 3 4
lambda

0.10

0.05

0.00

0.05

0.10

co
ef

fic
ie

nt
s

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 6: Comparison of the weight decayed ReLU neural networks (Top row) and L1 Trend
Filtering (Bottom row) with different regularization parameters. The left column shows the fitted
functions and the right column shows the regularization path (in the flavor of [17]) of the coefficients
of the truncated power basis at individual data points (the free-knots learned by NN are snapped to
the nearest input x to be comparable).

33

	Introduction
	Preliminary
	Notation and Problem Setup.
	Besov Spaces and Bound Variation Space

	Main Results: Parallel ReLU DNNs
	Proof Overview
	Equivalence to p Sparse Regression with a Learned Feature Representation
	Estimation Error Analysis
	Approximation Error Analysis
	Approximation Error of B-spline Basis Function
	Approximation Error in Besov Space

	Experiment
	Conclusion and Discussion
	Other related works
	Two-layer Neural Network with Truncated Power Activation Functions
	Introduction To Common Function Classes
	Besov Class
	Other Function Spaces

	Proof of Estimation Error
	Equivalence Between Parallel Neural Networks and p-norm Penalized Problems
	Covering Number of Parallel Neural Networks
	Covering Number of p-Norm Constrained Linear Combination

	Proof of Approximation Error
	Approximation of Neural Networks to B-spline Basis Functions
	Sparse approximation of Besov functions using B-spline wavelets
	Sparse approximation of Besov functions using Parallel Neural Networks

	Proof of the Main Theorem
	Detailed experimental setup
	Target Functions
	Training/Fitting Method
	Post Processing
	More experimental results
	Regularization weight vs degree-of-freedom
	Detailed numerical results
	Practical equivalence between the weight-decayed two-layer NN and L1-Trend Filtering

