
Grounding LLM Reasoning with Knowledge Graphs

Anonymous ACL submission

Abstract
Knowledge Graphs (KGs) are valuable for rep-001
resenting relationships between entities in a002
structured format. Traditionally, these knowl-003
edge bases are queried to extract specific in-004
formation. However, question-answering (QA)005
over KGs poses a challenge due to the intrinsic006
complexity of natural language compared to007
the structured format and the vast size of these008
graphs. Despite these challenges, the struc-009
tured nature of KGs offer a robust foundation010
for grounding the outputs of Large Language011
Models (LLMs), enhancing reliability and con-012
trol for organizations.013

In this work, we introduce a novel integration014
of reasoning strategies with KGs, anchoring015
each step or “thought” of the reasoning chains016
in KG data. This approach uses recent ad-017
vancements in LLMs, applying reasoning meth-018
ods during inference to improve performance019
and capabilities. We evaluate both agentic and020
automated search methods across several rea-021
soning strategies, including Chain-of-Thought022
(CoT), Tree-of-Thought (ToT), and Graph-of-023
Thought (GoT), using GRBench, a bench-024
mark dataset for graph reasoning with domain-025
specific graphs. Our experiments demonstrate026
that this innovative approach achieves a sig-027
nificant performance improvement of at least028
26.5% over baseline models, highlighting the029
benefits of grounding LLM reasoning processes030
in structured KG data.031

1 Introduction032

Large Language Models (LLMs) have shown re-033

markable versatility in answering questions posed034

in natural language. This is mainly due to their abil-035

ity to generate text, their broad internal knowledge,036

and their capacity to access external information037

(Zhuang et al., 2023; Lewis et al., 2020). How-038

ever, a significant area for improvement is their ten-039

dency to produce information that, while plausible-040

sounding, is often unverifiable and lacks traceable041

origins and sources (Tonmoy et al., 2024).042

The LLM generation process heavily relies on 043

their internal parameters, making it difficult to link 044

their outputs to external sources (Ko et al., 2024; 045

Zheng et al., 2024). This limitation challenges their 046

reliability in industrial applications (Luo and Spe- 047

cia, 2024). In applied settings, where LLMs handle 048

critical operations, integrating them with domain- 049

specific knowledge is essential. Fine-tuning LLMs 050

for new domains is labor-intensive, especially for 051

companies with proprietary data facing privacy and 052

legal issues. Therefore, developing processes to 053

effectively connect LLMs with external knowledge 054

bases is crucial. 055

When connecting LLMs with external knowl- 056

edge, techniques such as Retrieval-Augmented 057

Generation (RAG) (Lewis et al., 2020) or SQL- 058

code generation (Rajkumar et al., 2022) can be em- 059

ployed. However, they often fail to capture the dy- 060

namic relationships between concepts that are nec- 061

essary for comprehensive understanding. These ap- 062

proaches typically assume that knowledge is well- 063

represented in discrete units, such as documents or 064

tables, which can lead to incomplete insights when 065

dealing with interconnected knowledge that spans 066

multiple sources. 067

KGs effectively represent complex knowledge 068

by organizing real-world entities and their rela- 069

tionships. Using KGs to guide LLM reasoning 070

is a novel approach recently explored (Luo et al., 071

2024). In this work, we introduce a novel integra- 072

tion of reasoning strategies with domain-specific 073

KGs, (academic, literature, healthcare, etc.) from 074

GRBench dataset (Jin et al., 2024), enabling a more 075

comprehensive understanding of complex queries. 076

Unlike previous methods, our approach systemat- 077

ically connects each reasoning step with the KG, 078

leveraging its interconnected nature to enhance the 079

reasoning capabilities of LLMs. Each sample in 080

GRBench contains a manually crafted question 081

and its corresponding answer, which can be ob- 082

tained by retrieving relevant information from the 083

1

Figure 1: Methods for Question-Answering in KGs, explaining the general framework described in Section 4. Left:
Agent. LLM decides to take one of the predefined actions to connect with the graph. Right: Automatic Graph
Exploration. Entities are extracted in each reasoning step, triggering a search for each identified entity.

graph as context. We present various reasoning084

methods that connect every thought or step with085

the KG. These methods include Chain-of-Thought086

(CoT – Wei et al. (2022)), Tree-of-Thought (ToT087

– Yao et al. (2024)) and Graph-of-Thought (GoT –088

Besta et al. (2024)). The strategies are shown in089

Figure 2. Our results demonstrate significant im-090

provements in generating accurate answers from091

the graph, achieving state-of-the-art performance092

on GRBench.093

Our contributions can be summarized as follows:094

• We present a versatile framework that inte-095

grates reasoning strategies with KG search096

during inference. This framework is de-097

signed to easily incorporate additional rea-098

soning strategies, making it adaptable to any099

domain and application.100

• Our results achieve state-of-the-art perfor-101

mance on GRBench, demonstrating signifi-102

cant average performance improvement of at103

least 26.5% over the CoT method.104

• We conduct an analysis of various aspects of105

our methods, including the impact of the steps,106

tree width and model sizes (Section 7).107

• By systematically connecting each reasoning108

step with the KG, our approach improves the109

interpretability of LLM outputs, ensuring that110

responses are not only accurate but also trace-111

able to their knowledge sources.112

2 Related Work 113

LLMs require large amounts of data and resources 114

for training (Villalobos et al., 2022). The need 115

to leverage these models with external data after 116

they are trained has driven the popularity of RAG 117

methods, which incorporate external data (Lewis 118

et al., 2020; Khattab et al., 2022). Recent advances 119

have combined RAG with structured knowledge 120

such as ontologies, enhancing LLM reasoning ca- 121

pabilities (Li et al., 2024). Our work introduces a 122

framework that employs advanced reasoning strate- 123

gies, grounding LLM outputs in domain-specific 124

KGs for improved performance in specific domains. 125

This approach facilitates more targeted and iterative 126

interactions with knowledge graphs, distinguishing 127

it from traditional RAG methods. 128

Structured Knowledge Structured knowledge, 129

such as Databases or KGs, provides organizations 130

with reliable sources of information that can be 131

more easily maintained and automatically updated. 132

KGs, in particular, offer an adaptable knowledge 133

model that captures complex relationships between 134

interconnected concepts. Some research has fo- 135

cused on developing models that can interact with 136

multiple types of structured knowledge: StructLM 137

(Zhuang et al., 2024), and examining the impact 138

of incorporating structured knowledge into the pre- 139

training of LLMs (Moiseev et al., 2022). 140

2

Integrating KGs with LLMs (Peng et al., 2024)141

The integration of KGs with LLMs has emerged142

as a promising approach to enhance AI systems’143

reasoning capabilities and reliability. In general,144

we distinguish four primary methods for enabling145

LLMs to interact with graphs: (1) Learning graph146

representations (Fatemi et al., 2024; Chai et al.,147

2023), however these latent representations cur-148

rently fall short of text-based methods on Knowl-149

edge Graph Question Answering (KGQA) tasks.150

(2) Using Graph Neural Network (GNN) retrievers151

to extract relevant entities and provide text-based152

input to the model (He et al., 2024; Mavromatis153

and Karypis, 2024). (3) Generating code, such as154

SPARQL, to retrieve data from the graph (Li et al.,155

2023). Finally, (4) Methods that allow step-by-step156

interaction with KG (Luo et al., 2024; Yu et al.,157

2022; Luo et al., 2023). These last methods cur-158

rently perform best on KGQA tasks.159

LLM Reasoning with Graphs There is a grow-160

ing interest in leveraging KGs to enhance the rea-161

soning capabilities of LLMs. KGs not only serve162

as a structured data source but also provide a frame-163

work for understanding and improving the reason-164

ing processes of LLMs (Wang et al., 2024). This in-165

tegration enables models to generate more coherent166

and contextually relevant responses while allowing167

the tracing and verification of the reasoning steps.168

The most effective methods typically involve a step-169

by-step interaction between LLMs and graphs, as170

discussed in the previous paragraph. Notable ex-171

amples of this approach include the works of Sun172

et al. (2024); Wen et al. (2024); Luo et al. (2024);173

Kim et al. (2023); Li et al. (2025). Recent research,174

including our own, has begun to explore the in-175

tegration of traditional LLM reasoning strategies176

with KGs, as shown in studies by Jin et al. (2024);177

Markowitz et al. (2024).178

3 Background179

In this section, we formalize the prerequisite knowl-180

edge relevant to this paper. We use pθ to denote181

a pre-trained language model with parameters θ.182

And letters x, y, z to refer to a language sequence.183

x = (x1, x2, ..., xn), where each is xi is a such that184

pθ(x) =
∏n

i=1 pθ(xi|x1...i−1).185

Knowledge Graphs (KGs) A KG is a heteroge-186

neous directed graph that contains factual knowl-187

edge to model structured information. In a KG,188

nodes represent entities, events, or concepts, while189

edges represent the connection and types of rela- 190

tions between them. Formally, a KG is represented 191

as G, defined by a set of triples G = {(h, r, t) | 192

h, t ∈ E , r ∈ R}, where E , R denote the set of 193

entities and relations, respectively. 194

Knowledge Graph Question-Answering 195

(KGQA) It is a reasoning task that leverages 196

KGs. Given a natural language question, q, and an 197

associated KG, G, the goal is to develop a method 198

that retrieves the correct answer, a, based on the 199

knowledge extracted from the KG: a = f(q,G). 200

Step-by-step Reasoning with LLMs To im- 201

prove the reasoning capabilities of LLMs at in- 202

ference time, a common approach is to generate 203

intermediate reasoning steps. The key idea is the in- 204

troduction of intermediate steps, Zpθ = z1, ..., zn, 205

to add inference sources to bridge the q and a. This 206

approach enables models to break down complex, 207

multi-step problems into smaller, manageable in- 208

termediate steps. By doing so, additional computa- 209

tional resources can be allocated to problems that 210

necessitate more reasoning steps. 211

4 Method 212

This work aims to show how conditioning the 213

model at each step of the LLM reasoning process 214

can improve domain-specific question answering 215

based on graphs. Our method combines reason- 216

ing strategies for LLMs: CoT, ToT, GoT with 2 217

graph interaction methods: (1) Agent, an agent to 218

navigate the graph; and (2) Automatic Graph Ex- 219

ploration, an automatic graph traversal mechanism 220

based on the generated text. 221

4.1 Reasoning Strategies 222

Chain-of-Thought (CoT) CoT (Wei et al., 2022) 223

is a well-known reasoning method that involves 224

generating a sequence of logical steps, where 225

each step builds upon the previous ones, ulti- 226

mately leading to a conclusion. Formally, it gen- 227

erates a sequence of reasoning steps Zpθ(q) = 228

{z1, z2, . . . , zn}, where each step zi is sampled se- 229

quentially given the input query q, all previous 230

steps and and graph information from all steps , 231

G′, as zi ∼ pCoT
θ (zi|q,G′, z1...i−1). The final an- 232

swer a is derived from this reasoning process given 233

all the generated thoughts a ∼ pCoT
θ (a|q,G′, z1...n). 234

In practice, it is sample as a continuous language 235

sequence.Figure 2a represents this method, where 236

each step is linked to the KG. 237

3

(a) Chain of
Thought (CoT)

(b) Tree of Thought
(ToT)

(c) Graph of Thought
(GoT)

Figure 2: Reasoning Strategies: This figure illustrates different LLM reasoning strategies to navigate the potential
answer space: CoT, ToT, GoT. Each strategy consists of "thoughts" connected to the Knowledge Graph (KG)
through search methods, as detailed in Section 4.2: Agent or Graph Exploration.

Tree-of-Thought (ToT) ToT (Yao et al., 2024)238

generalizes CoT by modeling the reasoning pro-239

cess as a tree, enabling simultaneous exploration of240

multiple reasoning paths. Starting from an initial241

state s0 = [q], where q is the input, ToT incre-242

mentally expands each state by generating multiple243

candidate thoughts:244

z
(j)
i+1 ∼ pθ(zi+1 | si), j = 1, . . . , k (1)245

Each candidate thought represents a node in the246

tree, forming new states. These states are evalu-247

ated by a heuristic scoring function V (pθ, s), guid-248

ing the selection and pruning of branches. Search249

strategies, such as breadth-first search (BFS), sys-250

tematically explore this tree:251

St = argmaxS′⊆Ŝt,|S′|=b

∑
s∈S′

V (pθ, s) (2)252

where Ŝt denotes candidate states at step t, and b253

limits the breadth. We implement two versions of254

heuristic functions V to select the top t states:255

1. Selection: The LLM directly chooses the top256

t states to proceed, discarding the others.257

2. Score: The states are ranked by a heuristic258

voting mechanism: V (pθ, S)(s) = P[s = s∗]259

where the LLM is prompted to estimate prob-260

ability of the current state solving the given261

input question.262

This structured search and pruning strategy sig-263

nificantly enhances the model’s ability to solve264

complex reasoning tasks requiring strategic plan-265

ning.266

Graph-of-Thought (GoT) GoT (Besta et al., 267

2024) extends ToT by organizing reasoning into a 268

directed graph structure G = (V,E), where each 269

node represents a thought and edges reflect de- 270

pendencies. Starting from an initial thought, new 271

thoughts are generated similarly to ToT and added 272

to the graph. Each new thought is connected to 273

its parent, and additional reasoning chains can be 274

formed through merging operations: 275

zi+1 = A(z
(a)
i , z

(b)
i) (3) 276

where A denotes a merge operation that integrates 277

two thought chains into a single coherent reasoning 278

step. The merged thought is added as a new node 279

with edges from both parents. 280

In our implementation, thoughts are evaluated 281

using either a Selection or Score-based strategy 282

as in ToT. Merged thoughts inherit information 283

from both parents and can enhance robustness. At 284

each depth, a fixed number of thoughts are retained 285

using breadth-first traversal and evaluated for pro- 286

gression. This architecture should enable dynamic 287

refinement and fusion of ideas, offering a general- 288

ization of CoT and ToT for knowledge-grounded 289

question answering. 290

4.2 LLM + KG Interaction Methods 291

We implement methods to connect reasoning strate- 292

gies with KGs. The LLM interacts with the KG 293

at every step. This retrieves new information and 294

conditions the model for subsequent steps. We 295

present 2 methods to achieve this interaction, both 296

illustrated in Appendix B. 297

4

4.2.1 Agent298

This approach creates an agent that interacts with299

the graph, following the methodology initially de-300

scribed in ReACT (Yao et al., 2022). After generat-301

ing a thought, the LLM selects from a set of actions302

based on the given thought. Each step in the rea-303

soning chain consists of an interleaved sequence:304

thought→ action→ retrieved data. This method305

implements four actions as described in GraphCoT306

(Jin et al., 2024):307

RetrieveNode(Text) Identifies the related node308

in the graph using semantic search.309

NodeFeature(NodeID, FeatureName) Re-310

trieves textual information for a specific node from311

the graph.312

NeighborCheck(NodeID, EdgeType) Retrieves313

neighbors’ information for a specific node.314

NodeDegree(NodeID, EdgeType) Returns the315

degree (#neighbors) for a given node and edge type316

317

These actions collectively enable the agent to318

navigate and extract meaningful information from319

the graph, enhancing the reasoning capabilities of320

the LLM by grounding its thoughts in structured,321

retrievable data.322

4.2.2 Automatic Graph Exploration323

This method incrementally searches the graph by324

interleaving language generation with structured325

retrieval. At each step, the LLM generates a new326

"thought" based on previous thoughts and retrieved327

triples. Entities mentioned in the generated text are328

automatically extracted using LLM prompts and329

serve as anchors for further graph exploration.330

Graph exploration proceeds through a multi-step331

Search + Prune pipeline, inspired by the process332

described in Sun et al. (2024). For each unvisited333

entity, the system first retrieves and prunes relation334

types using LLM guidance. Then, for each selected335

relation, neighboring entities are discovered and fil-336

tered using a second round of pruning. The model337

selects only the most relevant neighbors based on338

their contextual fit with the question and previous339

reasoning steps. This hierarchical pruning – first340

on relations, then on entities – ensures the method341

remains computationally tractable while preserv-342

ing interpretability. The overall traversal follows a343

breadth-first search (BFS) pattern, with pruning de-344

cisions at each level directed by LLM. This process345

is shown in Figure 3.346

Figure 3: Automatic Graph Exploration: It begins by
extracting entities from text (query/thought), followed
by selecting relevant relations and neighbors with the
LLM. The resulting entity-relation-entity combinations
form triples used to expand the reasoning chain.

This iterative reasoning and retrieval process al- 347

lows the model to dynamically condition future 348

steps on progressively more relevant subgraphs. 349

Unlike agentic methods that rely on predefined ac- 350

tions, the automatic approach operates in the graph 351

space guided by the natural language, providing 352

more freedom in the generation. The mechanism is 353

designed to maximize information gain at each step 354

while avoiding graph overgrowth. More details are 355

provided in Algorithm 1. 356

5 Experiments 357

Benchmark We use the GRBrench dataset (Jin 358

et al., 2024) to evaluate our methods. This dataset 359

is specifically designed to evaluate how effectively 360

LLMs can interact with domain-specific graphs 361

to solve the given problem. It includes several 362

graphs spanning various general domains. For our 363

evaluation, we selected 7 graphs across multiple do- 364

mains, excluding those with excessively high RAM 365

requirements that exceed our available resources. 366

Details the graph statistics and can be found in 367

Appendix A. 368

Baselines The proposed methods, Agent and Au- 369

tomatic Graph Exploration, applied to CoT, ToT, 370

and GoT, are compared against the following base- 371

line methods: (1) Zero-Shot: Directly querying the 372

model to answer the question without additional 373

context. (2) Text RAG (Gao et al., 2023): Text- 374

retrieval method that uses the text representation 375

of nodes as input for the query, with the retrieved 376

data serving as context for the model. (3) Graph 377

RAG: Includes node neighbors (1-hop) for addi- 378

tional context beyond Text RAG. (4) Graph CoT 379

(Agent): Implements Graph CoT (Jin et al., 2024) 380

as an agent for CoT reasoning, utilizing the actions 381

described in Section 4.2. 382

5

Experimental methods We implement the meth-383

ods described in Section 4, extending (1) Agent384

and (2) Automatic Graph Exploration with vari-385

ous reasoning strategies during inference: (1) CoT,386

(2) ToT, and (3) GoT. For the latter two, we in-387

clude their State Evaluation methods at each step:388

(1) Selection and (2) Score. In the results presented389

in Table 1, we set n = 10 steps for all methods.390

ToT and GoT use a branching factor and Selection391

of k = t = 3. Our experiments use only open-392

access Llama 3.1 (Instruct) (Dubey et al., 2024) as393

the backend models, which enhances reproducibil-394

ity and allows for unlimited free calls. Specifically,395

we employ the 8B, 70B, and 405B versions, using396

the FP8 variant for the 405B model.397

Evaluation We use rule-based and model-based398

metrics to evaluate the models, following GRBench399

paper (Jin et al., 2024). For the rule-based metric,400

we use Rouge-L (R-L) (Lin, 2004), which mea-401

sures the longest sequence of words appearing in402

same order in both generated text and ground truth403

answer. For model-based metric, we prompt GPT-404

4o to assess if the model’s output matches ground405

truth answer. GPT4Score is percentage of answers406

that GPT-4o identifies as correct.407

Implementation Details The experiments are408

run on NVIDIA TITAN RTX or NVIDIA A100409

using Python 3.8. The models are deployed with410

vLLM (Kwon et al., 2023), a memory-efficient li-411

brary for LLM inference and serving. For the base-412

line, Mpnet-v2 is used as the retriever, and FAISS413

(Johnson et al., 2019) is employed for indexing.414

6 Results415

The main results from both the baselines and ex-416

perimental methods, evaluated using R-L, are pre-417

sented in Table 1. For brevity, additional results418

using GPT4Score can be found in Appendix D. We419

highlight three key insights from the findings: (1)420

The agentic method generally outperformed auto-421

matic graph exploration, indicating that targeted422

interactions with the KG enhance answer accuracy.423

(2) The ToT strategy demonstrated superior perfor-424

mance by effectively exploring multiple reasoning425

paths. (3) Although GoT strategy showed potential,426

it did not significantly outperform ToT, suggesting427

a need for further refinement in merging divergent428

reasoning results. These results show the impor-429

tance of reasoning strategies to navigate multiple430

paths in the graph.431

Agent vs Graph Search In our experimental re- 432

sults, the agentic method outperformed graph ex- 433

ploration approach across most datasets and rea- 434

soning strategies. The agent-based method, which 435

involves LLM selecting specific actions to interact 436

with KG, consistently improves performance as the 437

number of reasoning steps increases, as shown in 438

Section 7. This suggests that while graph explo- 439

ration can quickly provide relevant information, the 440

agentic method’s iterative and targeted interactions 441

with KG yield more accurate and comprehensive 442

answers over longer sequence of steps. 443

Tree of Thought (ToT) The ToT reasoning strat- 444

egy showed superior performance across its various 445

interaction methods and state evaluators, as sum- 446

marized in Table 1. ToT achieved performance 447

improvements of 54.74% in agent performance and 448

11.74% in exploration mode compared to the CoT 449

version. However, this improvement comes with 450

the trade-off of increased inference time, highlight- 451

ing the effectiveness of inference-time strategies. 452

In the ToT approach, a state evaluator is used to 453

select the most promising branch for the next step. 454

We also compared the two State Evaluation meth- 455

ods: Selection and Score. 456

Graph of Thought (GoT) The results for GoT 457

strategy are summarized in Table 2. Due to ad- 458

ditional computational time required, we report 459

results for two datasets only. The GoT strategy 460

did not outperform ToT approach. Our initial hy- 461

pothesis was that LLMs could effectively integrate 462

divergent results from different branches. However, 463

in practice, the models struggled to merge these 464

results effectively. Specifically, in case of Graph- 465

Search, models often failed to effectively combine 466

different triples found in separate branches. This 467

finding presents an interesting area for future re- 468

search, potentially leading to development of more 469

sophisticated reasoning strategies for merging re- 470

sults from different branches. 471

7 Analysis & Ablation studies 472

In this section, we want to better understand the nu- 473

ances of our methods for LLM and KG grounding. 474

We conduct an analysis on the Academic datasets 475

from the benchmark, as they all contain the same 476

number of samples and feature questions gener- 477

ated from similar templates to ensure a controlled 478

comparison. 479

6

Method Model Healthcare Goodreads Biology Chemistry Materials Science Medicine Physics
B

as
el

in
es

Llama 3.1 8B-Ins 7.32 6.18 10.68 11.69 8.95 8.77 11.52
Base Llama 3.1 70B-Ins 9.74 9.79 11.49 12.58 10.40 12.21 12.61

Llama 3.1 405B-Ins 8.66 12.49 10.52 13.51 11.73 11.82 11.63
Llama 3.1 8B-Ins 8.24 14.69 12.43 11.42 9.46 10.75 11.29

Text-RAG Llama 3.1 70B-Ins 10.32 18.81 11.87 16.35 12.25 12.77 12.54
Llama 3.1 405B-Ins 11.61 16.23 16.11 13.82 14.23 15.16 16.32
Llama 3.1 8B-Ins 12.94 22.30 30.72 34.46 30.20 25.81 33.49

Graph-RAG Llama 3.1 70B-Ins 17.95 25.36 38.88 40.90 41.09 31.43 39.75
Llama 3.1 405B-Ins 16.12 23.13 37.57 42.58 37.74 33.34 40.98

G
ra

ph
C

oT

Llama 3.1 8B-Ins 16.83 30.91 20.15 18.43 26.29 14.95 21.41
Agent Llama 3.1 70B-Ins 33.48 40.98 50.00 51.53 49.6 48.27 44.35

Llama 3.1 405B-Ins 28.41 36.56 41.35 48.36 47.81 42.54 35.24

Graph
Explore

Llama 3.1 8B-Ins 25.58 32.34 36.65 35.33 31.06 31.05 35.96
Llama 3.1 70B-Ins 29.41 29.60 44.63 49.49 39.23 38.87 45.52
Llama 3.1 405B-Ins 28.45 43.06 36.93 38.71 47.49 55.66 32.73

G
ra

ph
To

T

Agent

Score
Llama 3.1 8B-Ins 28.91 52.25 43.81 44.18 43.49 36.07 39.56
Llama 3.1 70B-Ins 38.51 51.58 64.44 61.13 55.19 63.00 55.33
Llama 3.1 405B-Ins 47.51 50.73 70.34 64.9 49.02 65.40 44.63

Select
Llama 3.1 8B-Ins 28.67 50.59 42.33 37.07 40.81 33.17 36.50
Llama 3.1 70B-Ins 40.26 52.59 64.53 66.84 61.42 61.21 55.89
Llama 3.1 405B-Ins 46.90 51.68 70.27 67.95 63.74 64.23 59.56

Graph
Explore

Score
Llama 3.1 8B-Ins 24.49 36.80 35.81 36.41 34.28 34.49 37.69
Llama 3.1 70B-Ins 32.79 38.19 53.83 58.25 48.55 52.18 48.07
Llama 3.1 405B-Ins 33.90 42.68 46.87 57.43 50.46 55.56 48.73

Select
Llama 3.1 8B-Ins 25.04 37.8 36.34 38.5 32.44 33.31 34.85
Llama 3.1 70B-Ins 33.40 39.13 54.78 58.53 47.19 51.13 47.51
Llama 3.1 405B-Ins 33.82 43.63 44.47 59.06 48.52 55.62 46.07

Table 1: Rouge-L (R-L) performance results on GRBench (Jin et al., 2024), comparing standard LLMs, Text-RAG,
Graph-RAG, Graph-CoT, and Graph-ToT. Experiments are described in Section 5, using LLama 3.1 - Instruct
backbone models with sizes 8B, 70B, and 405B-FP8.

Method Model Healthcare Biology

A
ge

nt Sc
or

e Llama 3.1 8B-Ins 29.11 33.25
Llama 3.1 70B-Ins 30.88 56.64
Llama 3.1 405B-Ins 43.53 48.1

Se
le

ct Llama 3.1 8B-Ins 29.05 40.37
Llama 3.1 70B-Ins 40.74 65.59
Llama 3.1 405B-Ins 47.63 71.49

G
ra

ph
E

xp
lo

re

Sc
or

e Llama 3.1 8B-Ins 24.96 21.72
Llama 3.1 70B-Ins 31.24 50.70
Llama 3.1 405B-Ins 35.00 39.10

Se
le

ct Llama 3.1 8B-Ins 25.06 21.84
Llama 3.1 70B-Ins 36.95 52.32
Llama 3.1 405B-Ins 33.74 54.64

Table 2: Graph-GoT results on GRBench using Rouge-
L with Llama 3.1 Instruct sizes 8B, 70B, and 405B.

How does the number of steps affect the results?480

Figure 4 illustrates the effect of varying the num-481

ber of steps in the KG interaction methods (Agent,482

Explore) across all academic datasets. The plots483

indicate that graph exploration performs better with484

fewer steps, as it automatically traverses the graph485

for the identified anchor entities. Conversely, the486

agentic methods improve as the number of steps487

increases, eventually achieving better performance.488

This highlights a key trade-off between passive489

retrieval through exploration and more deliberate490

reasoning via agentic planning.491

Figure 4: Effect of the number of steps in the LLM-KG
Interaction Methods. The Agent requires more steps to
obtain the performance of the Graph Exploration, while
the Graph Exploration only needs the anchor entities to
perform the search within the graph.

What is the effect of Search Depth in Automatic 492

Graph Exploration? We analyze the effect of 493

search depth in Figure 5, which presents perfor- 494

mance results across various depths, with fixed step 495

size of one. The results demonstrate that the per- 496

formance of depth-first search plateaus at depth of 497

3, highlighting the relevance of search exploration 498

with respect to the given query. Beyond this point, 499

deeper traversal yields no significant gains, likely 500

due to diminishing relevance of distant nodes. 501

7

Figure 5: Effect of the Search depth in Graph Explo-
ration interaction method for a fixed steps number. The
method can achieve relatively good performance with
the anchor entities extracted from the question.

Figure 6: Impact of tree width on Agentic ToT per-
formance. It shows a general trend of performance
improvement with increasing tree width.

What is the effect of tree width in the reasoning502

strategy (ToT)? Based on experimental results503

across all academic datasets, we observe perfor-504

mance variations among different methods. To505

gain further insight, we analyze the effect of tree506

width on results, as shown in Figure 6. We notice507

a slight upward trend in performance as the tree508

width increases, although the difference is more509

pronounced between CoT and ToT itself, going510

from one branch to two. The added computational511

time and resources likely contribute to this perfor-512

mance enhancement.513

What is the influence of the state evaluator?514

Figure 7 explores the impact of state evaluators,515

specifically Score and Select, within the ToT frame-516

work. The analysis indicates that, while there is no517

significant difference between the two methods, the518

Select evaluator generally yields slightly better re-519

sults. This trend is especially evident in the context520

of the Agent’s performance, though the advantage521

is less pronounced in automatic graph exploration.522

Figure 7: Influence of the State Evaluators in ToT. The
Select method obtains better results over Score method.

How are errors different for each strategy? To 523

understand failure patterns, we define three error 524

types: (1) Reached limit — the reasoning hit the 525

step limit; (2) Answer found but not returned — 526

the correct answer appeared but was not output; (3) 527

Wrong reasoning step — the model followed an 528

illogical step. Using GPT-4o, we labeled a larger 529

set of answers and traces. As shown in Figure 8, 530

ToT and GoT show more “answer found but not re- 531

turned” cases than CoT, suggesting better retrieval 532

but occasional failures in synthesis. This comes 533

with a slight rise in logical errors, likely due to the 534

complexity of multiple reasoning paths. 535

(a) CoT (b) ToT (c) GoT

Figure 8: Error distribution across reasoning strategies.
ToT and GoT reduce unanswered cases but slightly in-
crease logical errors due to more complex reasoning.

8 Conclusion 536

We present a framework for grounding LLM rea- 537

soning in KGs by integrating each step with struc- 538

tured graph retrieval. By combining strategies like 539

CoT, ToT, and GoT with adaptive graph search, our 540

method achieves state-of-the-art performance on 541

GRBench. The approach enables inference-time 542

reasoning, offering flexibility across domains, and 543

laying the groundwork for future advances in struc- 544

tured knowledge integration. 545

8

9 Limitations546

In this work, we demonstrate how LLMs can be547

used to explore a graph while conditioning the next548

steps based on the graph’s results. We show that549

the two approaches presented achieve superior re-550

sults in graph exploration. Integrating KGs with551

LLMs can provide complex relational knowledge552

for LLMs to leverage. However, the system’s per-553

formance will depend on the knowledge encoded554

in the graph and the models’ capabilities.555

Extending inference-time reasoning methods for556

LLMs is significantly constrained by computational557

resources and the time available to the user. We558

analyze the computational complexity of the meth-559

ods in Appendix E, where we show the exponen-560

tial growth of ToT and GoT due to its branching561

structure. GoT further compounds this by allowing562

merges between reasoning paths, which increases563

the total number of evaluations. Additionally, this564

work is constrained by the computational resources565

needed to load the graph into memory, as it de-566

mands a significant amount of available RAM.567

While LLMs conditioned on external knowledge568

can generate outputs based on accessed content,569

their generated output is not strictly limited to that570

information. Thus, they may still generate halluci-571

nated content. This work represents a step forward572

in mitigating such cases by providing the necessary573

content.574

10 Ethics Statement575

This paper advances the integration of Knowledge576

Graphs and Large Language Models to enhance577

their capability for domain-specific question an-578

swering. This work can facilitate the development579

of chatbots that provide responses limited to certain580

answers, aiding in meeting industry-standard proto-581

cols and ensuring adherence to privacy guidelines.582

By anchoring the model’s reasoning processes583

in KGs, we aim to increase the transparency of584

LLM outputs. Each reasoning step is grounded in585

structured, retrievable information, enabling users586

to trace the origin of a given response. We admit587

that fully interpretable AI remains a challenge, and588

transparency remains a primary focus for better589

relying on such complex models.590

References591

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gersten-592
berger, Michal Podstawski, Lukas Gianinazzi, Joanna593

Gajda, Tomasz Lehmann, Hubert Niewiadomski, Pi- 594
otr Nyczyk, et al. 2024. Graph of thoughts: Solving 595
elaborate problems with large language models. In 596
Proceedings of the AAAI Conference on Artificial 597
Intelligence, volume 38, pages 17682–17690. 598

Ziwei Chai, Tianjie Zhang, Liang Wu, Kaiqiao Han, 599
Xiaohai Hu, Xuanwen Huang, and Yang Yang. 2023. 600
Graphllm: Boosting graph reasoning ability of large 601
language model. ArXiv preprint, abs/2310.05845. 602

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, 603
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, 604
Akhil Mathur, Alan Schelten, Amy Yang, Angela 605
Fan, et al. 2024. The llama 3 herd of models. ArXiv 606
preprint, abs/2407.21783. 607

Bahare Fatemi, Jonathan Halcrow, and Bryan Perozzi. 608
2024. Talk like a graph: Encoding graphs for large 609
language models. In The Twelfth International Con- 610
ference on Learning Representations. 611

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, 612
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Meng Wang, 613
and Haofen Wang. 2023. Retrieval-augmented gen- 614
eration for large language models: A survey. ArXiv 615
preprint, abs/2312.10997. 616

Xiaoxin He, Yijun Tian, Yifei Sun, Nitesh Chawla, 617
Thomas Laurent, Yann LeCun, Xavier Bresson, and 618
Bryan Hooi. 2024. G-retriever: Retrieval-augmented 619
generation for textual graph understanding and ques- 620
tion answering. In Advances in Neural Informa- 621
tion Processing Systems, volume 37, pages 132876– 622
132907. Curran Associates, Inc. 623

Bowen Jin, Chulin Xie, Jiawei Zhang, Kashob Kumar 624
Roy, Yu Zhang, Suhang Wang, Yu Meng, and Jiawei 625
Han. 2024. Graph chain-of-thought: Augmenting 626
large language models by reasoning on graphs. ArXiv 627
preprint, abs/2404.07103. 628

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019. 629
Billion-scale similarity search with GPUs. IEEE 630
Transactions on Big Data, 7(3):535–547. 631

Omar Khattab, Keshav Santhanam, Xiang Lisa 632
Li, David Hall, Percy Liang, Christopher Potts, 633
and Matei Zaharia. 2022. Demonstrate-search- 634
predict: Composing retrieval and language mod- 635
els for knowledge-intensive nlp. ArXiv preprint, 636
abs/2212.14024. 637

Jiho Kim, Yeonsu Kwon, Yohan Jo, and Edward Choi. 638
2023. KG-GPT: A general framework for reasoning 639
on knowledge graphs using large language models. 640
In Findings of the Association for Computational Lin- 641
guistics: EMNLP 2023, pages 9410–9421, Singapore. 642
Association for Computational Linguistics. 643

Miyoung Ko, Sue Hyun Park, Joonsuk Park, and Min- 644
joon Seo. 2024. Investigating how large language 645
models leverage internal knowledge to perform com- 646
plex reasoning. ArXiv preprint, abs/2406.19502. 647

9

https://arxiv.org/abs/2310.05845
https://arxiv.org/abs/2310.05845
https://arxiv.org/abs/2310.05845
https://arxiv.org/abs/2407.21783
https://openreview.net/forum?id=IuXR1CCrSi
https://openreview.net/forum?id=IuXR1CCrSi
https://openreview.net/forum?id=IuXR1CCrSi
https://arxiv.org/abs/2312.10997
https://arxiv.org/abs/2312.10997
https://arxiv.org/abs/2312.10997
https://proceedings.neurips.cc/paper_files/paper/2024/file/efaf1c9726648c8ba363a5c927440529-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/efaf1c9726648c8ba363a5c927440529-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/efaf1c9726648c8ba363a5c927440529-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/efaf1c9726648c8ba363a5c927440529-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/efaf1c9726648c8ba363a5c927440529-Paper-Conference.pdf
https://arxiv.org/abs/2404.07103
https://arxiv.org/abs/2404.07103
https://arxiv.org/abs/2404.07103
https://arxiv.org/abs/2212.14024
https://arxiv.org/abs/2212.14024
https://arxiv.org/abs/2212.14024
https://arxiv.org/abs/2212.14024
https://arxiv.org/abs/2212.14024
https://doi.org/10.18653/v1/2023.findings-emnlp.631
https://doi.org/10.18653/v1/2023.findings-emnlp.631
https://doi.org/10.18653/v1/2023.findings-emnlp.631
https://arxiv.org/abs/2406.19502
https://arxiv.org/abs/2406.19502
https://arxiv.org/abs/2406.19502
https://arxiv.org/abs/2406.19502
https://arxiv.org/abs/2406.19502

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying648
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.649
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-650
cient memory management for large language model651
serving with pagedattention. In Proceedings of the652
ACM SIGOPS 29th Symposium on Operating Systems653
Principles.654

Patrick S. H. Lewis, Ethan Perez, Aleksandra Pik-655
tus, Fabio Petroni, Vladimir Karpukhin, Naman656
Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih,657
Tim Rocktäschel, Sebastian Riedel, and Douwe658
Kiela. 2020. Retrieval-augmented generation for659
knowledge-intensive NLP tasks. In Advances in Neu-660
ral Information Processing Systems 33: Annual Con-661
ference on Neural Information Processing Systems662
2020, NeurIPS 2020, December 6-12, 2020, virtual.663

Feiyang Li, Peng Fang, Zhan Shi, Arijit Khan, Fang664
Wang, Dan Feng, Weihao Wang, Xin Zhang, and665
Yongjian Cui. 2025. Cot-rag: Integrating chain of666
thought and retrieval-augmented generation to en-667
hance reasoning in large language models. arXiv668
preprint arXiv:2504.13534.669

Tianle Li, Xueguang Ma, Alex Zhuang, Yu Gu, Yu Su,670
and Wenhu Chen. 2023. Few-shot in-context learning671
on knowledge base question answering. In Proceed-672
ings of the 61st Annual Meeting of the Association for673
Computational Linguistics (Volume 1: Long Papers),674
pages 6966–6980, Toronto, Canada. Association for675
Computational Linguistics.676

Zhuoqun Li, Xuanang Chen, Haiyang Yu, Hongyu677
Lin, Yaojie Lu, Qiaoyu Tang, Fei Huang, Xian-678
pei Han, Le Sun, and Yongbin Li. 2024. Struc-679
trag: Boosting knowledge intensive reasoning of llms680
via inference-time hybrid information structurization.681
ArXiv preprint, abs/2410.08815.682

Chin-Yew Lin. 2004. ROUGE: A package for auto-683
matic evaluation of summaries. In Text Summariza-684
tion Branches Out, pages 74–81, Barcelona, Spain.685
Association for Computational Linguistics.686

Haoran Luo, Zichen Tang, Shiyao Peng, Yikai Guo,687
Wentai Zhang, Chenghao Ma, Guanting Dong, Meina688
Song, Wei Lin, et al. 2023. Chatkbqa: A generate-689
then-retrieve framework for knowledge base question690
answering with fine-tuned large language models.691
ArXiv preprint, abs/2310.08975.692

Haoyan Luo and Lucia Specia. 2024. From understand-693
ing to utilization: A survey on explainability for large694
language models. ArXiv preprint, abs/2401.12874.695

Linhao Luo, Yuan-Fang Li, Reza Haf, and Shirui Pan.696
2024. Reasoning on graphs: Faithful and inter-697
pretable large language model reasoning. In The698
Twelfth International Conference on Learning Repre-699
sentations.700

Elan Markowitz, Anil Ramakrishna, Jwala Dhamala,701
Ninareh Mehrabi, Charith Peris, Rahul Gupta, Kai-702
Wei Chang, and Aram Galstyan. 2024. Tree-of-703
traversals: A zero-shot reasoning algorithm for aug-704
menting black-box language models with knowledge705

graphs. In Proceedings of the 62nd Annual Meeting 706
of the Association for Computational Linguistics (Vol- 707
ume 1: Long Papers), pages 12302–12319, Bangkok, 708
Thailand. Association for Computational Linguistics. 709

Costas Mavromatis and George Karypis. 2024. Gnn- 710
rag: Graph neural retrieval for large language model 711
reasoning. ArXiv preprint, abs/2405.20139. 712

Fedor Moiseev, Zhe Dong, Enrique Alfonseca, and Mar- 713
tin Jaggi. 2022. SKILL: Structured knowledge infu- 714
sion for large language models. In Proceedings of 715
the 2022 Conference of the North American Chap- 716
ter of the Association for Computational Linguistics: 717
Human Language Technologies, pages 1581–1588, 718
Seattle, United States. Association for Computational 719
Linguistics. 720

Boci Peng, Yun Zhu, Yongchao Liu, Xiaohe Bo, 721
Haizhou Shi, Chuntao Hong, Yan Zhang, and Siliang 722
Tang. 2024. Graph retrieval-augmented generation: 723
A survey. ArXiv preprint, abs/2408.08921. 724

Nitarshan Rajkumar, Raymond Li, and Dzmitry Bah- 725
danau. 2022. Evaluating the text-to-sql capabil- 726
ities of large language models. ArXiv preprint, 727
abs/2204.00498. 728

Jiashuo Sun, Chengjin Xu, Lumingyuan Tang, Saizhuo 729
Wang, Chen Lin, Yeyun Gong, Lionel Ni, Heung- 730
Yeung Shum, and Jian Guo. 2024. Think-on-graph: 731
Deep and responsible reasoning of large language 732
model on knowledge graph. In The Twelfth Interna- 733
tional Conference on Learning Representations. 734

SM Tonmoy, SM Zaman, Vinija Jain, Anku Rani, Vip- 735
ula Rawte, Aman Chadha, and Amitava Das. 2024. 736
A comprehensive survey of hallucination mitigation 737
techniques in large language models. ArXiv preprint, 738
abs/2401.01313. 739

Pablo Villalobos, Anson Ho, Jaime Sevilla, Tamay 740
Besiroglu, Lennart Heim, and Marius Hobbhahn. 741
2022. Will we run out of data? limits of llm scal- 742
ing based on human-generated data. ArXiv preprint, 743
abs/2211.04325. 744

Xinyi Wang, Alfonso Amayuelas, Kexun Zhang, Liang- 745
ming Pan, Wenhu Chen, and William Yang Wang. 746
2024. Understanding reasoning ability of language 747
models from the perspective of reasoning paths ag- 748
gregation. In Forty-first International Conference on 749
Machine Learning. 750

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 751
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, 752
et al. 2022. Chain-of-thought prompting elicits rea- 753
soning in large language models. Advances in neural 754
information processing systems, 35:24824–24837. 755

Yilin Wen, Zifeng Wang, and Jimeng Sun. 2024. 756
MindMap: Knowledge graph prompting sparks graph 757
of thoughts in large language models. In Proceedings 758
of the 62nd Annual Meeting of the Association for 759
Computational Linguistics (Volume 1: Long Papers), 760
pages 10370–10388, Bangkok, Thailand. Association 761
for Computational Linguistics. 762

10

https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://doi.org/10.18653/v1/2023.acl-long.385
https://doi.org/10.18653/v1/2023.acl-long.385
https://doi.org/10.18653/v1/2023.acl-long.385
https://arxiv.org/abs/2410.08815
https://arxiv.org/abs/2410.08815
https://arxiv.org/abs/2410.08815
https://arxiv.org/abs/2410.08815
https://arxiv.org/abs/2410.08815
https://aclanthology.org/W04-1013/
https://aclanthology.org/W04-1013/
https://aclanthology.org/W04-1013/
https://arxiv.org/abs/2310.08975
https://arxiv.org/abs/2310.08975
https://arxiv.org/abs/2310.08975
https://arxiv.org/abs/2310.08975
https://arxiv.org/abs/2310.08975
https://arxiv.org/abs/2401.12874
https://arxiv.org/abs/2401.12874
https://arxiv.org/abs/2401.12874
https://arxiv.org/abs/2401.12874
https://arxiv.org/abs/2401.12874
https://openreview.net/forum?id=ZGNWW7xZ6Q
https://openreview.net/forum?id=ZGNWW7xZ6Q
https://openreview.net/forum?id=ZGNWW7xZ6Q
https://doi.org/10.18653/v1/2024.acl-long.665
https://doi.org/10.18653/v1/2024.acl-long.665
https://doi.org/10.18653/v1/2024.acl-long.665
https://doi.org/10.18653/v1/2024.acl-long.665
https://doi.org/10.18653/v1/2024.acl-long.665
https://doi.org/10.18653/v1/2024.acl-long.665
https://doi.org/10.18653/v1/2024.acl-long.665
https://arxiv.org/abs/2405.20139
https://arxiv.org/abs/2405.20139
https://arxiv.org/abs/2405.20139
https://arxiv.org/abs/2405.20139
https://arxiv.org/abs/2405.20139
https://doi.org/10.18653/v1/2022.naacl-main.113
https://doi.org/10.18653/v1/2022.naacl-main.113
https://doi.org/10.18653/v1/2022.naacl-main.113
https://arxiv.org/abs/2408.08921
https://arxiv.org/abs/2408.08921
https://arxiv.org/abs/2408.08921
https://arxiv.org/abs/2204.00498
https://arxiv.org/abs/2204.00498
https://arxiv.org/abs/2204.00498
https://openreview.net/forum?id=nnVO1PvbTv
https://openreview.net/forum?id=nnVO1PvbTv
https://openreview.net/forum?id=nnVO1PvbTv
https://openreview.net/forum?id=nnVO1PvbTv
https://openreview.net/forum?id=nnVO1PvbTv
https://arxiv.org/abs/2401.01313
https://arxiv.org/abs/2401.01313
https://arxiv.org/abs/2401.01313
https://arxiv.org/abs/2211.04325
https://arxiv.org/abs/2211.04325
https://arxiv.org/abs/2211.04325
https://openreview.net/forum?id=dZsEOFUDew
https://openreview.net/forum?id=dZsEOFUDew
https://openreview.net/forum?id=dZsEOFUDew
https://openreview.net/forum?id=dZsEOFUDew
https://openreview.net/forum?id=dZsEOFUDew
https://doi.org/10.18653/v1/2024.acl-long.558
https://doi.org/10.18653/v1/2024.acl-long.558
https://doi.org/10.18653/v1/2024.acl-long.558

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,763
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.764
2024. Tree of thoughts: Deliberate problem solving765
with large language models. Advances in Neural766
Information Processing Systems, 36.767

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak768
Shafran, Karthik Narasimhan, and Yuan Cao. 2022.769
React: Synergizing reasoning and acting in language770
models. CoRR, abs/2210.03629.771

Donghan Yu, Sheng Zhang, Patrick Ng, Henghui Zhu,772
Alexander Hanbo Li, Jun Wang, Yiqun Hu, William773
Wang, Zhiguo Wang, and Bing Xiang. 2022. De-774
caf: Joint decoding of answers and logical forms for775
question answering over knowledge bases. ArXiv776
preprint, abs/2210.00063.777

Danna Zheng, Mirella Lapata, and Jeff Z Pan. 2024.778
Large language models as reliable knowledge bases?779
ArXiv preprint, abs/2407.13578.780

Alex Zhuang, Ge Zhang, Tianyu Zheng, Xinrun Du,781
Junjie Wang, Weiming Ren, Stephen W Huang,782
Jie Fu, Xiang Yue, and Wenhu Chen. 2024.783
Structlm: Towards building generalist models for784
structured knowledge grounding. ArXiv preprint,785
abs/2402.16671.786

Yuchen Zhuang, Yue Yu, Kuan Wang, Haotian Sun, and787
Chao Zhang. 2023. Toolqa: a dataset for llm question788
answering with external tools. In Proceedings of the789
37th International Conference on Neural Information790
Processing Systems, NIPS ’23.791

11

https://doi.org/10.48550/arXiv.2210.03629
https://doi.org/10.48550/arXiv.2210.03629
https://doi.org/10.48550/arXiv.2210.03629
https://arxiv.org/abs/2210.00063
https://arxiv.org/abs/2210.00063
https://arxiv.org/abs/2210.00063
https://arxiv.org/abs/2210.00063
https://arxiv.org/abs/2210.00063
https://arxiv.org/abs/2407.13578
https://arxiv.org/abs/2402.16671
https://arxiv.org/abs/2402.16671
https://arxiv.org/abs/2402.16671

A GRBench Statistics792

Detailed statistics of the graphs in GRBench (Jin et al., 2024) are shown in Table 3. Academic Graphs793

contain 3 types of nodes: paper, author, venue. Literature Graphs contain 4 types of nodes: book, author,794

publisher and series. Healthcare Graph contains 11 types of nodes: anatomy, biological process, cellular795

component, compound, disease, gene, molecular function, pathway, pharmacologic class, side effect,796

and symptom. Questions are created according to multiple templates labeled as easy, medium, and hard,797

depending on the number of nodes required to give the answer.798

Domain Topic Graph Statistics Data
Nodes # Edges # Templates # Questions

Academic

Biology ∼4M ∼39M 14 140
Chemistry ∼4M ∼30M 14 140

Material Science ∼3M ∼22M 14 140
Medicine ∼6M ∼30M 14 140
Physics ∼2M ∼33M 14 140

Literature Goodreads ∼3M ∼22M 24 240
Healthcare Disease ∼47K ∼4M 27 270

SUM - - - 121 1210

Table 3: Detailed statistics of the GRBench (Jin et al., 2024).

B LLM <–> KG Interaction Pipelines799

Description of the two LLM + KG Interaction Pipelines in their CoT form:800

1. Agent – Figure 9801

2. Automatic Graph Exploration – Figure 10802

Figure 9: Agent Pipeline: (1) Input Query, (2) Thought Generation (3) Action Selection, (4) Environment Observa-
tion from the Knowledge Graph. The process is repeated until termination action is generated or limit reached.

Figure 10: Automatic Graph Exploration Pipeline: (1) Input Query, (2) Thought Generation, (3) Entity Extraction
(from query or thought with LLM), (4) Automatic Graph Search as described in Algorithm 1 (5) Query LLM for
answer or continue

12

Algorithm 1 presents the pseudocode for the Automatic Graph Exploration described in Section 4.2.2. 803

Algorithm 1 Graph Exploration Algorithm

1: procedure GRAPHEXPLORE(LLM, seen_entities, search_depth)
2: relevant_attributes, found_triples← 0
3: for depth in search_depth do
4: for entity in seen_entities do
5: if seen_entities[entity_id].visited == True then
6: Continue
7: else
8: seen_entities[entity]← Visited
9: end if

10: head_entity_name, entity_attributes, neighbors← Graph[entity]
11: pruned_neighbors← prune_relations(LLM,neighbors)
12: pruned_neighbors← prune_entities(LLM, pruned_neighbors)
13: found_triples← generate_triples(entity, pruned_neighbros)
14: end for
15: seen_entities← Update(seen_entities, neighbors)
16: if End?(LLM, found_triples, relevant_attributes) == True then
17: break
18: end if
19: end for
20: return found_triples, relevant_attributes, seen_entities
21: end procedure

C Performance results in plots 804

Figures 11 and 12 illustrate the performance results using the Rouge-L and GPT4score metrics, respec- 805

tively, for the healthcare graph for all methods. The results were run on the LLama 3.1 Instruct models 806

(8B, 70B, and 405B-FP8) and demonstrate the improved performance achieved through more complex 807

reasoning and search strategies during inference. 808

Figure 11: Performance results using the Rouge-L metric on the healthcare graph of GRBench (Jin et al., 2024),
comparing all methods with LLama 3.1 Instruct models of various sizes (8B, 70B, 405B-FP8). Experimental details
are included in Section 5.

13

Figure 12: Performance results using the GPT4Score metric on the healthcare graph of GRBench (Jin et al., 2024),
comparing all methods with LLama 3.1 Instruct models of various sizes (8B, 70B, 405B-FP8). Experimental details
are included in Section 5.

D Results on GPT4Score809

In this section, we present the results of the experiments described in Section 5 for all methods, using the810

GPT4Score metric. This metric calculates the percentage of "correct" answers as judged by GPT-4 when811

presented with both the correct and the generated answer. The tables in this section present the same data812

as in Tables 1 and 2, but evaluated using GPT4Score.813

Method Model Healthcare Goodreads Biology Chemistry Materials Science Medicine Physics

B
as

el
in

es

Llama 3.1 8B-Ins 11.85 13.33 10.71 11.43 7.86 7.87 9.29
Base Llama 3.1 70B-Ins 12.96 19.17 10.00 12.14 11.43 11.43 12.86

Llama 3.1 405B-Ins 15.55 26.67 12.86 12.14 12.14 13.57 12.14
Llama 3.1 8B-Ins 11.85 21.67 12.86 10.00 10.00 8.57 7.86

Text-RAG Llama 3.1 70B-Ins 12.22 27.5 12.14 13.57 13.57 13.57 12.86
Llama 3.1 405B-Ins 12.96 26.67 15.00 13.57 12.86 14.29 13.57
Llama 3.1 8B-Ins 14.81 32.50 29.29 29.28 27.86 25.71 29.29

Graph-RAG Llama 3.1 70B-Ins 17.04 32.92 39.29 40.71 43.57 34.29 40.00
Llama 3.1 405B-Ins 18.15 31.67 37.14 42.86 40.00 36.43 41.43

G
ra

ph
C

oT

Llama 3.1 8B-Ins 18.15 32.5 20.71 19.28 25.00 14.29 21.43
Agent Llama 3.1 70B-Ins 32.59 43.75 50.00 51.43 50.00 48.57 46.43

Llama 3.1 405B-Ins 28.89 48.33 38.57 38.57 47.86 56.43 34.29

Graph
Explore

Llama 3.1 8B-Ins 22.22 36.67 35.00 30.71 29.29 29.29 32.86
Llama 3.1 70B-Ins 27.78 32.92 45.71 49.29 40.00 40.00 44.29
Llama 3.1 405B-Ins 28.89 48.33 38.57 38.57 47.86 56.43 34.29

G
ra

ph
To

T

Agent

Score
Llama 3.1 8B-Ins 30.49 55.14 43.33 41.67 44.05 36.43 39.52
Llama 3.1 70B-Ins 30.49 54.48 65.48 62.14 55.95 63.57 56.19
Llama 3.1 405B-Ins 45.55 56.53 71.67 65.71 52.62 68.81 44.76

Select
Llama 3.1 8B-Ins 30.00 54.17 40.71 37.14 40.00 32.86 36.43
Llama 3.1 70B-Ins 39.63 56.67 65.00 67.14 62.86 60.71 55.55
Llama 3.1 405B-Ins 44.07 58.75 71.43 69.29 65.00 68.81 60.00

Graph
Explore

Score
Llama 3.1 8B-Ins 21.48 41.10 32.86 31.67 31.43 32.14 35.24
Llama 3.1 70B-Ins 24.94 40.97 52.38 57.86 49.29 54.29 47.86
Llama 3.1 405B-Ins 30.86 48.33 47.86 57.14 50.71 56.67 47.14

Select
Llama 3.1 8B-Ins 21.85 41.67 32.86 31.67 31.43 32.14 35.24
Llama 3.1 70B-Ins 30.37 42.08 54.29 57.14 47.86 52.14 46.43
Llama 3.1 405B-Ins 31.48 48.75 45.00 57.86 48.86 57.14 45.71

Table 4: GPT4Score performance results on GRBench (Jin et al., 2024), comparing standard LLMs, Text-RAG,
Graph-RAG, Graph-CoT, and Graph-ToT. Experiments are described in Section 5, using LLama 3.1 - Instruct
backbone models with sizes 8B, 70B, and 405B.

14

Method Model Healthcare Biology

A
ge

nt Sc
or

e Llama 3.1 8B-Ins 29.88 32.86
Llama 3.1 70B-Ins 29.51 61.69
Llama 3.1 405B-Ins 41.81 48.33

Se
le

ct Llama 3.1 8B-Ins 30.00 40.71
Llama 3.1 70B-Ins 39.63 69.83
Llama 3.1 405B-Ins 44.81 72.86

G
ra

ph
E

xp
lo

re

Sc
or

e Llama 3.1 8B-Ins 22.72 21.19
Llama 3.1 70B-Ins 24.20 48.57
Llama 3.1 405B-Ins 32.22 41.67

Se
le

ct Llama 3.1 8B-Ins 22.59 19.28
Llama 3.1 70B-Ins 32.96 52.86
Llama 3.1 405B-Ins 31.48 57.86

Figure 13: Graph-GoT results (GPT4Score) on GR-
Bench with Llama 3.1 Instruct sizes 8B, 70B, and 405B.

Figure 14: Results decomposed into easy/medium/hard
questions according to GPT4Score.

E Computational Analysis 814

Method Key Parame-
ters

Approx. # LLM Calls Approx. # KG Operations Primary Growth
Driver(s)

C
oT Agent n O(n) O(n) n (linear)

Graph Explore n, d O(n) O(n · CostExplore(d)) n, d

To
T Agent Dmax, k, t O

(
k · tDmax−1

t−1

)
Same as LLM Calls Dmax, k, t (exponen-

tial in Dmax)

Graph Explore Dmax, k, t, d O
(
k · tDmax−1

t−1

)
O

(
k · tDmax−1

t−1
· CostExplore(d)

)
Dmax, k, t, d

G
oT Agent Dmax, k, t .

O
(
k · tDmax −1

t−1
+

∑Dmax
i=1

⌊
k·ti
2

⌋)Same as LLM Calls Dmax, k, t (aggrega-
tion adds extra cost)

Graph Explore Dmax, k, t, d Same as Agent O (LLM Calls · CostExplore(d)) Dmax, k, t, d

Table 5: Theoretical computational complexity comparison of reasoning methods. Parameters: n (reasoning steps),
Dmax (tree depth), k (branching factor), t (paths retained), d (KG search depth), and CostExplore(d) (cost per KG
search). GoT includes pairwise aggregation of thoughts at each depth.

Figure 15: Comparison of computational
costs across different reasoning strategies —
CoT, ToT, GoT — as a function of reasoning
steps. GoT exhibits the highest cost due to
merge operations and graph traversal.

The computational analysis summarized in Table 5 high- 815

lights the trade-offs between reasoning power and computa- 816

tional cost when grounding LLMs with Knowledge Graphs 817

(KGs). The Agent-based methods scale linearly with the num- 818

ber of reasoning steps or tree nodes, with CoT representing 819

the lowest cost baseline. In contrast, Automatic Graph Ex- 820

ploration methods introduce additional overhead via entity 821

extraction, multi-hop traversal up to a fixed max_depth, and 822

LLM-based pruning at each step. 823

Among reasoning strategies, ToT introduces exponential 824

growth in cost with respect to depth due to its exploration 825

of k branches and selection of t continuations per level. 826

GoT further amplifies this by incorporating aggregation trans- 827

formations that attempt to merge every pair of thoughts at 828

each depth, leading to an additional cost proportional to 829∑Dmax
i=1

⌊
k·ti
2

⌋
. 830

Importantly, our experiments reveal that the higher com- 831

plexity of GoT does not consistently translate to improved accuracy compared to ToT, suggesting dimin- 832

ishing returns. While the model size (e.g., 8B, 70B, 405B) influences the latency and memory footprint of 833

each LLM call, it does not affect the algorithmic complexity classes shown. Hence, selecting a strategy 834

15

requires balancing reasoning depth with feasible compute budgets.835

F Prompts Archive836

In this section, we gather the necessary prompts essential for implementing the proposed methodologies.837

Agent

Agent Step: Solve a question answering task with interleaving Thought,
Interaction with Graph, Feedback from Graph steps. In Thought step, you can
think about what further information is needed, and In Interaction step, you
can get feedback from graphs with four functions:
(1) RetrieveNode[keyword], which retrieves the related node from the graph
according to the corresponding query.
(2) NodeFeature[Node, feature], which returns the detailed attribute information
of Node regarding the given "feature" key. (3) NodeDegree[Node, neighbor_type],
which calculates the number of "neighbor_type" neighbors of the node Node in
the graph.
(4) NeighbourCheck[Node, neighbor_type], which lists the "neighbor_type"
neighbours of the node Node in the graph and returns them.
You may take as many steps as necessary.
Here are some examples:
{examples}
Please answer by providing node main feature (e.g., names) rather than node
IDs.
Generate the next step.
Definition of the graph: {graph_definition}
Question: {question}
{scratchpad}

838

Automatic Graph Exploration

Search Thought: Given the previous thoughts, generate the next thought to
answer the provided question.
Your end goal is to answer the question step by step. For context, you are
also provided with some knowledge triples from a knowledge base.
Follow the format of the examples to generate the next thought.

{examples}

Graph Definition: {graph_definition}
Question: {question}
Knowledge Triples:
{triples}
Previous thoughts:
{thoughts}
Related Entity Attributes:
{attributes}
Next Thought:

Search End?: Your are provided with the an original question, the
associated subquestion thoughts and their corresponding knowledge graph

839

16

triples (head_entity -> relation -> tail_entity). Your task is to answer
whether it’s sufficient for you to answer the original question (Yes or No).
You are provided with examples. You should follow the same format as in the
examples, writing ’Yes’ or ’No’ within brackets at the beginning of the answer.
(Examples)
Task: Question: {question}
Thoughts: {thoughts}
Knowledge Triples: {triples}
Entity Attributes: {attributes}
Answer:

Entity Extraction: Given the provided text, extract the relevant entities that
may appear in a knowledge base. Return the answer at the end with brackets
relevant entities as shown in the following examples. If there are several
entities, separate them with commas.
(Examples)
Task: Text: {text}
Relevant Entities:

Prune Relations: From the given entity and relations, select only the
relevant relations to answer the question. Provide the answer at the end with
bracketsanswer , as shown in the following example.
(Examples)
Question: {question}
Head Entity: {entity}
Relations: {relations} Answer:

Prune entities: You are provided with a question, a head entity, a
relation and tail entity or entities from a knowledge base. Select the tail
entity or entities to answer the question. Return the tail entity or entities
at the end with brackets relevant entity or entities, as shown in the following
examples.
(Examples)
Question: {question}
Head Entity: {head_entity}
Relation: {relation}
Tail Entities: {tail_entities}
Relevant Entities:

Search Attributes: Is any of the attributes relevant to answer the question?
Return the answer at the end with brackets answer , as shown in the following
examples.
(Examples)
Question: {question}
Entity: {entity}
Attributes: {attributes}
Relevant Attributes:

840

17

State Evaluators

Selection Vote: Given a question, you need to select the possible chain of thought that may lead to
the correct answer with higher probablity. You are provided with several choices with thouhgts
and related triples from a knowledge base. Decide which choice is most promising to complete the
task. Analyze each choice in detail, then conclude in the last line: "The best choice is s" , where s
the integer id of the choice.
(Examples)
Question: {question}
Choices: {choices} (+ attributes/triples)
Answer:

Score Vote: Generate a score for the given reasoning chain. The score represents the
probability that the chain will lead to the correct answer. The chains contain interleaved thoughts
and related triples from a knowledge base. Some chains may not be complete, but you need to
judge the steps that are provided. The score can be any floating number between 0 and 1.
(Examples)
Question: {question}
Thought Chain: {thoughts} (+ attributes/triples)
Score:

841

Graph of Thoughts

Graph of Thought Merge: Generate the next thought for the merged chain of thoughts. You
are provided with the question, two chains of thoughts, and the corresponding merged chain of
thought. Identify inconsistencies or errors from the previous chains and provide the next thought
for the merged chain. You should follow the same format as in the examples.
(Examples)
Question: {question}
Chain 1: {chain_1} (+triples/attributes)
Chain 2: {chain_2} (+triples/attributes)
Merged Chain: {merged_chain}
Next Thought:

842

18

G Examples 843

Example 1: Multi-step Reasoning over Graph Example 2: Direct Triple Lookup
Question: What anatomy can be expressed by
gene KRT39?
Ground Truth Answer: head, skin of body
Model Answer: head, skin of body

Thought 1: The question is related to a gene node
(KRT39). We need to find this node in the graph.
Action 1: RetrieveNode[KRT39]
Observation 1: The ID of the node is 390792.

Thought 2: We need to check the ’Anatomy-
expresses-Gene’ neighbors of this gene node.
Action 2: NeighbourCheck[390792,
Anatomy-expresses-Gene]
Observation 2: The neighbors are
[’UBERON:0000033’, ’UBERON:0002097’].

Thought 3: Retrieve names of the anatomy nodes.
Action 3: NodeFeature[UBERON:0000033,
name], NodeFeature[UBERON:0002097, name]
Observation 3: UBERON:0000033 → head,
UBERON:0002097→ skin of body.

Thought 4: These are the anatomy terms expressed
by the gene.
Action 4: Finish[head, skin of body]

Question: What anatomy can be expressed by
gene KRT39?
Ground Truth Answer: head, skin of body
Model Answer: head, skin of body

Thought 1: KRT39 is a gene that is known to be
expressed in two anatomical regions.
Found Triples:

• "KRT39" –> Anatomy-expresses-Gene –>
head

• "KRT39" –> Anatomy-expresses-Gene –>
skin of body

Action: Finish[head, skin of body]

Table 6: Comparison of two LLM-generated reasoning traces for the same question using different strategies:
multi-step graph traversal (Example 1) vs. direct triple lookup (Example 2).

19

