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ABSTRACT

There are two primary approaches to learning from data: discriminative models,
which make predictions based on provided data, and generative models, which
learn data distributions to create new instances. This paper introduces a novel
framework, Discrimination for Generation (DFG), as the first attempt to bridge
the gap between discriminative and generative models. Through DFG, discrim-
inative models can function as generative models. We leverage Neural Tangent
Kernel (NTK) to map discriminative models into a connected functional space,
enabling the calculation of the distance between the data manifold and a sampled
data point. Our experimental results demonstrate that the proposed algorithm can
generate high-fidelity images and can be applied to various tasks such as Targeted
Editing and Inpainting, in addition to both unconditional and conditional image
generation. This connection provides a novel perspective for interpreting models.
Moreover, our method is algorithm-, architecture-, and dataset-agnostic, offering
flexibility and proving to be a robust technique across a wide range of scenarios.

Figure 1: From left to right, the image shows the generation process described in Eq. (??) using pre-
trained DINOv2, a discriminative model, without any condition. No generative models like diffusion
models were used; instead, we only leverage pretrained discriminative models to generate images.

1 INTRODUCTION

There are mainly two approaches to learning from data. Discriminative approaches use sampled train
set to predict properties of test set from unknown distribution, and generative approaches generate
new instances based on the distribution learned from sampled data. The two approaches are related
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in the sense that they are trained to understand the true distribution of data. Discriminative models
aim to make accurate predictions even for unseen data by learning patterns from the sample data,
which it generalizes under the assumption that it represents the entire distribution. Generative models
strive to replicate or create new data points that reflect the broader characteristics of the actual data
distribution, going beyond the limited set of observed samples. In other words, these methodologies
are equivalent because their ideal goal is to understand the ‘true’ data distribution. By empirically
understanding the connection between the two, we can obtain an important insight regarding how
deep learning handles data. Nevertheless, current line of researches draws light to only one direction
of the equivalence. There have been works that directly utilize generative models as discriminative
models, (Li et al., 2023; Kingma et al., 2014a), while the other way around – using discriminative
models as generative ones – is rarely discussed (Haim et al., 2022; Lee et al., 2024).

There have been successful works that demonstrated how generative models such as VAE (Kingma
& Welling, 2022) and diffusion models (Ho et al., 2020a) can be used as discriminators (Kingma
et al., 2014b; Li et al., 2023). Despite the successful conversion from a generative model to a dis-
criminative model, attempts to conduct generation with discriminative models are scarce. Similar
works focus solely on training data reconstruction through model inversion (Wang & Kurz, 2022),
which cannot generate unseen images within the data manifold. The work on Deep Support Vectors
(DSVs) (Lee et al., 2024) is an attempt to find support vectors in any deep neural network. DSVs
effectively generates visually plausible images even from high-dimensional data, and since the gen-
erated images visualize hidden decision criteria rather than being mere reconstructions, DSVs can
be considered a generative approach. However, DSVs can only generate images conditioned on
class labels, which limits its classification models, making it difficult to classify it as a true genera-
tive model. Additionally, it lacks a mathematically plausible explanation. These limitations are also
present in related works. On the other hand, our algorithm overcomes this issue.

Our work ambitiously pioneers a way to transform discriminative models into generative models.
We leverage the Loss Tangent Kernel (LTK) (Chen et al., 2023), a variant of Neural Tangent Kernel
(NTK) (Jacot et al., 2018) to map the tuple of a dataset, training algorithm, and neural network ar-
chitecture to a trained network. This enables us to generalize the score function of diffusion models,
allowing it to compute loss directly from the trained model. The entire process is grounded in firm
mathematical justification. To the best of our knowledge, our work is the first attempt to integrate
NTK and the score function for utilizing discriminative models in generative tasks. Our method goes
a step further in achieving practical efficiency. While generative models are notoriously challenging
to train (Salimans et al., 2016) our approach offers the advantage of directly applying already-trained
discriminative models for generation without additional training. Although the performance may not
yet surpass state-of-the-art generative models, our method demonstrates that nearly all types of dis-
criminative models can function as generative models, as shown through extensive experiments. In
addition, we provide an eXplainable AI (XAI) method by visualizing specific features using only
model parameters. This innovative approach represents a shift from traditional feature visualization
techniques in model explainability.

This paper presents Discrimination for Generation(DFG): a method for utilizing discriminative mod-
els in generation tasks and explains the approach in a mathematical framework. The mathematical
explainability is key advantage of our method over visualization of DSV (Lee et al., 2024). We
show that any discriminative model can be transformed into a generative model using the universal
methodology. The generalization of DFG is validated thoroughly through extensive experiments.

We generalize the score-matching problem from probability space to the one involving arbitrary
measures. The problem of calculating the distance of a data point to a manifold in the input space
is transformed into the problem of calculating the distance in the functional space. We then show
that this process can be written in the same form as the objective function of a conditional diffusion
model. This is supported by experiments using various architectures, including ViT (Dosovitskiy
et al., 2021), ResNet (He et al., 2015), and DETR (Carion et al., 2020). Different training method-
ologies – such as self-supervised learning, classification, and object detection – were applied to
demonstrate that the proposed approach can be applied universally. In the end, we show that we can
generate images from discriminative models similarly to diffusion models.

Our contributions are as follows:
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1. We provide a methodology that can transform a common discriminative model into a gen-
erative model without any post-training process.

2. We show that our method works in a similar manner to a diffusion model, and is universally
applicable to any architecture, algorithm and dataset.

2 RELATED WORKS

Score-Based Generative models generates by approximating the actual probability of the data
it wants to generate (Hyvärinen & Dayan, 2005; Song et al., 2020b). The approximation cannot
be made directly, so diffusion process is employed. The process adds noise to target distribution
to create a distribution we know of – for example, Gaussian distribution (Ho et al., 2020b; Song
et al., 2020a) – and reverse the process to obtain a solution. In a nutshell, score-based generative
models generate images by iteratively moving from Gaussian distribution towards image manifold.
Training models to solve this problem requires delicate methodologies; learning a score function
instead of function distribution (Ho et al., 2020a), handling data differently at each time-step. Noisy
classification is also necessary to perform different classifications at different time steps.

Our method Discrimination for Generation(DFG) fundamentally solves the probability approxima-
tion task the score-based model wanted to solve but failed due to complexity. We directly approxi-
mate the distance between data manifold and a sampled image by leveraging Neural Tangent Kernel
(Jacot et al., 2018). Based on empirical and theoretical evidence that the discriminative model in-
herently understands the data manifold, we leverage this to compute a generalized distance. This
way our methodology allows the use of a pretrained discriminative model as a plug-and-play gener-
ative model without the need for additional training or new architectures. Similarly, the conditioning
process does not require any noisy guidance.

Model Visualization diverges into two lines of research. First, gradient-based method is used in
Feature Visualization, one of the approaches in eXplainable AI (XAI) (Zeiler & Fergus, 2014),
where images are generated to maximize a model’s specific output, such as neurons and layers (Er-
han et al., 2009) to understand how the model makes decisions (Mahendran & Vedaldi, 2015; Fel
et al., 2023). A fundamental problem with this method is that it relies on gradient ascent. We can-
not claim that such visualizations accurately reflect the model’s decision criteria. One example is
adversarial attack, which also exploits gradient ascent. The visualizations here manipulate inputs to
maximize specific objectives, however, the results do not provide any insights on decision criteria.
XAI methods may generate plausible images, yet it is still uncertain whether these images truly
reflect the model’s decision boundary.

Second is maximal-margin based technique. It employs stationarity condition along with the equiv-
alence between Support Vector Machine(SVM) and deep-learning models to reconstruct training
dataset (Lyu & Li, 2020). Since it is an application of SVM, most works are conducted in SVM-like
settings. Their work is usually limited to binary classification (Haim et al., 2022) and uses only small
fraction of dataset (Buzaglo et al., 2023). The setting is also extremely overfitted and restricted to
small dimensional data such as CIFAR10 and MNIST with simple architecture like ConvNet and
MLP (Goodfellow et al., 2016). Although Deep Support Vector (Lee et al., 2024) is relatively free
from such limitation discussed above, it is still bounded to classification tasks since it is based on
SVM. Naturally, it can generate images only when class labels are given as condition, requiring a
label pair for image generation. This consequence implies DSV lacks ‘true’ generation ability as it
cannot estimate unconditional image distribution.

Discrimination for Generation overcomes the limitations the two model visualization methods have.
Unlike conventional gradient-based methods that focus on maximization of specific neurons or lay-
ers, DFG leverages the entire model and replaces gradient ascent with functional approximation.
This ensures that the generated data optimally approximates the existing manifold, making it the ob-
jective to provide the model’s decision criteria based on realistic images aligned with the underlying
manifold. These characteristics provide justification to apply our visualization on XAI area. Also,
DFG is free from all restrictions maximal-margin based technique possesses. We now insist we have
successfully transformed various discriminative architectures such as those for classification, SSL
(Self-Supervised Learning) and object detection to generative models in an architecture-, algorithm-,
dataset-agnostic way.
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3 PRELIMINARIES

Kernel Methods are conventional machine learning techniques where a bivariate kernel k(·, ·)
maps two data points in a high-dimensional feature space to inner product k(x, y) = →ω(x),ω(y)↑.
Reproducing Kernel Hilbert Space (RKHS) guarantees the existence of the space ω where the close-
ness of ω(x) and ω(y) implies the closeness of x and y. Fixing one of the inputs, we get a univariate
kernel k(·, x). It is worth noting that this kernel exists in a functional space, i.e., it is a function.

Neural Tangent Kernel tries to explain the generalization ability of deep learning models us-
ing conventional kernel methods. It suggests that for every deep learning network being trained,
a corresponding kernel exists. The kernel is defined by the gradients of the given deep learn-
ing model, !(x, x→) = ↓ωf(x)↑↓ωf(x→), reflecting how the model trains in the input space.
However, as NTK does not account for loss dynamics, Loss Tangent Kernel Chen et al. (2023)
extends NTK by incorporating the derivative of the loss function. The LTK is expressed as:
K(x, x→) = ↓f ε(f(x; ϑ))↑!↓f ε(f(x→; ϑ)).

4 DISCRIMINATION FOR GENERATION

In this section, we introduce our algorithm Discrimination for Generation (DFG). The introduction
is done step by step. First, we generalize the computation method of the score model in Sec.4.1 and
argue that the goal of this framework is to minimize the distance between the generated image and
the data manifold. We revisit the idea that a discriminative model actually perceives the manifold
when it achieves generalization ability in Sec.4.2. Then in Sec.4.3 we introduce the concept of
Functor to which we can apply distance measure. We demonstrate that the Neural Tangent Kernel
(NTK) is a suitable Functor for the purpose. Finally, we explain DFG in Sec.4.4, the metric that
calculates distance between images and the manifold, using what have been discussed throughout
the three previous steps.

4.1 SCORE-BASED GENERATIVE MODEL

Designing a generative model includes estimating data distribution p(x) using a model f . There are
two important points to consider. One is that p(x) is unknown. What we do know is the sampled
dataset Ds ↔ p(x). Another is, the image space Rhw is so high-dimensional that the manifold
M ↗ Rhw where actual data resides in is relatively small and hard to approximate.

In a sampling process of score-based generative model, we first sample x0 from a known distribution
and iteratively update it for T steps to generate xT . The resulting output is expected to be placed
within the manifold xT ↘ M. The update from x0 to xT is restricted so that the sample approaches
the manifold M every step. In other words, d(xt+1,M) < d(xt,M) must hold for some distance
metric d. Finding the proper d is critical to successfully lure the sample towards the data manifold.
Sampling process can be understood as an optimization process that reduces the distance in this
sense.

Since we have no access to M, the above process should be done using an approximation using
Ds ↗ M. This can be written as the following formula.

xt+1 = xt ≃↓xd(x,M) := xt ≃↓x

∫

M
d(xt, x)dx ⇐ xt ≃↓x

∑

i

d(xt, ϖi), (1)

where, ϖi is the ith sample of Ds.

Direct implementation of the equation is almost impossible. There are two reasons for this: 1. It
is difficult to find a metric d that can well-represent the manifold, M, since the manifold takes up
only a small portion in the high-dimensional space and its shape is very curvy. 2. The amount of
calculation is proportional to the number of samples in our data Ds, i.e., proportional to |Ds|.
Score-based models resolve the difficulties by translating Eq. (1) from the geometric framework M
to a probability space. This shifts the perspective from a geometric view to a probabilistic measure.
The resulting equation, now framed within the probability space, is provided below:

xt+1 = xt +↓x log p(xt). (2)

4
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Here, the term score function refers to the gradient of the log probability density function,
↓x log p(xt), which can be replaced by ≃↓xd(x,M). The score-based model approximates this
Jacobian, ↓x log p(xt), using a deep learning model sω(xt, t) (Ho et al., 2020a).

4.2 DISCRIMATIVE MODELS ALREADY HAVE KNOWLEDGE ABOUT MANIFOLD

If we aim to compute Eq. (1) directly, the question we must address is straightforward: Can we
generalize it? With only limited data available, we need an ideal distance function, d, that meets the
following condition to ensure generalization.

d(·,Ds) ⇐ d(·,Dt), ⇒Dt ↗ M, (3)
where Ds is a train set and Dt is a test set.

We already know a number of models that have to satisfy the above condition: the discriminative
models. Discriminative models, though only trained with train set, are required to demonstrate sim-
ilar accuracy on test set Dt as on train set Ds. This is the very property we wish for d to have. Now
the next question is, how can we transfer this property to the distance function d?

4.3 INTRODUCING THE FUNCTOR F

ℳ
!! !"

ℱ#,% #

ℱ!,# '$ ≃ ℱ!,# '%

ℝ!"

Figure 2: Structure of Func-
tor FA,f . Ds and Dt sam-
pled from the manifold is
mapped from Rhw space
to FA,f (S), ⇒S ↗ Rhw

space. The two are mapped to
similar space due to the gen-
eralization property of dis-
criminative model.

The generalization ability of a deep learning model through opti-
mization does not depend on the specially-designed train set; rather,
it only requires that the set Ds exists within M and is an iid sam-
ple. In other words, as long as a few basic conditions are satisfied
(Goodfellow et al., 2016), the model will generalize well to Dt.
From this, we can derive the following intuition: taking two deep
neural networks, f1 and f2, and training each with different dataset,
D1 and D2, the resulting models will act similarly if D1 and D2

are in the same manifold. Now, imagine a transformation that maps
a train data to a trained model. The transformation would be a map-
ping that sends similar data, i.e. data in the same manifold, to simi-
lar functions and enable the use of distance metric in the functional
space as the proxy for distance metric in the image space.

To leverage this abstract property, we introduce the concept of
Functor (MacLane, 1998) – essentially a transformation from one
structure to another – that enables us to exploit the generalization
characteristic effectively.

Let us define a Functor F that takes as input a tuple of a train dataset
Ds, a neural network f , and an algorithm A such as SGD that would
train f and returns as output a trained neural network fε.

F : (D ⇑A⇑ f) ⇓ fε (4)

Fixing f and A, to ResNet-50 and SGD for example, we obtain a Functor that maps data to a
function, FA,f : D ⇓ fε. Now we can write the desiderata for a good model that generalizes well
and ensures similar evaluation for both train set Ds and test set Dt (see Fig. 2):

FA,f (Ds) ⇐ FA,f (Dt) ⇒Ds,Dt ↗ M. (5)

Assume that the minimization of distance between Functors also minimizes the distance between
Functor inputs. Under the assumption we can replace the distance metric, d(x,M), in Eq. (1) with
that of the Functor, d(FA,f (x),FA,f (M)). If a trained model has learned to generalize and works
well on any test set, FA,f (M) here can be replaced with FA,f (Ds).

To sum up, Eq. (1) can be written in the following way:
xt+1 = xt ≃↓xd(FA,f (x),FA,f (M)) ⇐ xt ≃↓xd(FA,f (x),FA,f (DS)). (6)

We will now use the Functor F for optimization. Optimization would reduce the distance in the
functional space. For our previous assumption to be true so that the minimization ensures the reduc-
tion of distance between inputs, FA,f is required to be continuous in topological space. Indeed, we

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

ℳ
!! !"

ℱ!,# "

ℱ!,# #$ ≃ ℱ!,# #%

ℝ!"

ℱ#,%

ℱ!,#(x$)ℱ!,#(x%)

x%
x& x$…

…

Figure 3: Conceptual diagram of DFG process. Similar to the mirror gradient descent, we update
image xt using the distance metric in the functional space defined by the Functor FA,f .

can treat the space as continuous. Numerous studies (Bousquet & Elisseeff, 2002; Elisseeff et al.,
2005; Xu & Mannor, 2012; Hardt et al., 2016) support the fact that when small changes occur in
the dataset, the models trained on them also exhibit only slight changes. Therefore, Functor FA,f is
locally continuous and we can justify our minimization technique.

4.4 DIRECT DISTANCE COMPUTATION ON FUNCTIONAL SPACE

Neural Tangent Kernel Two questions are left unanswered. 1. How can we implement this Func-
tor F? 2. How is the corresponding distance measure d is defined?

We employ the Loss Tangent Kernel (LTK) (Chen et al., 2023) to define Functor F . LTK K inte-
grates the loss derivative ↓f ε(f(x; ϑ)) to NTK ! to measure the similarity between Functors k(·, x)
and k(·, x→) which is defined as follows:

K(x, x→) ↭ →k(·, x), k(·, x→)↑ = ↓f ε(f(x))
↑! ε(f(x)) = ↓ωε(f(x))

↑↓ωε(f(x
→))

↓f ε(f(x)) ↘ RC↓1, ↓ωε(f(x)) ↘ RP↓1, ! ↘ RC↓C , C = #classes, P = #parameters.
(7)

Replacing FA,f (x) in Eq. (6) with k(·, x), we obtain

xt+1 = xt ≃↓xtd(k(·, xt), k(·,Ds)) (8)

⇐ xt +↓xtK(xt,Ds) = xt +
1

|Ds|
↓xt{↓ωε(f(xt; ϑ))

T

|Ds|∑

i

↓ωε(f(ϖi; ϑ))} (9)

⇐ xt ≃↓xtd(↓ωε(f(xt; ϑ)),≃ϑ). (10)

The above equations are induced in the following steps. First, as we mentioned in Sec. 3, k(·, x)
exists in a functional space. Using this to replace F in Eq. (6) with k(·, x) we get Eq. (8). Then we
approximate the distance term with the negative inner product in RKHS. Lastly, using that the loss
gradient is aligned with the parameter itself (Ji & Telgarsky, 2020; Yun et al., 2021), we approximate
the inner product between xt and M to the negative distance between the gradient of the loss and
the negative of the trained model weight ϑ for easier calculation. However, in a practical setting, we
cannot always obtain or use appropriate loss ε due to the following reasons: First, when designing
the loss with labels, the generation is conditioned solely on the labels i.e., we cannot implement
unconditional generation. Second, in practical scenarios, the loss itself is often unknown.

Augment-invariance loss We use the augmentation-invariance loss as a surrogate loss as it is an
excellent estimate of the original loss for well-trained models. This is because well-trained models
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Figure 4: Examples of unconditionally generated images using various discriminative models. Top:
DINOv2/LVD-124M (self-supervised learning). Middle: DeTR/COCO (object detection). Bottom:
ResNet/Imagenet (image classification).

are known to produce similar outputs even with augmented inputs, expressed mathematically as
f(A(x)) ⇐ f(x). This indicates that the loss dynamics strongly penalize augmentation-variant
features. Therefore, using augmentation-invariance loss can serve as a surrogate loss:

DFG: xt+1 = xt ≃↓xd(↓ωf(xt; ϑ)⇔f(A(xt))≃ f(xt)⇔,≃ϑ). (11)

Now the score term can be calculated from a pretrained network, without having to approximate any
distribution through learning. Here, ⇔f(A(x))≃f(x)⇔ := [⇔f1(A(x))≃f1(x)⇔; · · · ; ⇔fC(A(x))≃
fC(x)⇔] and from now on, we use ϱ for ⇔f(A(x)) ≃ f(x)⇔ for brevity. In our experiment, we set
d(a, b) = ⇔a/⇔a⇔ ≃ b/⇔b⇔⇔.

5 EXPERIMENTS

Implementation Details In this paper, we utilized ResNet (He et al., 2015), DINOv2 (Oquab et al.,
2024), and DeTR (Carion et al., 2020) models as the backbone for direct generation of 256⇑256
images. All models were obtained from the official repositories. DINOv2 is based on ViT (Vision
Transformer) (Dosovitskiy et al., 2021) architecture and was trained on LVD-142M dataset. DeTR
was trained using COCO dataset (Lin et al., 2014). For conditioning, we employed both ResNet
and OpenCLIP (Ilharco et al., 2021) models. We used OpenCLIP as a base model. During the op-
timization process, we set gradient clipping value to 1e-5 and learning rate to 2 across all models.
We calculate the weighted sum of the score term (DFG) and the conditional term for conditional
generations. For ResNet the weight of the score term is set to 10, and the conditional term to 20. We
also applied variance norm as a regularizer (Mahendran & Vedaldi, 2015). The regularlizer is added
to Eq. (13) with its weight set to 20. Since the DFG size is proportional to the number of parameters,
we adjusted the hyperparameters for the remaining experiments to match the size of the DFG loss.

5.1 UNCONDITIONAL GENERATION

What we obtain through Eq. (11) is the distance between an arbitrary point x ↘ RHW and the
image manifold M. A question naturally arises. Is DFG enough to generate images uncondi-
tionally from a discriminative model? Can we approximate the distribution p(x) of datasets, the
fundamental objective of generative models?

The answer to the question turned out to be ‘yes’. We conducted the demonstration as fairly as
possible with different datasets, architectures and algorithms. For datasets, ImageNet, LVD-124M,
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coucalteapot tank poodle bagle stupa

clothes ironcorn beaker slug flamingo quilt

A bustling city street at 
 night with neon signs

A vibrant carnival  
with rides and games

A forest path covered 
 in autumn leaves

A peaceful village with  
houses and river

A majestic castle on a  
hill under a clear sky

A charming street in 
 historic European town

Figure 5: Conditionally generated images using DFG. Top: Both the score model and the condi-
tional model used ResNet/Imagenet. Middle: The score model used DINOv2/LVD-124M, and the
conditional model used ResNet/Imagenet. Bottom: The score model used ResNet/Imagenet, and the
conditional model used CLIP.

and COCO dataset were chosen. We selected three models of different architectures and algo-
rithms: ResNet for ImageNet classification, DeTR for COCO object detection, and DINOv2 for
self-supervised learning. We only utilized famous models from public repositories for transparency.
No post-training was done because we are to show that generation is possible without modification
or tuning for any arbitrary model.

For datasets, DFG successfully covered datasets of various aspects. DFG successfully generated im-
ages under ImageNet setting, which is considered the most common and general one at the moment.
The high-quality image output using LVD-124M, which is one of the largest dataset used for vision
tasks, proves that the generation happens regardless of the gigantic size of train dataset. Tests on
COCO dataset that includes images of various objects, shapes and sizes in high-resolution implies
that DFG can even handle high-resolution datasets. The results are favorable for different architec-
tures and algorithms also. Fig. 4 shows the result of unconditional generation using three pairs of
different models and algorithms. All three pairs successfully generated images of realistic shapes.

5.2 CONDITIONAL GENERATION

To generate images that we ‘want’, conditional term is added to Eq. (11) to guide generation. Con-
ventional diffusion models create images with the following:

xt+1 = xt + sω(xt, t)︸ ︷︷ ︸
score

+↓x log pt(y|xt)︸ ︷︷ ︸
condition

. (12)

Noisy classifier ft is utilized instead of common classifier f to implement the conditional term.
This is because the classifier must be time-dependent and change with the time-step, as mentioned
in Sec. 2. On the other hand, our method does not depend on time t, allowing us to implement the
conditional term using naive classifiers, ω. Our objective function can be written as below:

xt+1 = xt ≃↓xd(↓ωf(xt; ϑ)ϱ,≃ϑ)︸ ︷︷ ︸
score

+↓x log pϑ(y|xt)︸ ︷︷ ︸
condition

. (13)

In Fig. 5 we used common pretrained classification model in a plug-and-play manner for generation.
Our score and condition model for DFG successfully replaced the ones in the diffusion equation and
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Figure 6: Examples of targeted editing, the top row contains original images while the bottom row
shows editted images.

accomplished image generations. Furthermore, the last row of Fig. 5 suggests that not only classifier
guidance, but also text-to-image (T2I) with a specific prompt input is possible when using CLIP.

6 APPLICATIONS

6.1 IMAGE EDITING

What a diffusion model learns is the reverse process of converting an image to pure noise. Based on
this property, editing tasks in diffusion include sending the object image to a noise-like image and
retrieving it back. Condition is injected into this process in the form of masking (Couairon et al.,
2022). For the case of DFG, what it conducts is not the denoising process but the direct estimation
of manifold distribution p(x). Editing is therefore possible at image level without adding noise to
the target image. Masking is also unnecessary. The result of directly applying conditional generation
to real image without adding noise nor masking is shown in Fig. 6. The outstanding point is that the
semantic has changed without largely deforming the input images. For example, in the photo of a
chimpanzee, a spot of light fallen at the background is naturally transformed to a head of iguana.
The body of the animal is trivially deformed to consist shadow and body of the iguana. This was
possible by consistently injecting our score function as restraint, preventing the result from straying
away from the manifold.

6.2 IMAGE INPAINTING

Image inpainting is a technique that visually restore the damaged or omitted part of the target image.
To enable this, the ability to generate new contents according to the whole context it understood
is mainly required. Diffusion model is suitable for inpainting tasks in this sense. Our methodology
bears the same ability of solving inpainting tasks as diffusion models since it is, in the end, an
algorithm that samples from noise. We generated an empty patch to mask the ground-truth and
applied our DFG loss to it. Then the masked areas were effectively restored under the naive setting
that only requires to meet the boundary condition. The results in Fig. 7 experimentally show that our
algorithm shares the properties of diffusion models.

6.3 GLOBAL EXPLANATION

The core of our methodology boils down to suggesting a distance measure using the functor FA,f .
A notable point is that we use a conditioned functor where A and model f is fixed. This implies that
DFG moves x to the center of the manifold M with the lens of the model fε learnt from M. It in
itself plays a role of eXplainalbe AI (XAI), especially feature visualization, as it tries to understand
the fundamentals of a model using the corresponding parameter only. DFG takes a step further than
existing algorithms. Conventonal algorithm aim to visualize using gradient descent only. However,

9
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Figure 7: Examples of the impainting task. For each set, the left is the inpainted image, the middle
is the reconstructed one, and the right is the original image.

Figure 8: Comparison between DFG (left) and existing XAI method (Fel et al., 2023) (right).

just because the generated images can be classified to intended classes, we cannot insist that it ac-
tually represents the learned criterion. For example, adversarial attack also updates images with the
method called gradient ascent, but no one argues can be made regarding that the process actually
provides a new decision criterion. Moreover, as Fig. 8 reveals, conventional feature extraction algo-
rithm generates outputs by exaggerating characteristics of objects. The resulting images are far from
realistic. Our DFG method offers mathematical justification on how the generated image reflects the
manifold, and generates realistic images.

The result showing that DFG can generate high fidelity images offers more detailed explanation than
the feature extraction method conventionally used to explain deep learning. Fig. 8 is a good example.
On the left, the clock generated with DFG points to 10:10 and 35 seconds. This leads to the intuition
that large group of clock data in the train set may have displayed that certain time. Actually, the very
time the generated clock points to is what many watch advertisements adopt in order to emphasize
the logo. On the right is the visualization of the class ‘plate’. One can see that wineglasses have been
generated alongside the intended plate. The result may indicate that plates are paired to glasses of
drinks for many cases in the dataset. Conventional method cannot induce the same conclusion.

7 CONCLUSION

In this paper, we demonstrate for the first time that discriminative models can be used as general
generative models, and introduce a schema called Discrimination for Generation (DFG) to achieve
this. Using the discrimination model and the Neural Tangent Kernel, DFG directly calculates the
distance from a data point to the data manifold and generates images based on that measure. We val-
idated DFG through extensive experiments, showing that it can generate images in an architecture-
and dataset-agnostic manner, with or without conditions. Furthermore, DFG can be applied to other
downstream tasks. It can be used not only for conventional vision challenges like image editing and
inpainting, but also for global explanations leveraging the concept of DFG.
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Olivier Bousquet and André Elisseeff. Stability and generalization. The Journal of Machine Learn-
ing Research, 2:499–526, 2002.

Gon Buzaglo, Niv Haim, Gilad Yehudai, Gal Vardi, Yakir Oz, Yaniv Nikankin, and Michal Irani.
Deconstructing data reconstruction: Multiclass, weight decay and general losses. arXiv preprint
arXiv:2307.01827, 2023.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
Sergey Zagoruyko. End-to-end object detection with transformers. CoRR, abs/2005.12872, 2020.
URL https://arxiv.org/abs/2005.12872.

Yilan Chen, Wei Huang, Hao Wang, Charlotte Loh, Akash Srivastava, Lam M. Nguyen, and Tsui-
Wei Weng. Analyzing generalization of neural networks through loss path kernels. In Advances
in Neural Information Processing Systems (NeurIPS), 2023. URL https://openreview.

net/forum?id=8Ba7VJ7xiM.

Guillaume Couairon, Jakob Verbeek, Holger Schwenk, and Matthieu Cord. Diffedit: Diffusion-
based semantic image editing with mask guidance, 2022. URL https://arxiv.org/abs/

2210.11427.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale, 2021. URL https://arxiv.org/abs/2010.11929.

Andre Elisseeff, Theodoros Evgeniou, Massimiliano Pontil, and Leslie Pack Kaelbing. Stability of
randomized learning algorithms. Journal of Machine Learning Research, 6(1), 2005.

Dumitru Erhan, Yoshua Bengio, Aaron Courville, and Pascal Vincent. Visualizing higher-layer
features of a deep network. University of Montreal, 1341(3):1, 2009.

Thomas Fel, Thibaut Boissin, Victor Boutin, Agustin Picard, Paul Novello, Julien Colin, Drew Lins-
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