
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ENTERING THE ERA OF DISCRETE DIFFUSION
MODELS: A BENCHMARK FOR SCHRÖDINGER
BRIDGES AND ENTROPIC OPTIMAL TRANSPORT

Anonymous authors
Paper under double-blind review

ABSTRACT

The Entropic Optimal Transport (EOT) problem and its dynamic counterpart, the
Schrödinger bridge (SB) problem, play an important role in modern machine
learning, linking generative modeling with optimal transport theory. While recent
advances in discrete diffusion and flow models have sparked growing interest in
applying SB methods to discrete domains, there is still no reliable way to evaluate
how well these methods actually solve the underlying problem. We address this
challenge by introducing a benchmark for SB on discrete spaces. Our construc-
tion yields pairs of probability distributions with analytically known SB solutions,
enabling rigorous evaluation. As a byproduct of building this benchmark, we ob-
tain two new SB algorithms, DLightSB and DLightSB-M, and additionally extend
prior related work to construct the α-CSBM algorithm. We demonstrate the utility
of our benchmark by evaluating both existing and new solvers in high-dimensional
discrete settings. This work provides the first step toward proper evaluation of SB
methods on discrete spaces, paving the way for more reproducible future studies.

1 INTRODUCTION

The Entropic Optimal Transport (Cuturi, 2013, EOT) problem and its dynamic counterpart, the
Schrödinger bridge (Schrödinger, 1931, SB), have recently attracted significant attention in the ma-
chine learning community due to their relevance for generative modeling and unpaired learning. A
variety of methods have been developed to solve these problems in continuous data spaces such as
(Daniels et al., 2021; Gushchin et al., 2023a; 2024b; Mokrov et al., 2024; Vargas et al., 2021; Chen
et al., 2021; Shi et al., 2023; De Bortoli et al., 2024; Korotin et al., 2024; Gushchin et al., 2024a).

At the same time, much real world data are discrete by nature, including text (Austin et al., 2021; Gat
et al., 2024), molecular graphs (Vignac et al., 2022; Qin et al., 2024; Luo et al., 2024), and protein
sequences (Campbell et al., 2024). Others are discrete by construction, such as vector-quantized
representations of images and audio (Van Den Oord et al., 2017; Esser et al., 2021).

Given the prevalence of such discrete data and the rapid progress in discrete diffusion/flow models
(Hoogeboom et al., 2021; Austin et al., 2021; Campbell et al., 2022; Lou et al., 2023; Sahoo et al.,
2024; Campbell et al., 2024; Gat et al., 2024), research on SBs has attracted growing attention in
recent years. For instance, several recent works have already taken first steps in this direction (Kim
et al., 2024, DDSBM;Ksenofontov & Korotin, 2025, CSBM), adapting diffusion methodologies
from (Austin et al., 2021, D3PM;Vignac et al., 2022, DiGress), respectively.

Despite the rapid progress in discrete SB research, there is still a lack of evaluation benchmarks.
These benchmarks enable us to determine whether SB methods actually solve the intended math-
ematical problem, separating true algorithmic performance from artifacts of specific parameteriza-
tions, regularization schemes, and other implementation choices. While this has recently become
possible in the continuous setting of Schrodinger Bridges (Gushchin et al., 2023b), no such approach
exists for discrete data, leaving it unclear how closely SB solvers approximate the true solution of
the SB problem on discrete domains. To address this gap, we make the following contributions:

• Theory & Methodology. We present a general methodology to create pairs of discrete probability
distributions with known SB solutions (M3.1). To overcome tractability issues of the methodology

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

in discrete spaces, we introduce a CP-based parameterization (M3.2). This parameterization yields
a closed-form SB and enables a practically feasible benchmark construction.

• Algorithms. The CP-based parameterization of our benchmark allows us to construct two
novel discrete SB methods: DLightSB and DLightSB-M (M4.3 and M4.4). Which mirror their
continuous-space counterparts LightSB and LightSB-M (Korotin et al., 2024; Gushchin et al.,
2024a). Additionally, we introduce α-CSBM (M4.2), a new solver for discrete SB. Which com-
bines the recent discrete-space solver CSBM (Ksenofontov & Korotin, 2025) with the incremen-
tal/online update strategy of α-DSBM used in continuous settings (De Bortoli et al., 2024).

• Practice. We use these benchmark pairs to evaluate both existing and newly introduced SB solvers
in high-dimensional settings

Notation. We consider a discrete state space X = SD, where S = {0, 1, . . . , S−1} is the set of S
categories and D is the dimensionality. Each x ∈ X is a D-dimensional vector x = (x1, . . . , xD).
Time is discretized as {tn}N+1

n=0 with 0 = t0 < t1 < · · · < tN < tN+1 = 1. This gives N + 2 time

points and defines the path space XN+2 with the tuple xin
def
= (xt1 , . . . , xtN) ∈XN collecting the

intermediate states. The set P(XN+2) comprises all discrete time stochastic processes on the path
space, withM(XN+2)⊂P(XN+2) denoting the subset of Markov processes. Any q∈M(XN+2)

admits forward and backward representations: q(x0, xin, x1) = q(x0)
∏N+1

n=1 q(xtn |xtn−1) =

q(x1)
∏N+1

n=1 q(xtn−1
|xtn), where q(·|·) denotes conditional probabilities.

2 BACKGROUND: PROBLEM STATEMENT

This section provides an overview of the discrete-time Schrödinger Bridge problem. First, we
present the dynamic SB and its reduction to a static problem (M2.1). Next, we analyze diffusion-type
reference processes (M2.2) that yield practical cost functions, linking to the EOT framework in M2.3.
Finally, we introduce our problem setting (M2.4).

2.1 DYNAMIC AND STATIC SCHRÖDINGER BRIDGES ON DISCRETE SPACES

Dynamic Schrödinger Bridge. The original SB problem (Schrödinger, 1931; 1932; Léonard,
2013) seeks to find a process q∗ ∈ P(XN+2) interpolating between an initial distribution p0 at t0 =
0 and a final distribution p1 at tN+1 = 1. This distribution is found by minimizing the Kullback-
Leibler (KL) divergence with respect to a given Markov reference process qref ∈M(XN+2) subject
to the marginal constraints p0(x0) = q(x0) and p1(x1) = q(x1). One finds

q∗ = argmin
q∈ΠN (p0,p1)

KL
(
q(x0, xin, x1)∥qref(x0, xin, x1)

)
, (1)

where ΠN (p0, p1) ⊂ P(XN+2) denotes the subset of X -valued stochastic processes which have p0
and p1 as marginals at times t0 = 0 and tN+1 = 1, respectively. In other words, the dynamic SB
problem seeks the stochastic process q∗ that minimally deviates from a reference process qref while
respecting the boundary distributions p0 and p1.

Static Schrödinger Bridge. We now introduce the static formulation of the SB. This begins with
observing that (1) admits the following decomposition:

min
q∈ΠN (p0,p1)

[
KL
(
q(x0, x1)∥qref(x0, x1)

)
+ Eq(x0,x1)KL

(
q(xin|x0, x1)∥qref(xin|x0, x1)

)]
. (2)

We further note that the conditional KL term in (2) vanishes when q(xin|x0, x1) = qref(xin|x0, x1).
Thus, we restrict q to the set of processes that satisfy this condition. This set is known as the
reciprocal class of qref and is denoted by Rref(XN+2) ⊂ P(XN+2). Under this restriction, the
optimization reduces to the first KL term alone, leading directly to the static SB problem

q∗(x0, x1) = argmin
q∈Π(p0,p1)

KL
(
q(x0, x1)∥qref(x0, x1)

)
, (3)

where Π(p0, p1) ∈ P(X 2) is the set of joint distributions q(x0, x1) whose marginals are p0 and p1.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.2 FORMULATIONS OF THE REFERENCE PROCESS

The key ingredient in both SB formulations is the Markov reference process qref. In dis-
crete space it is usually modeled as a discrete-time Markov chain defined by transition matri-
ces Qref

n ∈ [0, 1]|X |×|X|, where qref(xd
tn |x

d
tn−1

) = [Qref
n]xd

tn−1
,xd

tn
. Assuming time-homogeneity

(Qref
n = Qref for all n), the n-step transition probabilities are given by the matrix power

Q
ref
n = [Qref]n. To define Q, we further restrict to D = 1 for clarity, noting that for D > 1 the

transition probabilities are obtained as a product over dimensions.

Remark. The reference process qref can also be defined in continuous time. In which transitions
are characterized by rates instead of probabilities. Since controlling these rates is less direct and not
all discrete processes admit a continuous analogue, we restrict our attention to the discrete setting,
which is more flexible and well-suited for a benchmark construction.

We now introduce two popular diffusion-like transitions: uniform (Hoogeboom et al., 2021; Camp-
bell et al., 2022) and Gaussian-like (Austin et al., 2021).

The reference process qref ∈ M(XN+2) is modeled as a discrete-state diffusion process,
i.e., a discrete-time Markov chain defined by transition matrices Qref

n ∈ [0, 1]|X |×|X|, where
qref(xd

tn |x
d
tn−1

) = [Qref
n]xd

tn−1
,xd

tn
. Assuming time-homogeneity (Qref

n = Qref for all n), the n-

step transition probabilities are given by the matrix power Q
ref
n = [Qref]n. To define Q, we further

restrict to D = 1 for clarity, noting that for D > 1 the transition probabilities are obtained as a
product over dimensions. We now introduce two diffusion-like transitions: uniform (Hoogeboom
et al., 2021; Campbell et al., 2022) and Gaussian-like (Austin et al., 2021).

Uniform Reference Process (qunif). For unordered data, where no relation exists between cate-
gories, a natural choice is a so-called uniform transition matrix. For each dimension d, the elements
of the transition matrix Qref are defined by

[Qref]xd
tn−1

,xd
tn

=

{
1− γ, if xd

tn = xd
tn−1

,
γ

S−1 , if xd
tn ̸= xd

tn−1
,

(4)

where γ ∈ [0, 1] is an stochasticity parameter. This reference process introduces randomness inde-
pendently of the distance between categories. It assigns equal probability to transitioning into any
different category, while having a staying probability 1 − γ. This ignores any inherent ordering or
relationships among categories.

Gaussian Reference Process (qgauss). For ordered data, where categories are expected to exhibit
meaningful relations, a Gaussian-like transition matrix is more appropriate. With the stochasticity
parameter γ > 0 and the maximum category distance ∆ = S − 1, the transition probabilities are

[Qref]xd
tn−1

,xd
tn

=

exp

(
−

4(xd
tn

−xd
tn−1

)2

(γ∆)2

)
∆∑

δ=−∆

exp
(
− 4δ2

(γ∆)2

) , xd
tn ̸= xd

tn−1
. (5)

The diagonal entries take the remaining probability so that each row sums to 1.

2.3 ENTROPIC OPTIMAL TRANSPORT ON DISCRETE SPACES

Following the construction of the Markov reference process in §2.2, the static SB problem (§3)
takes a form equivalent to the entropic optimal transport (EOT) problem (Cuturi, 2013). Concretely,
expressing qref(x0, x1) = qref(x0)q

ref(x1|x0) and setting qref(x0) = p0(x0), allows the minimization
in equation (3) to be rewritten as

min
q∈Π(p0,p1)

KL
(
q(x0, x1)∥qref(x0, x1)

)
=

= min
q∈Π(p0,p1)

∑
x0,x1

q(x0, x1) log
q(x0, x1)

qref(x0)qref(x1|x0)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

= min
q∈Π(p0,p1)

−H(q)−
∑
x0,x1

q(x0, x1) log q
ref(x1|x0)−

∑
x0,x1

q(x0, x1) log q
ref(x0)︸ ︷︷ ︸

=
∑

x0
p0(x0) log p0(x0)=−H(p0)

(6)

= min
q∈Π(p0,p1)

Eq(x0,x1)

[
− log qref(x1|x0)

]
−H(q)− const

= min
q∈Π(p0,p1)

E(x0,x1)∼q

[
c(x0, x1)

]
−H(q)− const,

where H(q) is the entropy of q, while H(p0) remains constant when minimizing over q. Thus, the
static SB formulation becomes equivalent to the entropy-regularized optimal transport problem with
cost c(x0, x1) = − log qref(x1|x0). This perspective establishes a direct correspondence between
SB and EOT, which we use in the design of our benchmark and methodological framework in M3.

Since the conditional distribution qref(x1|x0) is obtained by taking the (N+1)-th power of Qref, it
admits the following closed-form expression in the uniform case:

Q
ref
N+1 =

(
1− γ

S

S − 1

)N+1

I+
1−

(
1− γ S

S−1

)N+1

S
11⊤, (7)

where 1 = [1, . . . , 1]⊤ ∈ RS is a vector full of ones. From here it can be seen that Q
ref
N+1 converges

to (1/S)11⊤ when (N+1) → ∞, that is a uniform distribution over the number of categories S,
the derivation of (7) can be found in Appendix A. In the case of the Gaussian reference process, the
closed-form expression can also be obtained, but it is much more complex.

2.4 PROBLEM SETUP FOR DISCRETE SCHRÖDINGER BRIDGES

In this section, we recall the generative SB task on discrete spaces, a well-established problem in
the SB and OT literature (Kim et al., 2024; Ksenofontov & Korotin, 2025). In short, the goal is to
learn an SB process or coupling that performs transport between probability distributions on discrete
spaces using available empirical data samples. Formally, we consider the following learning setup:

We assume the learner is given empirical datasets {x(i)
0 }i∈I0 and {x(j)

1 }j∈I1 , x(i)
0 , x

(i)
1 ∈ X ,

consisting of i.i.d. samples from the unknown distributions p0, p1 ∈ P(X) where X is a discrete
state space. Then, the task is to use these samples to find a solution q∗ to the SB problem (1) or
(3) between p0 and p1 for a given reference qref. Moreover, the solution should support out-of-
sample generation so that for any new (xnew

0) one can generate xnew
1 ∼q∗(x1|xnew

0).

Despite recent progress in the development of SB methods that solve this task, there remains no
standard methodology for performance evaluation, mainly due to the absence of ground-truth dis-
tribution pairs (p0, p1). In this work, we propose a benchmark construction, inspired by (Gushchin
et al., 2023b), that enables standard evaluation of such methods on datasets built from SB pairs
(x0, x1) with known q∗(x1|x0). Such datasets provide more informative metrics and offer a consis-
tent framework for assessing the performance of SB methods on discrete spaces.

Remark. Our paper is not related to the discrete EOT, which includes solvers such as the Sinkhorn
algorithm (Cuturi, 2013) or gradient-based methods (Dvurechensky et al., 2018). These approaches
are designed for a non-generative problem setting, see (Ksenofontov & Korotin, 2025, M2.3). They
treat samples as empirical distributions p0(x0) =

1
|I0|
∑

i∈I0
δ
x
(i)
0

, p1(x1) =
1

|I1|
∑

j∈I1
δ
x
(j)
1

. The
resulting coupling is then a bi-stochastic |I0| × |I1| matrix, which does not support out-of-sample
generation. While some extensions attempt to provide inference for unseen data (Hütter & Rigollet,
2021; Pooladian & Niles-Weed, 2021; Manole et al., 2024; Deb et al., 2021), they are designed for
continuous spaces (X = RD) rather than the discrete spaces (X = SD) considered in our work.

3 BENCHMARK

This section outlines our theoretical and practical foundations necessary for constructing the bench-
mark for the SB. We introduce our benchmark construction in M3.1. Our benchmark construction
can benefit from a specific parameterization which we explore in M3.2. This construction and pa-
rameterization are later used to build our high-dimensional Gaussian mixture benchmark M3.3.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.1 MAIN THEOREM FOR BENCHMARK CONSTRUCTION

Given an initial distribution p0 ∈ P(X), we aim to construct a target distribution p1 ∈ P(X) such
that the static SB q∗(x0, x1) between them is known by our construction. The resulting pair (p0, p1)
together with q∗ can then be used as benchmark data for evaluating SB methods. Our following
theorem plays the key role in the construction of benchmark pairs.
Theorem 3.1 (Benchmark pair construction for SB on discrete Spaces). Let p0 ∈ P(X) be a given
source distribution on a discrete space X and v∗ : X → R be a given scalar-valued function. Let
q∗ ∈ P(X 2) be a joint distribution for which for all x0 ∈ X it holds that q∗(x0) = p0(x0) and

q∗(x1|x0) ∝ v∗(x1)q
ref(x1|x0), (8)

Let p1∈P(X) be the second marginal of q∗, i.e., q∗(x1)
def
= p1(x1). Then q∗(x0, x1) is the static SB

(3) between p0 and p1. In turn, q∗(x0, xin, x1)
def
= q∗(x0, x1)q

ref(xin|x0, x1) is the dynamic SB (1).

Theorem 3.1 establishes that any pair (p0, v∗) can be used to construct (p0, p1) for the SB prob-
lem, thereby yielding a known solution q∗. The construction considers conditional distributions
q∗(x1|x0) in an unnormalized form, so we further write

q∗(x1|x0) =
1

c∗(x0)
v∗(x1)q

ref(x1|x0), (9)

where c∗(x0)
def
=
∑

x1∈X v∗(x1)q
ref(x1|x0) is the normalization constant.

Our benchmark construction idea may be non-trivial to implement in practice. Specifically, working
in the high-dimensional space X = SD makes computing the normalization constant and sampling
from q∗ computationally expensive. To address this, we introduce a parameterization that enables
efficient computation and sampling, as detailed in the next section.

3.2 PRACTICAL PARAMETERIZATION OF THE SCALAR-VALUED FUNCTION v∗

We parameterize the scalar-valued function v∗ using a rank-1 Canonical Polyadic (CP) decomposi-
tion, which captures interactions across dimensions and provides a compact yet expressive represen-
tation. Such decompositions act as universal approximators, capable of modeling complex functions
when the rank is sufficiently large (Cohen et al., 2016; Basharin et al., 2025). Thus, v∗ is given by

v∗(x1) =

K∑
k=1

βk

D∏
d=1

rdk[x
d
1]. (10)

Expression (10) defines a mixture of K factorizable distributions, each with weight βk ≥ 0. For
each mixture component k and dimension d, probabilities are given by non-negative vectors rdk ∈
RS

+, referred to as CP cores, where rdk[x
d
1] denotes the probability of state xd

1. The key advantage of
this parameterization is that the factorization across dimensions makes both the normalizing constant
c(x0) and the conditional distribution q∗(x1|x0) computationally tractable. Specifically, the product
structure allows efficient ancestral sampling by drawing each dimension independently.
Proposition 3.1 (Tractable Parameterization of Conditional Distributions). Given the CP decom-
position of the scalar-valued function v(x1) =

∑K
k=1 βk

∏D
d=1 r

d
k[x

d
1] and a factorizable reference

process qref(x1|x0)=
∏D

d=1 q
ref(xd

1|x0), the optimal conditional distribution satisfies:

q∗(x1|x0)=
1

c(x0)

K∑
k=1

βk

D∏
d=1

[
rdk[x

d
1]q

ref(xd
1|x0)

]
;

(11)

c(x0)=

K∑
k=1

βk

D∏
d=1

S−1∑
xd
1=0

rdk[x
d
1]q

ref(xd
1|x0)


(12)

where c(x0) is the normalization constant. This formulation expresses q∗(x1|x0) as a mixture of K
factorizable distributions, each weighted by a scalar coefficient βk.

Note that the considered reference processes (§2.2) qgauss and qunif are both factorizable by construc-
tion. Consequently, the normalization constant is tractable, as the combination of the factorized
reference and the CP decomposition reduces the high-dimensional sum to a product of independent
one-dimensional sums.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.3 HIGH-DIMENSIONAL GAUSSIAN MIXTURES BENCHMARK CONSTRUCTION

We set p0 as a noise distribution (uniform or discretized Gaussian) on D ∈ {2, 16, 64} dimensions
with S = 50 categories. For v∗, we use K = 4 components with uniformly initialized weights
β ∈ RK , and the CP cores are initialized by setting their logarithms to the log-density of discretized
Gaussians with varying means and fixed variance. Given p0 and v∗, we then construct p1 (Theorem
3.1). This initialization produces a target p1 resembling a discretized Gaussian mixture with a clear
visual structure. Moreover, our benchmark formulation further allows the generation of an unlimited
number of samples for training.

We construct pairs under different reference processes qref: Gaussian qgauss with γ ∈ {0.02, 0.05}
and uniform qunif with γ ∈ {0.005, 0.01}, using N + 1 = 128 for both, see Figure 1b to visualize
ground truth benchmark pairs.

4 SOLVERS FOR EVALUATION

The field of discrete SB solvers remains in early development, with limited methods available for
evaluation. We assess four approaches: the Categorical Schrödinger Bridge Matching (CSBM)
method (Ksenofontov & Korotin, 2025), designed specifically for categorical distributions; our α-
CSBM extension, which applies the online methodology of (De Bortoli et al., 2024) to CSBM;
new Discrete Light Schrödinger Bridge (DLightSB) solver, constructed using our benchmark frame-
work (§3) and adapting ideas from (Korotin et al., 2024) to discrete settings; and finally new
DLightSB-M, which extends DLightSB to dynamic setups following (Gushchin et al., 2024a).
Further details about methods can be found in Appendix B.

4.1 CATEGORICAL SCHRÖDINGER BRIDGE MATCHING (CSBM)

In (Ksenofontov & Korotin, 2025, Theorem 3.1), the discrete space SB problem is addressed by
extending the discrete-time existence theorem of (Gushchin et al., 2024b, Theorem 3.6) to the dis-
crete space/time setting, thereby establishing convergence of the discrete time Iterative Markovian
Fitting (D-IMF) procedure. This constructive method uses the fact that the dynamic SB q∗ is both
reciprocal (q∗ ∈ Rref(XN+2)) and Markov (q∗ ∈ M(XN+2)). The D-IMF algorithm alternates
between projections onto these two sets, starting from an initial process q0(x0, x1)q

ref(xin|x0, x1),
where q0(x0, x1) ∈ Π(p0, p1), e.g., p0(x0)p1(x1), and converges to the SB q∗ in KL. Namely,

q2l q2l+2

projM

projRref

l = 0, 1, . . .

where

[projRref(q)](x0, xin, x1) = argmin
r∈Rref(XN+2)

KL (q(x0, xin, x1)∥r(x0, xin, x1)) , ∀q ∈ P(XN+2), (13)

[projM(q)](x0, xin, x1) = argmin
m∈M(XN+2)

KL (q(x0, xin, x1)∥m(x0, xin, x1)) , ∀q ∈ Rref(XN+2). (14)

Loss. Because ancestral sampling makes the reciprocal part straightforward, the challenge lies in
the Markov projection, for which the authors propose minimizing an alternative objective function.

KL (q(x0, xin, x1)∥m(x0, xin, x1)) = Eq(x0,x1)

[
N∑

n=1

Eqref(xtn−1
|x0,x1)

KL
(
qref(xtn |xtn−1

, x1) ∥m(xtn |xtn−1
)
)
− Eqref(xtN

|x0,x1)[logm(x1|xtN)]

]
. (15)

In practice, the D-IMF procedure is implemented in a bidirectional manner (see Ksenofontov &
Korotin (2025, §3.2.5)). That is, it first applies the Markovian projection using both forward and
backward representations. Notably, the KL loss can be replaced by any divergence from the Breg-
man family, introducing additional hyperparameters for this and several subsequent methods. For
details on this equivalence, see (Ksenofontov & Korotin, 2025, Appendix C.1).

Remark. A continuous-time IMF was introduced in the Discrete Diffusion Schrödinger Bridge
Matching (Kim et al., 2024, DDSBM) paper, which performs the Markovian projection (14) by
matching the generator matrices of continuous-time Markov chains. As it reduces to the same loss
and inference process due to the neccesity to discretize time, we report results only for CSBM.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4.2 α-CATEGORICAL SCHRÖDINGER BRIDGE MATCHING (α-CSBM)
Recently, an online alternative to the IMF procedure, called α-IMF, was proposed (De Bortoli et al.,
2024; Peluchetti, 2024). In this approach, the exact projections in (13) and (14) are replaced by
partial updates (De Bortoli et al., 2024, Eq. 9), and the resulting iteration is proven to converge
to the SB. This means that instead of running each projection until full convergence, only a single
optimization step is performed at each iteration, still guiding the distribution toward the double
projection projRref(projM(·)). Since those works address the continuous setting, we extend the
same ideas to CSBM M4.1, interpreting the discrete formulation of α-IMF as a heuristic analogue of
the original procedure.

Loss. Since the approach does not require each projection to reach full convergence, a single opti-
mization step can be performed for both representation directions at once. This allows us to extend
the CSBM bidirectional setup (M4.1) by updating the forward and backward models jointly, with a
shared loss computed for both representations as:

L(−→m,←−m) = 1
2

(
KL (−→rsg(x0, xin, x1)∥←−m(x0, xin, x1))

+ KL (←−rsg(x0, xin, x1)∥−→m(x0, xin, x1))
)
, (16)

where→ and← denote the direction of representations (forward and backward, respectively), and
rsg denotes projRref(m) evaluated with the stop-gradient operation.

4.3 DISCRETE LIGHT SCHRÖDINGER BRIDGE (DLIGHTSB)

Below we introduce DLightSB, a solver for discrete spaces derived from our benchmark construction
in M3.2

Loss. Following (Korotin et al., 2024), we derive a discrete surrogate objective KL (q∗∥qθ).
Proposition 4.1 (Feasible Discrete Reformulation of the KL Minimization.). For the characteriza-
tion (9) of q(x1|x0), it holds that the alternative KL objective KL (q∗∥q) admits the representation
KL (q∗∥qθ) = L(θ)− L∗ where

L(θ) =
∑
x0∈X

log cθ(x0)p0(x0)−
∑
x1∈X

log vθ(x1)p1(x1), (17)

and L∗ ∈ R is a constant value not depending on θ, therefore, it can be omitted.

4.4 DISCRETE LIGHT SCHRÖDINGER BRIDGE MATCHING (DLIGHTSB-M)
Inspired by (Gushchin et al., 2024a), we propose a matching approach for solving the SB problem
in discrete settings. This approach enables obtaining the SB in a single projection, which is referred
to as the optimal projection. Specifically, its idea lies in restating the Markovian projection (14) as
the projection of a reciprocal process r ∈ Rref(XN+2) onto the set of all SBs:

S(XN+2)
def
=
{
qSB ∈ P(XN+2) such that ∃ qSB0 , qSB1 ∈ P(X)

qSB = argmin
q∈ΠN (qSB0 ,qSB1)

KL
(
q∥qref

)}
, (18)

We show that (Gushchin et al., 2024a, Theorem 3.1) can be generalized to an arbitrary reference
process qref, thereby enabling the application of the optimal projection in discrete space settings
under our CP parametrization (10).
Proposition 4.2 (Optimal Projection with an Arbitrary Reference Process). Let r ∈ Rref(XN+2)
be a reciprocal process defined with a reference process qref ∈ M(XN+2) and a joint distribution
r(x0, x1) ∈ Π(p0, p1). Then, the optimal projection of r onto the set of all SBs S(XN+2) is the SB
q∗ between the desired marginals p0 and p1, i.e.,

q∗ = argmin
qSB∈S(XN+2)

KL
(
r∥qSB) . (19)

The main requirement is to define qSB such that the minimization is restricted to qSB ∈ S(XN+2).
The following proposition establishes this characterization of SB transitions and, through its CP
cores rdk, directly connects this approach to DLightSB (M4.3).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Proposition 4.3 (The SB’s Transition Distributions with CP Decomposition). Let qref be a reference
Markov process on a discrete space X with transition matrix Qref. Using the CP decomposition of
the scalar-valued function v∗ (10), the marginal transition distributions of the SB are given by

qSB(xd
tn |xtn−1) = qref(xd

tn |xtn−1)

K∑
k=1

βku
d
k,tn

[
xd
tn

] D∏
j=1
j ̸=d

uj
k,tn−1

[
xj
tn−1

]
, (20)

where ud
k,tn

[
xd
tn

]
=
∑

xd
1
[Q

ref
N+1−n

]
xd
tn

, xd
1
rdk
[
xd
1

]
. Sampling is done via ancestral sampling.

Loss. The loss (15) could be applied directly to train the SB transitions qSB.

5 EVALUATION

We first present our evaluation metrics (M5.1), given the analogous problem structure, we adopt
metrics from tabular data analysis (Zhang et al., 2024). Then we use them to assess the experimental
setups from M3.3, and report the results in M5.2. It is important to highlight that DLightSB and
DLightSB-M methods have some inductive bias as they use a similar construction as the benchmark
(e.g., CP parameterization and factorizable reference process).

5.1 METRICS FOR EVALUATION

Evaluating generative models on discrete data is challenging since common metrics (e.g., generative
perplexity for text, FID for images (Heusel et al., 2017)) are domain-specific. Following work on
tabular data evaluation (Zhang et al., 2024; Shi et al., 2025), we adopt the Shape Score and Trend
Score metrics. Which are used to measure the quality of the resulting SB for each method.

Shape Score. This metric measures how well the predicted data preserves the marginal (per-
dimension) distributions of the real data. We consider a dataset with |IR| real samples x and cor-
responding predicted samples x̃. We compute a per-dimension score for the empirical distributions
(expressed in δ-delta notation) and report the average across all dimensions:

SSMd = 1− 1

2

S−1∑
s=0

∣∣∣∣∣∣ 1

|IR|

|IR|∑
i=1

δ(s− x
(i)
d)− 1

|IR|

|IR|∑
j=1

δ(s− x̃
(j)
d)

∣∣∣∣∣∣ , SSM =
1

D

D∑
d=1

SSMd.

Trend Score. This metric evaluates whether pairwise dimension dependencies in the real data are
preserved in the predictions. For a dataset with |IR| real samples x(k) and corresponding predicted
samples x̃(k). We compute a trend score and report the average across all dimension pairs:

TSMdi,dj
= 1−1

2

S−1∑
si=0

S−1∑
sj=0

∣∣∣∣∣∣ 1
|IR|

|IR|∑
k=1

δ(si − x
(k)
di

)δ(sj − x
(k)
dj

)− 1
|IR|

|IR|∑
k=1

δ(si − x̃
(k)
di

)δ(sj − x̃
(k)
dj

)

∣∣∣∣∣∣ ,
where x

(k)
di

represents the di-th dimension of the k-th sample in this case.
Conditional Metrics. In our evaluation, we primarily report conditional variants of the aforemen-
tioned metrics. These are computed by generating multiple samples of x1 for each x0 ∼ p0. This
approach provides a direct measure of the fidelity of the learned conditional distribution q(x1|x0)
and quantifies how well the SB solver captures the underlying stochastic transport.

5.2 RESULTS

We use our benchmark pair constructor differently for training and testing. For training, we ran-
domly sample xtrain

0 ∼ p0 and generate xtrain
1 ∼ p1 via our benchmark theorem, allowing infinite

sample generation. Training is performed in an unpaired manner. For testing, we use a fixed set of
20 000 precomputed sample benchmark pairs (x0, x1), which we provide to facilitate benchmarking
new discrete SB solvers. We also use different training setups, first by varying N across CSBM,
α-CSBM, and DLightSB-M. For the same set of methods, we experiment with two loss functions:
KL and MSE. We compare all methods to an Independent baseline. This approach assumes x1 is
independent of x0, so we simply sample from the target distribution. In the main text, we report only
the conditional metrics, as they more accurately reflect the performance of the SB solvers, in Ap-
pendix D.2 we provide experiments to validate conditional metrics against the unconditional ones.
Further experimental details are provided in Appendix C.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

qga
us

s /γ
=
0
.0
2

qun
if
/γ
=
0
.0
0
5

(a) Input/Target (b) Benchmark (c) CSBM (d) α-CSBM (e) DLightSB (f) DLightSB-M
Figure 1: Samples from all methods on two high-dimensional Gaussian mixture benchmarks. Top row: qunif

(γ = 0.005). Bottom row: Gaussian benchmark (γ = 0.02). CSBM, α-CSBM, and DLightSB-M were
trained with KL loss (N+1 = 64).

D=2 D=16 D=64

gaussian uniform gaussian uniform gaussian uniform

Method Loss N+1 0.02 0.05 0.005 0.01 0.02 0.05 0.005 0.01 0.02 0.05 0.005 0.01

Independent – – 0.369 0.646 0.577 0.700 0.359 0.555 0.466 0.515 0.374 0.519 0.424 0.503

DLightSB – – 0.979 0.976 0.974 0.983 0.972 0.980 0.970 0.981 0.966 0.980 0.980 0.973

CSBM
KL 16 0.849 0.733 0.919 0.892 0.884 0.806 0.841 0.810 0.929 0.938 0.918 0.922

64 0.934 0.888 0.958 0.958 0.944 0.933 0.933 0.927 0.934 0.963 0.926 0.949

MSE 16 0.721 0.700 0.824 0.846 0.854 0.783 0.839 0.745 0.915 0.932 0.893 0.896
64 0.444 0.841 0.818 0.780 0.885 0.902 0.890 0.894 0.854 0.942 0.867 0.928

α-CSBM
KL 16 0.829 0.738 0.927 0.918 0.881 0.836 0.873 0.825 0.930 0.972 0.929 0.943

64 0.902 0.896 0.952 0.958 0.936 0.963 0.932 0.941 0.927 0.959 0.924 0.942

MSE 16 0.803 0.695 0.841 0.890 0.865 0.820 0.861 0.815 0.908 0.943 0.884 0.910
64 0.908 0.896 0.858 0.875 0.908 0.924 0.881 0.911 0.883 0.925 0.859 0.913

DLightSB-M
KL 16 0.926 0.956 0.969 0.970 0.894 0.930 0.961 0.952 0.931 0.929 0.954 0.905

64 0.907 0.954 0.967 0.968 0.878 0.953 0.962 0.967 0.910 0.942 0.950 0.942

MSE 16 0.782 0.951 0.881 0.926 0.726 0.921 0.942 0.951 0.718 0.918 0.891 0.850
64 0.717 0.942 0.892 0.914 0.685 0.914 0.953 0.943 0.632 0.906 0.730 0.879

Table 1: Conditional Shape Score metric (↑) on the high-dimensional Gaussian mixture benchmark. The
best-performing method is highlighted in bold, and the second is underlined. Color code threshold: red for

< 0.7, yellow for [0.7, 0.9), and green for ≥ 0.9.

High-Dimensional Gaussian Mixtures. In this section, we report results on the high-dimensional
Gaussian mixture benchmark constructed as in M3.3 using the methods from M4. Visual results are
shown in Figure 1 for qgauss (γ=0.02) and qunif (γ=0.005). See Appendix D.2 for additional plots.
Tables 1 and 2 show that DLightSB consistently achieves the best performance on Conditional Shape
Score and Trend Score metrics, respectively. We attribute this to the benchmark pairs being built on
the same principle used by the DLightSB solver. DLightSB-M, which incorporates this inductive
bias as well, achieves similar results with a slight drop in metrics, likely due to error accumulation
in the iterative sampling. Interestingly, our results resemble those on continuous data (Korotin et al.,
2024, Table 2; Gushchin et al., 2024a, Table 1), showing comparable performance with a slight drop
for the DLightSB-M. Unconditional metrics are reported in Tables 4 and 5.

On the other hand, CSBM and α-CSBM perform noticeably worse than DLight methods. Notably,
α-CSBM achieves similar quality to CSBM while halving computational cost, making it a more
efficient alternative. Regarding N and the loss function, increasing N mostly improves metrics.
For the loss function, KL consistently outperforms MSE, likely because MSE minimizes pointwise
squared error and produces over-smoothed solutions that blur modes (see Figure 2).

6 DISCUSSION

Our work fills a key gap in discrete SB research by introducing the first standardized benchmark
for these methods. This contribution provides the community with ground truth data and standard
evaluation metrics. The benchmark reveals fundamental limitations of current approaches: CP-
based solvers (DLightSB, DLightSB-M) face severe memory constraints in high dimensions, while

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

D=2 D=16 D=64

gaussian uniform gaussian uniform gaussian uniform

Method Loss N+1 0.02 0.05 0.005 0.01 0.02 0.05 0.005 0.01 0.02 0.05 0.005 0.01

Independent – – 0.315 0.611 0.491 0.609 0.202 0.480 0.334 0.404 0.172 0.362 0.248 0.329

DLightSB – – 0.968 0.970 0.967 0.975 0.943 0.967 0.956 0.967 0.919 0.956 0.955 0.950

CSBM
KL 16 0.793 0.654 0.884 0.856 0.803 0.694 0.732 0.676 0.853 0.895 0.830 0.861

64 0.911 0.854 0.932 0.923 0.886 0.890 0.874 0.874 0.859 0.936 0.848 0.901

MSE 16 0.611 0.631 0.752 0.781 0.739 0.653 0.725 0.612 0.835 0.883 0.799 0.823
64 0.331 0.775 0.735 0.729 0.808 0.831 0.812 0.821 0.767 0.891 0.777 0.863

α-CSBM
KL 16 0.773 0.651 0.898 0.876 0.810 0.744 0.783 0.724 0.854 0.945 0.847 0.891

64 0.874 0.855 0.921 0.913 0.878 0.934 0.877 0.903 0.852 0.929 0.845 0.896

MSE 16 0.728 0.603 0.756 0.829 0.771 0.716 0.769 0.710 0.818 0.883 0.781 0.821
64 0.861 0.855 0.797 0.807 0.829 0.863 0.795 0.846 0.798 0.848 0.747 0.817

DLightSB-M
KL 16 0.878 0.943 0.952 0.956 0.738 0.914 0.932 0.930 0.862 0.900 0.920 0.674

64 0.856 0.940 0.951 0.953 0.716 0.923 0.928 0.936 0.833 0.901 0.648 0.820

MSE 16 0.701 0.933 0.838 0.904 0.551 0.877 0.897 0.917 0.575 0.853 0.773 0.555
64 0.640 0.922 0.852 0.889 0.503 0.856 0.903 0.910 0.464 0.818 0.498 0.700

Table 2: Conditional Trend Score (↑) on the high-dimensional Gaussian mixture benchmark. The
best-performing method is highlighted in bold, and the second is underlined. Color code threshold: red for

< 0.7, yellow for [0.7, 0.9), and green for ≥ 0.9.

matching-based methods (CSBM, α-CSBM) struggle with parameter sensitivity and long training
times. Our experiments show that DLightSB(-M) solvers may be viewed as oracle-like methods
on this benchmark: their inductive bias makes them less informative as indicators of pure perfor-
mance. See Appendix D.1 for an analysis of the reverse benchmark setting designed to probe this
inductive bias. This behavior is expected, and it does not diminish the overall usefulness of the
benchmark. The benchmark still faithfully captures the strengths and weaknesses of other unbiased
methods. Moreover, the CP-parameterization limits DLightSB(-M) to simpler tasks, as complex
settings require an impractical number of components.

Reproducibility. We provide the experimental details in Appendix C and the code to reproduce
the conducted experiments in the supplementary materials (see readme.md).

LLM Usage. Large Language Models (LLMs) were used only to assist with rephrasing sentences
and improving the clarity of the text. All scientific content, results, and interpretations in this paper
were developed solely by the authors.

REFERENCES

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
denoising diffusion models in discrete state-spaces. Advances in Neural Information Processing
Systems, 34:17981–17993, 2021.

Artem Basharin, Andrei Chertkov, and Ivan Oseledets. Faster language models with better multi-
token prediction using tensor decomposition, 2025. URL https://arxiv.org/abs/
2410.17765.

Andrew Campbell, Joe Benton, Valentin De Bortoli, Thomas Rainforth, George Deligiannidis, and
Arnaud Doucet. A continuous time framework for discrete denoising models. Advances in Neural
Information Processing Systems, 35:28266–28279, 2022.

Andrew Campbell, Jason Yim, Regina Barzilay, Tom Rainforth, and Tommi Jaakkola. Genera-
tive flows on discrete state-spaces: Enabling multimodal flows with applications to protein co-
design. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver,
Jonathan Scarlett, and Felix Berkenkamp (eds.), Proceedings of the 41st International Confer-
ence on Machine Learning, volume 235 of Proceedings of Machine Learning Research, pp.
5453–5512. PMLR, 21–27 Jul 2024. URL https://proceedings.mlr.press/v235/
campbell24a.html.

Tianrong Chen, Guan-Horng Liu, and Evangelos Theodorou. Likelihood training of Schrödinger
bridge using forward-backward SDEs theory. In International Conference on Learning Represen-
tations, 2021.

10

https://arxiv.org/abs/2410.17765
https://arxiv.org/abs/2410.17765
https://proceedings.mlr.press/v235/campbell24a.html
https://proceedings.mlr.press/v235/campbell24a.html

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Nadav Cohen, Or Sharir, and Amnon Shashua. On the expressive power of deep learning: A tensor
analysis, 2016. URL https://arxiv.org/abs/1509.05009.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in neural
information processing systems, 26, 2013.

Max Daniels, Tyler Maunu, and Paul Hand. Score-based generative neural networks for large-scale
optimal transport. Advances in neural information processing systems, 34:12955–12965, 2021.

Valentin De Bortoli, Iryna Korshunova, Andriy Mnih, and Arnaud Doucet. Schrödinger bridge flow
for unpaired data translation. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024. URL https://openreview.net/forum?id=1F32iCJFfa.

Nabarun Deb, Promit Ghosal, and Bodhisattva Sen. Rates of estimation of optimal transport maps
using plug-in estimators via barycentric projections. Advances in Neural Information Processing
Systems, 34:29736–29753, 2021.

Pavel Dvurechensky, Alexander Gasnikov, and Alexey Kroshnin. Computational optimal transport:
Complexity by accelerated gradient descent is better than by Sinkhorn’s algorithm. In Interna-
tional conference on machine learning, pp. 1367–1376. PMLR, 2018.

Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
synthesis. In Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-
tion, pp. 12873–12883, 2021.

Itai Gat, Tal Remez, Neta Shaul, Felix Kreuk, Ricky TQ Chen, Gabriel Synnaeve, Yossi Adi, and
Yaron Lipman. Discrete flow matching. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024.

Nikita Gushchin, Alexander Kolesov, Alexander Korotin, Dmitry Vetrov, and Evgeny Burnaev. En-
tropic neural optimal transport via diffusion processes. In Advances in Neural Information Pro-
cessing Systems, 2023a.

Nikita Gushchin, Alexander Kolesov, Petr Mokrov, Polina Karpikova, Andrey Spiridonov, Evgeny
Burnaev, and Alexander Korotin. Building the bridge of Schrödinger: A continuous entropic
optimal transport benchmark. In Thirty-seventh Conference on Neural Information Processing
Systems Datasets and Benchmarks Track, 2023b.

Nikita Gushchin, Sergei Kholkin, Evgeny Burnaev, and Alexander Korotin. Light and optimal
Schrödinger bridge matching. In Forty-first International Conference on Machine Learning,
2024a.

Nikita Gushchin, Daniil Selikhanovych, Sergei Kholkin, Evgeny Burnaev, and Alexander Korotin.
Adversarial Schrödinger bridge matching. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024b. URL https://openreview.net/forum?id=
L3Knnigicu.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
GANs trained by a two time-scale update rule converge to a local Nash equilibrium. In Advances
in neural information processing systems, pp. 6626–6637, 2017.

Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max Welling. Argmax flows
and multinomial diffusion: Learning categorical distributions. Advances in Neural Information
Processing Systems, 34:12454–12465, 2021.

Jan-Christian Hütter and Philippe Rigollet. Minimax estimation of smooth optimal transport maps.
2021.

Sergei Kholkin, Grigoriy Ksenofontov, David Li, Nikita Kornilov, Nikita Gushchin, Evgeny Bur-
naev, and Alexander Korotin. Diffusion & adversarial Schrödinger bridges via iterative propor-
tional Markovian fitting. arXiv preprint arXiv:2410.02601, 2024.

11

https://arxiv.org/abs/1509.05009
https://openreview.net/forum?id=1F32iCJFfa
https://openreview.net/forum?id=L3Knnigicu
https://openreview.net/forum?id=L3Knnigicu

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jun Hyeong Kim, Seonghwan Kim, Seokhyun Moon, Hyeongwoo Kim, Jeheon Woo, and Woo Youn
Kim. Discrete diffusion Schrödinger bridge matching for graph transformation. arXiv preprint
arXiv:2410.01500, 2024.

Alexander Korotin, Nikita Gushchin, and Evgeny Burnaev. Light Schrödinger bridge. In The Twelfth
International Conference on Learning Representations, 2024.

Grigoriy Ksenofontov and Alexander Korotin. Categorical Schrödinger bridge matching. In Forty-
second International Conference on Machine Learning, 2025. URL https://openreview.
net/forum?id=RBly0nOr2h.

Christian Léonard. A survey of the Schrödinger problem and some of its connections with optimal
transport. arXiv preprint arXiv:1308.0215, 2013.

David Lopez-Paz and Maxime Oquab. Revisiting classifier two-sample tests. In International Con-
ference on Learning Representations, 2017. URL https://openreview.net/forum?
id=SJkXfE5xx.

Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion language modeling by estimating
the ratios of the data distribution. 2023.

Xiaoshan Luo, Zhenyu Wang, Jian Lv, Lei Wang, Yanchao Wang, and Yanming Ma. CrystalFlow:
A flow-based generative model for crystalline materials. arXiv preprint arXiv:2412.11693, 2024.

Tudor Manole, Sivaraman Balakrishnan, Jonathan Niles-Weed, and Larry Wasserman. Plugin esti-
mation of smooth optimal transport maps. The Annals of Statistics, 52(3):966–998, 2024.

Petr Mokrov, Alexander Korotin, Alexander Kolesov, Nikita Gushchin, and Evgeny Burnaev.
Energy-guided entropic neural optimal transport. In The Twelfth International Conference
on Learning Representations, 2024. URL https://openreview.net/forum?id=
d6tUsZeVs7.

Stefano Peluchetti. Bm2: Coupled Schrödinger bridge matching. arXiv preprint arXiv:2409.09376,
2024.

Aram-Alexandre Pooladian and Jonathan Niles-Weed. Entropic estimation of optimal transport
maps. arXiv preprint arXiv:2109.12004, 2021.

Yiming Qin, Manuel Madeira, Dorina Thanou, and Pascal Frossard. DeFoG: Discrete flow matching
for graph generation. arXiv preprint arXiv:2410.04263, 2024.

Subham Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin, Justin Chiu,
Alexander Rush, and Volodymyr Kuleshov. Simple and effective masked diffusion language
models. Advances in Neural Information Processing Systems, 37:130136–130184, 2024.

Erwin Schrödinger. Über die Umkehrung der Naturgesetze. Verlag der Akademie der Wis-
senschaften in Kommission bei Walter De Gruyter u. Company, 1931.

Erwin Schrödinger. Sur la théorie relativiste de l’électron et l’interprétation de la mécanique quan-
tique. In Annales de l’institut Henri Poincaré, volume 2, pp. 269–310, 1932.

Juntong Shi, Minkai Xu, Harper Hua, Hengrui Zhang, Stefano Ermon, and Jure Leskovec. Tabdiff:
a mixed-type diffusion model for tabular data generation. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https://openreview.net/forum?id=
swvURjrt8z.

Yuyang Shi, Valentin De Bortoli, Andrew Campbell, and Arnaud Doucet. Diffusion Schrödinger
bridge matching. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.
URL https://openreview.net/forum?id=qy07OHsJT5.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems, 30, 2017.

Francisco Vargas, Pierre Thodoroff, Austen Lamacraft, and Neil Lawrence. Solving Schrödinger
bridges via maximum likelihood. Entropy, 23(9):1134, 2021.

12

https://openreview.net/forum?id=RBly0nOr2h
https://openreview.net/forum?id=RBly0nOr2h
https://openreview.net/forum?id=SJkXfE5xx
https://openreview.net/forum?id=SJkXfE5xx
https://openreview.net/forum?id=d6tUsZeVs7
https://openreview.net/forum?id=d6tUsZeVs7
https://openreview.net/forum?id=swvURjrt8z
https://openreview.net/forum?id=swvURjrt8z
https://openreview.net/forum?id=qy07OHsJT5

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pas-
cal Frossard. Digress: Discrete denoising diffusion for graph generation. arXiv preprint
arXiv:2209.14734, 2022.

Hengrui Zhang, Jiani Zhang, Balasubramaniam Srinivasan, Zhengyuan Shen, Xiao Qin, Christos
Faloutsos, Huzefa Rangwala, and George Karypis. Mixed-type tabular data synthesis with score-
based diffusion in latent space, 2024. URL https://arxiv.org/abs/2310.09656.

13

https://arxiv.org/abs/2310.09656

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A PROOFS

Proof of Theorem 3.1. We start from the expression of the static EOT minimization problem in (8)

min
q∈Π(p0,p1)

KL
(
q(x0, x1)∥qref(x0, x1)

)
=

= min
q∈Π(p0,p1)

−H(q)−
∑
x0,x1

q(x0, x1) log q
ref(x1|x0)− const

= min
q∈Π(p0,p1)

∑
x0,x1

q(x0, x1) log q(x0, x1)−
∑
x0,x1

q(x0, x1) log q
ref(x1|x0)− const

(21)

Noting that the joint distribution factorizes as q(x0, x1) = q(x0)q(x1|x0) = p0(x0)q(x1|x0), and
enforcing the marginal constraints

∑
x0

p0(x0)q(x1|x0) = p1(x1) and
∑

x1
q(x1|x0) = 1 (equiva-

lently q(x0) = p0(x0)), the corresponding Lagrangian can be formulated as

L(q) =
∑
x0,x1

p0(x0)q(x1|x0) log (p0(x0)q(x1|x0))−
∑
x0,x1

p0(x0)q(x1|x0) log q
ref(x1|x0)+

+
∑
x1

λ(x1)

(∑
x0

q(x1|x0)p0(x0)− p1(x1)

)
+
∑
x0

τ(x0)

(∑
x1

q(x1|x0)− p0(x0)

)
=
∑
x0,x1

p0(x0)q(x1|x0) log p0(x0))︸ ︷︷ ︸
=
∑

x0
p0(x0) log p0(x0))

+
∑
x0,x1

p0(x0)q(x1|x0) log q(x1|x0)−

−
∑
x0,x1

p0(x0)q(x1|x0) log q
ref(x1|x0) +

∑
x1

λ(x1)

(∑
x0

q(x1|x0)p0(x0)− p1(x1)

)

+
∑
x0

τ(x1)

(∑
x1

q(x1|x0)− 1

)

(22)

where λ(x1) and τ(x0) denote the Lagrange multipliers associated with the marginal constraints on
x1 and x0, respectively. Taking the pointwise partial derivative of L(q) with respect to q(x1|x0)
then yields

∂L
∂q

= p0(x0) (log q(x1|x0) + 1)− p0(x0) log q
ref(x0, x1) + λ(x1)p0(x0) + τ(x1) = 0 (23)

Therefore, the optimal process q∗ can be written as

q∗(x1|x0) = exp(−λ(x1)− 1)qref(x1|x0)p0 exp

(
− τ(x0)

p0(x0)

)
(24)

Setting v∗(x1) = exp(−λ(x1)− 1) concludes the proof.

Proof of Proposition 3.1. Assuming the CP parameterization introduced in (10), and further assum-
ing that the reference process factorizes across dimensions as qref(x1|x0) =

∏D
d=1 q

ref(xd
1|x0), the

normalized conditional distribution q∗(x1|x0) in (9) can be rewritten as

q∗(x1|x0) =
1

c(x0)

(
K∑

k=1

βk

D∏
d=1

rdk[x
d
1]

)
D∏

d=1

qref(xd
1|x0)

=
1

c(x0)

K∑
k=1

βk

D∏
d=1

rdk[x
d
1] q

ref(xd
1|x0),

(25)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

where the reference factors can be merged with the rank-1 components because they are indepen-
dent of the mixture index k and factorize over dimensions. From here, it is possible to obtain
the normalizing constant c(x0) by summing over all possible values of x1 ∈ X = SD, where
xd
1 ∈ {0, . . . , S − 1}. The normalizing constant can then be rewritten as

c(x0) =
∑

x1∈SD

K∑
k=1

βk

D∏
d=1

rdk[x
d
1] q

ref(xd
1|x0)

=

K∑
k=1

βk

∑
x1∈SD

D∏
d=1

rdk[x
d
1] q

ref(xd
1|x0)

=

K∑
k=1

βk

D∏
d=1

S−1∑
xd
1=0

rdk[x
d
1] q

ref(xd
1|x0),

(26)

where
∑

x1∈SD =
∑S−1

x1
1=0

∑S−1
x2
1=0 · · ·

∑S−1
xD
1 =0. The exchange between the product and the sum is

valid here because the summation is separable across dimensions, i.e., each factor depends only on
its corresponding coordinate xd

1.

Proof of Proposition 4.1. We start from the standard KL minimization problem from the LightSB
paper (Korotin et al., 2024) and define it in discrete space.

KL (q∗∥q) =
∑
x0,x1

q∗(x0, x1) log

(
q∗(x0, x1)

q(x0, x1)

)
=
∑
x0,x1

q∗ log q∗(x0, x1)−
∑
x0,x1

q∗ log q(x0, x1) =

= −H(q∗)−
∑
x0,x1

q∗(x0, x1) log q(x0, x1) = −H(q∗)−
∑
x0,x1

q∗(x0, x1) log (q(x0)q(x1|x0))

= −H(q∗)−
∑
x0,x1

q∗(x0, x1) log q(x0)︸ ︷︷ ︸
=p0(x0)

−
∑
x0,x1

q∗(x0, x1) log q(x1|x0) =

= −H(q∗)−
∑
x0

log p0(x0)
∑
x1

q∗(x0, x1)︸ ︷︷ ︸
=q∗(x0)=p0(x0)

−
∑
x0,x1

q∗(x0, x1) log q(x1|x0)

Now using (9) on q(x1|x0) we can get

KL (q∗∥q) = −H(q∗)−
∑
x0

log p0(x0)p0(x0)−
∑
x0,x1

q∗(x0, x1) log

(
v∗(x1)

c∗(x0)
qref(x1|x0)

)
=

= −H(q∗)−
∑
x0

log p0(x0)p0(x0)−
∑
x0,x1

q∗(x0, x1) log q
ref(x1|x0)︸ ︷︷ ︸

=−L∗

−

−
∑
x0,x1

q∗(x0, x1) log

(
v∗(x1)

c∗(x0)

)
=

= −L∗ +
∑
x0,x1

q∗(x0, x1) log c
∗(x0)−

∑
x0,x1

q∗(x0, x1) log v
∗(x1) =

=
∑
x0

p∗0(x0) log c
∗(x0)−

∑
x1

q∗(x1) log v
∗(x1)− L∗,

That concludes the proof.

Proof of expression 7. Let Q be the transition matrix in (4), rewritten as

Q = (1− γ)I +
γ

S − 1
(11⊤ − I)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

=

(
1− γ

S

S − 1

)
I +

γ

S − 1
11⊤,

where I is the identity matrix and 11⊤ is the all-ones matrix. Let

a = 1− γ
S

S − 1
, b =

γ

S − 1
,

so that Q = aI+b11⊤ and note that a+Sb = 1. We compute QN+1 using the binomial expansion.
Since I and 11⊤ commute:

Qn = (aI + b11⊤)n

=

n∑
k=0

(
n

k

)
an−kbk(11⊤)k.

Using (11⊤)k = Sk−111⊤ for k ≥ 1 and separating the k = 0 term:

Qn = anI +
n∑

k=1

(
n

k

)
an−kbkSk−111⊤

= anI +
1

S

(
n∑

k=1

(
n

k

)
an−k(bS)k

)
11⊤.

The binomial expansion gives:

(a+ bS)n =

n∑
k=0

(
n

k

)
an−k(bS)k = an +

n∑
k=1

(
n

k

)
an−k(bS)k.

Since a+ bS = 1, we have (a+ bS)n = 1, so
∑n

k=1

(
n
k

)
an−k(bS)k = 1− an. Thus,

Qn = anI +
1− an

S
11⊤.

Substituting n = N + 1 and a = 1− γ S
S−1 yields

qref(x1|x0) = QN+1 =

(
1− γ

S

S − 1

)N+1

I +
1−

(
1− γ S

S−1

)N+1

S
11⊤.

This completes the proof.

Proof of Proposition 4.2.

KL
(
q(x0, xin, x1)∥qSB(x0, xin, x1)

)
=

= KL
(
q(x0, x1)∥qSB(x0, x1)

)
+ KL

(
qref(xin|x0, x1)∥qref(xin|x0, x1)

)︸ ︷︷ ︸
=0

= (27)

=
∑
x0,x1

q(x0, x1) log q(x0, x1)︸ ︷︷ ︸
=−H(q(x0,x1))

−
∑
x0,x1

q(x0, x1) log q
SB(x0, x1) =

= −H(q(x0, x1))−
∑
x0,x1

q(x0, x1) log
vSB(x1)q

ref(x1|x0)

cSB(x0)
= (28)

= −H(q(x0, x1))−
∑
x0,x1

q(x0, x1) log v
SB(x1)−

−
∑
x0,x1

q(x0, x1) log q
ref(x1|x0) +

∑
x0,x1

q(x0, x1) log c
SB(x0) =

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

= −H(q(x0, x1))−
∑
x1

log vSB(x1) q(x1)︸ ︷︷ ︸
=p(x1)=q∗(x1)

∑
x0

q(x0|x1)︸ ︷︷ ︸
=1=

∑
x0

q∗(x0|x1)

− (29)

−
∑
x0,x1

q(x0, x1) log q
ref(x1|x0) +

∑
x0

log cSB(x0) q(x0)︸ ︷︷ ︸
=p(x0)=q∗(x0)

∑
x1

q(x1|x0)︸ ︷︷ ︸
=1=

∑
x1

q∗(x1|x0)

= (30)

= −H(q(x0, x1))−
∑
x0,x1

q(x0, x1) log q
ref(x1|x0)︸ ︷︷ ︸

=C1

−
∑
x0,x1

q∗(x0, x1) log
vSB(x1)

cSB(x0)
=

= C1 −
∑
x0,x1

q∗(x0, x1) log
vSB(x1)

cSB(x0)
−

−
∑
x0,x1

q∗(x0, x1) log q
ref(x1|x0) +

∑
x0,x1

q∗(x0, x1) log q
ref(x1|x0)︸ ︷︷ ︸

=0

= (31)

= −
∑
x0,x1

q∗(x0, x1) log
vSB(x1)q

ref(x1|x0)

cSB(x0)
+ C1 +

∑
x0,x1

q∗(x0, x1) log q
ref(x1|x0)︸ ︷︷ ︸

=C2

=

= C2 −
∑
x0,x1

q∗(x0, x1) log q
SB(x0, x1)+

+
∑
x0,x1

q∗(x0, x1) log q
∗(x0, x1)−

∑
x0,x1

q∗(x0, x1) log q
∗(x0, x1)︸ ︷︷ ︸

=0

= (32)

=
∑
x0,x1

q∗(x0, x1) log
q∗(x0, x1)

qSB(x0, x1)
+ C2 −

∑
x0,x1

q∗(x0, x1) log q
∗(x0, x1)︸ ︷︷ ︸

C3

=

= KL
(
q∗(x0, x1)∥qSB(x0, x1)

)
+ C3

In (27), we use the disintegration of the KL divergence to transition from the dynamic to the static
formulation. In (28), we apply our parameterization from (9). Next, in (29) and (30), we use the
properties of the reciprocal process q, which has the true marginals at t = 0 and t = 1. In (31),
we add a zero term to introduce qref(x1|x0) with the expectation taken over the optimal coupling
q∗(x0, x1). Finally, in (32), we obtain the entropy term, completing the expression for the desired
KL divergence.

Proof of Proposition 4.3. We first derive the transitional distributions of the SB by recalling its well-
known characterization (Léonard, 2013, Prop. 4.2):

qSB (xtn |xtn−1

)
= qref (xtn |xtn−1

) ϕSB
tn (xtn)

ϕSB
tn−1

(xtn−1)
, ϕSB

tn (xtn) = Eqref (x1|xtn)

[
vSB(x1)

]
.

Using the CP parametrization of vSB from (10) and exploiting the conditional independence of di-
mensions under qref, the scalar-valued functions ϕtn can be written as:

ϕSB
tn (xtn) =

K∑
k=1

βk

D∏
d=1

Eqref(xd
1 |xd

tn
)

[
rdk(x

d
1)
]
=

K∑
k=1

βk

D∏
d=1

S−1∑
xd
1=0

[
Q

ref
N+1−n

]
xd
tn

,xd
1
rdk[x

d
1]︸ ︷︷ ︸

ud
k,tn

[xd
tn

]

,

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

where ud
k,tn

satisfy the following recursive relation:

ud
k,tn [x

d
tn] =

S−1∑
xd
tn+1

=0

[
Qref

]
xd
tn

,xd
tn+1

ud
k,tn+1

[xd
tn+1

], ud
k,t1 = rdk.

Thus, we obtain the following transition distributions:

qSB(xtn |xtn−1
) ∝ qref(xtn |xtn−1

)

K∑
k=1

βk

D∏
j=1

uj
k,tn

[xj
tn]. (33)

To obtain the d-th marginal transition distribution, we marginalize over x−d
tn

def
= {xj

tn}j ̸=d as follows:

qSB
(
xd
tn |xtn−1

)
∝
∑
x−d
tn

(
D∏

j=1

[Qref]xj
tn−1

,xj
tn

)(
K∑

k=1

βk

D∏
j=1

uj
k,tn

[xj
tn]

)
=

= [Qref]xd
tn−1

,xd
tn

K∑
k=1

βku
d
k,tn [x

d
tn]

D∏
j=1
j ̸=d

∑
xj
tn

[Qref]xj
tn−1

,xj
tn

uj
k,tn

[xj
tn]︸ ︷︷ ︸

uj
k,tn−1

[xj
tn−1

] (by recursion)

.

Finally, we obtain the desired expression up to normalization:

qSB
(
xd
tn |xtn−1

)
∝ [Qref]xd

tn−1
,xd

tn

K∑
k=1

βku
d
k,tn [x

d
tn]

D∏
j=1
j ̸=d

uj
k,tn−1

[xj
tn−1

].

Now we derive the sampling procedure. Sampling from the SB transitional distributions is based on
the following factorization:

qSB(xtn |xtn−1
) =

K∑
k=1

p(k|xtn−1
)

D∏
d=1

qSB(xd
tn |xtn−1

, k).

Using the full joint SB transition distribution (33), the probability of k is

p(k|xtn−1
) ∝ βk

D∏
d=1

ud
k,tn−1

[xd
tn−1

].

Using the marginal distributions conditioned on k, the factors with j ̸= d are independent of xd
tn

and absorbed into normalization, yielding

qSB(xd
tn |xtn−1 , k) ∝ [Qref]xd

tn−1
,xd

tn
ud
k,tn [x

d
tn].

Thus, sampling proceeds by first drawing

k∗ ∼ p(k|xtn),

and then sampling each coordinate independently as

xd
tn+1
∼ qSB(·|xtn , k

∗) ∝ [Qref]xd
tn

,· u
d
k∗,tn+1

[·], d = 1, . . . , D.

B METHODS DETAILS

This section provides additional theoretical and implementation details complementing M4, focusing
on the methods used to evaluate our benchmark pairs.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

CSBM. In practice, the D-IMF procedure is usually implemented bidirectionally: the Markovian
projection is applied using both forward and backward representations (see “Notation”), which is
the approach we adopt in our experiments. This design has two advantages. First, it mitigates error
accumulation caused by imperfect model fitting, as shown in (De Bortoli et al., 2024, Appendix F).
Second, it enables the use of alternative starting couplings, as proposed in (Kholkin et al., 2024).

Limitations. To reduce the computational overhead of evaluating the full probability state space
of size SD, the authors propose factorizing transition probabilities across dimensions, reducing the
space to D×S. However, this parametrization constitutes a key limitation of CSBM, as it introduces
approximation error.

DLightSB. We optimize over the logarithm of the mixture weights β ∈ K and the logarithm of
the CP cores rdk. This allows computation of the log terms in the surrogate loss (17) by stable
log-sum-exp operations.

Limitations. (1) In spite of being numerically stable, the log-sum-exp operations allocate extra
memory, which can become a bottleneck when applied repeatedly in high-dimensional settings. (2)
The CP parameterization requires an impractically large number of components to capture complex
data, making it infeasible under memory constraints. Additionally, we approximate the summations
using Monte Carlo samples from p0 and p1.

DLightSB-M. Limitations. The practical implementation requires storing or recomputing ud
k,t at

each iteration, which scales asO(B×S2×K) in memory and computation. This quickly becomes
prohibitive for high-dimensional data, limiting scalability to small state spaces.

C EXPERIMENT DETAILS

This section provides detailed descriptions of all methods and their configurations.

Shared Aspects. Across all experiments, we use the AdamW optimizer with fixed beta values of
0.95 and 0.99. For the high-dimensional Gaussian benchmark (M5.2). Notably, for diffusion-based
methods, we fully sample the Markov chain, in contrast to Austin et al. (2021), which applies an
argmax operation at the final timestep. To evaluate the methods on the high-dimensional Gaussian
mixture benchmark (M5.2), we use 20 000 samples. Conditional metrics are computed using 156
instances of x0, with 1 000 samples of x1 generated for each x0.

CSBM and α-CSBM. For CSBM and α-CSBM, we use the official implementation from Kseno-
fontov & Korotin (2025):

https://github.com/gregkseno/csbm.

To stabilize training and improve final performance, we apply Exponential Moving Average (EMA)
parameter updates with a decay rate of 0.999, tuned consistently across all experiments. Unlike
Austin et al. (2021), we omit the Lsimple loss during training. We employ a simple MLP with three
hidden layers of size [128, 128, 128] and ReLU activations. Time conditioning is implemented via
an embedding layer of the same size as dimensions, D. Both methods are trained for 5 D-IMF iter-
ations, using 120 000 gradient updates in the first iteration and 40 000 in each subsequent iteration.
For α-CSBM, we use a learning rate of 10−3 and halve the batch size for training a single model,
following De Bortoli et al. (2024). For CSBM, we use a learning rate of 10−4.

DLightSB and DLightSB-M. For all benchmark experiments, both methods use K = 1000 com-
ponents initialized from data samples and are trained for 100 000 gradient updates. The learning rate
is set to 10−2 for both, with DLightSB-M using independent coupling (q0(x0, x1) = p0(x0)p1(x1)).

Computational Resources and Training Time. All high-dimensional Gaussian mixture bench-
mark experiments were conducted on 1 A100 GPU unless otherwise specified, with training times
reported inclusive of evaluation. For D = 2, training is relatively short: CSBM and α-CSBM each
complete within about 5 hours, DLightSB-M within 4 hours, and DLightSB in roughly 20 minutes.

19

https://github.com/gregkseno/csbm

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

For D = 64, CSBM completes in under 14 hours, α-CSBM in under 9 hours, DLightSB-M in just
under 2 days (on 2 A100 GPUs), and DLightSB in under 7 hours.

D ADDITIONAL EXPERIMENTS

D.1 REVERSE BENCHMARK

In this section we try to overcome inherited inductive bias of DLightSB(-M) solvers. By construc-
tion, the forward conditional distribution q∗(x1|x0) admits a CP decomposition, while the reverse
distribution q∗(x0|x1) does not. As a result, when the benchmark is used in the reverse direction
with the same marginals p0 and p1, DLightSB(-M) methods can no longer rely on the inductive bias
that benefits them in the forward setup.

Unfortunately, in this setup, the true conditional distributions are not available, so we cannot com-
pute conditional metrics. To overcome this restriction, we decided to compute the Classifier Two
Sample Test (Lopez-Paz & Oquab, 2017, C2ST) metric, ROC AUC of classifier between pairs
(x0, x1) ∼ p1(x1)q

∗(x0|x1) and (x̂0, x1) ∼ p1(x1)qθ(x0|x1). As the classifier, we used two layer
MLP with ReLU activations that takes as input the concatenation of one-hot vectors of x0 and x1.
We present C2ST scores in following table.

D=2 D=16 D=64

gaussian uniform gaussian uniform gaussian uniform

Method Loss N + 1 0.02 0.05 0.005 0.01 0.02 0.05 0.005 0.01 0.02 0.05 0.005 0.01

DLightSB – – 0.926 0.998 0.996 0.985 0.961 0.971 0.993 0.996 0.972 0.993 0.985 0.990

CSBM
KL 16 0.990 0.991 1.000 0.996 0.979 0.990 0.999 0.988 0.990 0.990 0.991 0.997

64 0.995 1.000 0.992 0.998 0.991 0.982 0.986 0.981 0.999 0.999 0.994 0.999

MSE 16 0.952 0.996 0.987 0.997 0.998 0.976 0.995 0.985 0.987 0.997 0.983 0.999
64 0.900 0.990 0.993 0.981 0.985 0.992 0.998 0.973 0.987 0.997 1.000 0.999

Table 3: C2ST metric (↑) on the high-dimensional Gaussian mixture benchmark. Color code threshold: red for
< 0.7, yellow for [0.7, 0.9), and green for ≥ 0.9.

As can be seen from Table 3, computed metric values are not informative. Across all methods
the metric values are nearly identical, indicating that such a simple classifier is already capable of
distinguishing generated samples from real ones. As a result, we decided to discard this setup.

D.2 ADDITIONAL METRICS AND PLOTS

D=2 D=16 D=64

gaussian uniform gaussian uniform gaussian uniform

Method Loss N+1 0.02 0.05 0.005 0.01 0.02 0.05 0.005 0.01 0.02 0.05 0.005 0.01

Independent – – 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
DLightSB – – 0.975 0.969 0.969 0.980 0.973 0.976 0.968 0.975 0.971 0.971 0.974 0.970

CSBM
KL 16 0.855 0.739 0.914 0.893 0.890 0.807 0.855 0.806 0.953 0.934 0.951 0.937

64 0.936 0.893 0.955 0.952 0.959 0.934 0.962 0.940 0.966 0.967 0.963 0.969

MSE 16 0.726 0.704 0.814 0.850 0.852 0.782 0.845 0.754 0.935 0.936 0.913 0.903
64 0.449 0.843 0.783 0.774 0.879 0.903 0.918 0.915 0.860 0.944 0.881 0.949

α-CSBM
KL 16 0.829 0.749 0.925 0.914 0.887 0.836 0.888 0.827 0.965 0.968 0.959 0.965

64 0.902 0.900 0.965 0.961 0.963 0.955 0.954 0.963 0.964 0.960 0.953 0.961

MSE 16 0.810 0.712 0.841 0.887 0.877 0.821 0.854 0.819 0.951 0.947 0.912 0.930
64 0.909 0.903 0.867 0.883 0.934 0.914 0.883 0.929 0.895 0.925 0.878 0.930

DLightSB-M
KL 16 0.924 0.952 0.961 0.960 0.919 0.931 0.957 0.948 0.935 0.921 0.947 0.905

64 0.909 0.951 0.964 0.964 0.905 0.949 0.960 0.962 0.922 0.937 0.962 0.941

MSE 16 0.787 0.944 0.870 0.920 0.743 0.921 0.944 0.950 0.723 0.914 0.890 0.850
64 0.712 0.942 0.886 0.908 0.686 0.915 0.950 0.937 0.639 0.903 0.731 0.879

Table 4: Shape Score metric (↑) on the high-dimensional Gaussian mixture benchmark. The best-performing
method is highlighted in bold, and the second is underlined. Color code threshold: red for < 0.7, yellow for

[0.7, 0.9), and green for ≥ 0.9.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

D=2 D=16 D=64

gaussian uniform gaussian uniform gaussian uniform

Method Loss N+1 0.02 0.05 0.005 0.01 0.02 0.05 0.005 0.01 0.02 0.05 0.005 0.01

Independent – – 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
DLightSB – – 0.949 0.952 0.950 0.960 0.914 0.943 0.933 0.939 0.888 0.909 0.907 0.906

CSBM
KL 16 0.797 0.662 0.876 0.854 0.809 0.691 0.747 0.670 0.877 0.868 0.881 0.867

64 0.907 0.856 0.926 0.914 0.899 0.884 0.909 0.883 0.888 0.905 0.897 0.904

MSE 16 0.620 0.633 0.739 0.781 0.743 0.651 0.735 0.618 0.861 0.864 0.840 0.824
64 0.337 0.774 0.705 0.724 0.809 0.826 0.845 0.838 0.776 0.865 0.807 0.867

α-CSBM
KL 16 0.772 0.662 0.887 0.868 0.821 0.740 0.798 0.721 0.888 0.905 0.895 0.899

64 0.872 0.853 0.929 0.914 0.907 0.916 0.905 0.918 0.886 0.899 0.891 0.900

MSE 16 0.733 0.621 0.759 0.822 0.790 0.714 0.771 0.715 0.864 0.857 0.824 0.829
64 0.860 0.854 0.803 0.811 0.855 0.846 0.802 0.855 0.816 0.825 0.777 0.820

DLightSB-M
KL 16 0.874 0.933 0.934 0.935 0.762 0.902 0.909 0.908 0.842 0.864 0.874 0.665

64 0.857 0.928 0.935 0.937 0.747 0.906 0.909 0.911 0.828 0.865 0.650 0.792

MSE 16 0.703 0.920 0.821 0.892 0.572 0.865 0.888 0.902 0.577 0.822 0.760 0.548
64 0.629 0.915 0.838 0.879 0.511 0.845 0.889 0.890 0.470 0.791 0.497 0.685

Table 5: Trend Score (↑) on the high-dimensional Gaussian mixture benchmark. The best-performing method
is highlighted in bold, and the second is underlined. Color code threshold: red for < 0.7, yellow for [0.7, 0.9),

and green for ≥ 0.9.

(a) Input and Target (b) CSBM KL/16 (c) CSBM KL/64 (d) CSBM MSE/16 (e) CSBM MSE/64

(f) Benchmark (g) α-CSBM KL/16 (h) α-CSBM KL/64 (i) α-CSBM MSE/16 (j) α-CSBM MSE/64

(k) DLightSB (l) DLightSB-M KL/16 (m) DLightSB-M KL/64 (n) DLightSB-M MSE/16 (o) DLightSB-M MSE/64

Figure 2: Samples from all methods on the high-dimensional Gaussian mixture benchmark using the Gaussian
reference process qgauss with γ = 0.02.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

(a) Input and Target (b) CSBM KL/16 (c) CSBM KL/64 (d) CSBM MSE/16 (e) CSBM MSE/64

(f) Benchmark (g) α-CSBM KL/16 (h) α-CSBM KL/64 (i) α-CSBM MSE/16 (j) α-CSBM MSE/64

(k) DLightSB (l) DLightSB-M KL/16 (m) DLightSB-M KL/64 (n) DLightSB-M MSE/16 (o) DLightSB-M MSE/64

Figure 3: Samples from all methods on the high-dimensional Gaussian mixture benchmark using the Gaussian
reference process qgauss with γ = 0.05.

(a) Input and Target (b) CSBM KL/16 (c) CSBM KL/64 (d) CSBM MSE/16 (e) CSBM MSE/64

(f) Benchmark (g) α-CSBM KL/16 (h) α-CSBM KL/64 (i) α-CSBM MSE/16 (j) α-CSBM MSE/64

(k) DLightSB (l) DLightSB-M KL/16 (m) DLightSB-M KL/64 (n) DLightSB-M MSE/16 (o) DLightSB-M MSE/64

Figure 4: Samples from all methods on the high-dimensional Gaussian mixture benchmark using the uniform
reference process qunif with γ = 0.005.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

(a) Input and Target (b) CSBM KL/16 (c) CSBM KL/64 (d) CSBM MSE/16 (e) CSBM MSE/64

(f) Benchmark (g) α-CSBM KL/16 (h) α-CSBM KL/64 (i) α-CSBM MSE/16 (j) α-CSBM MSE/64

(k) DLightSB (l) DLightSB-M KL/16 (m) DLightSB-M KL/64 (n) DLightSB-M MSE/16 (o) DLightSB-M MSE/64

Figure 5: Samples from all methods on the high-dimensional Gaussian mixture benchmark using the uniform
reference process qunif with γ = 0.01.

23

	Introduction
	Background: Problem Statement
	Dynamic and Static Schrödinger Bridges on Discrete Spaces
	Formulations of the Reference Process
	Entropic Optimal Transport on Discrete Spaces
	Problem Setup for Discrete Schrödinger Bridges

	Benchmark
	Main Theorem for Benchmark Construction
	Practical Parameterization of the Scalar-valued Function v*
	High-dimensional Gaussian Mixtures Benchmark Construction

	Solvers for Evaluation
	Categorical Schrödinger Bridge Matching (CSBM)
	-Categorical Schrödinger Bridge Matching (-CSBM)
	Discrete Light Schrödinger Bridge (DLightSB)
	Discrete Light Schrödinger Bridge Matching (DLightSB-M)

	Evaluation
	Metrics for Evaluation
	Results

	Discussion
	Proofs
	Methods Details
	Experiment Details
	Additional Experiments
	Reverse benchmark
	Additional Metrics and Plots

