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ABSTRACT

The Entropic Optimal Transport (EOT) problem and its dynamic counterpart, the
Schrödinger bridge (SB) problem, play an important role in modern machine
learning, linking generative modeling with optimal transport theory. While recent
advances in discrete diffusion and flow models have sparked growing interest in
applying SB methods to discrete domains, there is still no reliable way to evaluate
how well these methods actually solve the underlying problem. We address this
challenge by introducing a benchmark for SB on discrete spaces. Our construc-
tion yields pairs of probability distributions with analytically known SB solutions,
enabling rigorous evaluation. As a byproduct of building this benchmark, we ob-
tain two new SB algorithms, DLightSB and DLightSB-M, and additionally extend
prior related work to construct the α-CSBM algorithm. We demonstrate the utility
of our benchmark by evaluating both existing and new solvers in high-dimensional
discrete settings. This work provides the first step toward proper evaluation of SB
methods on discrete spaces, paving the way for more reproducible future studies.

1 INTRODUCTION

The Entropic Optimal Transport (Cuturi, 2013, EOT) problem and its dynamic counterpart, the
Schrödinger bridge (Schrödinger, 1931, SB), have recently attracted significant attention in the ma-
chine learning community due to their relevance for generative modeling and unpaired learning. A
variety of methods have been developed to solve these problems in continuous data spaces such as
(Daniels et al., 2021; Gushchin et al., 2023a; 2024b; Mokrov et al., 2024; Vargas et al., 2021; Chen
et al., 2021; Shi et al., 2023; De Bortoli et al., 2024; Korotin et al., 2024; Gushchin et al., 2024a).

At the same time, much real world data are discrete by nature, including text (Austin et al., 2021; Gat
et al., 2024), molecular graphs (Vignac et al., 2022; Qin et al., 2024; Luo et al., 2024), and protein
sequences (Campbell et al., 2024). Others are discrete by construction, such as vector-quantized
representations of images and audio (Van Den Oord et al., 2017; Esser et al., 2021).

Given the prevalence of such discrete data and the rapid progress in discrete diffusion/flow models
(Hoogeboom et al., 2021; Austin et al., 2021; Campbell et al., 2022; Lou et al., 2023; Sahoo et al.,
2024; Campbell et al., 2024; Gat et al., 2024), research on SBs has attracted growing attention in
recent years. For instance, several recent works have already taken first steps in this direction (Kim
et al., 2024, DDSBM;Ksenofontov & Korotin, 2025, CSBM), adapting diffusion methodologies
from (Austin et al., 2021, D3PM;Vignac et al., 2022, DiGress), respectively.

Despite the rapid progress in discrete SB research, there is still a lack of evaluation benchmarks.
These benchmarks enable us to determine whether SB methods actually solve the intended math-
ematical problem, separating true algorithmic performance from artifacts of specific parameteriza-
tions, regularization schemes, and other implementation choices. While this has recently become
possible in the continuous setting of Schrodinger Bridges (Gushchin et al., 2023b), no such approach
exists for discrete data, leaving it unclear how closely SB solvers approximate the true solution of
the SB problem on discrete domains. To address this gap, we make the following contributions:

• Theory & Methodology. We present a general methodology to create pairs of discrete probability
distributions with known SB solutions (M3.1). To overcome tractability issues of the methodology
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in discrete spaces, we introduce a CP-based parameterization (M3.2). This parameterization yields
a closed-form SB and enables a practically feasible benchmark construction.

• Algorithms. The CP-based parameterization of our benchmark allows us to construct two
novel discrete SB methods: DLightSB and DLightSB-M (M4.3 and M4.4). Which mirror their
continuous-space counterparts LightSB and LightSB-M (Korotin et al., 2024; Gushchin et al.,
2024a). Additionally, we introduce α-CSBM (M4.2), a new solver for discrete SB. Which com-
bines the recent discrete-space solver CSBM (Ksenofontov & Korotin, 2025) with the incremen-
tal/online update strategy of α-DSBM used in continuous settings (De Bortoli et al., 2024).

• Practice. We use these benchmark pairs to evaluate both existing and newly introduced SB solvers
in high-dimensional settings

Notation. We consider a discrete state space X = SD, where S = {0, 1, . . . , S−1} is the set of S
categories and D is the dimensionality. Each x ∈ X is a D-dimensional vector x = (x1, . . . , xD).
Time is discretized as {tn}N+1

n=0 with 0 = t0 < t1 < · · · < tN < tN+1 = 1. This gives N + 2 time

points and defines the path space XN+2 with the tuple xin
def
= (xt1 , . . . , xtN ) ∈XN collecting the

intermediate states. The set P(XN+2) comprises all discrete time stochastic processes on the path
space, withM(XN+2)⊂P(XN+2) denoting the subset of Markov processes. Any q∈M(XN+2)

admits forward and backward representations: q(x0, xin, x1) = q(x0)
∏N+1

n=1 q(xtn |xtn−1) =

q(x1)
∏N+1

n=1 q(xtn−1
|xtn), where q(·|·) denotes conditional probabilities.

2 BACKGROUND: PROBLEM STATEMENT

This section provides an overview of the discrete-time Schrödinger Bridge problem. First, we
present the dynamic SB and its reduction to a static problem (M2.1). Next, we analyze diffusion-type
reference processes (M2.2) that yield practical cost functions, linking to the EOT framework in M2.3.
Finally, we introduce our problem setting (M2.4).

2.1 DYNAMIC AND STATIC SCHRÖDINGER BRIDGES ON DISCRETE SPACES

Dynamic Schrödinger Bridge. The original SB problem (Schrödinger, 1931; 1932; Léonard,
2013) seeks to find a process q∗ ∈ P(XN+2) interpolating between an initial distribution p0 at t0 =
0 and a final distribution p1 at tN+1 = 1. This distribution is found by minimizing the Kullback-
Leibler (KL) divergence with respect to a given Markov reference process qref ∈M(XN+2) subject
to the marginal constraints p0(x0) = q(x0) and p1(x1) = q(x1). One finds

q∗ = argmin
q∈ΠN (p0,p1)

KL
(
q(x0, xin, x1)∥qref(x0, xin, x1)

)
, (1)

where ΠN (p0, p1) ⊂ P(XN+2) denotes the subset of X -valued stochastic processes which have p0
and p1 as marginals at times t0 = 0 and tN+1 = 1, respectively. In other words, the dynamic SB
problem seeks the stochastic process q∗ that minimally deviates from a reference process qref while
respecting the boundary distributions p0 and p1.

Static Schrödinger Bridge. We now introduce the static formulation of the SB. This begins with
observing that (1) admits the following decomposition:

min
q∈ΠN (p0,p1)

[
KL
(
q(x0, x1)∥qref(x0, x1)

)
+ Eq(x0,x1)KL

(
q(xin|x0, x1)∥qref(xin|x0, x1)

)]
. (2)

We further note that the conditional KL term in (2) vanishes when q(xin|x0, x1) = qref(xin|x0, x1).
Thus, we restrict q to the set of processes that satisfy this condition. This set is known as the
reciprocal class of qref and is denoted by Rref(XN+2) ⊂ P(XN+2). Under this restriction, the
optimization reduces to the first KL term alone, leading directly to the static SB problem

q∗(x0, x1) = argmin
q∈Π(p0,p1)

KL
(
q(x0, x1)∥qref(x0, x1)

)
, (3)

where Π(p0, p1) ∈ P(X 2) is the set of joint distributions q(x0, x1) whose marginals are p0 and p1.
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2.2 FORMULATIONS OF THE REFERENCE PROCESS

The key ingredient in both SB formulations is the Markov reference process qref. In dis-
crete space it is usually modeled as a discrete-time Markov chain defined by transition matri-
ces Qref

n ∈ [0, 1]|X |×|X|, where qref(xd
tn |x

d
tn−1

) = [Qref
n ]xd

tn−1
,xd

tn
. Assuming time-homogeneity

(Qref
n = Qref for all n), the n-step transition probabilities are given by the matrix power

Q
ref
n = [Qref]n. To define Q, we further restrict to D = 1 for clarity, noting that for D > 1 the

transition probabilities are obtained as a product over dimensions.

Remark. The reference process qref can also be defined in continuous time. In which transitions
are characterized by rates instead of probabilities. Since controlling these rates is less direct and not
all discrete processes admit a continuous analogue, we restrict our attention to the discrete setting,
which is more flexible and well-suited for a benchmark construction.

We now introduce two popular diffusion-like transitions: uniform (Hoogeboom et al., 2021; Camp-
bell et al., 2022) and Gaussian-like (Austin et al., 2021).

The reference process qref ∈ M(XN+2) is modeled as a discrete-state diffusion process,
i.e., a discrete-time Markov chain defined by transition matrices Qref

n ∈ [0, 1]|X |×|X|, where
qref(xd

tn |x
d
tn−1

) = [Qref
n ]xd

tn−1
,xd

tn
. Assuming time-homogeneity (Qref

n = Qref for all n), the n-

step transition probabilities are given by the matrix power Q
ref
n = [Qref]n. To define Q, we further

restrict to D = 1 for clarity, noting that for D > 1 the transition probabilities are obtained as a
product over dimensions. We now introduce two diffusion-like transitions: uniform (Hoogeboom
et al., 2021; Campbell et al., 2022) and Gaussian-like (Austin et al., 2021).

Uniform Reference Process (qunif). For unordered data, where no relation exists between cate-
gories, a natural choice is a so-called uniform transition matrix. For each dimension d, the elements
of the transition matrix Qref are defined by

[Qref]xd
tn−1

,xd
tn

=

{
1− γ, if xd

tn = xd
tn−1

,
γ

S−1 , if xd
tn ̸= xd

tn−1
,

(4)

where γ ∈ [0, 1] is an stochasticity parameter. This reference process introduces randomness inde-
pendently of the distance between categories. It assigns equal probability to transitioning into any
different category, while having a staying probability 1 − γ. This ignores any inherent ordering or
relationships among categories.

Gaussian Reference Process (qgauss). For ordered data, where categories are expected to exhibit
meaningful relations, a Gaussian-like transition matrix is more appropriate. With the stochasticity
parameter γ > 0 and the maximum category distance ∆ = S − 1, the transition probabilities are

[Qref]xd
tn−1

,xd
tn

=

exp

(
−

4(xd
tn

−xd
tn−1

)2

(γ∆)2

)
∆∑

δ=−∆

exp
(
− 4δ2

(γ∆)2

) , xd
tn ̸= xd

tn−1
. (5)

The diagonal entries take the remaining probability so that each row sums to 1.

2.3 ENTROPIC OPTIMAL TRANSPORT ON DISCRETE SPACES

Following the construction of the Markov reference process in §2.2, the static SB problem (§3)
takes a form equivalent to the entropic optimal transport (EOT) problem (Cuturi, 2013). Concretely,
expressing qref(x0, x1) = qref(x0)q

ref(x1|x0) and setting qref(x0) = p0(x0), allows the minimization
in equation (3) to be rewritten as

min
q∈Π(p0,p1)

KL
(
q(x0, x1)∥qref(x0, x1)

)
=

= min
q∈Π(p0,p1)

∑
x0,x1

q(x0, x1) log
q(x0, x1)

qref(x0)qref(x1|x0)
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= min
q∈Π(p0,p1)

−H(q)−
∑
x0,x1

q(x0, x1) log q
ref(x1|x0)−

∑
x0,x1

q(x0, x1) log q
ref(x0)︸ ︷︷ ︸

=
∑

x0
p0(x0) log p0(x0)=−H(p0)

(6)

= min
q∈Π(p0,p1)

Eq(x0,x1)

[
− log qref(x1|x0)

]
−H(q)− const

= min
q∈Π(p0,p1)

E(x0,x1)∼q

[
c(x0, x1)

]
−H(q)− const,

where H(q) is the entropy of q, while H(p0) remains constant when minimizing over q. Thus, the
static SB formulation becomes equivalent to the entropy-regularized optimal transport problem with
cost c(x0, x1) = − log qref(x1|x0). This perspective establishes a direct correspondence between
SB and EOT, which we use in the design of our benchmark and methodological framework in M3.

Since the conditional distribution qref(x1|x0) is obtained by taking the (N+1)-th power of Qref, it
admits the following closed-form expression in the uniform case:

Q
ref
N+1 =

(
1− γ

S

S − 1

)N+1

I+
1−

(
1− γ S

S−1

)N+1

S
11⊤, (7)

where 1 = [1, . . . , 1]⊤ ∈ RS is a vector full of ones. From here it can be seen that Q
ref
N+1 converges

to (1/S)11⊤ when (N+1) → ∞, that is a uniform distribution over the number of categories S,
the derivation of (7) can be found in Appendix A. In the case of the Gaussian reference process, the
closed-form expression can also be obtained, but it is much more complex.

2.4 PROBLEM SETUP FOR DISCRETE SCHRÖDINGER BRIDGES

In this section, we recall the generative SB task on discrete spaces, a well-established problem in
the SB and OT literature (Kim et al., 2024; Ksenofontov & Korotin, 2025). In short, the goal is to
learn an SB process or coupling that performs transport between probability distributions on discrete
spaces using available empirical data samples. Formally, we consider the following learning setup:

We assume the learner is given empirical datasets {x(i)
0 }i∈I0 and {x(j)

1 }j∈I1 , x(i)
0 , x

(i)
1 ∈ X ,

consisting of i.i.d. samples from the unknown distributions p0, p1 ∈ P(X ) where X is a discrete
state space. Then, the task is to use these samples to find a solution q∗ to the SB problem (1) or
(3) between p0 and p1 for a given reference qref. Moreover, the solution should support out-of-
sample generation so that for any new (xnew

0 ) one can generate xnew
1 ∼q∗(x1|xnew

0 ).

Despite recent progress in the development of SB methods that solve this task, there remains no
standard methodology for performance evaluation, mainly due to the absence of ground-truth dis-
tribution pairs (p0, p1). In this work, we propose a benchmark construction, inspired by (Gushchin
et al., 2023b), that enables standard evaluation of such methods on datasets built from SB pairs
(x0, x1) with known q∗(x1|x0). Such datasets provide more informative metrics and offer a consis-
tent framework for assessing the performance of SB methods on discrete spaces.

Remark. Our paper is not related to the discrete EOT, which includes solvers such as the Sinkhorn
algorithm (Cuturi, 2013) or gradient-based methods (Dvurechensky et al., 2018). These approaches
are designed for a non-generative problem setting, see (Ksenofontov & Korotin, 2025, M2.3). They
treat samples as empirical distributions p0(x0) =

1
|I0|
∑

i∈I0
δ
x
(i)
0

, p1(x1) =
1

|I1|
∑

j∈I1
δ
x
(j)
1

. The
resulting coupling is then a bi-stochastic |I0| × |I1| matrix, which does not support out-of-sample
generation. While some extensions attempt to provide inference for unseen data (Hütter & Rigollet,
2021; Pooladian & Niles-Weed, 2021; Manole et al., 2024; Deb et al., 2021), they are designed for
continuous spaces (X = RD) rather than the discrete spaces (X = SD) considered in our work.

3 BENCHMARK

This section outlines our theoretical and practical foundations necessary for constructing the bench-
mark for the SB. We introduce our benchmark construction in M3.1. Our benchmark construction
can benefit from a specific parameterization which we explore in M3.2. This construction and pa-
rameterization are later used to build our high-dimensional Gaussian mixture benchmark M3.3.
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3.1 MAIN THEOREM FOR BENCHMARK CONSTRUCTION

Given an initial distribution p0 ∈ P(X ), we aim to construct a target distribution p1 ∈ P(X ) such
that the static SB q∗(x0, x1) between them is known by our construction. The resulting pair (p0, p1)
together with q∗ can then be used as benchmark data for evaluating SB methods. Our following
theorem plays the key role in the construction of benchmark pairs.
Theorem 3.1 (Benchmark pair construction for SB on discrete Spaces). Let p0 ∈ P(X ) be a given
source distribution on a discrete space X and v∗ : X → R be a given scalar-valued function. Let
q∗ ∈ P(X 2) be a joint distribution for which for all x0 ∈ X it holds that q∗(x0) = p0(x0) and

q∗(x1|x0) ∝ v∗(x1)q
ref(x1|x0), (8)

Let p1∈P(X ) be the second marginal of q∗, i.e., q∗(x1)
def
= p1(x1). Then q∗(x0, x1) is the static SB

(3) between p0 and p1. In turn, q∗(x0, xin, x1)
def
= q∗(x0, x1)q

ref(xin|x0, x1) is the dynamic SB (1).

Theorem 3.1 establishes that any pair (p0, v∗) can be used to construct (p0, p1) for the SB prob-
lem, thereby yielding a known solution q∗. The construction considers conditional distributions
q∗(x1|x0) in an unnormalized form, so we further write

q∗(x1|x0) =
1

c∗(x0)
v∗(x1)q

ref(x1|x0), (9)

where c∗(x0)
def
=
∑

x1∈X v∗(x1)q
ref(x1|x0) is the normalization constant.

Our benchmark construction idea may be non-trivial to implement in practice. Specifically, working
in the high-dimensional space X = SD makes computing the normalization constant and sampling
from q∗ computationally expensive. To address this, we introduce a parameterization that enables
efficient computation and sampling, as detailed in the next section.

3.2 PRACTICAL PARAMETERIZATION OF THE SCALAR-VALUED FUNCTION v∗

We parameterize the scalar-valued function v∗ using a rank-1 Canonical Polyadic (CP) decomposi-
tion, which captures interactions across dimensions and provides a compact yet expressive represen-
tation. Such decompositions act as universal approximators, capable of modeling complex functions
when the rank is sufficiently large (Cohen et al., 2016; Basharin et al., 2025). Thus, v∗ is given by

v∗(x1) =

K∑
k=1

βk

D∏
d=1

rdk[x
d
1]. (10)

Expression (10) defines a mixture of K factorizable distributions, each with weight βk ≥ 0. For
each mixture component k and dimension d, probabilities are given by non-negative vectors rdk ∈
RS

+, referred to as CP cores, where rdk[x
d
1] denotes the probability of state xd

1. The key advantage of
this parameterization is that the factorization across dimensions makes both the normalizing constant
c(x0) and the conditional distribution q∗(x1|x0) computationally tractable. Specifically, the product
structure allows efficient ancestral sampling by drawing each dimension independently.
Proposition 3.1 (Tractable Parameterization of Conditional Distributions). Given the CP decom-
position of the scalar-valued function v(x1) =

∑K
k=1 βk

∏D
d=1 r

d
k[x

d
1] and a factorizable reference

process qref(x1|x0)=
∏D

d=1 q
ref(xd

1|x0), the optimal conditional distribution satisfies:

q∗(x1|x0)=
1

c(x0)

K∑
k=1

βk

D∏
d=1

[
rdk[x

d
1]q

ref(xd
1|x0)

]
;

(11)

c(x0)=

K∑
k=1

βk

D∏
d=1

S−1∑
xd
1=0

rdk[x
d
1]q

ref(xd
1|x0)


(12)

where c(x0) is the normalization constant. This formulation expresses q∗(x1|x0) as a mixture of K
factorizable distributions, each weighted by a scalar coefficient βk.

Note that the considered reference processes (§2.2) qgauss and qunif are both factorizable by construc-
tion. Consequently, the normalization constant is tractable, as the combination of the factorized
reference and the CP decomposition reduces the high-dimensional sum to a product of independent
one-dimensional sums.

5
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3.3 HIGH-DIMENSIONAL GAUSSIAN MIXTURES BENCHMARK CONSTRUCTION

We set p0 as a noise distribution (uniform or discretized Gaussian) on D ∈ {2, 16, 64} dimensions
with S = 50 categories. For v∗, we use K = 4 components with uniformly initialized weights
β ∈ RK , and the CP cores are initialized by setting their logarithms to the log-density of discretized
Gaussians with varying means and fixed variance. Given p0 and v∗, we then construct p1 (Theorem
3.1). This initialization produces a target p1 resembling a discretized Gaussian mixture with a clear
visual structure. Moreover, our benchmark formulation further allows the generation of an unlimited
number of samples for training.

We construct pairs under different reference processes qref: Gaussian qgauss with γ ∈ {0.02, 0.05}
and uniform qunif with γ ∈ {0.005, 0.01}, using N + 1 = 128 for both, see Figure 1b to visualize
ground truth benchmark pairs.

4 SOLVERS FOR EVALUATION

The field of discrete SB solvers remains in early development, with limited methods available for
evaluation. We assess four approaches: the Categorical Schrödinger Bridge Matching (CSBM)
method (Ksenofontov & Korotin, 2025), designed specifically for categorical distributions; our α-
CSBM extension, which applies the online methodology of (De Bortoli et al., 2024) to CSBM;
new Discrete Light Schrödinger Bridge (DLightSB) solver, constructed using our benchmark frame-
work (§3) and adapting ideas from (Korotin et al., 2024) to discrete settings; and finally new
DLightSB-M, which extends DLightSB to dynamic setups following (Gushchin et al., 2024a).
Further details about methods can be found in Appendix B.

4.1 CATEGORICAL SCHRÖDINGER BRIDGE MATCHING (CSBM)

In (Ksenofontov & Korotin, 2025, Theorem 3.1), the discrete space SB problem is addressed by
extending the discrete-time existence theorem of (Gushchin et al., 2024b, Theorem 3.6) to the dis-
crete space/time setting, thereby establishing convergence of the discrete time Iterative Markovian
Fitting (D-IMF) procedure. This constructive method uses the fact that the dynamic SB q∗ is both
reciprocal (q∗ ∈ Rref(XN+2)) and Markov (q∗ ∈ M(XN+2)). The D-IMF algorithm alternates
between projections onto these two sets, starting from an initial process q0(x0, x1)q

ref(xin|x0, x1),
where q0(x0, x1) ∈ Π(p0, p1), e.g., p0(x0)p1(x1), and converges to the SB q∗ in KL. Namely,

q2l q2l+2

projM

projRref

l = 0, 1, . . .

where

[projRref(q)](x0, xin, x1) = argmin
r∈Rref(XN+2)

KL (q(x0, xin, x1)∥r(x0, xin, x1)) , ∀q ∈ P(XN+2), (13)

[projM(q)](x0, xin, x1) = argmin
m∈M(XN+2)

KL (q(x0, xin, x1)∥m(x0, xin, x1)) , ∀q ∈ Rref(XN+2). (14)

Loss. Because ancestral sampling makes the reciprocal part straightforward, the challenge lies in
the Markov projection, for which the authors propose minimizing an alternative objective function.

KL (q(x0, xin, x1)∥m(x0, xin, x1)) = Eq(x0,x1)

[
N∑

n=1

Eqref(xtn−1
|x0,x1)

KL
(
qref(xtn |xtn−1

, x1) ∥m(xtn |xtn−1
)
)
− Eqref(xtN

|x0,x1)[logm(x1|xtN )]

]
. (15)

In practice, the D-IMF procedure is implemented in a bidirectional manner (see Ksenofontov &
Korotin (2025, §3.2.5)). That is, it first applies the Markovian projection using both forward and
backward representations. Notably, the KL loss can be replaced by any divergence from the Breg-
man family, introducing additional hyperparameters for this and several subsequent methods. For
details on this equivalence, see (Ksenofontov & Korotin, 2025, Appendix C.1).

Remark. A continuous-time IMF was introduced in the Discrete Diffusion Schrödinger Bridge
Matching (Kim et al., 2024, DDSBM) paper, which performs the Markovian projection (14) by
matching the generator matrices of continuous-time Markov chains. As it reduces to the same loss
and inference process due to the neccesity to discretize time, we report results only for CSBM.
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4.2 α-CATEGORICAL SCHRÖDINGER BRIDGE MATCHING (α-CSBM)
Recently, an online alternative to the IMF procedure, called α-IMF, was proposed (De Bortoli et al.,
2024; Peluchetti, 2024). In this approach, the exact projections in (13) and (14) are replaced by
partial updates (De Bortoli et al., 2024, Eq. 9), and the resulting iteration is proven to converge
to the SB. This means that instead of running each projection until full convergence, only a single
optimization step is performed at each iteration, still guiding the distribution toward the double
projection projRref(projM(·)). Since those works address the continuous setting, we extend the
same ideas to CSBM M4.1, interpreting the discrete formulation of α-IMF as a heuristic analogue of
the original procedure.

Loss. Since the approach does not require each projection to reach full convergence, a single opti-
mization step can be performed for both representation directions at once. This allows us to extend
the CSBM bidirectional setup (M4.1) by updating the forward and backward models jointly, with a
shared loss computed for both representations as:

L(−→m,←−m) = 1
2

(
KL (−→rsg(x0, xin, x1)∥←−m(x0, xin, x1))

+ KL (←−rsg(x0, xin, x1)∥−→m(x0, xin, x1))
)
, (16)

where→ and← denote the direction of representations (forward and backward, respectively), and
rsg denotes projRref(m) evaluated with the stop-gradient operation.

4.3 DISCRETE LIGHT SCHRÖDINGER BRIDGE (DLIGHTSB)

Below we introduce DLightSB, a solver for discrete spaces derived from our benchmark construction
in M3.2

Loss. Following (Korotin et al., 2024), we derive a discrete surrogate objective KL (q∗∥qθ).
Proposition 4.1 (Feasible Discrete Reformulation of the KL Minimization.). For the characteriza-
tion (9) of q(x1|x0), it holds that the alternative KL objective KL (q∗∥q) admits the representation
KL (q∗∥qθ) = L(θ)− L∗ where

L(θ) =
∑
x0∈X

log cθ(x0)p0(x0)−
∑
x1∈X

log vθ(x1)p1(x1), (17)

and L∗ ∈ R is a constant value not depending on θ, therefore, it can be omitted.

4.4 DISCRETE LIGHT SCHRÖDINGER BRIDGE MATCHING (DLIGHTSB-M)
Inspired by (Gushchin et al., 2024a), we propose a matching approach for solving the SB problem
in discrete settings. This approach enables obtaining the SB in a single projection, which is referred
to as the optimal projection. Specifically, its idea lies in restating the Markovian projection (14) as
the projection of a reciprocal process r ∈ Rref(XN+2) onto the set of all SBs:

S(XN+2)
def
=
{
qSB ∈ P(XN+2) such that ∃ qSB0 , qSB1 ∈ P(X )

qSB = argmin
q∈ΠN (qSB0 ,qSB1 )

KL
(
q∥qref

)}
, (18)

We show that (Gushchin et al., 2024a, Theorem 3.1) can be generalized to an arbitrary reference
process qref, thereby enabling the application of the optimal projection in discrete space settings
under our CP parametrization (10).
Proposition 4.2 (Optimal Projection with an Arbitrary Reference Process). Let r ∈ Rref(XN+2)
be a reciprocal process defined with a reference process qref ∈ M(XN+2) and a joint distribution
r(x0, x1) ∈ Π(p0, p1). Then, the optimal projection of r onto the set of all SBs S(XN+2) is the SB
q∗ between the desired marginals p0 and p1, i.e.,

q∗ = argmin
qSB∈S(XN+2)

KL
(
r∥qSB) . (19)

The main requirement is to define qSB such that the minimization is restricted to qSB ∈ S(XN+2).
The following proposition establishes this characterization of SB transitions and, through its CP
cores rdk, directly connects this approach to DLightSB (M4.3).
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Proposition 4.3 (The SB’s Transition Distributions with CP Decomposition). Let qref be a reference
Markov process on a discrete space X with transition matrix Qref. Using the CP decomposition of
the scalar-valued function v∗ (10), the marginal transition distributions of the SB are given by

qSB(xd
tn |xtn−1) = qref(xd

tn |xtn−1)

K∑
k=1

βku
d
k,tn

[
xd
tn

] D∏
j=1
j ̸=d

uj
k,tn−1

[
xj
tn−1

]
, (20)

where ud
k,tn

[
xd
tn

]
=
∑

xd
1
[Q

ref
N+1−n

]
xd
tn

, xd
1
rdk
[
xd
1

]
. Sampling is done via ancestral sampling.

Loss. The loss (15) could be applied directly to train the SB transitions qSB.

5 EVALUATION

We first present our evaluation metrics (M5.1), given the analogous problem structure, we adopt
metrics from tabular data analysis (Zhang et al., 2024). Then we use them to assess the experimental
setups from M3.3, and report the results in M5.2. It is important to highlight that DLightSB and
DLightSB-M methods have some inductive bias as they use a similar construction as the benchmark
(e.g., CP parameterization and factorizable reference process).

5.1 METRICS FOR EVALUATION

Evaluating generative models on discrete data is challenging since common metrics (e.g., generative
perplexity for text, FID for images (Heusel et al., 2017)) are domain-specific. Following work on
tabular data evaluation (Zhang et al., 2024; Shi et al., 2025), we adopt the Shape Score and Trend
Score metrics. Which are used to measure the quality of the resulting SB for each method.

Shape Score. This metric measures how well the predicted data preserves the marginal (per-
dimension) distributions of the real data. We consider a dataset with |IR| real samples x and cor-
responding predicted samples x̃. We compute a per-dimension score for the empirical distributions
(expressed in δ-delta notation) and report the average across all dimensions:

SSMd = 1− 1

2

S−1∑
s=0

∣∣∣∣∣∣ 1

|IR|

|IR|∑
i=1

δ(s− x
(i)
d )− 1

|IR|

|IR|∑
j=1

δ(s− x̃
(j)
d )

∣∣∣∣∣∣ , SSM =
1

D

D∑
d=1

SSMd.

Trend Score. This metric evaluates whether pairwise dimension dependencies in the real data are
preserved in the predictions. For a dataset with |IR| real samples x(k) and corresponding predicted
samples x̃(k). We compute a trend score and report the average across all dimension pairs:

TSMdi,dj
= 1−1

2

S−1∑
si=0

S−1∑
sj=0

∣∣∣∣∣∣ 1
|IR|

|IR|∑
k=1

δ(si − x
(k)
di

)δ(sj − x
(k)
dj

)− 1
|IR|

|IR|∑
k=1

δ(si − x̃
(k)
di

)δ(sj − x̃
(k)
dj

)

∣∣∣∣∣∣ ,
where x

(k)
di

represents the di-th dimension of the k-th sample in this case.
Conditional Metrics. In our evaluation, we primarily report conditional variants of the aforemen-
tioned metrics. These are computed by generating multiple samples of x1 for each x0 ∼ p0. This
approach provides a direct measure of the fidelity of the learned conditional distribution q(x1|x0)
and quantifies how well the SB solver captures the underlying stochastic transport.

5.2 RESULTS

We use our benchmark pair constructor differently for training and testing. For training, we ran-
domly sample xtrain

0 ∼ p0 and generate xtrain
1 ∼ p1 via our benchmark theorem, allowing infinite

sample generation. Training is performed in an unpaired manner. For testing, we use a fixed set of
20 000 precomputed sample benchmark pairs (x0, x1), which we provide to facilitate benchmarking
new discrete SB solvers. We also use different training setups, first by varying N across CSBM,
α-CSBM, and DLightSB-M. For the same set of methods, we experiment with two loss functions:
KL and MSE. We compare all methods to an Independent baseline. This approach assumes x1 is
independent of x0, so we simply sample from the target distribution. In the main text, we report only
the conditional metrics, as they more accurately reflect the performance of the SB solvers, in Ap-
pendix D.2 we provide experiments to validate conditional metrics against the unconditional ones.
Further experimental details are provided in Appendix C.
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(a) Input/Target (b) Benchmark (c) CSBM (d) α-CSBM (e) DLightSB (f) DLightSB-M
Figure 1: Samples from all methods on two high-dimensional Gaussian mixture benchmarks. Top row: qunif

(γ = 0.005). Bottom row: Gaussian benchmark (γ = 0.02). CSBM, α-CSBM, and DLightSB-M were
trained with KL loss (N+1 = 64).

D=2 D=16 D=64

gaussian uniform gaussian uniform gaussian uniform

Method Loss N+1 0.02 0.05 0.005 0.01 0.02 0.05 0.005 0.01 0.02 0.05 0.005 0.01

Independent – – 0.369 0.646 0.577 0.700 0.359 0.555 0.466 0.515 0.374 0.519 0.424 0.503

DLightSB – – 0.979 0.976 0.974 0.983 0.972 0.980 0.970 0.981 0.966 0.980 0.980 0.973

CSBM
KL 16 0.849 0.733 0.919 0.892 0.884 0.806 0.841 0.810 0.929 0.938 0.918 0.922

64 0.934 0.888 0.958 0.958 0.944 0.933 0.933 0.927 0.934 0.963 0.926 0.949

MSE 16 0.721 0.700 0.824 0.846 0.854 0.783 0.839 0.745 0.915 0.932 0.893 0.896
64 0.444 0.841 0.818 0.780 0.885 0.902 0.890 0.894 0.854 0.942 0.867 0.928

α-CSBM
KL 16 0.829 0.738 0.927 0.918 0.881 0.836 0.873 0.825 0.930 0.972 0.929 0.943

64 0.902 0.896 0.952 0.958 0.936 0.963 0.932 0.941 0.927 0.959 0.924 0.942

MSE 16 0.803 0.695 0.841 0.890 0.865 0.820 0.861 0.815 0.908 0.943 0.884 0.910
64 0.908 0.896 0.858 0.875 0.908 0.924 0.881 0.911 0.883 0.925 0.859 0.913

DLightSB-M
KL 16 0.926 0.956 0.969 0.970 0.894 0.930 0.961 0.952 0.931 0.929 0.954 0.905

64 0.907 0.954 0.967 0.968 0.878 0.953 0.962 0.967 0.910 0.942 0.950 0.942

MSE 16 0.782 0.951 0.881 0.926 0.726 0.921 0.942 0.951 0.718 0.918 0.891 0.850
64 0.717 0.942 0.892 0.914 0.685 0.914 0.953 0.943 0.632 0.906 0.730 0.879

Table 1: Conditional Shape Score metric (↑) on the high-dimensional Gaussian mixture benchmark. The
best-performing method is highlighted in bold, and the second is underlined. Color code threshold: red for

< 0.7, yellow for [0.7, 0.9), and green for ≥ 0.9.

High-Dimensional Gaussian Mixtures. In this section, we report results on the high-dimensional
Gaussian mixture benchmark constructed as in M3.3 using the methods from M4. Visual results are
shown in Figure 1 for qgauss (γ=0.02) and qunif (γ=0.005). See Appendix D.2 for additional plots.
Tables 1 and 2 show that DLightSB consistently achieves the best performance on Conditional Shape
Score and Trend Score metrics, respectively. We attribute this to the benchmark pairs being built on
the same principle used by the DLightSB solver. DLightSB-M, which incorporates this inductive
bias as well, achieves similar results with a slight drop in metrics, likely due to error accumulation
in the iterative sampling. Interestingly, our results resemble those on continuous data (Korotin et al.,
2024, Table 2; Gushchin et al., 2024a, Table 1), showing comparable performance with a slight drop
for the DLightSB-M. Unconditional metrics are reported in Tables 4 and 5.

On the other hand, CSBM and α-CSBM perform noticeably worse than DLight methods. Notably,
α-CSBM achieves similar quality to CSBM while halving computational cost, making it a more
efficient alternative. Regarding N and the loss function, increasing N mostly improves metrics.
For the loss function, KL consistently outperforms MSE, likely because MSE minimizes pointwise
squared error and produces over-smoothed solutions that blur modes (see Figure 2).

6 DISCUSSION

Our work fills a key gap in discrete SB research by introducing the first standardized benchmark
for these methods. This contribution provides the community with ground truth data and standard
evaluation metrics. The benchmark reveals fundamental limitations of current approaches: CP-
based solvers (DLightSB, DLightSB-M) face severe memory constraints in high dimensions, while
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D=2 D=16 D=64

gaussian uniform gaussian uniform gaussian uniform

Method Loss N+1 0.02 0.05 0.005 0.01 0.02 0.05 0.005 0.01 0.02 0.05 0.005 0.01

Independent – – 0.315 0.611 0.491 0.609 0.202 0.480 0.334 0.404 0.172 0.362 0.248 0.329

DLightSB – – 0.968 0.970 0.967 0.975 0.943 0.967 0.956 0.967 0.919 0.956 0.955 0.950

CSBM
KL 16 0.793 0.654 0.884 0.856 0.803 0.694 0.732 0.676 0.853 0.895 0.830 0.861

64 0.911 0.854 0.932 0.923 0.886 0.890 0.874 0.874 0.859 0.936 0.848 0.901

MSE 16 0.611 0.631 0.752 0.781 0.739 0.653 0.725 0.612 0.835 0.883 0.799 0.823
64 0.331 0.775 0.735 0.729 0.808 0.831 0.812 0.821 0.767 0.891 0.777 0.863

α-CSBM
KL 16 0.773 0.651 0.898 0.876 0.810 0.744 0.783 0.724 0.854 0.945 0.847 0.891

64 0.874 0.855 0.921 0.913 0.878 0.934 0.877 0.903 0.852 0.929 0.845 0.896

MSE 16 0.728 0.603 0.756 0.829 0.771 0.716 0.769 0.710 0.818 0.883 0.781 0.821
64 0.861 0.855 0.797 0.807 0.829 0.863 0.795 0.846 0.798 0.848 0.747 0.817

DLightSB-M
KL 16 0.878 0.943 0.952 0.956 0.738 0.914 0.932 0.930 0.862 0.900 0.920 0.674

64 0.856 0.940 0.951 0.953 0.716 0.923 0.928 0.936 0.833 0.901 0.648 0.820

MSE 16 0.701 0.933 0.838 0.904 0.551 0.877 0.897 0.917 0.575 0.853 0.773 0.555
64 0.640 0.922 0.852 0.889 0.503 0.856 0.903 0.910 0.464 0.818 0.498 0.700

Table 2: Conditional Trend Score (↑) on the high-dimensional Gaussian mixture benchmark. The
best-performing method is highlighted in bold, and the second is underlined. Color code threshold: red for

< 0.7, yellow for [0.7, 0.9), and green for ≥ 0.9.

matching-based methods (CSBM, α-CSBM) struggle with parameter sensitivity and long training
times. Our experiments show that DLightSB(-M) solvers may be viewed as oracle-like methods
on this benchmark: their inductive bias makes them less informative as indicators of pure perfor-
mance. See Appendix D.1 for an analysis of the reverse benchmark setting designed to probe this
inductive bias. This behavior is expected, and it does not diminish the overall usefulness of the
benchmark. The benchmark still faithfully captures the strengths and weaknesses of other unbiased
methods. Moreover, the CP-parameterization limits DLightSB(-M) to simpler tasks, as complex
settings require an impractical number of components.

Reproducibility. We provide the experimental details in Appendix C and the code to reproduce
the conducted experiments in the supplementary materials (see readme.md).

LLM Usage. Large Language Models (LLMs) were used only to assist with rephrasing sentences
and improving the clarity of the text. All scientific content, results, and interpretations in this paper
were developed solely by the authors.
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A PROOFS

Proof of Theorem 3.1. We start from the expression of the static EOT minimization problem in (8)

min
q∈Π(p0,p1)

KL
(
q(x0, x1)∥qref(x0, x1)

)
=

= min
q∈Π(p0,p1)

−H(q)−
∑
x0,x1

q(x0, x1) log q
ref(x1|x0)− const

= min
q∈Π(p0,p1)

∑
x0,x1

q(x0, x1) log q(x0, x1)−
∑
x0,x1

q(x0, x1) log q
ref(x1|x0)− const

(21)

Noting that the joint distribution factorizes as q(x0, x1) = q(x0)q(x1|x0) = p0(x0)q(x1|x0), and
enforcing the marginal constraints

∑
x0

p0(x0)q(x1|x0) = p1(x1) and
∑

x1
q(x1|x0) = 1 (equiva-

lently q(x0) = p0(x0)), the corresponding Lagrangian can be formulated as

L(q) =
∑
x0,x1

p0(x0)q(x1|x0) log (p0(x0)q(x1|x0))−
∑
x0,x1

p0(x0)q(x1|x0) log q
ref(x1|x0)+

+
∑
x1

λ(x1)

(∑
x0

q(x1|x0)p0(x0)− p1(x1)

)
+
∑
x0

τ(x0)

(∑
x1

q(x1|x0)− p0(x0)

)
=
∑
x0,x1

p0(x0)q(x1|x0) log p0(x0))︸ ︷︷ ︸
=
∑

x0
p0(x0) log p0(x0))

+
∑
x0,x1

p0(x0)q(x1|x0) log q(x1|x0)−

−
∑
x0,x1

p0(x0)q(x1|x0) log q
ref(x1|x0) +

∑
x1

λ(x1)

(∑
x0

q(x1|x0)p0(x0)− p1(x1)

)

+
∑
x0

τ(x1)

(∑
x1

q(x1|x0)− 1

)

(22)

where λ(x1) and τ(x0) denote the Lagrange multipliers associated with the marginal constraints on
x1 and x0, respectively. Taking the pointwise partial derivative of L(q) with respect to q(x1|x0)
then yields

∂L
∂q

= p0(x0) (log q(x1|x0) + 1)− p0(x0) log q
ref(x0, x1) + λ(x1)p0(x0) + τ(x1) = 0 (23)

Therefore, the optimal process q∗ can be written as

q∗(x1|x0) = exp(−λ(x1)− 1)qref(x1|x0)p0 exp

(
− τ(x0)

p0(x0)

)
(24)

Setting v∗(x1) = exp(−λ(x1)− 1) concludes the proof.

Proof of Proposition 3.1. Assuming the CP parameterization introduced in (10), and further assum-
ing that the reference process factorizes across dimensions as qref(x1|x0) =

∏D
d=1 q

ref(xd
1|x0), the

normalized conditional distribution q∗(x1|x0) in (9) can be rewritten as

q∗(x1|x0) =
1

c(x0)

(
K∑

k=1

βk

D∏
d=1

rdk[x
d
1]

)
D∏

d=1

qref(xd
1|x0)

=
1

c(x0)

K∑
k=1

βk

D∏
d=1

rdk[x
d
1] q

ref(xd
1|x0),

(25)
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where the reference factors can be merged with the rank-1 components because they are indepen-
dent of the mixture index k and factorize over dimensions. From here, it is possible to obtain
the normalizing constant c(x0) by summing over all possible values of x1 ∈ X = SD, where
xd
1 ∈ {0, . . . , S − 1}. The normalizing constant can then be rewritten as

c(x0) =
∑

x1∈SD

K∑
k=1

βk

D∏
d=1

rdk[x
d
1] q

ref(xd
1|x0)

=

K∑
k=1

βk

∑
x1∈SD

D∏
d=1

rdk[x
d
1] q

ref(xd
1|x0)

=

K∑
k=1

βk

D∏
d=1

S−1∑
xd
1=0

rdk[x
d
1] q

ref(xd
1|x0),

(26)

where
∑

x1∈SD =
∑S−1

x1
1=0

∑S−1
x2
1=0 · · ·

∑S−1
xD
1 =0. The exchange between the product and the sum is

valid here because the summation is separable across dimensions, i.e., each factor depends only on
its corresponding coordinate xd

1.

Proof of Proposition 4.1. We start from the standard KL minimization problem from the LightSB
paper (Korotin et al., 2024) and define it in discrete space.

KL (q∗∥q) =
∑
x0,x1

q∗(x0, x1) log

(
q∗(x0, x1)

q(x0, x1)

)
=
∑
x0,x1

q∗ log q∗(x0, x1)−
∑
x0,x1

q∗ log q(x0, x1) =

= −H(q∗)−
∑
x0,x1

q∗(x0, x1) log q(x0, x1) = −H(q∗)−
∑
x0,x1

q∗(x0, x1) log (q(x0)q(x1|x0))

= −H(q∗)−
∑
x0,x1

q∗(x0, x1) log q(x0)︸ ︷︷ ︸
=p0(x0)

−
∑
x0,x1

q∗(x0, x1) log q(x1|x0) =

= −H(q∗)−
∑
x0

log p0(x0)
∑
x1

q∗(x0, x1)︸ ︷︷ ︸
=q∗(x0)=p0(x0)

−
∑
x0,x1

q∗(x0, x1) log q(x1|x0)

Now using (9) on q(x1|x0) we can get

KL (q∗∥q) = −H(q∗)−
∑
x0

log p0(x0)p0(x0)−
∑
x0,x1

q∗(x0, x1) log

(
v∗(x1)

c∗(x0)
qref(x1|x0)

)
=

= −H(q∗)−
∑
x0

log p0(x0)p0(x0)−
∑
x0,x1

q∗(x0, x1) log q
ref(x1|x0)︸ ︷︷ ︸

=−L∗

−

−
∑
x0,x1

q∗(x0, x1) log

(
v∗(x1)

c∗(x0)

)
=

= −L∗ +
∑
x0,x1

q∗(x0, x1) log c
∗(x0)−

∑
x0,x1

q∗(x0, x1) log v
∗(x1) =

=
∑
x0

p∗0(x0) log c
∗(x0)−

∑
x1

q∗(x1) log v
∗(x1)− L∗,

That concludes the proof.

Proof of expression 7. Let Q be the transition matrix in (4), rewritten as

Q = (1− γ)I +
γ

S − 1
(11⊤ − I)
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=

(
1− γ

S

S − 1

)
I +

γ

S − 1
11⊤,

where I is the identity matrix and 11⊤ is the all-ones matrix. Let

a = 1− γ
S

S − 1
, b =

γ

S − 1
,

so that Q = aI+b11⊤ and note that a+Sb = 1. We compute QN+1 using the binomial expansion.
Since I and 11⊤ commute:

Qn = (aI + b11⊤)n

=

n∑
k=0

(
n

k

)
an−kbk(11⊤)k.

Using (11⊤)k = Sk−111⊤ for k ≥ 1 and separating the k = 0 term:

Qn = anI +
n∑

k=1

(
n

k

)
an−kbkSk−111⊤

= anI +
1

S

(
n∑

k=1

(
n

k

)
an−k(bS)k

)
11⊤.

The binomial expansion gives:

(a+ bS)n =

n∑
k=0

(
n

k

)
an−k(bS)k = an +

n∑
k=1

(
n

k

)
an−k(bS)k.

Since a+ bS = 1, we have (a+ bS)n = 1, so
∑n

k=1

(
n
k

)
an−k(bS)k = 1− an. Thus,

Qn = anI +
1− an

S
11⊤.

Substituting n = N + 1 and a = 1− γ S
S−1 yields

qref(x1|x0) = QN+1 =

(
1− γ

S

S − 1

)N+1

I +
1−

(
1− γ S

S−1

)N+1

S
11⊤.

This completes the proof.

Proof of Proposition 4.2.

KL
(
q(x0, xin, x1)∥qSB(x0, xin, x1)

)
=

= KL
(
q(x0, x1)∥qSB(x0, x1)

)
+ KL

(
qref(xin|x0, x1)∥qref(xin|x0, x1)

)︸ ︷︷ ︸
=0

= (27)

=
∑
x0,x1

q(x0, x1) log q(x0, x1)︸ ︷︷ ︸
=−H(q(x0,x1))

−
∑
x0,x1

q(x0, x1) log q
SB(x0, x1) =

= −H(q(x0, x1))−
∑
x0,x1

q(x0, x1) log
vSB(x1)q

ref(x1|x0)

cSB(x0)
= (28)

= −H(q(x0, x1))−
∑
x0,x1

q(x0, x1) log v
SB(x1)−

−
∑
x0,x1

q(x0, x1) log q
ref(x1|x0) +

∑
x0,x1

q(x0, x1) log c
SB(x0) =

16
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= −H(q(x0, x1))−
∑
x1

log vSB(x1) q(x1)︸ ︷︷ ︸
=p(x1)=q∗(x1)

∑
x0

q(x0|x1)︸ ︷︷ ︸
=1=

∑
x0

q∗(x0|x1)

− (29)

−
∑
x0,x1

q(x0, x1) log q
ref(x1|x0) +

∑
x0

log cSB(x0) q(x0)︸ ︷︷ ︸
=p(x0)=q∗(x0)

∑
x1

q(x1|x0)︸ ︷︷ ︸
=1=

∑
x1

q∗(x1|x0)

= (30)

= −H(q(x0, x1))−
∑
x0,x1

q(x0, x1) log q
ref(x1|x0)︸ ︷︷ ︸

=C1

−
∑
x0,x1

q∗(x0, x1) log
vSB(x1)

cSB(x0)
=

= C1 −
∑
x0,x1

q∗(x0, x1) log
vSB(x1)

cSB(x0)
−

−
∑
x0,x1

q∗(x0, x1) log q
ref(x1|x0) +

∑
x0,x1

q∗(x0, x1) log q
ref(x1|x0)︸ ︷︷ ︸

=0

= (31)

= −
∑
x0,x1

q∗(x0, x1) log
vSB(x1)q

ref(x1|x0)

cSB(x0)
+ C1 +

∑
x0,x1

q∗(x0, x1) log q
ref(x1|x0)︸ ︷︷ ︸

=C2

=

= C2 −
∑
x0,x1

q∗(x0, x1) log q
SB(x0, x1)+

+
∑
x0,x1

q∗(x0, x1) log q
∗(x0, x1)−

∑
x0,x1

q∗(x0, x1) log q
∗(x0, x1)︸ ︷︷ ︸

=0

= (32)

=
∑
x0,x1

q∗(x0, x1) log
q∗(x0, x1)

qSB(x0, x1)
+ C2 −

∑
x0,x1

q∗(x0, x1) log q
∗(x0, x1)︸ ︷︷ ︸

C3

=

= KL
(
q∗(x0, x1)∥qSB(x0, x1)

)
+ C3

In (27), we use the disintegration of the KL divergence to transition from the dynamic to the static
formulation. In (28), we apply our parameterization from (9). Next, in (29) and (30), we use the
properties of the reciprocal process q, which has the true marginals at t = 0 and t = 1. In (31),
we add a zero term to introduce qref(x1|x0) with the expectation taken over the optimal coupling
q∗(x0, x1). Finally, in (32), we obtain the entropy term, completing the expression for the desired
KL divergence.

Proof of Proposition 4.3. We first derive the transitional distributions of the SB by recalling its well-
known characterization (Léonard, 2013, Prop. 4.2):

qSB (xtn |xtn−1

)
= qref (xtn |xtn−1

) ϕSB
tn (xtn)

ϕSB
tn−1

(xtn−1)
, ϕSB

tn (xtn) = Eqref (x1|xtn )

[
vSB(x1)

]
.

Using the CP parametrization of vSB from (10) and exploiting the conditional independence of di-
mensions under qref, the scalar-valued functions ϕtn can be written as:

ϕSB
tn (xtn) =

K∑
k=1

βk

D∏
d=1

Eqref(xd
1 |xd

tn
)

[
rdk(x

d
1)
]
=

K∑
k=1

βk

D∏
d=1

S−1∑
xd
1=0

[
Q

ref
N+1−n

]
xd
tn

,xd
1
rdk[x

d
1]︸ ︷︷ ︸

ud
k,tn

[xd
tn

]

,

17
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where ud
k,tn

satisfy the following recursive relation:

ud
k,tn [x

d
tn ] =

S−1∑
xd
tn+1

=0

[
Qref

]
xd
tn

,xd
tn+1

ud
k,tn+1

[xd
tn+1

], ud
k,t1 = rdk.

Thus, we obtain the following transition distributions:

qSB(xtn |xtn−1
) ∝ qref(xtn |xtn−1

)

K∑
k=1

βk

D∏
j=1

uj
k,tn

[xj
tn ]. (33)

To obtain the d-th marginal transition distribution, we marginalize over x−d
tn

def
= {xj

tn}j ̸=d as follows:

qSB
(
xd
tn |xtn−1

)
∝
∑
x−d
tn

(
D∏

j=1

[Qref]xj
tn−1

,xj
tn

)(
K∑

k=1

βk

D∏
j=1

uj
k,tn

[xj
tn ]

)
=

= [Qref]xd
tn−1

,xd
tn

K∑
k=1

βku
d
k,tn [x

d
tn ]

D∏
j=1
j ̸=d

∑
xj
tn

[Qref]xj
tn−1

,xj
tn

uj
k,tn

[xj
tn ]︸ ︷︷ ︸

uj
k,tn−1

[xj
tn−1

] (by recursion)

.

Finally, we obtain the desired expression up to normalization:

qSB
(
xd
tn |xtn−1

)
∝ [Qref]xd

tn−1
,xd

tn

K∑
k=1

βku
d
k,tn [x

d
tn ]

D∏
j=1
j ̸=d

uj
k,tn−1

[xj
tn−1

].

Now we derive the sampling procedure. Sampling from the SB transitional distributions is based on
the following factorization:

qSB(xtn |xtn−1
) =

K∑
k=1

p(k|xtn−1
)

D∏
d=1

qSB(xd
tn |xtn−1

, k).

Using the full joint SB transition distribution (33), the probability of k is

p(k|xtn−1
) ∝ βk

D∏
d=1

ud
k,tn−1

[xd
tn−1

].

Using the marginal distributions conditioned on k, the factors with j ̸= d are independent of xd
tn

and absorbed into normalization, yielding

qSB(xd
tn |xtn−1 , k) ∝ [Qref]xd

tn−1
,xd

tn
ud
k,tn [x

d
tn ].

Thus, sampling proceeds by first drawing

k∗ ∼ p(k|xtn),

and then sampling each coordinate independently as

xd
tn+1
∼ qSB(·|xtn , k

∗) ∝ [Qref]xd
tn

,· u
d
k∗,tn+1

[·], d = 1, . . . , D.

B METHODS DETAILS

This section provides additional theoretical and implementation details complementing M4, focusing
on the methods used to evaluate our benchmark pairs.
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CSBM. In practice, the D-IMF procedure is usually implemented bidirectionally: the Markovian
projection is applied using both forward and backward representations (see “Notation”), which is
the approach we adopt in our experiments. This design has two advantages. First, it mitigates error
accumulation caused by imperfect model fitting, as shown in (De Bortoli et al., 2024, Appendix F).
Second, it enables the use of alternative starting couplings, as proposed in (Kholkin et al., 2024).

Limitations. To reduce the computational overhead of evaluating the full probability state space
of size SD, the authors propose factorizing transition probabilities across dimensions, reducing the
space to D×S. However, this parametrization constitutes a key limitation of CSBM, as it introduces
approximation error.

DLightSB. We optimize over the logarithm of the mixture weights β ∈ K and the logarithm of
the CP cores rdk. This allows computation of the log terms in the surrogate loss (17) by stable
log-sum-exp operations.

Limitations. (1) In spite of being numerically stable, the log-sum-exp operations allocate extra
memory, which can become a bottleneck when applied repeatedly in high-dimensional settings. (2)
The CP parameterization requires an impractically large number of components to capture complex
data, making it infeasible under memory constraints. Additionally, we approximate the summations
using Monte Carlo samples from p0 and p1.

DLightSB-M. Limitations. The practical implementation requires storing or recomputing ud
k,t at

each iteration, which scales asO(B×S2×K) in memory and computation. This quickly becomes
prohibitive for high-dimensional data, limiting scalability to small state spaces.

C EXPERIMENT DETAILS

This section provides detailed descriptions of all methods and their configurations.

Shared Aspects. Across all experiments, we use the AdamW optimizer with fixed beta values of
0.95 and 0.99. For the high-dimensional Gaussian benchmark (M5.2). Notably, for diffusion-based
methods, we fully sample the Markov chain, in contrast to Austin et al. (2021), which applies an
argmax operation at the final timestep. To evaluate the methods on the high-dimensional Gaussian
mixture benchmark (M5.2), we use 20 000 samples. Conditional metrics are computed using 156
instances of x0, with 1 000 samples of x1 generated for each x0.

CSBM and α-CSBM. For CSBM and α-CSBM, we use the official implementation from Kseno-
fontov & Korotin (2025):

https://github.com/gregkseno/csbm.

To stabilize training and improve final performance, we apply Exponential Moving Average (EMA)
parameter updates with a decay rate of 0.999, tuned consistently across all experiments. Unlike
Austin et al. (2021), we omit the Lsimple loss during training. We employ a simple MLP with three
hidden layers of size [128, 128, 128] and ReLU activations. Time conditioning is implemented via
an embedding layer of the same size as dimensions, D. Both methods are trained for 5 D-IMF iter-
ations, using 120 000 gradient updates in the first iteration and 40 000 in each subsequent iteration.
For α-CSBM, we use a learning rate of 10−3 and halve the batch size for training a single model,
following De Bortoli et al. (2024). For CSBM, we use a learning rate of 10−4.

DLightSB and DLightSB-M. For all benchmark experiments, both methods use K = 1000 com-
ponents initialized from data samples and are trained for 100 000 gradient updates. The learning rate
is set to 10−2 for both, with DLightSB-M using independent coupling (q0(x0, x1) = p0(x0)p1(x1)).

Computational Resources and Training Time. All high-dimensional Gaussian mixture bench-
mark experiments were conducted on 1 A100 GPU unless otherwise specified, with training times
reported inclusive of evaluation. For D = 2, training is relatively short: CSBM and α-CSBM each
complete within about 5 hours, DLightSB-M within 4 hours, and DLightSB in roughly 20 minutes.
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For D = 64, CSBM completes in under 14 hours, α-CSBM in under 9 hours, DLightSB-M in just
under 2 days (on 2 A100 GPUs), and DLightSB in under 7 hours.

D ADDITIONAL EXPERIMENTS

D.1 REVERSE BENCHMARK

In this section we try to overcome inherited inductive bias of DLightSB(-M) solvers. By construc-
tion, the forward conditional distribution q∗(x1|x0) admits a CP decomposition, while the reverse
distribution q∗(x0|x1) does not. As a result, when the benchmark is used in the reverse direction
with the same marginals p0 and p1, DLightSB(-M) methods can no longer rely on the inductive bias
that benefits them in the forward setup.

Unfortunately, in this setup, the true conditional distributions are not available, so we cannot com-
pute conditional metrics. To overcome this restriction, we decided to compute the Classifier Two
Sample Test (Lopez-Paz & Oquab, 2017, C2ST) metric, ROC AUC of classifier between pairs
(x0, x1) ∼ p1(x1)q

∗(x0|x1) and (x̂0, x1) ∼ p1(x1)qθ(x0|x1). As the classifier, we used two layer
MLP with ReLU activations that takes as input the concatenation of one-hot vectors of x0 and x1.
We present C2ST scores in following table.

D=2 D=16 D=64

gaussian uniform gaussian uniform gaussian uniform

Method Loss N + 1 0.02 0.05 0.005 0.01 0.02 0.05 0.005 0.01 0.02 0.05 0.005 0.01

DLightSB – – 0.926 0.998 0.996 0.985 0.961 0.971 0.993 0.996 0.972 0.993 0.985 0.990

CSBM
KL 16 0.990 0.991 1.000 0.996 0.979 0.990 0.999 0.988 0.990 0.990 0.991 0.997

64 0.995 1.000 0.992 0.998 0.991 0.982 0.986 0.981 0.999 0.999 0.994 0.999

MSE 16 0.952 0.996 0.987 0.997 0.998 0.976 0.995 0.985 0.987 0.997 0.983 0.999
64 0.900 0.990 0.993 0.981 0.985 0.992 0.998 0.973 0.987 0.997 1.000 0.999

Table 3: C2ST metric (↑) on the high-dimensional Gaussian mixture benchmark. Color code threshold: red for
< 0.7, yellow for [0.7, 0.9), and green for ≥ 0.9.

As can be seen from Table 3, computed metric values are not informative. Across all methods
the metric values are nearly identical, indicating that such a simple classifier is already capable of
distinguishing generated samples from real ones. As a result, we decided to discard this setup.

D.2 ADDITIONAL METRICS AND PLOTS

D=2 D=16 D=64

gaussian uniform gaussian uniform gaussian uniform

Method Loss N+1 0.02 0.05 0.005 0.01 0.02 0.05 0.005 0.01 0.02 0.05 0.005 0.01

Independent – – 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
DLightSB – – 0.975 0.969 0.969 0.980 0.973 0.976 0.968 0.975 0.971 0.971 0.974 0.970

CSBM
KL 16 0.855 0.739 0.914 0.893 0.890 0.807 0.855 0.806 0.953 0.934 0.951 0.937

64 0.936 0.893 0.955 0.952 0.959 0.934 0.962 0.940 0.966 0.967 0.963 0.969

MSE 16 0.726 0.704 0.814 0.850 0.852 0.782 0.845 0.754 0.935 0.936 0.913 0.903
64 0.449 0.843 0.783 0.774 0.879 0.903 0.918 0.915 0.860 0.944 0.881 0.949

α-CSBM
KL 16 0.829 0.749 0.925 0.914 0.887 0.836 0.888 0.827 0.965 0.968 0.959 0.965

64 0.902 0.900 0.965 0.961 0.963 0.955 0.954 0.963 0.964 0.960 0.953 0.961

MSE 16 0.810 0.712 0.841 0.887 0.877 0.821 0.854 0.819 0.951 0.947 0.912 0.930
64 0.909 0.903 0.867 0.883 0.934 0.914 0.883 0.929 0.895 0.925 0.878 0.930

DLightSB-M
KL 16 0.924 0.952 0.961 0.960 0.919 0.931 0.957 0.948 0.935 0.921 0.947 0.905

64 0.909 0.951 0.964 0.964 0.905 0.949 0.960 0.962 0.922 0.937 0.962 0.941

MSE 16 0.787 0.944 0.870 0.920 0.743 0.921 0.944 0.950 0.723 0.914 0.890 0.850
64 0.712 0.942 0.886 0.908 0.686 0.915 0.950 0.937 0.639 0.903 0.731 0.879

Table 4: Shape Score metric (↑) on the high-dimensional Gaussian mixture benchmark. The best-performing
method is highlighted in bold, and the second is underlined. Color code threshold: red for < 0.7, yellow for

[0.7, 0.9), and green for ≥ 0.9.
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D=2 D=16 D=64

gaussian uniform gaussian uniform gaussian uniform

Method Loss N+1 0.02 0.05 0.005 0.01 0.02 0.05 0.005 0.01 0.02 0.05 0.005 0.01

Independent – – 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
DLightSB – – 0.949 0.952 0.950 0.960 0.914 0.943 0.933 0.939 0.888 0.909 0.907 0.906

CSBM
KL 16 0.797 0.662 0.876 0.854 0.809 0.691 0.747 0.670 0.877 0.868 0.881 0.867

64 0.907 0.856 0.926 0.914 0.899 0.884 0.909 0.883 0.888 0.905 0.897 0.904

MSE 16 0.620 0.633 0.739 0.781 0.743 0.651 0.735 0.618 0.861 0.864 0.840 0.824
64 0.337 0.774 0.705 0.724 0.809 0.826 0.845 0.838 0.776 0.865 0.807 0.867

α-CSBM
KL 16 0.772 0.662 0.887 0.868 0.821 0.740 0.798 0.721 0.888 0.905 0.895 0.899

64 0.872 0.853 0.929 0.914 0.907 0.916 0.905 0.918 0.886 0.899 0.891 0.900

MSE 16 0.733 0.621 0.759 0.822 0.790 0.714 0.771 0.715 0.864 0.857 0.824 0.829
64 0.860 0.854 0.803 0.811 0.855 0.846 0.802 0.855 0.816 0.825 0.777 0.820

DLightSB-M
KL 16 0.874 0.933 0.934 0.935 0.762 0.902 0.909 0.908 0.842 0.864 0.874 0.665

64 0.857 0.928 0.935 0.937 0.747 0.906 0.909 0.911 0.828 0.865 0.650 0.792

MSE 16 0.703 0.920 0.821 0.892 0.572 0.865 0.888 0.902 0.577 0.822 0.760 0.548
64 0.629 0.915 0.838 0.879 0.511 0.845 0.889 0.890 0.470 0.791 0.497 0.685

Table 5: Trend Score (↑) on the high-dimensional Gaussian mixture benchmark. The best-performing method
is highlighted in bold, and the second is underlined. Color code threshold: red for < 0.7, yellow for [0.7, 0.9),

and green for ≥ 0.9.

(a) Input and Target (b) CSBM KL/16 (c) CSBM KL/64 (d) CSBM MSE/16 (e) CSBM MSE/64

(f) Benchmark (g) α-CSBM KL/16 (h) α-CSBM KL/64 (i) α-CSBM MSE/16 (j) α-CSBM MSE/64

(k) DLightSB (l) DLightSB-M KL/16 (m) DLightSB-M KL/64 (n) DLightSB-M MSE/16 (o) DLightSB-M MSE/64

Figure 2: Samples from all methods on the high-dimensional Gaussian mixture benchmark using the Gaussian
reference process qgauss with γ = 0.02.
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(a) Input and Target (b) CSBM KL/16 (c) CSBM KL/64 (d) CSBM MSE/16 (e) CSBM MSE/64

(f) Benchmark (g) α-CSBM KL/16 (h) α-CSBM KL/64 (i) α-CSBM MSE/16 (j) α-CSBM MSE/64

(k) DLightSB (l) DLightSB-M KL/16 (m) DLightSB-M KL/64 (n) DLightSB-M MSE/16 (o) DLightSB-M MSE/64

Figure 3: Samples from all methods on the high-dimensional Gaussian mixture benchmark using the Gaussian
reference process qgauss with γ = 0.05.

(a) Input and Target (b) CSBM KL/16 (c) CSBM KL/64 (d) CSBM MSE/16 (e) CSBM MSE/64

(f) Benchmark (g) α-CSBM KL/16 (h) α-CSBM KL/64 (i) α-CSBM MSE/16 (j) α-CSBM MSE/64

(k) DLightSB (l) DLightSB-M KL/16 (m) DLightSB-M KL/64 (n) DLightSB-M MSE/16 (o) DLightSB-M MSE/64

Figure 4: Samples from all methods on the high-dimensional Gaussian mixture benchmark using the uniform
reference process qunif with γ = 0.005.
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(a) Input and Target (b) CSBM KL/16 (c) CSBM KL/64 (d) CSBM MSE/16 (e) CSBM MSE/64

(f) Benchmark (g) α-CSBM KL/16 (h) α-CSBM KL/64 (i) α-CSBM MSE/16 (j) α-CSBM MSE/64

(k) DLightSB (l) DLightSB-M KL/16 (m) DLightSB-M KL/64 (n) DLightSB-M MSE/16 (o) DLightSB-M MSE/64

Figure 5: Samples from all methods on the high-dimensional Gaussian mixture benchmark using the uniform
reference process qunif with γ = 0.01.

23


	Introduction
	Background: Problem Statement
	Dynamic and Static Schrödinger Bridges on Discrete Spaces
	Formulations of the Reference Process
	Entropic Optimal Transport on Discrete Spaces
	Problem Setup for Discrete Schrödinger Bridges

	Benchmark
	Main Theorem for Benchmark Construction
	Practical Parameterization of the Scalar-valued Function v*
	High-dimensional Gaussian Mixtures Benchmark Construction

	Solvers for Evaluation
	Categorical Schrödinger Bridge Matching (CSBM)
	-Categorical Schrödinger Bridge Matching (-CSBM)
	Discrete Light Schrödinger Bridge (DLightSB)
	Discrete Light Schrödinger Bridge Matching (DLightSB-M)

	Evaluation
	Metrics for Evaluation
	Results

	Discussion
	Proofs
	Methods Details
	Experiment Details
	Additional Experiments
	Reverse benchmark
	Additional Metrics and Plots


