

# ENTERING THE ERA OF DISCRETE DIFFUSION MODELS: A BENCHMARK FOR SCHRÖDINGER BRIDGES AND ENTROPIC OPTIMAL TRANSPORT

006 **Anonymous authors**

007 Paper under double-blind review

## ABSTRACT

013 The Entropic Optimal Transport (EOT) problem and its dynamic counterpart, the  
 014 Schrödinger bridge (SB) problem, play an important role in modern machine  
 015 learning, linking generative modeling with optimal transport theory. While recent  
 016 advances in discrete diffusion and flow models have sparked growing interest in  
 017 applying SB methods to discrete domains, there is still no reliable way to evaluate  
 018 how well these methods actually solve the underlying problem. We address this  
 019 challenge by introducing a benchmark for SB on discrete spaces. Our construc-  
 020 tion yields pairs of probability distributions with analytically known SB solutions,  
 021 enabling rigorous evaluation. As a byproduct of building this benchmark, we ob-  
 022 tain two new SB algorithms, DLightSB and DLightSB-M, and additionally extend  
 023 prior related work to construct the  $\alpha$ -CSBM algorithm. We demonstrate the utility  
 024 of our benchmark by evaluating both existing and new solvers in high-dimensional  
 025 discrete settings. This work provides the first step toward proper evaluation of SB  
 026 methods on discrete spaces, paving the way for more reproducible future studies.

## 1 INTRODUCTION

029 The Entropic Optimal Transport (Cuturi, 2013, EOT) problem and its dynamic counterpart, the  
 030 Schrödinger bridge (Schrödinger, 1931, SB), have recently attracted significant attention in the  
 031 machine learning community due to their relevance for generative modeling and unpaired learning. A  
 032 variety of methods have been developed to solve these problems in *continuous data spaces* such as  
 033 (Daniels et al., 2021; Gushchin et al., 2023a; 2024b; Mokrov et al., 2024; Vargas et al., 2021; Chen  
 034 et al., 2021; Shi et al., 2023; De Bortoli et al., 2024; Korotin et al., 2024; Gushchin et al., 2024a).

035 At the same time, much real world data are *discrete by nature*, including text (Austin et al., 2021; Gat  
 036 et al., 2024), molecular graphs (Vignac et al., 2022; Qin et al., 2024; Luo et al., 2024), and protein  
 037 sequences (Campbell et al., 2024). Others are *discrete by construction*, such as vector-quantized  
 038 representations of images and audio (Van Den Oord et al., 2017; Esser et al., 2021).

039 Given the prevalence of such discrete data and the rapid progress in discrete diffusion/flow models  
 040 (Hoogeboom et al., 2021; Austin et al., 2021; Campbell et al., 2022; Lou et al., 2023; Sahoo et al.,  
 041 2024; Campbell et al., 2024; Gat et al., 2024), research on SBs has attracted growing attention in  
 042 recent years. For instance, several recent works have already taken first steps in this direction (Kim  
 043 et al., 2024, DDSBM;Ksenofontov & Korotin, 2025, CSBM), adapting diffusion methodologies  
 044 from (Austin et al., 2021, D3PM;Vignac et al., 2022, DiGress), respectively.

045 **Despite the rapid progress in discrete SB research, there is still a lack of evaluation benchmarks.**  
 046 These benchmarks enable us to determine whether SB methods actually solve the intended math-  
 047 ematical problem, separating true algorithmic performance from artifacts of specific parameteriza-  
 048 tions, regularization schemes, and other implementation choices. While this has recently become  
 049 possible in the continuous setting of Schrodinger Bridges (Gushchin et al., 2023b), no such approach  
 050 exists for discrete data, leaving it unclear how closely SB solvers approximate the true solution of  
 051 the SB problem on discrete domains. To address this gap, we make the following **contributions**:

- 052 • **Theory & Methodology.** We present a general methodology to create pairs of discrete probability  
 053 distributions with known SB solutions (§3.1). To overcome tractability issues of the methodology

054 in discrete spaces, we introduce a CP-based parameterization (§3.2). This parameterization yields  
 055 a closed-form SB and enables a practically feasible benchmark construction.  
 056

- 057 • **Algorithms.** The CP-based parameterization of our benchmark allows us to construct two  
 058 novel discrete SB methods: DLightSB and DLightSB-M (§4.3 and §4.4). Which mirror their  
 059 continuous-space counterparts LightSB and LightSB-M (Korotin et al., 2024; Gushchin et al.,  
 060 2024a). Additionally, we introduce  $\alpha$ -CSBM (§4.2), a new solver for discrete SB. Which com-  
 061 bines the recent discrete-space solver CSBM (Ksenofontov & Korotin, 2025) with the incremen-  
 062 tal/online update strategy of  $\alpha$ -DSBM used in continuous settings (De Bortoli et al., 2024).
- 063 • **Practice.** We use these benchmark pairs to evaluate both existing and newly introduced SB solvers  
 064 in high-dimensional settings

065 **Notation.** We consider a discrete state space  $\mathcal{X} = \mathbb{S}^D$ , where  $\mathbb{S} = \{0, 1, \dots, S-1\}$  is the set of  $S$   
 066 categories and  $D$  is the dimensionality. Each  $x \in \mathcal{X}$  is a  $D$ -dimensional vector  $x = (x^1, \dots, x^D)$ .  
 067 Time is discretized as  $\{t_n\}_{n=0}^{N+1}$  with  $0 = t_0 < t_1 < \dots < t_N < t_{N+1} = 1$ . This gives  $N+2$  time  
 068 points and defines the *path space*  $\mathcal{X}^{N+2}$  with the tuple  $x_{\text{in}} \stackrel{\text{def}}{=} (x_{t_1}, \dots, x_{t_N}) \in \mathcal{X}^N$  collecting the  
 069 intermediate states. The set  $\mathcal{P}(\mathcal{X}^{N+2})$  comprises all discrete time stochastic processes on the path  
 070 space, with  $\mathcal{M}(\mathcal{X}^{N+2}) \subset \mathcal{P}(\mathcal{X}^{N+2})$  denoting the subset of *Markov processes*. Any  $q \in \mathcal{M}(\mathcal{X}^{N+2})$   
 071 admits forward and backward representations:  $q(x_0, x_{\text{in}}, x_1) = q(x_0) \prod_{n=1}^{N+1} q(x_{t_n} | x_{t_{n-1}}) =$   
 072  $q(x_1) \prod_{n=1}^{N+1} q(x_{t_{n-1}} | x_{t_n})$ , where  $q(\cdot | \cdot)$  denotes conditional probabilities.  
 073

## 074 2 BACKGROUND: PROBLEM STATEMENT

075 This section provides an overview of the discrete-time Schrödinger Bridge problem. First, we  
 076 present the dynamic SB and its reduction to a static problem (§2.1). Next, we analyze diffusion-type  
 077 reference processes (§2.2) that yield practical cost functions, linking to the EOT framework in §2.3.  
 078 Finally, we introduce our problem setting (§2.4).

### 079 2.1 DYNAMIC AND STATIC SCHRÖDINGER BRIDGES ON DISCRETE SPACES

080 **Dynamic Schrödinger Bridge.** The original SB problem (Schrödinger, 1931; 1932; Léonard,  
 081 2013) seeks to find a process  $q^* \in \mathcal{P}(\mathcal{X}^{N+2})$  interpolating between an initial distribution  $p_0$  at  $t_0 =$   
 082 0 and a final distribution  $p_1$  at  $t_{N+1} = 1$ . This distribution is found by minimizing the Kullback-  
 083 Leibler (KL) divergence with respect to a given Markov reference process  $q^{\text{ref}} \in \mathcal{M}(\mathcal{X}^{N+2})$  subject  
 084 to the marginal constraints  $p_0(x_0) = q(x_0)$  and  $p_1(x_1) = q(x_1)$ . One finds

$$085 \quad q^* = \arg \min_{q \in \Pi_N(p_0, p_1)} \text{KL} (q(x_0, x_{\text{in}}, x_1) \| q^{\text{ref}}(x_0, x_{\text{in}}, x_1)), \quad (1)$$

086 where  $\Pi_N(p_0, p_1) \subset \mathcal{P}(\mathcal{X}^{N+2})$  denotes the subset of  $\mathcal{X}$ -valued stochastic processes which have  $p_0$   
 087 and  $p_1$  as marginals at times  $t_0 = 0$  and  $t_{N+1} = 1$ , respectively. In other words, the dynamic SB  
 088 problem seeks the stochastic process  $q^*$  that minimally deviates from a reference process  $q^{\text{ref}}$  while  
 089 respecting the boundary distributions  $p_0$  and  $p_1$ .

090 **Static Schrödinger Bridge.** We now introduce the static formulation of the SB. This begins with  
 091 observing that (1) admits the following decomposition:

$$092 \quad \min_{q \in \Pi_N(p_0, p_1)} \left[ \text{KL} (q(x_0, x_1) \| q^{\text{ref}}(x_0, x_1)) + \mathbb{E}_{q(x_0, x_1)} \text{KL} (q(x_{\text{in}} | x_0, x_1) \| q^{\text{ref}}(x_{\text{in}} | x_0, x_1)) \right]. \quad (2)$$

093 We further note that the conditional KL term in (2) vanishes when  $q(x_{\text{in}} | x_0, x_1) = q^{\text{ref}}(x_{\text{in}} | x_0, x_1)$ .  
 094 Thus, we restrict  $q$  to the set of processes that satisfy this condition. This set is known as *the  
 095 reciprocal class* of  $q^{\text{ref}}$  and is denoted by  $\mathcal{R}^{\text{ref}}(\mathcal{X}^{N+2}) \subset \mathcal{P}(\mathcal{X}^{N+2})$ . Under this restriction, the  
 096 optimization reduces to the first KL term alone, leading directly to the static SB problem

$$097 \quad q^*(x_0, x_1) = \arg \min_{q \in \Pi(p_0, p_1)} \text{KL} (q(x_0, x_1) \| q^{\text{ref}}(x_0, x_1)), \quad (3)$$

098 where  $\Pi(p_0, p_1) \in \mathcal{P}(\mathcal{X}^2)$  is the set of joint distributions  $q(x_0, x_1)$  whose marginals are  $p_0$  and  $p_1$ .

108  
109

## 2.2 FORMULATIONS OF THE REFERENCE PROCESS

110 The key ingredient in both SB formulations is the Markov reference process  $q^{\text{ref}}$ . In discrete space it is usually modeled as a *discrete-time Markov chain* defined by transition matrices  $Q_n^{\text{ref}} \in [0, 1]^{|X| \times |X|}$ , where  $q^{\text{ref}}(x_{t_n}^d | x_{t_{n-1}}^d) = [Q_n^{\text{ref}}]_{x_{t_{n-1}}^d, x_{t_n}^d}$ . Assuming time-homogeneity ( $Q_n^{\text{ref}} = Q^{\text{ref}}$  for all  $n$ ), the  $n$ -step transition probabilities are given by the matrix power  $\overline{Q}_n^{\text{ref}} = [Q^{\text{ref}}]^n$ . To define  $Q$ , we further restrict to  $D = 1$  for clarity, noting that for  $D > 1$  the transition probabilities are obtained as a product over dimensions.

117 **Remark.** The reference process  $q^{\text{ref}}$  can also be defined in continuous time. In which transitions 118 are characterized by rates instead of probabilities. Since controlling these rates is less direct and not 119 all discrete processes admit a continuous analogue, we restrict our attention to the discrete setting, 120 which is more flexible and well-suited for a benchmark construction.

121 We now introduce two popular diffusion-like transitions: uniform (Hoogeboom et al., 2021; Campbell 122 et al., 2022) and Gaussian-like (Austin et al., 2021).

123 The reference process  $q^{\text{ref}} \in \mathcal{M}(\mathcal{X}^{N+2})$  is modeled as a *discrete-state diffusion process*, 124 i.e., a discrete-time Markov chain defined by transition matrices  $Q_n^{\text{ref}} \in [0, 1]^{|X| \times |X|}$ , where 125  $q^{\text{ref}}(x_{t_n}^d | x_{t_{n-1}}^d) = [Q_n^{\text{ref}}]_{x_{t_{n-1}}^d, x_{t_n}^d}$ . Assuming time-homogeneity ( $Q_n^{\text{ref}} = Q^{\text{ref}}$  for all  $n$ ), the  $n$ - 126 step transition probabilities are given by the matrix power  $\overline{Q}_n^{\text{ref}} = [Q^{\text{ref}}]^n$ . To define  $Q$ , we further 127 restrict to  $D = 1$  for clarity, noting that for  $D > 1$  the transition probabilities are obtained as a 128 product over dimensions. We now introduce two diffusion-like transitions: uniform (Hoogeboom 129 et al., 2021; Campbell et al., 2022) and Gaussian-like (Austin et al., 2021).

131 **Uniform Reference Process ( $q^{\text{unif}}$ ).** For unordered data, where no relation exists between 132 categories, a natural choice is a so-called uniform transition matrix. For each dimension  $d$ , the elements 133 of the transition matrix  $Q^{\text{ref}}$  are defined by

$$135 \quad [Q^{\text{ref}}]_{x_{t_{n-1}}^d, x_{t_n}^d} = \begin{cases} 1 - \gamma, & \text{if } x_{t_n}^d = x_{t_{n-1}}^d, \\ \frac{\gamma}{S-1}, & \text{if } x_{t_n}^d \neq x_{t_{n-1}}^d, \end{cases} \quad (4)$$

138 where  $\gamma \in [0, 1]$  is an stochasticity parameter. This reference process introduces randomness independently 139 of the distance between categories. It assigns equal probability to transitioning into any 140 different category, while having a staying probability  $1 - \gamma$ . This ignores any inherent ordering or 141 relationships among categories.

142 **Gaussian Reference Process ( $q^{\text{gauss}}$ ).** For ordered data, where categories are expected to exhibit 143 meaningful relations, a Gaussian-like transition matrix is more appropriate. With the stochasticity 144 parameter  $\gamma > 0$  and the maximum category distance  $\Delta = S - 1$ , the transition probabilities are 145

$$146 \quad [Q^{\text{ref}}]_{x_{t_{n-1}}^d, x_{t_n}^d} = \frac{\exp\left(-\frac{4(x_{t_n}^d - x_{t_{n-1}}^d)^2}{(\gamma\Delta)^2}\right)}{\sum_{\delta=-\Delta}^{\Delta} \exp\left(-\frac{4\delta^2}{(\gamma\Delta)^2}\right)}, \quad x_{t_n}^d \neq x_{t_{n-1}}^d. \quad (5)$$

150 The diagonal entries take the remaining probability so that each row sums to 1.

152  
153 2.3 ENTROPIC OPTIMAL TRANSPORT ON DISCRETE SPACES

154 Following the construction of the Markov reference process in §2.2, the static SB problem (§3) 155 takes a form equivalent to the entropic optimal transport (EOT) problem (Cuturi, 2013). Concretely, 156 expressing  $q^{\text{ref}}(x_0, x_1) = q^{\text{ref}}(x_0)q^{\text{ref}}(x_1 | x_0)$  and setting  $q^{\text{ref}}(x_0) = p_0(x_0)$ , allows the minimization 157 in equation (3) to be rewritten as

$$158 \quad \min_{q \in \Pi(p_0, p_1)} \text{KL}(q(x_0, x_1) \| q^{\text{ref}}(x_0, x_1)) = \\ 159 \quad = \min_{q \in \Pi(p_0, p_1)} \sum_{x_0, x_1} q(x_0, x_1) \log \frac{q(x_0, x_1)}{q^{\text{ref}}(x_0)q^{\text{ref}}(x_1 | x_0)}$$

$$\begin{aligned}
162 &= \min_{q \in \Pi(p_0, p_1)} -H(q) - \sum_{x_0, x_1} q(x_0, x_1) \log q^{\text{ref}}(x_1|x_0) - \underbrace{\sum_{x_0, x_1} q(x_0, x_1) \log q^{\text{ref}}(x_0)}_{= \sum_{x_0} p_0(x_0) \log p_0(x_0) = -H(p_0)} \quad (6) \\
163 \\
164 \\
165 \\
166 &= \min_{q \in \Pi(p_0, p_1)} \mathbb{E}_{q(x_0, x_1)} [-\log q^{\text{ref}}(x_1|x_0)] - H(q) - \text{const} \\
167 \\
168 &= \min_{q \in \Pi(p_0, p_1)} \mathbb{E}_{(x_0, x_1) \sim q} [c(x_0, x_1)] - H(q) - \text{const}, \\
169
\end{aligned}$$

170 where  $H(q)$  is the entropy of  $q$ , while  $H(p_0)$  remains constant when minimizing over  $q$ . Thus, the  
171 static SB formulation becomes equivalent to the entropy-regularized optimal transport problem with  
172 cost  $c(x_0, x_1) = -\log q^{\text{ref}}(x_1|x_0)$ . This perspective establishes a direct correspondence between  
173 SB and EOT, which we use in the design of our benchmark and methodological framework in §3.

174 Since the conditional distribution  $q^{\text{ref}}(x_1|x_0)$  is obtained by taking the  $(N+1)$ -th power of  $Q^{\text{ref}}$ , it  
175 admits the following closed-form expression in the uniform case:

$$177 \quad Q_{N+1}^{\text{ref}} = \left(1 - \gamma \frac{S}{S-1}\right)^{N+1} \mathbb{I} + \frac{1 - \left(1 - \gamma \frac{S}{S-1}\right)^{N+1}}{S} \mathbf{1}\mathbf{1}^\top, \quad (7) \\
178 \\
179$$

180 where  $\mathbf{1} = [1, \dots, 1]^\top \in \mathbb{R}^S$  is a vector full of ones. From here it can be seen that  $\overline{Q}_{N+1}^{\text{ref}}$  converges  
181 to  $(1/S)\mathbf{1}\mathbf{1}^\top$  when  $(N+1) \rightarrow \infty$ , that is a uniform distribution over the number of categories  $S$ ,  
182 the derivation of (7) can be found in Appendix A. In the case of the Gaussian reference process, the  
183 closed-form expression can also be obtained, but it is much more complex.

#### 185 2.4 PROBLEM SETUP FOR DISCRETE SCHRÖDINGER BRIDGES

186 In this section, we recall the *generative SB task on discrete spaces*, a well-established problem in  
187 the SB and OT literature (Kim et al., 2024; Ksenofontov & Korotin, 2025). In short, the goal is to  
188 learn an SB process or coupling that performs transport between probability distributions on discrete  
189 spaces using available empirical data samples. Formally, we consider the following learning setup:

191 We assume the learner is given empirical datasets  $\{x_0^{(i)}\}_{i \in I_0}$  and  $\{x_1^{(j)}\}_{j \in I_1}$ ,  $x_0^{(i)}, x_1^{(j)} \in \mathcal{X}$ ,  
192 consisting of i.i.d. samples from the unknown distributions  $p_0, p_1 \in \mathcal{P}(\mathcal{X})$  where  $\mathcal{X}$  is a discrete  
193 state space. Then, the task is to use these samples to find a solution  $q^*$  to the SB problem (1) or  
194 (3) between  $p_0$  and  $p_1$  for a given reference  $q^{\text{ref}}$ . Moreover, the solution should support out-of-  
195 sample generation so that for any new  $(x_0^{\text{new}})$  one can generate  $x_1^{\text{new}} \sim q^*(x_1|x_0^{\text{new}})$ .

197 Despite recent progress in the development of SB methods that solve this task, there remains no  
198 standard methodology for performance evaluation, mainly due to the absence of ground-truth dis-  
199 tribution pairs  $(p_0, p_1)$ . In this work, we propose a benchmark construction, inspired by (Gushchin  
200 et al., 2023b), that enables standard evaluation of such methods on datasets built from SB pairs  
201  $(x_0, x_1)$  with known  $q^*(x_1|x_0)$ . Such datasets provide more informative metrics and offer a consis-  
202 tent framework for assessing the performance of SB methods on discrete spaces.

203 **Remark.** Our paper is not related to the discrete EOT, which includes solvers such as the Sinkhorn  
204 algorithm (Cuturi, 2013) or gradient-based methods (Dvurechensky et al., 2018). These approaches  
205 are designed for a non-generative problem setting, see (Ksenofontov & Korotin, 2025, §2.3). They  
206 treat samples as empirical distributions  $p_0(x_0) = \frac{1}{|I_0|} \sum_{i \in I_0} \delta_{x_0^{(i)}}$ ,  $p_1(x_1) = \frac{1}{|I_1|} \sum_{j \in I_1} \delta_{x_1^{(j)}}$ . The  
207 resulting coupling is then a bi-stochastic  $|I_0| \times |I_1|$  matrix, which does not support out-of-sample  
208 generation. While some extensions attempt to provide inference for unseen data (Hütter & Rigollet,  
209 2021; Pooladian & Niles-Weed, 2021; Manole et al., 2024; Deb et al., 2021), they are designed for  
210 continuous spaces ( $\mathcal{X} = \mathbb{R}^D$ ) rather than the discrete spaces ( $\mathcal{X} = \mathbb{S}^D$ ) considered in our work.

### 212 3 BENCHMARK

213 This section outlines our theoretical and practical foundations necessary for constructing the bench-  
214 mark for the SB. We introduce our benchmark construction in §3.1. Our benchmark construction  
215 can benefit from a specific parameterization which we explore in §3.2. This construction and pa-  
216 rameterization are later used to build our high-dimensional Gaussian mixture benchmark §3.3.

216 3.1 MAIN THEOREM FOR BENCHMARK CONSTRUCTION  
217

218 Given an initial distribution  $p_0 \in \mathcal{P}(\mathcal{X})$ , we aim to construct a target distribution  $p_1 \in \mathcal{P}(\mathcal{X})$  such  
219 that the static SB  $q^*(x_0, x_1)$  between them is known by our construction. The resulting pair  $(p_0, p_1)$   
220 together with  $q^*$  can then be used as benchmark data for evaluating SB methods. Our following  
221 theorem plays the key role in the construction of benchmark pairs.

222 **Theorem 3.1** (Benchmark pair construction for SB on discrete Spaces). *Let  $p_0 \in \mathcal{P}(\mathcal{X})$  be a given  
223 source distribution on a discrete space  $\mathcal{X}$  and  $v^* : \mathcal{X} \rightarrow \mathbb{R}$  be a given scalar-valued function. Let  
224  $q^* \in \mathcal{P}(\mathcal{X}^2)$  be a joint distribution for which for all  $x_0 \in \mathcal{X}$  it holds that  $q^*(x_0) = p_0(x_0)$  and*

$$225 \quad q^*(x_1|x_0) \propto v^*(x_1)q^{\text{ref}}(x_1|x_0), \quad (8)$$

227 Let  $p_1 \in \mathcal{P}(\mathcal{X})$  be the second marginal of  $q^*$ , i.e.,  $q^*(x_1) \stackrel{\text{def}}{=} p_1(x_1)$ . Then  $q^*(x_0, x_1)$  is the static SB  
228 (3) between  $p_0$  and  $p_1$ . In turn,  $q^*(x_0, x_{\text{in}}, x_1) \stackrel{\text{def}}{=} q^*(x_0, x_1)q^{\text{ref}}(x_{\text{in}}|x_0, x_1)$  is the dynamic SB (1).

230 Theorem 3.1 establishes that any pair  $(p_0, v^*)$  can be used to construct  $(p_0, p_1)$  for the SB prob-  
231 lem, thereby yielding a known solution  $q^*$ . The construction considers conditional distributions  
232  $q^*(x_1|x_0)$  in an unnormalized form, so we further write

$$234 \quad q^*(x_1|x_0) = \frac{1}{c^*(x_0)} v^*(x_1) q^{\text{ref}}(x_1|x_0), \quad (9)$$

236 where  $c^*(x_0) \stackrel{\text{def}}{=} \sum_{x_1 \in \mathcal{X}} v^*(x_1) q^{\text{ref}}(x_1|x_0)$  is the normalization constant.

238 Our benchmark construction idea may be non-trivial to implement in practice. Specifically, working  
239 in the high-dimensional space  $\mathcal{X} = \mathbb{S}^D$  makes computing the normalization constant and sampling  
240 from  $q^*$  computationally expensive. To address this, we introduce a parameterization that enables  
241 efficient computation and sampling, as detailed in the next section.

242 3.2 PRACTICAL PARAMETERIZATION OF THE SCALAR-VALUED FUNCTION  $v^*$   
243

244 We parameterize the scalar-valued function  $v^*$  using a rank-1 Canonical Polyadic (CP) decom-  
245 position, which captures interactions across dimensions and provides a compact yet expressive repres-  
246 entation. Such decompositions act as universal approximators, capable of modeling complex functions  
247 when the rank is sufficiently large (Cohen et al., 2016; Basharin et al., 2025). Thus,  $v^*$  is given by

$$248 \quad v^*(x_1) = \sum_{k=1}^K \beta_k \prod_{d=1}^D r_k^d[x_1^d]. \quad (10)$$

251 Expression (10) defines a mixture of  $K$  factorizable distributions, each with weight  $\beta_k \geq 0$ . For  
252 each mixture component  $k$  and dimension  $d$ , probabilities are given by non-negative vectors  $r_k^d \in$   
253  $\mathbb{R}_+^S$ , referred to as CP cores, where  $r_k^d[x_1^d]$  denotes the probability of state  $x_1^d$ . The key advantage of  
254 this parameterization is that the factorization across dimensions makes both the normalizing constant  
255  $c(x_0)$  and the conditional distribution  $q^*(x_1|x_0)$  computationally tractable. Specifically, the product  
256 structure allows efficient ancestral sampling by drawing each dimension independently.

257 **Proposition 3.1** (Tractable Parameterization of Conditional Distributions). *Given the CP decom-  
258 position of the scalar-valued function  $v(x_1) = \sum_{k=1}^K \beta_k \prod_{d=1}^D r_k^d[x_1^d]$  and a factorizable reference  
259 process  $q^{\text{ref}}(x_1|x_0) = \prod_{d=1}^D q^{\text{ref}}(x_1^d|x_0)$ , the optimal conditional distribution satisfies:*

$$261 \quad q^*(x_1|x_0) = \frac{1}{c(x_0)} \sum_{k=1}^K \beta_k \prod_{d=1}^D \left[ r_k^d[x_1^d] q^{\text{ref}}(x_1^d|x_0) \right]; \quad c(x_0) = \sum_{k=1}^K \beta_k \prod_{d=1}^D \left( \sum_{x_1^d=0}^{S-1} r_k^d[x_1^d] q^{\text{ref}}(x_1^d|x_0) \right) \quad (11)$$

$$264 \quad (12)$$

265 where  $c(x_0)$  is the normalization constant. This formulation expresses  $q^*(x_1|x_0)$  as a mixture of  $K$   
266 factorizable distributions, each weighted by a scalar coefficient  $\beta_k$ .

268 Note that the considered reference processes (§2.2)  $q^{\text{gauss}}$  and  $q^{\text{unif}}$  are both factorizable by construc-  
269 tion. Consequently, the normalization constant is tractable, as the combination of the factorized  
270 reference and the CP decomposition reduces the high-dimensional sum to a product of independent  
271 one-dimensional sums.

270 3.3 HIGH-DIMENSIONAL GAUSSIAN MIXTURES BENCHMARK CONSTRUCTION  
271

272 We set  $p_0$  as a noise distribution (uniform or discretized Gaussian) on  $D \in \{2, 16, 64\}$  dimensions  
273 with  $S = 50$  categories. For  $v^*$ , we use  $K = 4$  components with uniformly initialized weights  
274  $\beta \in \mathbb{R}^K$ , and the CP cores are initialized by setting their logarithms to the log-density of discretized  
275 Gaussians with varying means and fixed variance. Given  $p_0$  and  $v^*$ , we then construct  $p_1$  (Theorem  
276 3.1). This initialization produces a target  $p_1$  resembling a discretized Gaussian mixture with a clear  
277 visual structure. Moreover, our benchmark formulation further allows the generation of an unlimited  
278 number of samples for training.

279 We construct pairs under different reference processes  $q^{\text{ref}}$ : Gaussian  $q^{\text{gauss}}$  with  $\gamma \in \{0.02, 0.05\}$   
280 and uniform  $q^{\text{unif}}$  with  $\gamma \in \{0.005, 0.01\}$ , using  $N + 1 = 128$  for both, see Figure 1b to visualize  
281 ground truth benchmark pairs.

282 4 SOLVERS FOR EVALUATION  
283

284 The field of discrete SB solvers remains in early development, with limited methods available for  
285 evaluation. We assess four approaches: the *Categorical Schrödinger Bridge Matching (CSBM)*  
286 method (Ksenofontov & Korotin, 2025), designed specifically for categorical distributions; our  $\alpha$ -  
287 *CSBM* extension, which applies the online methodology of (De Bortoli et al., 2024) to CSBM;  
288 new *Discrete Light Schrödinger Bridge (DLightSB)* solver, constructed using our benchmark frame-  
289 work (§3) and adapting ideas from (Korotin et al., 2024) to discrete settings; and finally new  
290 *DLightSB-M*, which extends DLightSB to dynamic setups following (Gushchin et al., 2024a).  
291 Further details about methods can be found in Appendix B.

292 4.1 CATEGORICAL SCHRÖDINGER BRIDGE MATCHING (CSBM)  
293

294 In (Ksenofontov & Korotin, 2025, Theorem 3.1), the discrete space SB problem is addressed by  
295 extending the discrete-time existence theorem of (Gushchin et al., 2024b, Theorem 3.6) to the dis-  
296 crete space/time setting, thereby establishing convergence of the *discrete time Iterative Markovian*  
297 *Fitting (D-IMF) procedure*. This constructive method uses the fact that the dynamic SB  $q^*$  is both  
298 reciprocal ( $q^* \in \mathcal{R}^{\text{ref}}(\mathcal{X}^{N+2})$ ) and Markov ( $q^* \in \mathcal{M}(\mathcal{X}^{N+2})$ ). The D-IMF algorithm alternates  
299 between projections onto these two sets, starting from an initial process  $q^0(x_0, x_1)q^{\text{ref}}(x_{\text{in}}|x_0, x_1)$ ,  
300 where  $q^0(x_0, x_1) \in \Pi(p_0, p_1)$ , e.g.,  $p_0(x_0)p_1(x_1)$ , and converges to the SB  $q^*$  in KL. Namely,

$$q^{2l} \xrightleftharpoons[\text{proj}_{\mathcal{R}^{\text{ref}}}]{} \text{proj}_{\mathcal{M}} q^{2l+2} \quad l = 0, 1, \dots$$

301 where

$$[\text{proj}_{\mathcal{R}^{\text{ref}}}(q)](x_0, x_{\text{in}}, x_1) = \arg \min_{r \in \mathcal{R}^{\text{ref}}(\mathcal{X}^{N+2})} \text{KL}(q(x_0, x_{\text{in}}, x_1) \| r(x_0, x_{\text{in}}, x_1)), \quad \forall q \in \mathcal{P}(\mathcal{X}^{N+2}), \quad (13)$$

$$[\text{proj}_{\mathcal{M}}(q)](x_0, x_{\text{in}}, x_1) = \arg \min_{m \in \mathcal{M}(\mathcal{X}^{N+2})} \text{KL}(q(x_0, x_{\text{in}}, x_1) \| m(x_0, x_{\text{in}}, x_1)), \quad \forall q \in \mathcal{R}^{\text{ref}}(\mathcal{X}^{N+2}). \quad (14)$$

302 **Loss.** Because ancestral sampling makes the reciprocal part straightforward, the challenge lies in  
303 the Markov projection, for which the authors propose minimizing an alternative objective function.

$$\begin{aligned} \text{KL}(q(x_0, x_{\text{in}}, x_1) \| m(x_0, x_{\text{in}}, x_1)) &= \mathbb{E}_{q(x_0, x_1)} \left[ \sum_{n=1}^N \mathbb{E}_{q^{\text{ref}}(x_{t_{n-1}}|x_0, x_1)} \right. \\ &\quad \left. \text{KL}(q^{\text{ref}}(x_{t_n}|x_{t_{n-1}}, x_1) \| m(x_{t_n}|x_{t_{n-1}})) - \mathbb{E}_{q^{\text{ref}}(x_{t_N}|x_0, x_1)} [\log m(x_1|x_{t_N})] \right]. \end{aligned} \quad (15)$$

311 In practice, the D-IMF procedure is implemented in a bidirectional manner (see Ksenofontov &  
312 Korotin (2025, §3.2.5)). That is, it first applies the Markovian projection using both forward and  
313 backward representations. Notably, the KL loss can be replaced by any divergence from the Breg-  
314 man family, introducing additional hyperparameters for this and several subsequent methods. For  
315 details on this equivalence, see (Ksenofontov & Korotin, 2025, Appendix C.1).

316 **Remark.** A continuous-time IMF was introduced in the Discrete Diffusion Schrödinger Bridge  
317 Matching (Kim et al., 2024, DDSBM) paper, which performs the Markovian projection (14) by  
318 matching the generator matrices of continuous-time Markov chains. As it reduces to the same loss  
319 and inference process due to the necessity to discretize time, we report results only for CSBM.

324 4.2  $\alpha$ -CATEGORICAL SCHRÖDINGER BRIDGE MATCHING ( $\alpha$ -CSBM)

325 Recently, an online alternative to the IMF procedure, called  $\alpha$ -IMF, was proposed (De Bortoli et al.,  
326 2024; Peluchetti, 2024). In this approach, the exact projections in (13) and (14) are replaced by  
327 partial updates (De Bortoli et al., 2024, Eq. 9), and the resulting iteration is proven to converge  
328 to the SB. This means that instead of running each projection until full convergence, only a single  
329 optimization step is performed at each iteration, still guiding the distribution toward the double  
330 projection  $\text{proj}_{\mathcal{R}^{\text{ref}}}(\text{proj}_{\mathcal{M}}(\cdot))$ . Since those works address the continuous setting, we extend the  
331 same ideas to CSBM §4.1, interpreting the discrete formulation of  $\alpha$ -IMF as a heuristic analogue of  
332 the original procedure.

333 **Loss.** Since the approach does not require each projection to reach full convergence, a single optimi-  
334 zation step can be performed for both representation directions at once. This allows us to extend  
335 the CSBM bidirectional setup (§4.1) by updating the forward and backward models jointly, with a  
336 shared loss computed for both representations as:

$$337 L(\vec{m}, \overleftarrow{m}) = \frac{1}{2} \left( \text{KL}(\vec{r}_{\text{sg}}(x_0, x_{\text{in}}, x_1) \| \overleftarrow{m}(x_0, x_{\text{in}}, x_1)) \right. \\ 338 \left. + \text{KL}(\overleftarrow{r}_{\text{sg}}(x_0, x_{\text{in}}, x_1) \| \vec{m}(x_0, x_{\text{in}}, x_1)) \right), \quad (16)$$

340 where  $\rightarrow$  and  $\leftarrow$  denote the direction of representations (forward and backward, respectively), and  
341  $r_{\text{sg}}$  denotes  $\text{proj}_{\mathcal{R}^{\text{ref}}}(m)$  evaluated with the stop-gradient operation.

## 343 4.3 DISCRETE LIGHT SCHRÖDINGER BRIDGE (DLIGHTSB)

344 Below we introduce DLightSB, a solver for discrete spaces derived from our benchmark construction  
345 in §3.2

347 **Loss.** Following (Korotin et al., 2024), we derive a discrete surrogate objective  $\text{KL}(q^* \| q_{\theta})$ .

348 **Proposition 4.1** (Feasible Discrete Reformulation of the KL Minimization.). *For the characteriza-  
349 tion (9) of  $q(x_1|x_0)$ , it holds that the alternative KL objective  $\text{KL}(q^* \| q)$  admits the representation  
350  $\text{KL}(q^* \| q_{\theta}) = \mathcal{L}(\theta) - \mathcal{L}^*$  where*

$$352 \mathcal{L}(\theta) = \sum_{x_0 \in \mathcal{X}} \log c_{\theta}(x_0) p_0(x_0) - \sum_{x_1 \in \mathcal{X}} \log v_{\theta}(x_1) p_1(x_1), \quad (17)$$

354 and  $\mathcal{L}^* \in \mathbb{R}$  is a constant value not depending on  $\theta$ , therefore, it can be omitted.

## 356 4.4 DISCRETE LIGHT SCHRÖDINGER BRIDGE MATCHING (DLIGHTSB-M)

357 Inspired by (Gushchin et al., 2024a), we propose a matching approach for solving the SB problem  
358 in discrete settings. This approach enables obtaining the SB in a single projection, which is referred  
359 to as the *optimal projection*. Specifically, its idea lies in restating the Markovian projection (14) as  
360 the projection of a reciprocal process  $r \in \mathcal{R}^{\text{ref}}(\mathcal{X}^{N+2})$  onto the set of all SBs:

$$362 \mathcal{S}(\mathcal{X}^{N+2}) \stackrel{\text{def}}{=} \left\{ q^{\text{SB}} \in \mathcal{P}(\mathcal{X}^{N+2}) \text{ such that } \exists q_0^{\text{SB}}, q_1^{\text{SB}} \in \mathcal{P}(\mathcal{X}) \right. \\ 363 \left. q^{\text{SB}} = \arg \min_{q \in \Pi_N(q_0^{\text{SB}}, q_1^{\text{SB}})} \text{KL}(q \| q^{\text{ref}}) \right\}, \quad (18)$$

366 We show that (Gushchin et al., 2024a, Theorem 3.1) can be generalized to an arbitrary reference  
367 process  $q^{\text{ref}}$ , thereby enabling the application of the optimal projection in discrete space settings  
368 under our CP parametrization (10).

369 **Proposition 4.2** (Optimal Projection with an Arbitrary Reference Process). *Let  $r \in \mathcal{R}^{\text{ref}}(\mathcal{X}^{N+2})$   
370 be a reciprocal process defined with a reference process  $q^{\text{ref}} \in \mathcal{M}(\mathcal{X}^{N+2})$  and a joint distribution  
371  $r(x_0, x_1) \in \Pi(p_0, p_1)$ . Then, the optimal projection of  $r$  onto the set of all SBs  $\mathcal{S}(\mathcal{X}^{N+2})$  is the SB  
372  $q^*$  between the desired marginals  $p_0$  and  $p_1$ , i.e.,*

$$374 q^* = \arg \min_{q^{\text{SB}} \in \mathcal{S}(\mathcal{X}^{N+2})} \text{KL}(r \| q^{\text{SB}}). \quad (19)$$

376 The main requirement is to define  $q^{\text{SB}}$  such that the minimization is restricted to  $q^{\text{SB}} \in \mathcal{S}(\mathcal{X}^{N+2})$ .  
377 The following proposition establishes this characterization of SB transitions and, through its CP  
cores  $r_k^d$ , directly connects this approach to DLightSB (§4.3).

378 **Proposition 4.3** (The SB’s Transition Distributions with CP Decomposition). *Let  $q^{\text{ref}}$  be a reference*  
 379 *Markov process on a discrete space  $\mathcal{X}$  with transition matrix  $Q^{\text{ref}}$ . Using the CP decomposition of*  
 380 *the scalar-valued function  $v^*$  (10), the marginal transition distributions of the SB are given by*

$$382 \quad q^{\text{SB}}(x_{t_n}^d | x_{t_{n-1}}) = q^{\text{ref}}(x_{t_n}^d | x_{t_{n-1}}) \sum_{k=1}^K \beta_k u_{k,t_n}^d [x_{t_n}^d] \prod_{\substack{j=1 \\ j \neq d}}^D u_{k,t_{n-1}}^j [x_{t_{n-1}}^j], \quad (20)$$

385 where  $u_{k,t_n}^d [x_{t_n}^d] = \sum_{x_1^d} [\bar{Q}_{N+1-n}^{\text{ref}}]_{x_{t_n}^d, x_1^d} r_k^d [x_1^d]$ . Sampling is done via ancestral sampling.

387 **Loss.** The loss (15) could be applied directly to train the SB transitions  $q^{\text{SB}}$ .

## 389 5 EVALUATION

390 We first present our evaluation metrics (§5.1), given the analogous problem structure, we adopt  
 391 metrics from tabular data analysis (Zhang et al., 2024). Then we use them to assess the experimental  
 392 setups from §3.3, and report the results in §5.2. **It is important to highlight that DLightSB and**  
 393 **DLightSB-M methods have some inductive bias as they use a similar construction as the benchmark**  
 394 **(e.g., CP parameterization and factorizable reference process).**

### 395 5.1 METRICS FOR EVALUATION

396 Evaluating generative models on discrete data is challenging since common metrics (e.g., generative  
 397 perplexity for text, FID for images (Heusel et al., 2017)) are domain-specific. Following work on  
 398 tabular data evaluation (Zhang et al., 2024; Shi et al., 2025), we adopt the **Shape Score** and **Trend**  
 399 **Score** metrics. **Which are used to measure the quality of the resulting SB for each method.**

400 **Shape Score.** This metric measures how well the predicted data preserves the marginal (per-  
 401 dimension) distributions of the real data. We consider a dataset with  $|I_R|$  real samples  $x$  and cor-  
 402 responding predicted samples  $\tilde{x}$ . We compute a per-dimension score for the empirical distributions  
 403 (expressed in  $\delta$ -delta notation) and report the average across all dimensions:

$$405 \quad \text{SSM}_d = 1 - \frac{1}{2} \sum_{s=0}^{S-1} \left| \frac{1}{|I_R|} \sum_{i=1}^{|I_R|} \delta(s - x_d^{(i)}) - \frac{1}{|I_R|} \sum_{j=1}^{|I_R|} \delta(s - \tilde{x}_d^{(j)}) \right|, \quad \text{SSM} = \frac{1}{D} \sum_{d=1}^D \text{SSM}_d.$$

409 **Trend Score.** This metric evaluates whether pairwise dimension dependencies in the real data are  
 410 preserved in the predictions. For a dataset with  $|I_R|$  real samples  $x^{(k)}$  and corresponding predicted  
 411 samples  $\tilde{x}^{(k)}$ . We compute a trend score and report the average across all dimension pairs:

$$413 \quad \text{TSM}_{d_i, d_j} = 1 - \frac{1}{2} \sum_{s_i=0}^{S-1} \sum_{s_j=0}^{S-1} \left| \frac{1}{|I_R|} \sum_{k=1}^{|I_R|} \delta(s_i - x_{d_i}^{(k)}) \delta(s_j - x_{d_j}^{(k)}) - \frac{1}{|I_R|} \sum_{k=1}^{|I_R|} \delta(s_i - \tilde{x}_{d_i}^{(k)}) \delta(s_j - \tilde{x}_{d_j}^{(k)}) \right|,$$

416 where  $x_{d_i}^{(k)}$  represents the  $d_i$ -th dimension of the  $k$ -th sample in this case.

417 **Conditional Metrics.** In our evaluation, we primarily report conditional variants of the aforemen-  
 418 tioned metrics. These are computed by generating multiple samples of  $x_1$  for each  $x_0 \sim p_0$ . This  
 419 approach provides a direct measure of the fidelity of the learned conditional distribution  $q(x_1 | x_0)$   
 420 and quantifies how well the SB solver captures the underlying stochastic transport.

### 421 5.2 RESULTS

423 We use our benchmark pair constructor differently for training and testing. For *training*, we ran-  
 424 domly sample  $x_0^{\text{train}} \sim p_0$  and generate  $x_1^{\text{train}} \sim p_1$  via our benchmark theorem, allowing infinite  
 425 sample generation. Training is performed in an unpaired manner. For *testing*, we use a fixed set of  
 426 20 000 precomputed **sample benchmark pairs**  $(x_0, x_1)$ , which we provide to facilitate benchmarking  
 427 new discrete SB solvers. We also use different training setups, first by varying  $N$  across CSBM,  
 428  $\alpha$ -CSBM, and DLightSB-M. **For the same set of methods, we experiment with two loss functions:**  
 429 **KL** and **MSE**. **We compare all methods to an *Independent* baseline.** This approach assumes  $x_1$  is  
 430 independent of  $x_0$ , so we simply sample from the target distribution. In the main text, we report only  
 431 the conditional metrics, as they more accurately reflect the performance of the SB solvers, in Ap-  
 432 pendix D.2 we provide experiments to validate conditional metrics against the unconditional ones.  
 433 Further experimental details are provided in Appendix C.

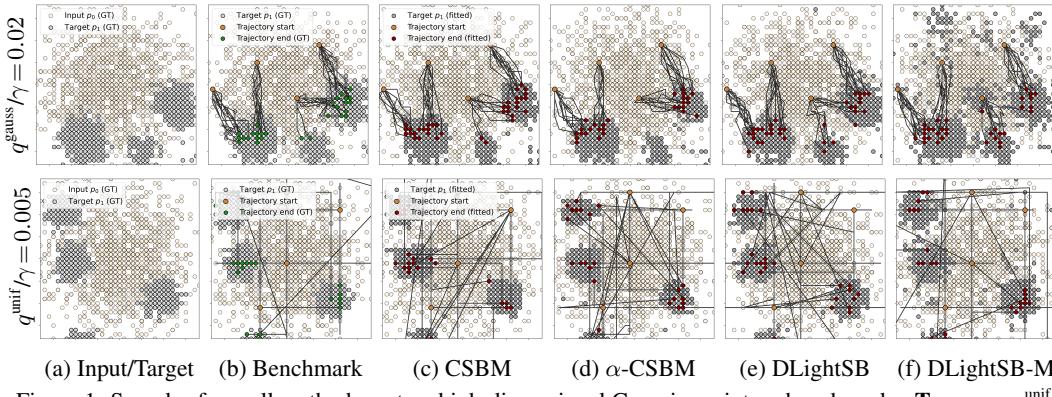


Figure 1: Samples from all methods on two high-dimensional Gaussian mixture benchmarks. **Top row:**  $q^{\text{unif}} (\gamma = 0.005)$ . **Bottom row:** Gaussian benchmark ( $\gamma = 0.02$ ). CSBM,  $\alpha$ -CSBM, and DLightSB-M were trained with KL loss ( $N+1 = 64$ ).

| Method         | Loss | $N+1$ | $D=2$        |              |              |              | $D=16$       |              |              |              | $D=64$       |              |              |              |
|----------------|------|-------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
|                |      |       | gaussian     |              | uniform      |              | gaussian     |              | uniform      |              | gaussian     |              | uniform      |              |
|                |      |       | 0.02         | 0.05         | 0.005        | 0.01         | 0.02         | 0.05         | 0.005        | 0.01         | 0.02         | 0.05         | 0.005        | 0.01         |
| Independent    | –    | –     | 0.369        | 0.646        | 0.577        | 0.700        | 0.359        | 0.555        | 0.466        | 0.515        | 0.374        | 0.519        | 0.424        | 0.503        |
| DLightSB       | –    | –     | <b>0.979</b> | <b>0.976</b> | <b>0.974</b> | <b>0.983</b> | <b>0.972</b> | <b>0.980</b> | <b>0.970</b> | <b>0.981</b> | <b>0.966</b> | <b>0.980</b> | <b>0.980</b> | <b>0.973</b> |
| CSBM           | KL   | 16    | 0.849        | 0.733        | 0.919        | 0.892        | 0.884        | 0.806        | 0.841        | 0.810        | 0.929        | 0.938        | 0.918        | 0.922        |
|                |      | 64    | <u>0.934</u> | 0.888        | 0.958        | 0.958        | <u>0.944</u> | 0.933        | 0.933        | 0.927        | <u>0.934</u> | 0.963        | 0.926        | 0.949        |
| $\alpha$ -CSBM | MSE  | 16    | 0.721        | 0.700        | 0.824        | 0.846        | 0.854        | 0.783        | 0.839        | 0.745        | 0.915        | 0.932        | 0.893        | 0.896        |
|                |      | 64    | <u>0.444</u> | 0.841        | 0.818        | 0.780        | 0.885        | 0.902        | 0.890        | 0.894        | 0.854        | 0.942        | 0.867        | 0.928        |
| DLightSB-M     | KL   | 16    | 0.829        | 0.738        | 0.927        | 0.918        | 0.881        | 0.836        | 0.873        | 0.825        | 0.930        | <u>0.972</u> | 0.929        | 0.943        |
|                |      | 64    | <u>0.902</u> | 0.896        | 0.952        | 0.958        | <u>0.936</u> | <u>0.963</u> | 0.932        | 0.941        | 0.927        | 0.959        | 0.924        | 0.942        |
|                | MSE  | 16    | 0.803        | <u>0.695</u> | 0.841        | 0.890        | 0.865        | 0.820        | 0.861        | 0.815        | 0.908        | 0.943        | 0.884        | 0.910        |
|                |      | 64    | <u>0.908</u> | 0.896        | 0.858        | 0.875        | <u>0.908</u> | <u>0.924</u> | 0.881        | 0.911        | <u>0.883</u> | 0.925        | 0.859        | 0.913        |
|                | KL   | 16    | 0.926        | <u>0.956</u> | <u>0.969</u> | <u>0.970</u> | 0.894        | 0.930        | 0.961        | 0.952        | 0.931        | 0.929        | <u>0.954</u> | 0.905        |
|                |      | 64    | 0.907        | 0.954        | 0.967        | 0.968        | 0.878        | 0.953        | <u>0.962</u> | <u>0.967</u> | 0.910        | 0.942        | 0.950        | 0.942        |
|                | MSE  | 16    | 0.782        | 0.951        | 0.881        | 0.926        | 0.726        | 0.921        | 0.942        | 0.951        | 0.718        | 0.918        | 0.891        | 0.850        |
|                |      | 64    | <u>0.717</u> | 0.942        | 0.892        | 0.914        | <u>0.685</u> | 0.914        | 0.953        | 0.943        | <u>0.632</u> | 0.906        | 0.730        | 0.879        |

Table 1: Conditional Shape Score metric ( $\uparrow$ ) on the high-dimensional Gaussian mixture benchmark. The best-performing method is highlighted in bold, and the second is underlined. Color code threshold: red for  $< 0.7$ , yellow for  $[0.7, 0.9)$ , and green for  $\geq 0.9$ .

**High-Dimensional Gaussian Mixtures.** In this section, we report results on the high-dimensional Gaussian mixture benchmark constructed as in §3.3 using the methods from §4. Visual results are shown in Figure 1 for  $q^{\text{gauss}} (\gamma = 0.02)$  and  $q^{\text{unif}} (\gamma = 0.005)$ . See Appendix D.2 for additional plots. Tables 1 and 2 show that DLightSB consistently achieves the best performance on Conditional Shape Score and Trend Score metrics, respectively. We attribute this to the benchmark pairs being built on the same principle used by the DLightSB solver. DLightSB-M, which incorporates this inductive bias as well, achieves similar results with a slight drop in metrics, likely due to error accumulation in the iterative sampling. Interestingly, our results resemble those on continuous data (Korotin et al., 2024, Table 2; Gushchin et al., 2024a, Table 1), showing comparable performance with a slight drop for the DLightSB-M. Unconditional metrics are reported in Tables 4 and 5.

On the other hand, CSBM and  $\alpha$ -CSBM perform noticeably worse than DLight methods. Notably,  $\alpha$ -CSBM achieves similar quality to CSBM while halving computational cost, making it a more efficient alternative. Regarding  $N$  and the loss function, increasing  $N$  mostly improves metrics. For the loss function, KL consistently outperforms MSE, likely because MSE minimizes pointwise squared error and produces over-smoothed solutions that blur modes (see Figure 2).

## 6 DISCUSSION

Our work fills a key gap in discrete SB research by introducing the first standardized benchmark for these methods. This contribution provides the community with ground truth data and standard evaluation metrics. The benchmark reveals fundamental limitations of current approaches: CP-based solvers (DLightSB, DLightSB-M) face severe memory constraints in high dimensions, while

| Method         | Loss | N + 1 | D = 2        |              |              |              | D = 16       |              |              |              | D = 64       |              |              |              |
|----------------|------|-------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
|                |      |       | gaussian     |              | uniform      |              | gaussian     |              | uniform      |              | gaussian     |              | uniform      |              |
|                |      |       | 0.02         | 0.05         | 0.005        | 0.01         | 0.02         | 0.05         | 0.005        | 0.01         | 0.02         | 0.05         | 0.005        | 0.01         |
| Independent    | –    | –     | 0.315        | 0.611        | 0.491        | 0.609        | 0.202        | 0.480        | 0.334        | 0.404        | 0.172        | 0.362        | 0.248        | 0.329        |
| DLightSB       | –    | –     | <b>0.968</b> | <b>0.970</b> | <b>0.967</b> | <b>0.975</b> | <b>0.943</b> | <b>0.967</b> | <b>0.956</b> | <b>0.967</b> | <b>0.919</b> | <b>0.956</b> | <b>0.955</b> | <b>0.950</b> |
| CSBM           | KL   | 16    | 0.793        | 0.654        | 0.884        | 0.856        | 0.803        | 0.694        | 0.732        | 0.676        | 0.853        | 0.895        | 0.830        | 0.861        |
|                |      | 64    | <b>0.911</b> | 0.854        | 0.932        | 0.923        | <b>0.886</b> | 0.890        | 0.874        | 0.874        | 0.859        | 0.936        | 0.848        | <b>0.901</b> |
|                | MSE  | 16    | 0.611        | 0.631        | 0.752        | 0.781        | 0.739        | 0.653        | 0.725        | 0.612        | 0.835        | 0.883        | 0.799        | 0.823        |
|                |      | 64    | 0.331        | 0.775        | 0.735        | 0.729        | 0.808        | 0.831        | 0.812        | 0.821        | 0.767        | 0.891        | 0.777        | 0.863        |
| $\alpha$ -CSBM | KL   | 16    | 0.773        | 0.651        | 0.898        | 0.876        | 0.810        | 0.744        | 0.783        | 0.724        | 0.854        | <b>0.945</b> | 0.847        | 0.891        |
|                |      | 64    | 0.874        | 0.855        | 0.921        | 0.913        | 0.878        | <b>0.934</b> | 0.877        | 0.903        | 0.852        | 0.929        | 0.845        | 0.896        |
|                | MSE  | 16    | 0.728        | 0.603        | 0.756        | 0.829        | 0.771        | 0.716        | 0.769        | 0.710        | 0.818        | 0.883        | 0.781        | 0.821        |
|                |      | 64    | 0.861        | 0.855        | 0.797        | 0.807        | 0.829        | 0.863        | 0.795        | 0.846        | 0.798        | 0.848        | 0.747        | 0.817        |
| DLightSB-M     | KL   | 16    | 0.878        | <b>0.943</b> | 0.952        | <b>0.956</b> | 0.738        | 0.914        | <b>0.932</b> | 0.930        | <b>0.862</b> | 0.900        | <b>0.920</b> | 0.674        |
|                |      | 64    | 0.856        | 0.940        | 0.951        | 0.953        | 0.716        | 0.923        | 0.928        | 0.936        | 0.833        | 0.901        | 0.648        | 0.820        |
|                | MSE  | 16    | 0.701        | 0.933        | 0.838        | 0.904        | 0.551        | 0.877        | 0.897        | 0.917        | 0.575        | 0.853        | 0.773        | 0.555        |
|                |      | 64    | <b>0.640</b> | 0.922        | 0.852        | 0.889        | 0.503        | 0.856        | 0.903        | 0.910        | 0.464        | 0.818        | 0.498        | 0.700        |

Table 2: Conditional Trend Score ( $\uparrow$ ) on the high-dimensional Gaussian mixture benchmark. The best-performing method is highlighted in bold, and the second is underlined. Color code threshold: red for  $< 0.7$ , yellow for  $[0.7, 0.9]$ , and green for  $\geq 0.9$ .

matching-based methods (CSBM,  $\alpha$ -CSBM) struggle with parameter sensitivity and long training times. Our experiments show that DLightSB(-M) solvers may be viewed as oracle-like methods on this benchmark: their inductive bias makes them less informative as indicators of pure performance. See Appendix D.1 for an analysis of the reverse benchmark setting designed to probe this inductive bias. This behavior is expected, and it does not diminish the overall usefulness of the benchmark. The benchmark still faithfully captures the strengths and weaknesses of other unbiased methods. Moreover, the CP-parameterization limits DLightSB(-M) to simpler tasks, as complex settings require an impractical number of components.

**Reproducibility.** We provide the experimental details in Appendix C and the code to reproduce the conducted experiments in the supplementary materials (see `readme.md`).

**LLM Usage.** Large Language Models (LLMs) were used only to assist with rephrasing sentences and improving the clarity of the text. All scientific content, results, and interpretations in this paper were developed solely by the authors.

## REFERENCES

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured denoising diffusion models in discrete state-spaces. *Advances in Neural Information Processing Systems*, 34:17981–17993, 2021.

Artem Basharin, Andrei Chertkov, and Ivan Oseledets. Faster language models with better multi-token prediction using tensor decomposition, 2025. URL <https://arxiv.org/abs/2410.17765>.

Andrew Campbell, Joe Benton, Valentin De Bortoli, Thomas Rainforth, George Deligiannidis, and Arnaud Doucet. A continuous time framework for discrete denoising models. *Advances in Neural Information Processing Systems*, 35:28266–28279, 2022.

Andrew Campbell, Jason Yim, Regina Barzilay, Tom Rainforth, and Tommi Jaakkola. Generative flows on discrete state-spaces: Enabling multimodal flows with applications to protein co-design. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), *Proceedings of the 41st International Conference on Machine Learning*, volume 235 of *Proceedings of Machine Learning Research*, pp. 5453–5512. PMLR, 21–27 Jul 2024. URL <https://proceedings.mlr.press/v235/campbell124a.html>.

Tianrong Chen, Guan-Horng Liu, and Evangelos Theodorou. Likelihood training of Schrödinger bridge using forward-backward SDEs theory. In *International Conference on Learning Representations*, 2021.

540 Nadav Cohen, Or Sharir, and Amnon Shashua. On the expressive power of deep learning: A tensor  
 541 analysis, 2016. URL <https://arxiv.org/abs/1509.05009>.

542

543 Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. *Advances in neural*  
 544 *information processing systems*, 26, 2013.

545

546 Max Daniels, Tyler Maunu, and Paul Hand. Score-based generative neural networks for large-scale  
 547 optimal transport. *Advances in neural information processing systems*, 34:12955–12965, 2021.

548

549 Valentin De Bortoli, Iryna Korshunova, Andriy Mnih, and Arnaud Doucet. Schrödinger bridge flow  
 550 for unpaired data translation. In *The Thirty-eighth Annual Conference on Neural Information*  
 551 *Processing Systems*, 2024. URL <https://openreview.net/forum?id=1F32iCJFfa>.

552

553 Nabarun Deb, Promit Ghosal, and Bodhisattva Sen. Rates of estimation of optimal transport maps  
 554 using plug-in estimators via barycentric projections. *Advances in Neural Information Processing*  
 555 *Systems*, 34:29736–29753, 2021.

556

557 Pavel Dvurechensky, Alexander Gasnikov, and Alexey Kroshnin. Computational optimal transport:  
 558 Complexity by accelerated gradient descent is better than by Sinkhorn’s algorithm. In *International*  
 559 *conference on machine learning*, pp. 1367–1376. PMLR, 2018.

560

561 Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image  
 562 synthesis. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-*  
 563 *tion*, pp. 12873–12883, 2021.

564

565 Itai Gat, Tal Remez, Neta Shaul, Felix Kreuk, Ricky TQ Chen, Gabriel Synnaeve, Yossi Adi, and  
 566 Yaron Lipman. Discrete flow matching. In *The Thirty-eighth Annual Conference on Neural*  
 567 *Information Processing Systems*, 2024.

568

569 Nikita Gushchin, Alexander Kolesov, Alexander Korotin, Dmitry Vetrov, and Evgeny Burnaev. En-  
 570 tropic neural optimal transport via diffusion processes. In *Advances in Neural Information Pro-*  
 571 *cessing Systems*, 2023a.

572

573 Nikita Gushchin, Alexander Kolesov, Petr Mokrov, Polina Karpikova, Andrey Spiridonov, Evgeny  
 574 Burnaev, and Alexander Korotin. Building the bridge of Schrödinger: A continuous entropic  
 575 optimal transport benchmark. In *Thirty-seventh Conference on Neural Information Processing*  
 576 *Systems Datasets and Benchmarks Track*, 2023b.

577

578 Nikita Gushchin, Sergei Kholkin, Evgeny Burnaev, and Alexander Korotin. Light and optimal  
 579 Schrödinger bridge matching. In *Forty-first International Conference on Machine Learning*,  
 580 2024a.

581

582 Nikita Gushchin, Daniil Selikhanovich, Sergei Kholkin, Evgeny Burnaev, and Alexander Korotin.  
 583 Adversarial Schrödinger bridge matching. In *The Thirty-eighth Annual Conference on Neural*  
 584 *Information Processing Systems*, 2024b. URL <https://openreview.net/forum?id=L3Knnigicu>.

585

586 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.  
 587 GANs trained by a two time-scale update rule converge to a local Nash equilibrium. In *Advances*  
 588 *in neural information processing systems*, pp. 6626–6637, 2017.

589

590 Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max Welling. Argmax flows  
 591 and multinomial diffusion: Learning categorical distributions. *Advances in Neural Information*  
 592 *Processing Systems*, 34:12454–12465, 2021.

593

594 Jan-Christian Hüttner and Philippe Rigollet. Minimax estimation of smooth optimal transport maps.  
 595 2021.

596

597 Sergei Kholkin, Grigoriy Ksenofontov, David Li, Nikita Kornilov, Nikita Gushchin, Evgeny Bur-  
 598 naev, and Alexander Korotin. Diffusion & adversarial Schrödinger bridges via iterative propor-  
 599 tional Markovian fitting. *arXiv preprint arXiv:2410.02601*, 2024.

594 Jun Hyeong Kim, Seonghwan Kim, Seokhyun Moon, Hyeongwoo Kim, Jeheon Woo, and Woo Youn  
 595 Kim. Discrete diffusion Schrödinger bridge matching for graph transformation. *arXiv preprint*  
 596 *arXiv:2410.01500*, 2024.

597 Alexander Korotin, Nikita Gushchin, and Evgeny Burnaev. Light Schrödinger bridge. In *The Twelfth*  
 598 *International Conference on Learning Representations*, 2024.

600 Grigoriy Ksenofontov and Alexander Korotin. Categorical Schrödinger bridge matching. In *Forty-*  
 601 *second International Conference on Machine Learning*, 2025. URL <https://openreview.net/forum?id=RBly0nOr2h>.

603 Christian Léonard. A survey of the Schrödinger problem and some of its connections with optimal  
 604 transport. *arXiv preprint arXiv:1308.0215*, 2013.

606 David Lopez-Paz and Maxime Oquab. Revisiting classifier two-sample tests. In *International Con-*  
 607 *ference on Learning Representations*, 2017. URL <https://openreview.net/forum?id=SJkXfE5xx>.

609 Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion language modeling by estimating  
 610 the ratios of the data distribution. 2023.

612 Xiaoshan Luo, Zhenyu Wang, Jian Lv, Lei Wang, Yanchao Wang, and Yanming Ma. CrystalFlow:  
 613 A flow-based generative model for crystalline materials. *arXiv preprint arXiv:2412.11693*, 2024.

614 Tudor Manole, Sivaraman Balakrishnan, Jonathan Niles-Weed, and Larry Wasserman. Plugin esti-  
 615 mation of smooth optimal transport maps. *The Annals of Statistics*, 52(3):966–998, 2024.

617 Petr Mokrov, Alexander Korotin, Alexander Kolesov, Nikita Gushchin, and Evgeny Burnaev.  
 618 Energy-guided entropic neural optimal transport. In *The Twelfth International Conference*  
 619 *on Learning Representations*, 2024. URL <https://openreview.net/forum?id=d6tUsZeVs7>.

621 Stefano Peluchetti. Bm<sup>2</sup>: Coupled Schrödinger bridge matching. *arXiv preprint arXiv:2409.09376*,  
 622 2024.

623 Aram-Alexandre Pooladian and Jonathan Niles-Weed. Entropic estimation of optimal transport  
 624 maps. *arXiv preprint arXiv:2109.12004*, 2021.

626 Yiming Qin, Manuel Madeira, Dorina Thanou, and Pascal Frossard. DeFoG: Discrete flow matching  
 627 for graph generation. *arXiv preprint arXiv:2410.04263*, 2024.

629 Subham Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin, Justin Chiu,  
 630 Alexander Rush, and Volodymyr Kuleshov. Simple and effective masked diffusion language  
 631 models. *Advances in Neural Information Processing Systems*, 37:130136–130184, 2024.

632 Erwin Schrödinger. *Über die Umkehrung der Naturgesetze*. Verlag der Akademie der Wis-  
 633 senschaften in Kommission bei Walter De Gruyter u. Company, 1931.

634 Erwin Schrödinger. Sur la théorie relativiste de l'électron et l'interprétation de la mécanique quan-  
 635 tique. In *Annales de l'institut Henri Poincaré*, volume 2, pp. 269–310, 1932.

637 Juntong Shi, Minkai Xu, Harper Hua, Hengrui Zhang, Stefano Ermon, and Jure Leskovec. Tabdiff:  
 638 a mixed-type diffusion model for tabular data generation. In *The Thirteenth International Confer-*  
 639 *ence on Learning Representations*, 2025. URL <https://openreview.net/forum?id=svwURjrt8z>.

641 Yuyang Shi, Valentin De Bortoli, Andrew Campbell, and Arnaud Doucet. Diffusion Schrödinger  
 642 bridge matching. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023.  
 643 URL <https://openreview.net/forum?id=qy07OHsJT5>.

644 Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. *Advances in*  
 645 *neural information processing systems*, 30, 2017.

647 Francisco Vargas, Pierre Thodoroff, Austen Lamacraft, and Neil Lawrence. Solving Schrödinger  
 648 bridges via maximum likelihood. *Entropy*, 23(9):1134, 2021.

648 Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pas-  
649 cal Frossard. Digress: Discrete denoising diffusion for graph generation. *arXiv preprint*  
650 *arXiv:2209.14734*, 2022.

651 Hengrui Zhang, Jiani Zhang, Balasubramaniam Srinivasan, Zhengyuan Shen, Xiao Qin, Christos  
652 Faloutsos, Huzefa Rangwala, and George Karypis. Mixed-type tabular data synthesis with score-  
653 based diffusion in latent space, 2024. URL <https://arxiv.org/abs/2310.09656>.

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 **A PROOFS**

704 *Proof of Theorem 3.1.* We start from the expression of the static EOT minimization problem in (8)

$$\begin{aligned}
 706 \min_{q \in \Pi(p_0, p_1)} \text{KL}(q(x_0, x_1) \| q^{\text{ref}}(x_0, x_1)) &= \\
 707 &= \min_{q \in \Pi(p_0, p_1)} -H(q) - \sum_{x_0, x_1} q(x_0, x_1) \log q^{\text{ref}}(x_1|x_0) - \text{const} \\
 708 &= \min_{q \in \Pi(p_0, p_1)} \sum_{x_0, x_1} q(x_0, x_1) \log q(x_0, x_1) - \sum_{x_0, x_1} q(x_0, x_1) \log q^{\text{ref}}(x_1|x_0) - \text{const} \\
 710 & \\
 711 & \\
 712 & \\
 713 & \\
 \end{aligned} \tag{21}$$

714 Noting that the joint distribution factorizes as  $q(x_0, x_1) = q(x_0)q(x_1|x_0) = p_0(x_0)q(x_1|x_0)$ , and  
 715 enforcing the marginal constraints  $\sum_{x_0} p_0(x_0)q(x_1|x_0) = p_1(x_1)$  and  $\sum_{x_1} q(x_1|x_0) = 1$  (equiva-  
 716 lently  $q(x_0) = p_0(x_0)$ ), the corresponding Lagrangian can be formulated as  
 717

$$\begin{aligned}
 718 \mathcal{L}(q) &= \sum_{x_0, x_1} p_0(x_0)q(x_1|x_0) \log(p_0(x_0)q(x_1|x_0)) - \sum_{x_0, x_1} p_0(x_0)q(x_1|x_0) \log q^{\text{ref}}(x_1|x_0) + \\
 719 &+ \sum_{x_1} \lambda(x_1) \left( \sum_{x_0} q(x_1|x_0)p_0(x_0) - p_1(x_1) \right) + \sum_{x_0} \tau(x_0) \left( \sum_{x_1} q(x_1|x_0) - p_0(x_0) \right) \\
 720 &= \underbrace{\sum_{x_0, x_1} p_0(x_0)q(x_1|x_0) \log p_0(x_0)}_{= \sum_{x_0} p_0(x_0) \log p_0(x_0)} + \sum_{x_0, x_1} p_0(x_0)q(x_1|x_0) \log q(x_1|x_0) - \\
 721 & \\
 722 & \\
 723 & \\
 724 & \\
 725 & \\
 726 & \\
 727 & \\
 728 & \\
 729 & \\
 730 & \\
 731 & \\
 732 & \\
 733 & \\
 \end{aligned} \tag{22}$$

734 where  $\lambda(x_1)$  and  $\tau(x_0)$  denote the Lagrange multipliers associated with the marginal constraints on  
 735  $x_1$  and  $x_0$ , respectively. Taking the pointwise partial derivative of  $\mathcal{L}(q)$  with respect to  $q(x_1|x_0)$   
 736 then yields

$$\frac{\partial \mathcal{L}}{\partial q} = p_0(x_0) (\log q(x_1|x_0) + 1) - p_0(x_0) \log q^{\text{ref}}(x_0, x_1) + \lambda(x_1)p_0(x_0) + \tau(x_1) = 0 \tag{23}$$

737 Therefore, the optimal process  $q^*$  can be written as

$$q^*(x_1|x_0) = \exp(-\lambda(x_1) - 1)q^{\text{ref}}(x_1|x_0)p_0 \exp\left(-\frac{\tau(x_0)}{p_0(x_0)}\right) \tag{24}$$

740 Setting  $v^*(x_1) = \exp(-\lambda(x_1) - 1)$  concludes the proof.  $\square$

741 *Proof of Proposition 3.1.* Assuming the CP parameterization introduced in (10), and further assum-  
 742 ing that the reference process factorizes across dimensions as  $q^{\text{ref}}(x_1|x_0) = \prod_{d=1}^D q^{\text{ref}}(x_1^d|x_0)$ , the  
 743 normalized conditional distribution  $q^*(x_1|x_0)$  in (9) can be rewritten as

$$\begin{aligned}
 744 q^*(x_1|x_0) &= \frac{1}{c(x_0)} \left( \sum_{k=1}^K \beta_k \prod_{d=1}^D r_k^d[x_1^d] \right) \prod_{d=1}^D q^{\text{ref}}(x_1^d|x_0) \\
 745 &= \frac{1}{c(x_0)} \sum_{k=1}^K \beta_k \prod_{d=1}^D r_k^d[x_1^d] q^{\text{ref}}(x_1^d|x_0), \\
 746 & \\
 747 & \\
 748 & \\
 749 & \\
 750 & \\
 751 & \\
 752 & \\
 753 & \\
 754 & \\
 755 & \\
 \end{aligned} \tag{25}$$

756 where the reference factors can be merged with the rank-1 components because they are independent  
 757 of the mixture index  $k$  and factorize over dimensions. From here, it is possible to obtain  
 758 the normalizing constant  $c(x_0)$  by summing over all possible values of  $x_1 \in \mathcal{X} = \mathbb{S}^D$ , where  
 759  $x_1^d \in \{0, \dots, S-1\}$ . The normalizing constant can then be rewritten as

$$\begin{aligned}
 760 \quad c(x_0) &= \sum_{x_1 \in \mathbb{S}^D} \sum_{k=1}^K \beta_k \prod_{d=1}^D r_k^d[x_1^d] q^{\text{ref}}(x_1^d | x_0) \\
 761 &= \sum_{k=1}^K \beta_k \sum_{x_1 \in \mathbb{S}^D} \prod_{d=1}^D r_k^d[x_1^d] q^{\text{ref}}(x_1^d | x_0) \\
 762 &= \sum_{k=1}^K \beta_k \prod_{d=1}^D \sum_{x_1^d=0}^{S-1} r_k^d[x_1^d] q^{\text{ref}}(x_1^d | x_0),
 \end{aligned} \tag{26}$$

770 where  $\sum_{x_1 \in \mathbb{S}^D} = \sum_{x_1^1=0}^{S-1} \sum_{x_1^2=0}^{S-1} \dots \sum_{x_1^D=0}^{S-1}$ . The exchange between the product and the sum is  
 771 valid here because the summation is separable across dimensions, i.e., each factor depends only on  
 772 its corresponding coordinate  $x_1^d$ .  $\square$

774 *Proof of Proposition 4.1.* We start from the standard KL minimization problem from the LightSB  
 775 paper (Korotin et al., 2024) and define it in discrete space.

$$\begin{aligned}
 776 \quad \text{KL}(q^* \| q) &= \sum_{x_0, x_1} q^*(x_0, x_1) \log \left( \frac{q^*(x_0, x_1)}{q(x_0, x_1)} \right) = \sum_{x_0, x_1} q^* \log q^*(x_0, x_1) - \sum_{x_0, x_1} q^* \log q(x_0, x_1) = \\
 777 &= -H(q^*) - \sum_{x_0, x_1} q^*(x_0, x_1) \log q(x_0, x_1) = -H(q^*) - \sum_{x_0, x_1} q^*(x_0, x_1) \log (q(x_0)q(x_1|x_0)) \\
 778 &= -H(q^*) - \sum_{x_0, x_1} q^*(x_0, x_1) \log \underbrace{q(x_0)}_{=p_0(x_0)} - \sum_{x_0, x_1} q^*(x_0, x_1) \log q(x_1|x_0) = \\
 779 &= -H(q^*) - \sum_{x_0} \log p_0(x_0) \underbrace{\sum_{x_1} q^*(x_0, x_1)}_{=q^*(x_0)=p_0(x_0)} - \sum_{x_0, x_1} q^*(x_0, x_1) \log q(x_1|x_0)
 \end{aligned}$$

780 Now using (9) on  $q(x_1|x_0)$  we can get

$$\begin{aligned}
 781 \quad \text{KL}(q^* \| q) &= -H(q^*) - \sum_{x_0} \log p_0(x_0) p_0(x_0) - \sum_{x_0, x_1} q^*(x_0, x_1) \log \left( \frac{v^*(x_1)}{c^*(x_0)} q^{\text{ref}}(x_1|x_0) \right) = \\
 782 &= -H(q^*) - \underbrace{\sum_{x_0} \log p_0(x_0) p_0(x_0) - \sum_{x_0, x_1} q^*(x_0, x_1) \log q^{\text{ref}}(x_1|x_0)}_{=-\mathcal{L}^*} - \\
 783 &\quad - \sum_{x_0, x_1} q^*(x_0, x_1) \log \left( \frac{v^*(x_1)}{c^*(x_0)} \right) = \\
 784 &= -\mathcal{L}^* + \sum_{x_0, x_1} q^*(x_0, x_1) \log c^*(x_0) - \sum_{x_0, x_1} q^*(x_0, x_1) \log v^*(x_1) = \\
 785 &= \sum_{x_0} p_0^*(x_0) \log c^*(x_0) - \sum_{x_1} q^*(x_1) \log v^*(x_1) - \mathcal{L}^*,
 \end{aligned}$$

806 That concludes the proof.  $\square$

808 *Proof of expression 7.* Let  $Q$  be the transition matrix in (4), rewritten as

$$Q = (1 - \gamma)I + \frac{\gamma}{S-1}(\mathbf{1}\mathbf{1}^\top - I)$$

$$= \left(1 - \gamma \frac{S}{S-1}\right) I + \frac{\gamma}{S-1} \mathbf{1}\mathbf{1}^\top,$$

where  $I$  is the identity matrix and  $\mathbf{1}\mathbf{1}^\top$  is the all-ones matrix. Let

$$a = 1 - \gamma \frac{S}{S-1}, \quad b = \frac{\gamma}{S-1},$$

so that  $Q = aI + b\mathbf{1}\mathbf{1}^\top$  and note that  $a + bS = 1$ . We compute  $Q^{N+1}$  using the binomial expansion. Since  $I$  and  $\mathbf{1}\mathbf{1}^\top$  commute:

$$\begin{aligned} Q^n &= (aI + b\mathbf{1}\mathbf{1}^\top)^n \\ &= \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k (\mathbf{1}\mathbf{1}^\top)^k. \end{aligned}$$

Using  $(\mathbf{1}\mathbf{1}^\top)^k = S^{k-1} \mathbf{1}\mathbf{1}^\top$  for  $k \geq 1$  and separating the  $k = 0$  term:

$$\begin{aligned} Q^n &= a^n I + \sum_{k=1}^n \binom{n}{k} a^{n-k} b^k S^{k-1} \mathbf{1}\mathbf{1}^\top \\ &= a^n I + \frac{1}{S} \left( \sum_{k=1}^n \binom{n}{k} a^{n-k} (bS)^k \right) \mathbf{1}\mathbf{1}^\top. \end{aligned}$$

The binomial expansion gives:

$$(a + bS)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} (bS)^k = a^n + \sum_{k=1}^n \binom{n}{k} a^{n-k} (bS)^k.$$

Since  $a + bS = 1$ , we have  $(a + bS)^n = 1$ , so  $\sum_{k=1}^n \binom{n}{k} a^{n-k} (bS)^k = 1 - a^n$ . Thus,

$$Q^n = a^n I + \frac{1 - a^n}{S} \mathbf{1}\mathbf{1}^\top.$$

Substituting  $n = N + 1$  and  $a = 1 - \gamma \frac{S}{S-1}$  yields

$$q^{\text{ref}}(x_1|x_0) = Q^{N+1} = \left(1 - \gamma \frac{S}{S-1}\right)^{N+1} I + \frac{1 - \left(1 - \gamma \frac{S}{S-1}\right)^{N+1}}{S} \mathbf{1}\mathbf{1}^\top.$$

This completes the proof.  $\square$

*Proof of Proposition 4.2.*

$$\begin{aligned} &\text{KL}(q(x_0, x_{\text{in}}, x_1) \| q^{\text{SB}}(x_0, x_{\text{in}}, x_1)) = \\ &= \text{KL}(q(x_0, x_1) \| q^{\text{SB}}(x_0, x_1)) + \underbrace{\text{KL}(q^{\text{ref}}(x_{\text{in}}|x_0, x_1) \| q^{\text{ref}}(x_{\text{in}}|x_0, x_1))}_{=0} = \end{aligned} \quad (27)$$

$$= \underbrace{\sum_{x_0, x_1} q(x_0, x_1) \log q(x_0, x_1)}_{=-H(q(x_0, x_1))} - \sum_{x_0, x_1} q(x_0, x_1) \log q^{\text{SB}}(x_0, x_1) =$$

$$= -H(q(x_0, x_1)) - \sum_{x_0, x_1} q(x_0, x_1) \log \frac{v^{\text{SB}}(x_1) q^{\text{ref}}(x_1|x_0)}{c^{\text{SB}}(x_0)} = \quad (28)$$

$$= -H(q(x_0, x_1)) - \sum_{x_0, x_1} q(x_0, x_1) \log v^{\text{SB}}(x_1) -$$

$$- \sum_{x_0, x_1} q(x_0, x_1) \log q^{\text{ref}}(x_1|x_0) + \sum_{x_0, x_1} q(x_0, x_1) \log c^{\text{SB}}(x_0) =$$

$$\begin{aligned}
&= -H(q(x_0, x_1)) - \sum_{x_1} \log v^{\text{SB}}(x_1) \underbrace{q(x_1)}_{=p(x_1)=q^*(x_1)} \underbrace{\sum_{x_0} q(x_0|x_1)}_{=1=\sum_{x_0} q^*(x_0|x_1)} - \quad (29)
\end{aligned}$$

$$\begin{aligned}
&- \sum_{x_0, x_1} q(x_0, x_1) \log q^{\text{ref}}(x_1|x_0) + \sum_{x_0} \log c^{\text{SB}}(x_0) \underbrace{q(x_0)}_{=p(x_0)=q^*(x_0)} \underbrace{\sum_{x_1} q(x_1|x_0)}_{=1=\sum_{x_1} q^*(x_1|x_0)} = \quad (30)
\end{aligned}$$

$$\begin{aligned}
&= -H(q(x_0, x_1)) - \underbrace{\sum_{x_0, x_1} q(x_0, x_1) \log q^{\text{ref}}(x_1|x_0)}_{=C_1} - \sum_{x_0, x_1} q^*(x_0, x_1) \log \frac{v^{\text{SB}}(x_1)}{c^{\text{SB}}(x_0)} = \\
&\quad = C_1 - \sum_{x_0, x_1} q^*(x_0, x_1) \log \frac{v^{\text{SB}}(x_1)}{c^{\text{SB}}(x_0)} - \\
&\quad - \underbrace{\sum_{x_0, x_1} q^*(x_0, x_1) \log q^{\text{ref}}(x_1|x_0) + \sum_{x_0, x_1} q^*(x_0, x_1) \log q^{\text{ref}}(x_1|x_0)}_{=0} = \quad (31)
\end{aligned}$$

$$\begin{aligned}
&= - \sum_{x_0, x_1} q^*(x_0, x_1) \log \frac{v^{\text{SB}}(x_1)q^{\text{ref}}(x_1|x_0)}{c^{\text{SB}}(x_0)} + C_1 + \underbrace{\sum_{x_0, x_1} q^*(x_0, x_1) \log q^{\text{ref}}(x_1|x_0)}_{=C_2} = \\
&\quad = C_2 - \sum_{x_0, x_1} q^*(x_0, x_1) \log q^{\text{SB}}(x_0, x_1) + \\
&\quad + \underbrace{\sum_{x_0, x_1} q^*(x_0, x_1) \log q^*(x_0, x_1) - \sum_{x_0, x_1} q^*(x_0, x_1) \log q^*(x_0, x_1)}_{=0} = \quad (32) \\
&= \sum_{x_0, x_1} q^*(x_0, x_1) \log \frac{q^*(x_0, x_1)}{q^{\text{SB}}(x_0, x_1)} + C_2 - \underbrace{\sum_{x_0, x_1} q^*(x_0, x_1) \log q^*(x_0, x_1)}_{C_3} = \\
&\quad = \text{KL} (q^*(x_0, x_1) \| q^{\text{SB}}(x_0, x_1)) + C_3
\end{aligned}$$

In (27), we use the disintegration of the KL divergence to transition from the dynamic to the static formulation. In (28), we apply our parameterization from (9). Next, in (29) and (30), we use the properties of the reciprocal process  $q$ , which has the true marginals at  $t = 0$  and  $t = 1$ . In (31), we add a zero term to introduce  $q^{\text{ref}}(x_1|x_0)$  with the expectation taken over the optimal coupling  $q^*(x_0, x_1)$ . Finally, in (32), we obtain the entropy term, completing the expression for the desired KL divergence.  $\square$

*Proof of Proposition 4.3.* We first derive the transitional distributions of the SB by recalling its well-known characterization (Léonard, 2013, Prop. 4.2):

$$q^{\text{SB}}(x_{t_n} | x_{t_{n-1}}) = q^{\text{ref}}(x_{t_n} | x_{t_{n-1}}) \frac{\phi_{t_n}^{\text{SB}}(x_{t_n})}{\phi_{t_{n-1}}^{\text{SB}}(x_{t_{n-1}})}, \quad \phi_{t_n}^{\text{SB}}(x_{t_n}) = \mathbb{E}_{q^{\text{ref}}(x_1|x_{t_n})} [v^{\text{SB}}(x_1)].$$

Using the CP parametrization of  $v^{\text{SB}}$  from (10) and exploiting the conditional independence of dimensions under  $q^{\text{ref}}$ , the scalar-valued functions  $\phi_{t_n}$  can be written as:

$$\phi_{t_n}^{\text{SB}}(x_{t_n}) = \sum_{k=1}^K \beta_k \prod_{d=1}^D \mathbb{E}_{q^{\text{ref}}(x_1^d | x_{t_n}^d)} [r_k^d(x_1^d)] = \sum_{k=1}^K \beta_k \prod_{d=1}^D \underbrace{\sum_{x_1^d=0}^{S-1} [Q_{N+1-n}^{\text{ref}}]_{x_{t_n}^d, x_1^d} r_k^d(x_1^d)}_{u_{k, t_n}^d[x_{t_n}^d]}, \quad (33)$$

918 where  $u_{k,t_n}^d$  satisfy the following recursive relation:  
919

$$920 \quad u_{k,t_n}^d[x_{t_n}^d] = \sum_{x_{t_{n+1}}^d=0}^{S-1} [Q^{\text{ref}}]_{x_{t_n}^d, x_{t_{n+1}}^d} u_{k,t_{n+1}}^d[x_{t_{n+1}}^d], \quad u_{k,t_1}^d = r_k^d.$$

923 Thus, we obtain the following transition distributions:  
924

$$925 \quad q^{\text{SB}}(x_{t_n} | x_{t_{n-1}}) \propto q^{\text{ref}}(x_{t_n} | x_{t_{n-1}}) \sum_{k=1}^K \beta_k \prod_{j=1}^D u_{k,t_n}^j[x_{t_n}^j]. \quad (33)$$

929 To obtain the  $d$ -th marginal transition distribution, we marginalize over  $x_{t_n}^{-d} \stackrel{\text{def}}{=} \{x_{t_n}^j\}_{j \neq d}$  as follows:  
930

$$931 \quad q^{\text{SB}}(x_{t_n}^d | x_{t_{n-1}}) \propto \sum_{x_{t_n}^{-d}} \left( \prod_{j=1}^D [Q^{\text{ref}}]_{x_{t_{n-1}}^j, x_{t_n}^j} \right) \left( \sum_{k=1}^K \beta_k \prod_{j=1}^D u_{k,t_n}^j[x_{t_n}^j] \right) =$$

$$935 \quad = [Q^{\text{ref}}]_{x_{t_{n-1}}^d, x_{t_n}^d} \sum_{k=1}^K \beta_k u_{k,t_n}^d[x_{t_n}^d] \underbrace{\prod_{\substack{j=1 \\ j \neq d}}^D \sum_{x_{t_n}^j} [Q^{\text{ref}}]_{x_{t_{n-1}}^j, x_{t_n}^j} u_{k,t_n}^j[x_{t_n}^j]}_{u_{k,t_{n-1}}^d[x_{t_{n-1}}^d] \text{ (by recursion)}}.$$

938 Finally, we obtain the desired expression up to normalization:  
939

$$941 \quad q^{\text{SB}}(x_{t_n}^d | x_{t_{n-1}}) \propto [Q^{\text{ref}}]_{x_{t_{n-1}}^d, x_{t_n}^d} \sum_{k=1}^K \beta_k u_{k,t_n}^d[x_{t_n}^d] \prod_{\substack{j=1 \\ j \neq d}}^D u_{k,t_{n-1}}^j[x_{t_{n-1}}^j].$$

945 Now we derive the sampling procedure. Sampling from the SB transitional distributions is based on  
946 the following factorization:  
947

$$948 \quad q^{\text{SB}}(x_{t_n} | x_{t_{n-1}}) = \sum_{k=1}^K p(k | x_{t_{n-1}}) \prod_{d=1}^D q^{\text{SB}}(x_{t_n}^d | x_{t_{n-1}}, k).$$

951 Using the full joint SB transition distribution (33), the probability of  $k$  is  
952

$$953 \quad p(k | x_{t_{n-1}}) \propto \beta_k \prod_{d=1}^D u_{k,t_{n-1}}^d[x_{t_{n-1}}^d].$$

956 Using the marginal distributions conditioned on  $k$ , the factors with  $j \neq d$  are independent of  $x_{t_n}^d$   
957 and absorbed into normalization, yielding

$$958 \quad q^{\text{SB}}(x_{t_n}^d | x_{t_{n-1}}, k) \propto [Q^{\text{ref}}]_{x_{t_{n-1}}^d, x_{t_n}^d} u_{k,t_n}^d[x_{t_n}^d].$$

961 Thus, sampling proceeds by first drawing

$$962 \quad k^* \sim p(k | x_{t_n}),$$

963 and then sampling each coordinate independently as

$$965 \quad x_{t_{n+1}}^d \sim q^{\text{SB}}(\cdot | x_{t_n}, k^*) \propto [Q^{\text{ref}}]_{x_{t_n}^d, \cdot} u_{k^*, t_{n+1}}^d[\cdot], \quad d = 1, \dots, D.$$

966  $\square$   
967

## 968 B METHODS DETAILS

970 This section provides additional theoretical and implementation details complementing §4, focusing  
971 on the methods used to evaluate our benchmark pairs.

**CSBM.** In practice, the D-IMF procedure is usually implemented bidirectionally: the Markovian projection is applied using both forward and backward representations (see “Notation”), which is the approach we adopt in our experiments. This design has two advantages. First, it mitigates error accumulation caused by imperfect model fitting, as shown in (De Bortoli et al., 2024, Appendix F). Second, it enables the use of alternative starting couplings, as proposed in (Kholkin et al., 2024).

**Limitations.** To reduce the computational overhead of evaluating the full probability state space of size  $S^D$ , the authors propose factorizing transition probabilities across dimensions, reducing the space to  $D \times S$ . However, this parametrization constitutes a key limitation of CSBM, as it introduces approximation error.

**DLightSB.** We optimize over the logarithm of the mixture weights  $\beta \in \mathbb{K}$  and the logarithm of the CP cores  $r_k^d$ . This allows computation of the  $\log$  terms in the surrogate loss (17) by stable  $\log\text{-sum}\text{-}\exp$  operations.

**Limitations.** (1) In spite of being numerically stable, the  $\log\text{-sum}\text{-}\exp$  operations allocate extra memory, which can become a bottleneck when applied repeatedly in high-dimensional settings. (2) The CP parameterization requires an impractically large number of components to capture complex data, making it infeasible under memory constraints. Additionally, we approximate the summations using Monte Carlo samples from  $p_0$  and  $p_1$ .

**DLightSB-M.** **Limitations.** The practical implementation requires storing or recomputing  $u_{k,t}^d$  at each iteration, which scales as  $\mathcal{O}(B \times S^2 \times K)$  in memory and computation. This quickly becomes prohibitive for high-dimensional data, limiting scalability to small state spaces.

## C EXPERIMENT DETAILS

This section provides detailed descriptions of all methods and their configurations.

**Shared Aspects.** Across all experiments, we use the AdamW optimizer with fixed `beta` values of 0.95 and 0.99. For the high-dimensional Gaussian benchmark (§5.2). Notably, for diffusion-based methods, we fully sample the Markov chain, in contrast to Austin et al. (2021), which applies an `argmax` operation at the final timestep. To evaluate the methods on the high-dimensional Gaussian mixture benchmark (§5.2), we use 20 000 samples. Conditional metrics are computed using 156 instances of  $x_0$ , with 1 000 samples of  $x_1$  generated for each  $x_0$ .

**CSBM and  $\alpha$ -CSBM.** For CSBM and  $\alpha$ -CSBM, we use the official implementation from Ksenofontov & Korotin (2025):

<https://github.com/gregkseno/csbm>.

To stabilize training and improve final performance, we apply Exponential Moving Average (EMA) parameter updates with a decay rate of 0.999, tuned consistently across all experiments. Unlike Austin et al. (2021), we omit the  $L_{\text{simple}}$  loss during training. We employ a simple MLP with three hidden layers of size [128, 128, 128] and ReLU activations. Time conditioning is implemented via an embedding layer of the same size as dimensions,  $D$ . Both methods are trained for 5 D-IMF iterations, using 120 000 gradient updates in the first iteration and 40 000 in each subsequent iteration. For  $\alpha$ -CSBM, we use a learning rate of  $10^{-3}$  and halve the batch size for training a single model, following De Bortoli et al. (2024). For CSBM, we use a learning rate of  $10^{-4}$ .

**DLightSB and DLightSB-M.** For all benchmark experiments, both methods use  $K = 1000$  components initialized from data samples and are trained for 100 000 gradient updates. The learning rate is set to  $10^{-2}$  for both, with DLightSB-M using independent coupling ( $q^0(x_0, x_1) = p_0(x_0)p_1(x_1)$ ).

**Computational Resources and Training Time.** All high-dimensional Gaussian mixture benchmark experiments were conducted on 1 A100 GPU unless otherwise specified, with training times reported inclusive of evaluation. For  $D = 2$ , training is relatively short: CSBM and  $\alpha$ -CSBM each complete within about 5 hours, DLightSB-M within 4 hours, and DLightSB in roughly 20 minutes.

1026 For  $D = 64$ , CSBM completes in under 14 hours,  $\alpha$ -CSBM in under 9 hours, DLightSB-M in just  
 1027 under 2 days (on 2 A100 GPUs), and DLightSB in under 7 hours.  
 1028

## 1029 D ADDITIONAL EXPERIMENTS

### 1030 D.1 REVERSE BENCHMARK

1033 In this section we try to overcome inherited inductive bias of DLightSB(-M) solvers. By construction,  
 1034 the forward conditional distribution  $q^*(x_1|x_0)$  admits a CP decomposition, while the reverse  
 1035 distribution  $q^*(x_0|x_1)$  does not. As a result, when the benchmark is used in the reverse direction  
 1036 with the same marginals  $p_0$  and  $p_1$ , DLightSB(-M) methods can no longer rely on the inductive bias  
 1037 that benefits them in the forward setup.

1038 Unfortunately, in this setup, the true conditional distributions are not available, so we cannot compute  
 1039 conditional metrics. To overcome this restriction, we decided to compute the Classifier Two  
 1040 Sample Test (Lopez-Paz & Oquab, 2017, C2ST) metric, ROC AUC of classifier between pairs  
 1041  $(x_0, x_1) \sim p_1(x_1)q^*(x_0|x_1)$  and  $(\hat{x}_0, x_1) \sim p_1(x_1)q_\theta(x_0|x_1)$ . As the classifier, we used two layer  
 1042 MLP with ReLU activations that takes as input the concatenation of one-hot vectors of  $x_0$  and  $x_1$ .  
 1043 We present C2ST scores in following table.

| Method   | Loss | $N + 1$ | $D = 2$  |       |         |       | $D = 16$ |       |         |       | $D = 64$ |       |         |       |
|----------|------|---------|----------|-------|---------|-------|----------|-------|---------|-------|----------|-------|---------|-------|
|          |      |         | gaussian |       | uniform |       | gaussian |       | uniform |       | gaussian |       | uniform |       |
|          |      |         | 0.02     | 0.05  | 0.005   | 0.01  | 0.02     | 0.05  | 0.005   | 0.01  | 0.02     | 0.05  | 0.005   | 0.01  |
| DLightSB | –    | –       | 0.926    | 0.998 | 0.996   | 0.985 | 0.961    | 0.971 | 0.993   | 0.996 | 0.972    | 0.993 | 0.985   | 0.990 |
| CSBM     | KL   | 16      | 0.990    | 0.991 | 1.000   | 0.996 | 0.979    | 0.990 | 0.999   | 0.988 | 0.990    | 0.990 | 0.991   | 0.997 |
|          |      | 64      | 0.995    | 1.000 | 0.992   | 0.998 | 0.991    | 0.982 | 0.986   | 0.981 | 0.999    | 0.999 | 0.994   | 0.999 |
|          | MSE  | 16      | 0.952    | 0.996 | 0.987   | 0.997 | 0.998    | 0.976 | 0.995   | 0.985 | 0.987    | 0.997 | 0.983   | 0.999 |
|          |      | 64      | 0.900    | 0.990 | 0.993   | 0.981 | 0.985    | 0.992 | 0.998   | 0.973 | 0.987    | 0.997 | 1.000   | 0.999 |

1052 Table 3: C2ST metric ( $\uparrow$ ) on the high-dimensional Gaussian mixture benchmark. Color code threshold: red for  
 1053  $< 0.7$ , yellow for  $[0.7, 0.9]$ , and green for  $\geq 0.9$ .  
 1054

1055 As can be seen from Table 3, computed metric values are not informative. Across all methods  
 1056 the metric values are nearly identical, indicating that such a simple classifier is already capable of  
 1057 distinguishing generated samples from real ones. As a result, we decided to discard this setup.  
 1058

### 1059 D.2 ADDITIONAL METRICS AND PLOTS

| Method         | Loss | $N + 1$ | $D = 2$  |       |         |       | $D = 16$ |       |         |       | $D = 64$ |       |         |       |
|----------------|------|---------|----------|-------|---------|-------|----------|-------|---------|-------|----------|-------|---------|-------|
|                |      |         | gaussian |       | uniform |       | gaussian |       | uniform |       | gaussian |       | uniform |       |
|                |      |         | 0.02     | 0.05  | 0.005   | 0.01  | 0.02     | 0.05  | 0.005   | 0.01  | 0.02     | 0.05  | 0.005   | 0.01  |
| Independent    | –    | –       | 1.000    | 1.000 | 1.000   | 1.000 | 1.000    | 1.000 | 1.000   | 1.000 | 1.000    | 1.000 | 1.000   | 1.000 |
| DLightSB       | –    | –       | 0.975    | 0.969 | 0.969   | 0.980 | 0.973    | 0.976 | 0.968   | 0.975 | 0.971    | 0.971 | 0.974   | 0.970 |
| CSBM           | KL   | 16      | 0.855    | 0.739 | 0.914   | 0.893 | 0.890    | 0.807 | 0.855   | 0.806 | 0.953    | 0.934 | 0.951   | 0.937 |
|                |      | 64      | 0.936    | 0.893 | 0.955   | 0.952 | 0.959    | 0.934 | 0.962   | 0.940 | 0.966    | 0.967 | 0.963   | 0.969 |
|                | MSE  | 16      | 0.726    | 0.704 | 0.814   | 0.850 | 0.852    | 0.782 | 0.845   | 0.754 | 0.935    | 0.936 | 0.913   | 0.903 |
| $\alpha$ -CSBM | KL   | 16      | 0.829    | 0.749 | 0.925   | 0.914 | 0.887    | 0.836 | 0.888   | 0.827 | 0.965    | 0.968 | 0.959   | 0.965 |
|                |      | 64      | 0.902    | 0.900 | 0.965   | 0.961 | 0.963    | 0.955 | 0.954   | 0.963 | 0.964    | 0.960 | 0.953   | 0.961 |
|                | MSE  | 16      | 0.810    | 0.712 | 0.841   | 0.887 | 0.877    | 0.821 | 0.854   | 0.819 | 0.951    | 0.947 | 0.912   | 0.930 |
| DLightSB-M     | KL   | 16      | 0.909    | 0.903 | 0.867   | 0.883 | 0.934    | 0.914 | 0.883   | 0.929 | 0.895    | 0.925 | 0.878   | 0.930 |
|                |      | 64      | 0.909    | 0.951 | 0.964   | 0.964 | 0.905    | 0.949 | 0.960   | 0.962 | 0.922    | 0.937 | 0.962   | 0.941 |
|                | MSE  | 16      | 0.787    | 0.944 | 0.870   | 0.920 | 0.743    | 0.921 | 0.944   | 0.950 | 0.723    | 0.914 | 0.890   | 0.850 |

1076 Table 4: Shape Score metric ( $\uparrow$ ) on the high-dimensional Gaussian mixture benchmark. The best-performing  
 1077 method is highlighted in bold, and the second is underlined. Color code threshold: red for  $< 0.7$ , yellow for  
 1078  $[0.7, 0.9]$ , and green for  $\geq 0.9$ .  
 1079

| Method      | Loss           | N+1 | D=2          |              |              |              | D=16         |              |              |              | D=64         |              |              |              |       |
|-------------|----------------|-----|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-------|
|             |                |     | gaussian     |              | uniform      |              | gaussian     |              | uniform      |              | gaussian     |              | uniform      |              |       |
|             |                |     | 0.02         | 0.05         | 0.005        | 0.01         | 0.02         | 0.05         | 0.005        | 0.01         | 0.02         | 0.05         | 0.005        | 0.01         |       |
| Independent | -              | -   | <b>1.000</b> |       |
| DLightSB    | -              | -   | 0.949        | 0.952        | 0.950        | 0.960        | 0.914        | 0.943        | 0.933        | 0.939        | 0.888        | 0.909        | 0.907        | 0.906        |       |
|             | CSBM           | KL  | 16           | 0.797        | 0.662        | 0.876        | 0.854        | 0.809        | 0.691        | 0.747        | 0.670        | 0.877        | 0.868        | 0.881        | 0.867 |
|             |                | 64  | 0.907        | 0.856        | 0.926        | 0.914        | 0.899        | 0.884        | 0.909        | 0.883        | 0.888        | 0.905        | 0.897        | 0.904        |       |
|             |                | MSE | 16           | 0.620        | 0.633        | 0.739        | 0.781        | 0.743        | 0.651        | 0.735        | 0.618        | 0.861        | 0.864        | 0.840        | 0.824 |
|             |                | 64  | 0.337        | 0.774        | 0.705        | 0.724        | 0.809        | 0.826        | 0.845        | 0.838        | 0.776        | 0.865        | 0.807        | 0.867        |       |
|             | $\alpha$ -CSBM | KL  | 16           | 0.772        | 0.662        | 0.887        | 0.868        | 0.821        | 0.740        | 0.798        | 0.721        | 0.888        | 0.905        | 0.895        | 0.899 |
|             |                | 64  | 0.872        | 0.853        | 0.929        | 0.914        | 0.907        | 0.916        | 0.905        | 0.918        | 0.886        | 0.899        | 0.891        | 0.900        |       |
|             |                | MSE | 16           | 0.733        | 0.621        | 0.759        | 0.822        | 0.790        | 0.714        | 0.771        | 0.715        | 0.864        | 0.857        | 0.824        | 0.829 |
|             |                | 64  | 0.860        | 0.854        | 0.803        | 0.811        | 0.855        | 0.846        | 0.802        | 0.855        | 0.816        | 0.825        | 0.777        | 0.820        |       |
| DLightSB-M  | KL             | 16  | 0.874        | 0.933        | 0.934        | 0.935        | 0.762        | 0.902        | 0.909        | 0.908        | 0.842        | 0.864        | 0.874        | 0.665        |       |
|             |                | 64  | 0.857        | 0.928        | 0.935        | 0.937        | 0.747        | 0.906        | 0.909        | 0.911        | 0.828        | 0.865        | 0.650        | 0.792        |       |
|             |                | MSE | 16           | 0.703        | 0.920        | 0.821        | 0.892        | 0.572        | 0.865        | 0.888        | 0.902        | 0.577        | 0.822        | 0.760        | 0.548 |
|             |                | 64  | 0.629        | 0.915        | 0.838        | 0.879        | 0.511        | 0.845        | 0.889        | 0.890        | 0.470        | 0.791        | 0.497        | 0.685        |       |

Table 5: Trend Score ( $\uparrow$ ) on the high-dimensional Gaussian mixture benchmark. The best-performing method is highlighted in bold, and the second is underlined. Color code threshold: red for  $< 0.7$ , yellow for  $[0.7, 0.9]$ , and green for  $\geq 0.9$ .

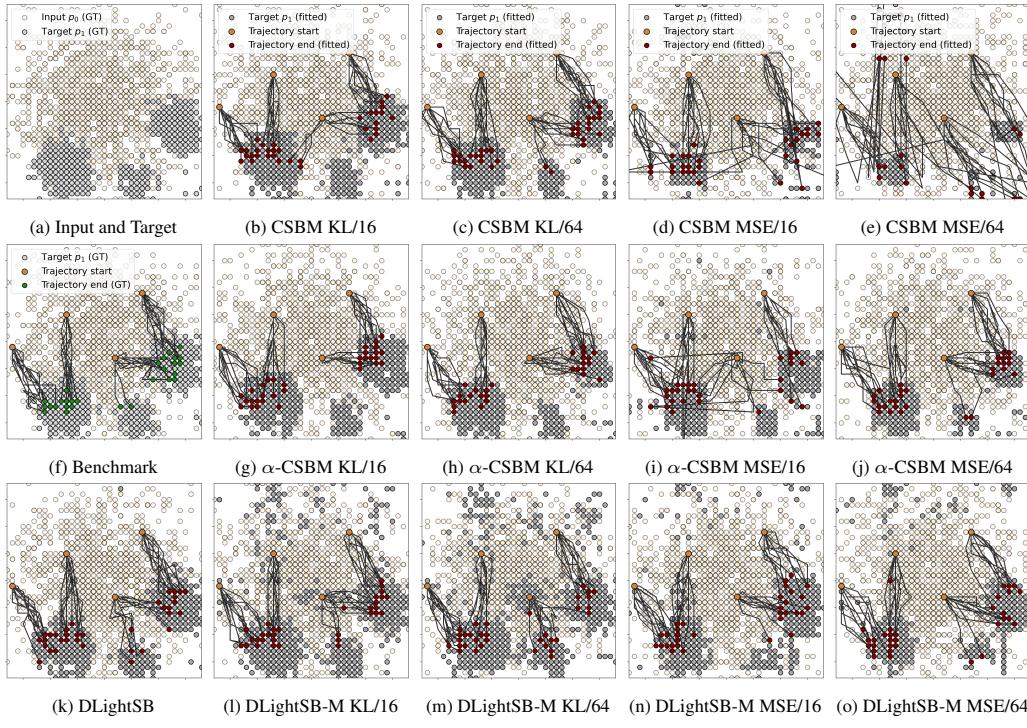
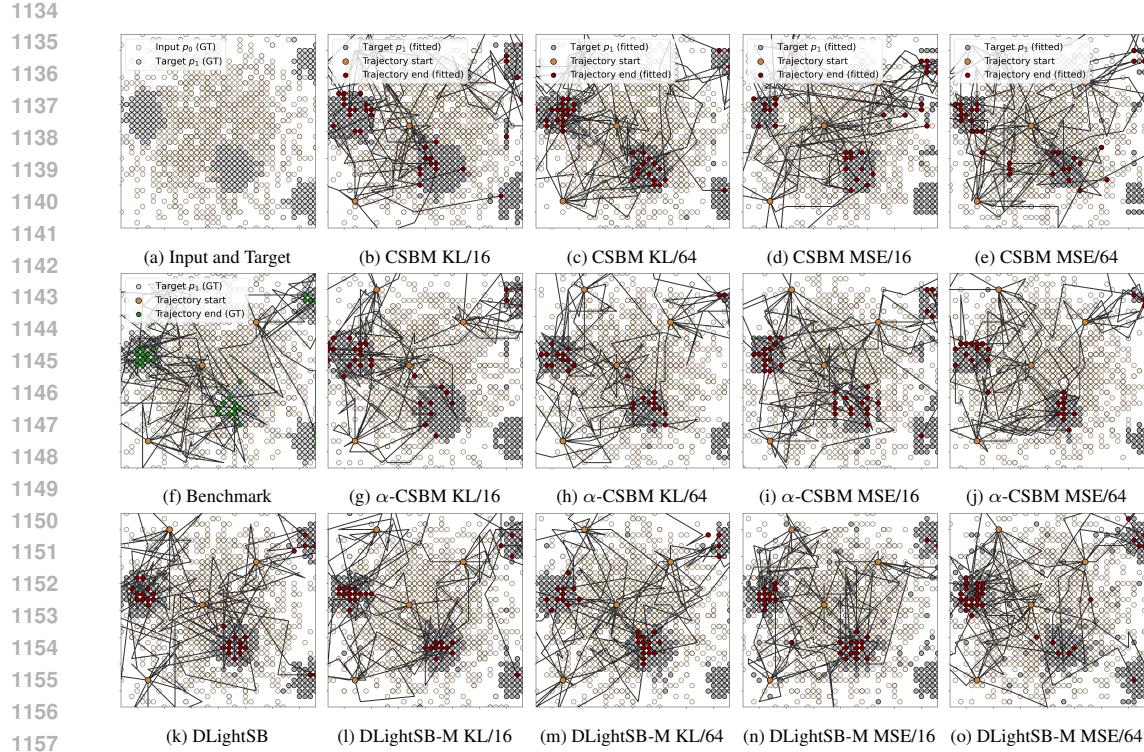
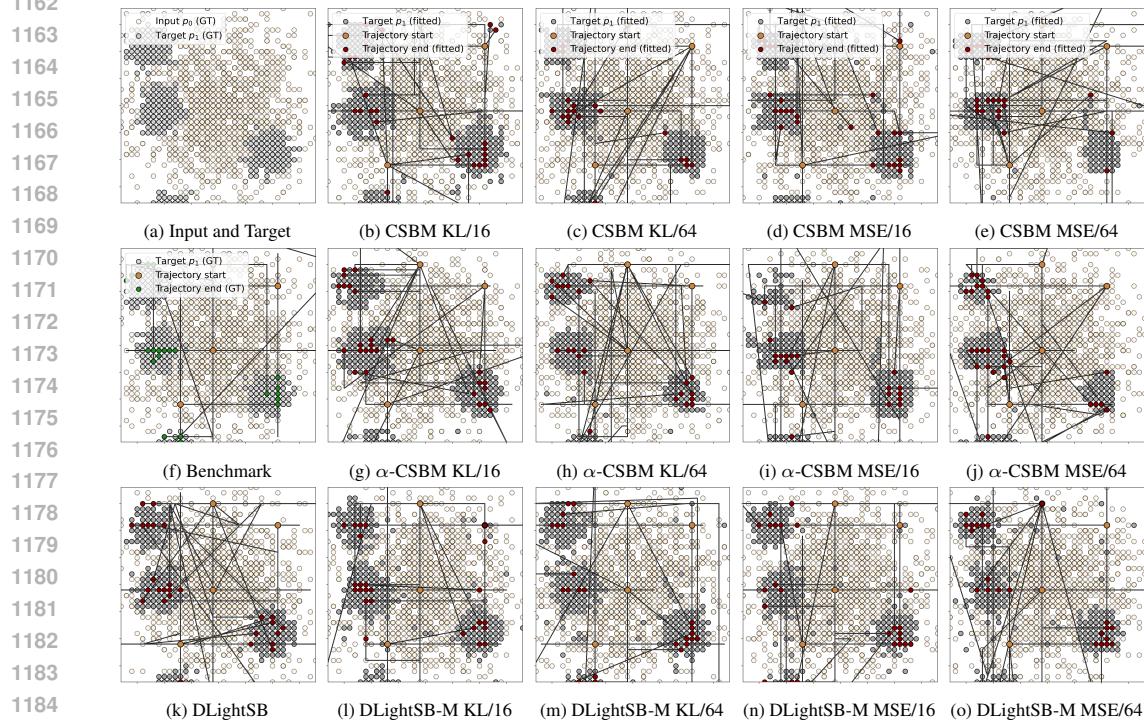


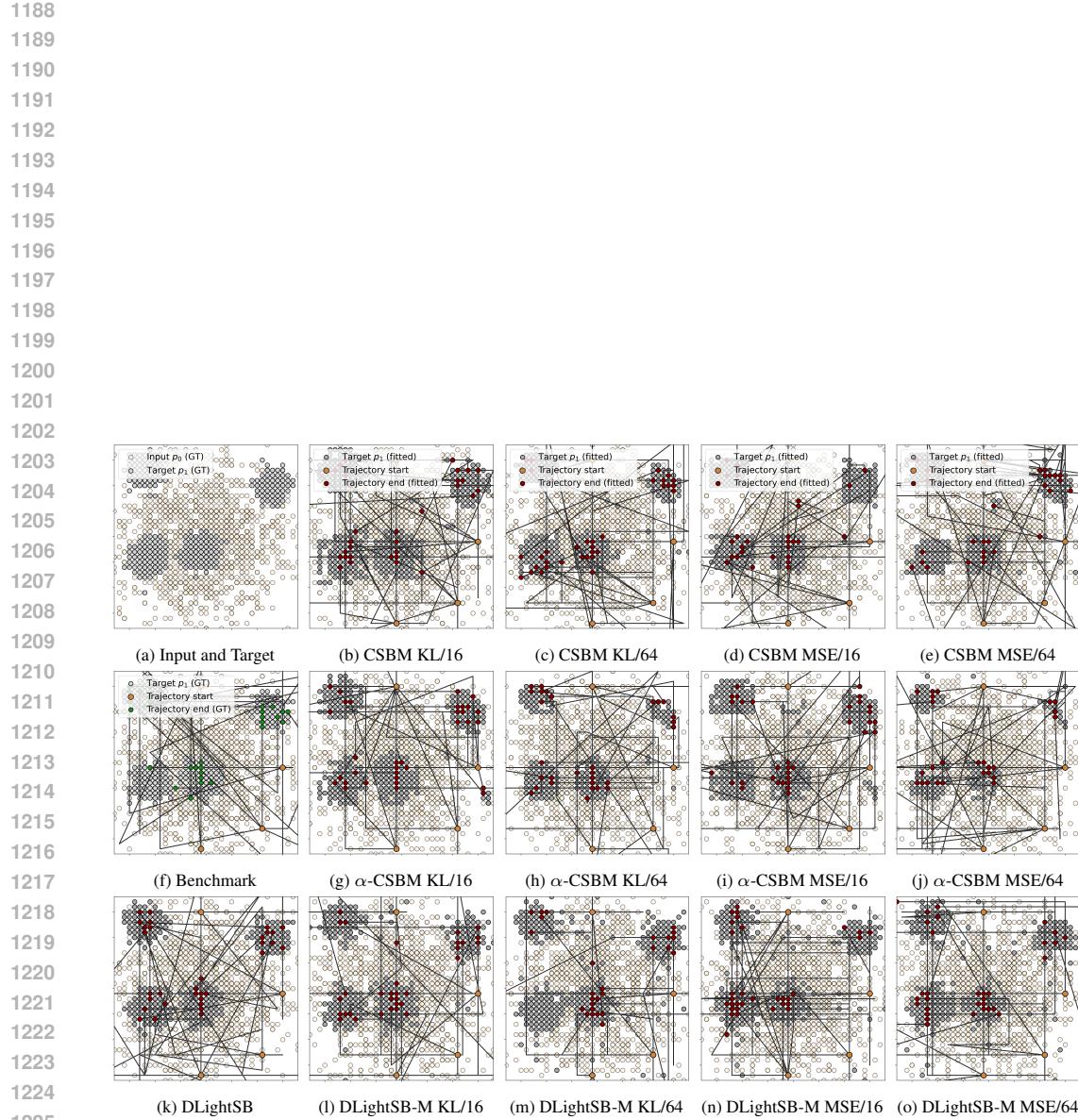
Figure 2: Samples from all methods on the high-dimensional Gaussian mixture benchmark using the Gaussian reference process  $q^{\text{gauss}}$  with  $\gamma = 0.02$ .



1158 Figure 3: Samples from all methods on the high-dimensional Gaussian mixture benchmark using the Gaussian  
1159 reference process  $q^{\text{gauss}}$  with  $\gamma = 0.05$ .



1186 Figure 4: Samples from all methods on the high-dimensional Gaussian mixture benchmark using the uniform  
1187 reference process  $q^{\text{unif}}$  with  $\gamma = 0.005$ .



1226 Figure 5: Samples from all methods on the high-dimensional Gaussian mixture benchmark using the uniform  
 1227 reference process  $q^{\text{unif}}$  with  $\gamma = 0.01$ .

1228  
 1229  
 1230  
 1231  
 1232  
 1233  
 1234  
 1235  
 1236  
 1237  
 1238  
 1239  
 1240  
 1241