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Abstract:
Motivated by the success that transforming symbolic words

into numeric vectors through embedding models leads to a signif-
icant improvement of feature representation in text processing,
in this paper, we propose an approach of numeric encoding
to extend the idea of word embedding to general mapping of
tabular data. Considering a supervised learning problem where
features take symbolic values from ordered space, our method
transforms ordinal features into numeric ones within the setting
of representation learning. Specifically, our approach aims
at transforming label-encoded features into ones represented
in a dimensionality-varied space in the setting of multi-scale
feature extraction driven by ensemble learning. Experimental
results show that our framework indeed achieves enhancing the
feature representation, which leads to a significant improve-
ment of learning performance in comparison with widely used
encoding methods such as label encoding and feature hashing.
Keywords:

Category encoding; Representation learning; Feature embed-
ding; Ensemble learning

1. Introduction

In machine learning, there are various forms of feature rep-
resentation, e.g., the original feature representation of image
data is in the form of pixels (numeric values of continuous fea-
tures), whereas text data are originally represented in the form
of words, where each word is typically considered as a sym-
bolic feature. In this context, two types of feature representa-
tion can be generalized, namely, symbolic description and nu-
meric vectorization.

In real applications, popular learning approaches, such as
various types of deep neural networks (DNN), require numeric
representation [22, 11, 24, 3, 4]. For example, numeric data
like images can be used directly as an input to DNN without
any feature pre-processing, but symbolic data like text nor-
mally need first to be transformed into a numeric form of
representation (e.g., transformation by word embedding ap-
proaches [6, 18, 30]) so that the data can be processed by DNN.
Also, while a tabular data set contains both symbolic and nu-
meric features, a standard method to handle is to transform
symbolic features into numeric ones [20]. On the other hand,
a numeric feature is considered to present a larger quantity of
information than a symbolic feature. For example, exam re-
sults can be presented in the form of either a symbolic feature
named as ‘Grade’ or a numeric one named as ‘Mark’, but it
is obvious that each grade is a qualitative representation of a
range of marks, i.e., it is a many-to-one mapping from marks to
grades. Moreover, the above-mentioned symbolic feature can
be provided only with the frequency distribution among vari-
ous grades, but more useful information on the distribution of
marks within each grade can be obtained using numeric feature
representation. The above argumentation indicates the neces-
sity to transform symbolic features into numeric ones, in order
to suit those popular learning approaches and increase the quan-
tity of useful information presented in the feature space towards
maximizing the correlation between features and labels.

In general, symbolic features can be specialized further into
various types, e.g., nominal, ordinal and string [8]. The dif-
ference between nominal and ordinal features is that there is a
sequential relationship among the values of an ordinal feature
whereas the values of a nominal attribute are not ordered [31].
In terms of feature cardinality, a nominal or ordinal feature
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needs to involve a finite number of predefined symbolic val-
ues, whereas the domain of a string attribute is made up of an
infinite number of symbolic values. The focus of this paper is
on the embedding of ordinal features in tabular data, while the
domain of each feature is assumed to consist of a small number
of predefined values (occurring in both training and test sets)
and the class attribute is set to be nominal. The above assump-
tions of data characteristics may hold in some scenarios such as
medical analysis [23] and nursing [16].

In this paper, we propose a theoretical framework for nu-
meric encoding of ordinal features. Also, the proposed frame-
work is designed within the setting of representation learn-
ing, in contrast to traditional methods that typically encode in
hand-crated ways and treat the feature transformation as a pre-
processing task [22]. The contributions of this paper include
the following:

• We have suggested a feature virtualization strategy for
transforming label-encoded features into ones represented
in a new space with varied dimensionality.

• The experimental results show that the performance of
feature representation is improved considerably through
adopting the proposed framework in comparison with
widely adopted encoding methods.

2 Proposed Approach of Numeric Encoding of Ordi-
nal Features

Based on the numerical features obtained by using label en-
coding to transform each symbolic value of an ordinal feature
into a number, we propose a representation learning approach
referred to as feature virtualization. Specifically, feature virtu-
alization is a supervised operation, which is designed to trans-
form the label-encoded features into ones represented in a new
space with varied dimensionality in the setting of joint training
of features and predictive models. The significance of the su-
pervised operation is at producing a virtual feature space that
consists of multiple subspaces that are all identical to the label
space, towards relevance maximization and redundancy mini-
mization of features. The operation is driven by training multi-
ple regression ensembles and concatenating the outputs of these
ensembles to obtain a virtual feature vector for each instance.
Moreover, the suitable setting of the number of ensembles gen-
erally varies for different scales of data, so the dimensionality
of the newly created virtual feature space is set to be varied.

The entire procedure of feature virtualization is illustrated in
Algorithm 1, where feature sub-sampling is adopted to obtain
M subsets {Sub(s)bias}Ms=1 of FSbias and each subset Sub(s)bias

Algorithm 1: Feature virtualization procedure
Input : a set of label-encoded features FSbias, a

training set TR, each instance Xe ∈ TR
Output: a set of virtual feature vectors V Svir

1 for s = 1 to M do
2 set the feature subspace size sizes;
3 randomly select sizes features from FSbias;
4 for t = 1 to k do
5 train a regression ensemble ensst for class ct,

using sizes selected features;
6 for e = 1 to |TR| do
7 ensst outputs a numeric value v̄

(s)
et of class

ct for instance Xe;
8 add v̄

(s)
et as the value of the t-th element of

class vector vec(s)e of Xe;
9 if t = k then

10 vec
(s)
e = Softmax(vec

(s)
e );

11 add vec
(s)
e into vector set V S

(s)
vir;

12 end
13 end
14 end
15 end
16 generate V Svir by concatenating horizontally the vector

sets V S
(1)
vir, V S

(2)
vir, . . . , V S

(M)
vir ;

is used to train k regression ensembles {ensst}kt=1 to predict
numeric values for k pre-defined classes in the setting of gra-
dient boosting [10]. Finally, M × k virtual features are pro-
duced, which each is obtained by normalizing the output of a
regression ensemble. The normalization of each output can be
achieved by using a softmax function as shown in Eq. (1):

P
(s)
t =

exp(v̄
(s)
t )

k∑̄
t=1

exp(v̄
(s)
t̄ )

, (1)

where v̄
(s)
t denotes the output of regression ensemble ensst

trained using the s-th feature subset Sub(s)bias for the t-th class
ct and P

(s)
t is the normalized output.

The necessity of normalizing the output of each regression
ensemble lies in two aspects. Firstly, the output may be a neg-
ative value due to the case that the regression ensemble is con-
structed by learning each base model regh to fit the residual r
of the additive regression ensemble involving previous models
reg1, reg2, . . . , regh−1, as shown in Eq. (2):
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r = Y −
h−1∑
h̄=1

regh̄(X), (2)

where Y denotes the true output (0 or 1), r is ranged in [−1, 1],

and
h−1∑̄
h=1

regh̄(X) represents the output of a regression ensem-

ble {regh̄}h−1
h̄=1

, given an input X .
While the output of a regression ensemble is negative, the ex-

ponential function shown in Eq. (1) can map the negative value
into a positive one. Also, it is necessary to ensure that the out-
puts of the k ensembles enss1, enss2, . . . , enssk (trained for k
classes using the same feature subset Sub(s)bias) are all ranged
in [0, 1] and can be summed to 1, such that the normalized out-
puts can be concatenated as a k-dimensional class vector vec(s)e

of instance xe ∈ ct and the difference between vec
(s)
e and the

one-hot vector ot of class ct can be measured more effectively.
In this context, if the above-mentioned difference is small for
all instances, then the correlation between features and labels is
said to be high, where the class vector of each instance xe ∈ ct
is an input and the one-hot vector of ct is the expected output.
In our setting of feature virtualization, the maximization of the
aforementioned correlation is achieved indirectly by minimiz-
ing the mean squared error (MSE) of each ensemble ensst, i.e.,
if all the k ensembles, which are trained for k classes using
the same feature subset, have low MSE, a small difference be-
tween vec

(s)
e of each instance xe ∈ ct and ot of ct is obtained,

which is equivalent to a low cross entropy and high correlation
between features and labels.

The second aspect concerning the necessity of normalization
is thought as the usefulness of Softmax in reducing the impact
of a regression error on the above-mentioned loss, according to
Eq. (3) that illustrates the partial derivative of the Softmax func-
tion with respect to the regression output v̄(s)t̄ of each ensemble
ensst.

∂P
(s)
t

∂v̄
(s)
t̄

=

{
P

(s)
t (1− P

(s)
t̄ ) t = t̄;

−P
(s)
t P

(s)
t̄ t ̸= t̄;

}
, (3)

Specifically, the gradient of each normalized output P
(s)
t

with respect to the regression output v̄(s)t̄ is ranged in (−1, 0) or
(0, 1), which indicates that the increase or decrease of P (s)

t is
slower than the change of the corresponding regression output
v̄
(s)
t for class ct. Since the cross entropy is only affected by the

probability estimation of the ground truth label, the impact of
a regression error on the cross entropy can be reduced after the
normalization.

Moreover, in order to achieve independent learning of each
virtual feature, we set to train k regression ensembles sepa-
rately for k pre-defined classes, and normalization of these en-
semble outputs is taken only after the completion of training the
ensembles, unlike the classification-oriented gradient boosting
strategy that needs to normalize the k ensemble outputs at the
end of each iteration of training base models. Also, inspired
from the idea of the cascading residual network-based repre-
sentation learning [17], we design to involve residual-driven
training of additive regression ensembles towards generating
high quality features.

In addition, the adoption of feature sub-sampling at the be-
ginning of Algorithm 1 is considered as a strategy of overfitting
avoidance, i.e., since feature subsampling has been adopted in
the designs of those popular ensemble approaches (e.g., ran-
dom subspace [15] and random forests [1]) as an effective strat-
egy of reduction of prediction variance, the strategy is consid-
ered to be useful in reducing the variability of feature represen-
tation for each instance by avoiding high variance of regression
ensembles. The setting to produce multi-sized feature subsets
by sub-sampling is made due to the consideration that the num-
ber of useful features may vary for different instances, e.g., the
leaf nodes of a decision tree may be at different levels, which
indicates that some instances can be classified by using fewer
features but classifying other instances needs more features.
Therefore, the above setting is considered as a kind of multi-
scale feature extraction [12, 19], considering that new features
are transformed from various-dimensional feature subsets.

Overall, the key point of feature virtualization is to transform
label-encoded features into M × k virtual features indepen-
dently, i.e., M subsets of numeric features, which are all sub-
sampled from a set of label-encoded features, are transformed
into M groups of new features, where each group involves k
features that are obtained by passing the outputs of k regres-
sion ensembles that are trained on a subset of label-encoded
features for estimating k class probabilities. It is worth not-
ing that stacking [29] involves a similar operation, i.e., passing
outputs of models as features to a further learner. However, fea-
ture virtualization is designed to perform representation learn-
ing whereas stacking is essentially to train a combiner to fuse
the outputs of multiple models.

3 Experiment

In this section, we report our experimental study by specify-
ing its setup and discussing the results to analyse the effective-
ness and limitations of our proposed framework.

In this experimental study, we select 10 data sets from the
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UCI repository [7] and the Weka website [9]. The details of
these data sets are shown in Table 1.

TABLE 1. Characteristics of data sets

Dataset No.of ordinal features No.of instances No.of classes
Balance 4 625 3
Breast 6 278 2
Car 6 1728 4
CMC 7 1473 3
ERA 4 1000 9
ESL 4 488 9
LEV 4 1000 5
Nursery 8 12960 5
SWD 10 1000 4
Wisconsin 9 683 2
1 ‘CMC’ dataset contains two numeric features (‘wife’s age’ and ‘number of children ever

born’), and the other datasets have no numeric feature.
2 Three nominal features (‘menopause’, ‘breast’, ‘breast-quad’) in the ‘Breast’ dataset are

deleted, and a nominal feature ‘id’ in the ‘Wisconsin’ dataset is removed.
3 ‘Breast’ and ‘Wisconsin’ datasets have some instances with missing values, and such instances

are removed, so the number of instances without missing values is specified in the table for
each of the two data sets.

4 The standard names of the ‘Balance’, “Breast’ and “Wisconsin’ data sets are Balance Scale,
Breast Cancer, Wisconsin Breast Cancer (Original), respectively.

The experiment on each data set is conducted through one
run of 10-fold cross validation, where area under curve (AUC)
is selected as the evaluation metric.

The baseline methods selected for comparison with our pro-
posed framework include binary encoding (BE) [13], count en-
coding (CE) [13], hash encoding (HE) [28], one-hot encoding
(OE) [5], label encoding (LE) [3], generalized linear mixtual
models (GLMM) [5], M-estimator (ME) [22], target encod-
ing (TE) [22], weight of evidence (WOE) [13] and ordered
target statistics (OTE) [27]. In terms of the implementation
of the experiment, two Python libraries, namely, Scikit-learn
0.20.1 [26] and Category Encoders 2.2.2 [21], are used. In par-
ticular, those aforementioned baseline methods are available in
Category Encoders, and the implementation of feature virtual-
ization is based on Scikit-learn.

In terms of hyper-parameter selection, we adopt the tuned
settings of hyper-parameters for those existing encoding meth-
ods (that have at least one hyper-parameter). Specifically, for
each of these methods (that have at least one hyper-parameter),
the hyper-parameters are jointly tuned by selecting the option
(hyper-parameter vector) that leads to the best performance of
5-fold cross validation on the training set. The strategies of
hyper-parameters tuning are specified in Table 2.

Moreover, feature virtualization has some hyper-parameters
relating to feature sub-sampling and gradient boosting. Specif-
ically, we set to tune the number of iterations (n iterations)
and the sub-sampling proportions in various iterations (propor-
tions) for feature sub-sampling. Also, the classification and
regression tree (CART) algorithm [2] is used to train each
base model in the setting of gradient boosting, where three

TABLE 2. Hyper-parameters tuning strategies for encoding methods

Method Hyper-parameter List of options

HE hash method [‘md5’, ‘sha256’, ‘black2b’]
n components [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]

TE smoothing [0.1, 0.2, 0.5, 1.0, 2.0, 5.0]
ME m [0.1, 0.2, 0.5, 1.0, 2.0, 5.0]

WOE regularization [0.1, 0.2, 0.5, 1.0, 2.0, 5.0]

OTS sigma [0.1, 0.2, 0.5, 1.0, 2.0, 5.0]
a [0.1, 0.2, 0.5, 1.0, 2.0, 5.0]

hyper-parameters are tuned, namely, the maximum tree depth
(max depth), the learning rate (learning rate) and the maximum
number of iterations (n estimators) for gradient boosting. The
selection of the aforementioned hyper-parameters is driven by
conducting 5-fold cross validation on the training set and pick-
ing up the settings that lead to the best performance, whereas
we keep the default settings (provided in Scikit-learn) for all
the other hyper-parameters of CART and gradient boosting.

The strategies of tuning the hyper-parameters involved in
the proposed approach are specified in Table 3. In particu-
lar, the three hyper-parameters of gradient boosting are jointly
tuned first and then the optimized settings of the three hyper-
parameters are kept as the basis for jointly tuning the two hyper-
parameters of feature sub-sampling.

TABLE 3. Strategies of hyper-parameters tuning for proposed approach

Method Hyper-parameter List of options

Gradient Boosting Regressor
learning rate [0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1]
n estimators [1, 3, 5, 7, 9, 30, 50, 70, 90, 100]
max depth [1, 2, 3, 4, 5]

Feature Sub-sampling

n iterations [1, 3, 5]

proportions
[1.0], if n iterations=1

[0.6, 0.8, 1.0], if n iterations=3
[0.6, 0.7, 0.8, 0.9, 1.0], if n iterations=5

For all of the encoding methods, their performance of feature
transformation is finally evaluated by measuring the AUC of
classifiers trained by SVM, where the default hyper-parameter
settings (provided in Scikit-learn) for SVM are kept to train
classifiers using all those numeric feature sets produced by var-
ious encoding methods.

The comparison of the proposed approach with those unsu-
pervised encoding methods is shown in Table 4, whereas Ta-
ble 5 shows the performance comparison between the proposed
approach and each of those supervised encoding methods. The
results generally indicate that the proposed approach outper-
forms those existing methods of feature encoding in all cases.

The main reason why combining label encoding and feature
virtualization is helpful to advance the performance is thought
to be the supervised setting of joint training of features and re-
gression models. In this setting, each subset of the numeric
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TABLE 4. Comparison with various unsupervised methods

Dataset Binary Count Hashing OneHot Label Proposed
Balance 0.8873 0.6594 0.8036 0.8742 0.9543 0.9818
Breast 0.6951 0.6868 0.7622 0.7190 0.6694 0.8533
Car 0.9860 0.7458 0.8371 0.9981 0.9961 0.9996
CMC 0.7047 0.6191 0.7073 0.7120 0.7091 0.7408
ERA 0.7475 0.7275 0.7426 0.7459 0.6805 0.7608
ESL 0.9110 0.8348 0.8961 0.9111 0.8594 0.9387
LEV 0.8450 0.7487 0.8164 0.8443 0.8239 0.8632
Nursery 0.9953 0.7621 0.9865 0.9989 0.9937 0.9994
SWD 0.8063 0.7678 0.7919 0.7998 0.7894 0.8316
Wisconsin 0.9924 0.9836 0.9934 0.9913 0.9842 0.9952

TABLE 5. Comparison with various supervised methods

Dataset GLMM M-Estimator Target WOE OTS Proposed
Balance 0.9473 0.9452 0.9449 0.9474 0.5612 0.9818
Breast 0.6413 0.6810 0.6792 0.6783 0.4600 0.8533
Car 0.9794 0.9890 0.9890 0.9865 0.9515 0.9996
CMC 0.7128 0.7076 0.7076 0.7131 0.7107 0.7408
ERA 0.7392 0.7441 0.7439 0.7474 0.7258 0.7608
ESL 0.9168 0.9107 0.9103 0.9205 0.9116 0.9387
LEV 0.8443 0.8435 0.8437 0.8475 0.8378 0.8632
Nursery 0.9522 0.9814 0.9814 0.9823 0.8283 0.9994
SWD 0.7997 0.8020 0.8020 0.7998 0.8005 0.8316
Wisconsin 0.9921 0.9896 0.9898 0.9924 0.9831 0.9952

feature set produced by label encoding that maps each categor-
ical value of an ordinal feature into a specific number is trans-
formed into a subset of virtual features that form a feature sub-
space that is approximately identical to the label space, so the
performance of the regression models is positively correlated
to the quality of the features generated at the feature virtualiza-
tion stage, i.e., while k regression models are learned to output
k numeric values that are normalized by softmax and are then
concatenated as a feature vector for representing each instance,
highly accurate outputs of the models would be transformed
into such a vector that is very close to the one-hot vector of
the ground truth label of the instance. Moreover, feature vir-
tualization is designed by taking into account the bias-variance
trade-off [14], where the bias reduction is achieved by involv-
ing residual-driven ensemble learning and feature sub-sampling
is adopted for the variance reduction. Therefore, it can be ex-
pected to generate stably a feature vector that is close to the
one-hot vector of the ground truth label for each instance.

4. Conclusions

In this paper, we have proposed an approach of numeric em-
bedding of ordinal features within the setting of representation
learning. In particular, the proposed approach leads to enhanc-
ing the feature representation by producing a dimensionality-
varied space, towards maximizing the correlation between fea-
tures and labels. The experimental results show that the perfor-
mance is improved considerably through adopting the proposed
approach for enhancing the feature representation, in compari-

son with widely used encoding methods. In the future, we will
investigate how to map each symbolic value into a numeric in-
terval that follows a normal distribution. It is also worthy of
further studies to address the aforementioned limitations of the
proposed framework in the context of open-world learning [25].
Moreover, in the big data era, it has been a commonly accepted
point that the learning needs to go deeper [33, 32], which means
that the model needs to have a sufficient complexity in order to
be able to contain comprehensive knowledge to improve the
generalization performance. Therefore, it is also worth to ex-
tend our proposed framework towards performing a more com-
plex procedure of representation enhancement in the setting of
deep learning.
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