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Abstract

Large Language models (LLMs) have emerged001
as powerful tools for addressing challenges002
across diverse domains. Notably, recent stud-003
ies have demonstrated that LLMs can substan-004
tially improve the efficiency of biomolecular005
analysis and synthesis, garnering increasing006
attentions across both academic research and007
medical applications. In this paper, we sys-008
tematically investigate how LLMs, guided by009
prompt-based methodologies,can be applied to010
biological sequence analysis, including DNA,011
RNA, proteins, and tasks related to drug dis-012
covery. Specifically, we explore how prompt013
engineering enables LLMs to tackle domain-014
specific problems, such as promoter sequence015
prediction, protein structure modeling, and016
drug-target binding affinity prediction, often017
in scenarios with limited labeled data. Further-018
more, our discussion highlights the transforma-019
tive potential of prompting in bioinformatics020
while addressing key challenges such as data021
scarcity, multimodal fusion, and computational022
resource limitations. This paper is intended to023
serve both as a foundational resource for new-024
comers and as a springboard for ongoing inno-025
vation in this rapidly evolving field of study.026

1 Introduction027

Large Language Models (LLMs) have demon-028

strated remarkable advancements, primarily due029

to their capabilities in modeling the hidden rela-030

tionships within textual sequences (Achiam et al.,031

2023; Dubey et al., 2024). This innovation presents032

a compelling opportunity for bioinformatics, where033

biological sequences (e.g., DNA, RNA, and pro-034

teins) exhibit structural and statistical similarities035

to natural languages (Searls, 1997). By leverag-036

ing LLMs, researchers can uncover meaningful037

patterns from these sequences, leading to notable038

breakthroughs in diverse downstream tasks, such039

as classification, structure prediction and drug dis-040

covery, as illustrated in the general workflow of041

Figure 1: Diagram of LLM prompting for de novo de-
sign of biomolecules. (a) General workflow illustrating
how biological sequences and task-specific knowledge
are used to construct prompts. These prompts are then
processed by LLMs to generate biologically coherent
and task-aligned sequence predictions. (b) Diagram of
an RNA-specific case, where the task is to identify func-
tional binding sites within a given RNA sequence. A
prompt is constructed accordingly and used to guide the
LLM in generating the desired output sequence.

Figure 1a. Figure 1b further highlights a concrete 042

example in the context of RNA function analy- 043

sis, which underscores the importance of effective 044

prompt engineering in enabling LLMs to perform 045

meaningful biological inference even with limited 046

labeled data. However, despite this potential, sev- 047

eral challenges remain in applying LLMs to biolog- 048

ical sequence analysis. One of the most pressing 049

issues is data scarcity, as labeled biological datasets 050

are always expensive and labor-intensive to obtain. 051

This limitation significantly restricts the effective- 052

ness of traditional supervised learning approaches. 053

To address this issue, prompt engineering has 054

emerged as a powerful strategy to enhance the 055

adaptability of LLMs in biological contexts (Za- 056

ghir et al., 2024; Zhou and Ngo, 2024; Chang et al., 057
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2025). Specifically, prompt-based methods lever-058

age in-context learning, allowing LLMs to perform059

zero-shot and few-shot learning on biological tasks060

with minimal labeled data. Representative models061

(e.g., BERT (Devlin, 2018), GPT (Achiam et al.,062

2023), ProtBERT (Brandes et al., 2022) and Evolu-063

tionary Scale Modeling (ESM) (Lin et al., 2022))064

have been successfully adapted to biological se-065

quences through precisely designed prompts, al-066

lowing them to generalize across a range of tasks067

represented by promoter sequence prediction, pro-068

tein structure modeling, and drug-target binding069

affinity prediction. Figure 2 showcases this rapid070

evolution, highlighting key milestones from foun-071

dational models to recent prompt-driven advances.072

Organization of This Survey: In this paper, we073

conduct the first survey of recent advancements074

in biological sequence analysis through language075

model prompting. We begin by introducing the fun-076

damentals of biological sequences and explaining077

how prompt engineering facilitates LLMs applica-078

tions in various downstream taks accross different079

domains (§2). Representative examples of these080

applications are visually summarized in Figure 3,081

which categorizes prompt-based workflows across082

four major biological areas, highlighting the role of083

prompt construction in guiding LLMs outputs. We084

then present a detailed survey of prompting method-085

ologies (§3), classifying existing approaches by bi-086

ological domains and task-specific objectives. A087

structured taxonomy of involved literature is pro-088

vided in Figure 4. In parallel, we examine the089

transformative role of AlphaFold (Jumper et al.,090

2021; Abramson et al., 2024) and the ESM series091

(Rives et al., 2019; Lin et al., 2022, 2023) (§3),092

highlighting their contributions to protein structure093

prediction and proteome-scale modeling. Next, we094

outline several key challenges (§4) such as data095

scarcity and high labeling costs then explore future096

research directions (§5), focusing on multi-modal097

prompt fusion, efficient adaptation techniques and098

data-centric annotation strategies. Finally, we con-099

clude this survey (§6) by summarizing key insights100

and underscoring the role of prompt engineering in101

advancing AI-driven biological research.102

2 Biological Sequence Prompting Tasks103

In this section, we first introduce the concept of104

biological sequences and how language model-105

ing and prompt engineering fit into bioinformat-106

ics. Then, we outline how various biological tasks107

can be formulated as natural language processing 108

(NLP) problems and provide a concise categoriza- 109

tion of their application domains (DNA, RNA, pro- 110

teins, and drug discovery), setting the stage for the 111

methodological discussions in subsequent sections. 112

2.1 Biological Sequences 113

Biological sequences, such as DNA, RNA, and pro- 114

teins, can be viewed as linear arrangements of to- 115

kens from their respective alphabets. For instance, 116

DNA and RNA use nucleotides {A,C,G,T/U}, 117

while proteins typically involve 20 standard amino 118

acids. Formally, a biological sequence of length L 119

is denoted as 120

S = {x1, . . . , xL}, (1) 121

where each token xi is drawn from an alphabet 122

A. These sequences carry crucial information for 123

cellular processes, such as gene expression, protein 124

folding, and molecular interactions. Understanding 125

and modeling these sequences is central to many 126

tasks in computational biology. 127

2.2 Prompt Engineering 128

Prompts further enhance the power of LLMs by 129

integrating task-specific cues into the input of the 130

model. This is achieved through textual templates 131

or continuous embeddings, which we denote ab- 132

stractly as: 133

T = f(S, P ; θ), (2) 134

where S represents biological sequence, P encodes 135

domain-specific information as a prompt, and θ de- 136

notes the model parameters. Prompting is particu- 137

larly valuable in data-scarce scenarios (e.g., zero- 138

shot or few-shot learning), guiding the model to 139

focus on relevant biological patterns. 140

2.3 Overview of Prompt-Based Task Mapping 141

Biological tasks such as promoter prediction or 142

modeling of protein-ligand binding interactions 143

can be effectively reinterpreted as NLP tasks us- 144

ing prompts. For instance, in promoter prediction, 145

specific segments of a DNA sequence can be re- 146

placed with [MASK] tokens, transforming the task 147

into a masked language modeling problem. Simi- 148

larly, protein-ligand binding affinity prediction can 149

be framed as a question-answering or fill-in-the- 150

blank prompt, focusing on molecular compatibility. 151

By carefully designing prompts, researchers lever- 152

age the extensive pretraining of LLMs to achieve 153

strong performance even with limited labeled data. 154
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Figure 2: Milestones in the evolution of LLMs and prompt-based advances for computational biology.

In this section, we provide an overview of four key155

application areas in biological sequence analysis:156

2.3.1 DNA157

Promoter Identification. Detects promoter re-158

gions in DNA sequences, capturing key motifs159

such as the TATA-box to understand gene regula-160

tion. Benefiting from the remarkable performance161

of prompting, we effectively reinterpreted this task162

as an NLP task by constructing proper prompts,163

which can be formally defined as follows:164

H = MDNA(S, Pprom), (3)165

where S is the input DNA sequence, MDNA is the166

large language model of DNA for promoter iden-167

tification, Pprom is is the constructed prompt, and168

H is the predicted promoter region with functional169

motifs.170

For example, given a sequence S =171

{ATGCGATACTAGGATATAAGCTAG}.172

To detect the promoter region in this DNA173

sequence, we design this prompt: "Locate the174

promoter region between positions X-Y in [S]175

containing TATA-box motifs." Then the DNA176

sequence and constructed prompts are inputted into177

the language models to generate more accurate178

results.179

Mechanism Explanation. Generates interpretable180

insights into synthetic lethality (SL) mechanisms,181

aiding in identifying potential cancer drug targets. 182

Benefiting from the remarkable performance of 183

prompting, we effectively reinterpreted this task 184

as an NLP task by constructing proper prompts, 185

which can be formally defined as follows: 186

J = MDNA(Sg, Psl), (4) 187

where Sg is the input gene pair, MDNA is the large 188

language model of DNA for mechanism explana- 189

tion, Psl is the constructed prompt, and J is the 190

structured explanation of SL interactions. 191

For instance, given a gene pair Sg = 192

{BRCA1, PARP1}. To explain the SL mech- 193

anism, we construct a corresponding prompt: "Ex- 194

plain the synthetic lethality mechanism between 195

[Gene A] and [Gene B], focusing on DNA repair 196

pathways". Then, the gene pair and constructed 197

prompts are inputted into the language models to 198

generate more accurate results. 199

2.3.2 RNA 200

RNA Functional Element Analysis. Identifies and 201

characterizes splicing signals, regulatory elements, 202

and sequence motifs associated with gene expres- 203

sion regulation. Benefiting from the remarkable 204

performance of prompting, we effectively reinter- 205

preted this task as an NLP task by constructing 206

proper prompts, which can be formally defined as 207

follows: 208

R = MRNA(S, Pf ), (5) 209
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where S is the input RNA sequence, MRNA is the210

large language model of RNA for functional ele-211

ment analysis, Pf is the constructed prompt, and212

R is the generated response, which corresponds to213

the functional element E.214

Moreover, we take a specific example to il-215

lustrate how to use a prompt-based method216

to model RNA-related tasks as NLP tasks.217

For instance, given an RNA sequence S =218

{AUCGGAUCCG}, we want to identify specific219

regions within S, which are binding sites of RNA.220

We can construct a corresponding prompt: "Iden-221

tify the binding site in the following RNA sequence:222

[S]". Then, the RNA sequence and constructed223

prompts are inputted into the language models to224

generate more accurate results (Figure 1b).225

Cell Type Annotation. Automates the classifica-226

tion of cell types in single-cell RNA sequencing227

(scRNA-seq) data, improving accuracy in diverse228

and noisy datasets. Benefiting from the remarkable229

performance of prompting, we effectively reinter-230

preted this task as an NLP task by constructing231

proper prompts, which can be formally defined as232

follows:233

L = MRNA(Sc, Pcell), (6)234

where Sc is the input gene expression profile,235

MRNA is large language model of RNA for cell236

type annotation, Pcell is the constructed prompt,237

and L corresponds to the predicted cell type labels238

with confidence scores.239

Moreover, we take a specific example to illus-240

trate how to use a prompt-based method to model241

RNA-related tasks as NLP tasks. For instance,242

given a cell expression profile Sc = {CD3E :243

12.8, CD8A : 9.4, CD19 : 0.3,MS4A1 : 0.1},244

we construct a corresponding prompt: "Classify245

this scRNA-seq cell’s type based on top expressed246

genes: [S], and include canonical markers". Then,247

the cell expression profile and constructed prompts248

are inputted into the language models to generate249

more accurate results.250

2.3.3 Protein251

Protein Structure Modeling and Prediction. Fo-252

cuses on determining the three-dimensional struc-253

ture of proteins from amino acid sequences, which254

is crucial for understanding function and interac-255

tions. Benefiting from the remarkable performance256

of prompting, we effectively reinterpreted this task257

as an NLP task by constructing proper prompts,258

which can be formally defined as follows: 259

Φ = Mprotein(S, Pfold) (7) 260

where S is the input amino acid sequence, Mprotein 261

is large language model of protein for structure 262

modeling and prediction, Pfold is the is the con- 263

structed prompt, and Φ corresponds to the predicted 264

structural coordinates. 265

For example, given a sequence S = 266

{GVNPGV APLSLLI}, we can construct a cor- 267

responding prompt: "Predict the tertiary structure 268

topology for [S] with secondary structure annota- 269

tions". Then, the protein sequence and constructed 270

prompts are inputted into the language models to 271

generate more accurate results. 272

Molecular Interaction Modeling. Studies how 273

proteins interact with other molecules, including 274

ligands and other proteins, to inform drug design 275

and functional analysis. Benefiting from the re- 276

markable performance of prompting, we effectively 277

reinterpreted this task as an NLP task through con- 278

structing proper prompts, which can be formally 279

defined as follows: 280

Γ = Mprotein(Sl, Pinteract), (8) 281

where Sl is the input molecular pair, Mprotein is 282

large language model of protein for molecular in- 283

teraction modeling, Pinteract is the is the constructed 284

prompt, and Γ corresponds to the predicted binding 285

parameters. 286

For instance, given a kinase-ligand pair Sl = 287

{EGFRkinase : MGPSV..., Gefitinib : 288

C1 = CN = CC = C1}, we can construct 289

a corresponding prompt: "Predict binding mode 290

between EGFR kinase and Gefitinib, identifying 291

critical hydrogen bonds and hydrophobic contacts". 292

Then, the molecular pair and constructed prompts 293

are inputted into the language models to generate 294

more accurate results. 295

Protein Language-Based Generation. Explores 296

the generation of protein sequences and functional 297

annotations using language-inspired models, facili- 298

tating de novo protein design. Benefiting from the 299

remarkable performance of prompting, we effec- 300

tively reinterpreted this task as an NLP task by con- 301

structing proper prompts, which can be formally 302

defined as follows: 303

Ψ = Mprotein(Pdesign, θ), (9) 304

where θ is functional constraints, Mprotein is a large 305

language model of protein for de novo protein de- 306
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sign, Pdesign is the constructed prompt, and Ψ cor-307

responds to the generated protein sequence with308

structural and functional metadata.309

For example, given a target,to engineer a ther-310

mostable enzyme, we can construct a correspond-311

ing prompt: "Generate a β-lactamase variant with312

enhanced thermal stability and maintained catalytic313

efficiency". Then, the constructed prompts is in-314

putted into the language models to generate more315

accurate results.316

Other Protein-Related Tasks. Includes Polypep-317

tide Design, Conformation Perception, and Protein318

Interaction Reasoning, expanding applications in319

structural and functional biology. Benefiting from320

the remarkable performance of prompting, we ef-321

fectively reinterpreted this task as an NLP task322

by constructing proper prompts, which can be for-323

mally defined as follows:324

K = Mprotein(Sr, Ptask), (10)325

where Sr are the task-specific inputs, Mprotein is326

a large language model of protein for other tasks,327

Ptask is the constructed prompt, and K corresponds328

to multimodal outputs spanning sequences, struc-329

tures, and mechanistic insights.330

For easy understanding, we will illustrate how331

these protein-related tasks can be modeled as NLP332

tasks using a cue-based approach by following333

three concrete examples. First, in order to generate334

antimicrobial peptides, we can construct a corre-335

sponding prompt: "Design a 15-residue cationic336

α-helical peptide targeting Gram-negative bacte-337

ria with <10% hemolysis". Second, given a ki-338

nase sequence Sr = {IGPGRAFV T}, in order339

to predict conformational, we can construct a corre-340

sponding prompt: "Predict conformational changes341

upon ATP binding". Finally, given a ubiquitin-342

ligase pair Sr = {Ubiquitin,E6AP}. To reason343

about protein interactions, we can construct a cor-344

responding prompt: "Infer recognition mechanism345

for Ub-E6AP complex formation". Then, the in-346

puts and constructed prompts are inputted into the347

language models to generate more accurate results.348

2.3.4 Drug Discovery349

Drug-Target Binding Prediction. Focuses on es-350

timating the binding affinity between drugs and351

their molecular targets, aiding in the identification352

of potential therapeutics. Benefiting from the re-353

markable performance of prompting, we effectively354

reinterpreted this task as an NLP task by construct-355

ing proper prompts, which can be formally defined356

as follows: 357

N = Mdrug(Sd, St, Pbind), (11) 358

where Sd is the drug molecular structure, St is the 359

target protein sequence, Mdrug is the large language 360

model of drug for target binding prediction, Pbind 361

is the constructed prompt, and N corresponds to 362

predicted binding metrics. 363

For example, given the anticancer drug Gefi- 364

tinib and EGFR kinase, we can construct a cor- 365

responding prompt: "Predict binding affinity and 366

critical interactions between Gefitinib and EGFR 367

kinase".Then, the inputs and constructed prompts 368

are inputted into the language models to generate 369

more accurate results. 370

Molecular Design. Involves generating and op- 371

timizing molecular structures to achieve desired 372

pharmaceutical properties, such as bioavailability 373

and synthetic accessibility. Benefiting from the re- 374

markable performance of prompting, we effectively 375

reinterpreted this task as an NLP task by construct- 376

ing proper prompts, which can be formally defined 377

as follows: 378

U = Mdrug(θ, Pdesign), (12) 379

where θ is target property specifications, Mdrug is 380

a large language model of drug for molecular de- 381

sign, Pdesign is the constructed prompt, and U cor- 382

responds to the generated molecule. 383

For instance, to design a non-steroidal anti- 384

inflammatory drug (NSAID) with reduced gastroin- 385

testinal toxicity, we can construct a correspond- 386

ing prompt: "Generate a COX-2 selective inhibitor 387

with IC50 < 10nM , LogP 2.5–3.5, and > 80% 388

plasma stability at 24h". Then, the constructed 389

prompts are inputted into the language models to 390

generate more accurate results. 391

In the next sections, we will delve deeper into the 392

specific methods, discussing their performance and 393

how prompt-based strategies are reshaping biologi- 394

cal sequence analysis. By encoding domain knowl- 395

edge through carefully designed prompts, LLMs 396

have become powerful tools for tackling complex 397

tasks in DNA, RNA, protein, and drug discovery. 398

3 Prompting Applications in Biological 399

Sequences 400

Prompting technology, which is especially suitable 401

for zero/few sample learning by designing prompts 402

for pre-trained models to guide them to accomplish 403
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Given a DNA sequence 
S={ATGCGATACTAGGAT
ATAAGCTAG}, the task is 
to detect promoter regions in 

DNA sequences.

Locate the promoter region 
between positions X-Y in 
[S] containing TATA-box 

motifs.

LLM

Promoter Identification Prompt Construction Output

Promoter region: positions 15-20 
(TATA-box: TATAAA)

Additional regulatory elements: 
CAAT-box at positions 8-11}

Given a gene pair Sg= 
{BRCA1, PARP1}, the task 
is to generate interpretable 

insights into the mechanisms 
of SL.

Explain the synthetic lethality 
mechanism between Gene A 

and Gene B, focusing on DNA 
repair pathways.

LLM

Mechanism Explanation Prompt Construction Output

BRCA1 loss impairs HR repair, forcing cells to 
relyon PARP1-mediated BER. PARP inhibition in 
BRCA1-deficient cells induces catastrophic DNA 
damage accumulation due to concurrent HR/BER 
failure, leading to selective cancer cell death.

Given an RNA sequence 
S={AUCGGAUCCG}, the 
task is to identify specific 
regions within S, which is 

binding sites of RNA.

Identify the binding site in 
the following RNA 

sequence: [S]. 
LLM

RNA Function Element Analysis Prompt Construction Output

GAUCC

Given a cell expression profile 
Sc={CD3E:12.8,CD8A:9.4,CD
19:0.3, MS4A1:0.1}, the task is 
to automatically categorize cell 

types in scRNA-seq data.

Classify this scRNA-seq 
cell's type based on top 
expressed genes: [Sc]. 

Include canonical markers.

LLM

Cell Type Annotation Prompt Construction Output

Cell type: Cytotoxic T cell (probability: 0.92)
Key markers: CD3E (T-cell receptor), 
CD8A (cytotoxic subset) 
Exclusion markers: CD19 (B cells) < 1.0

Given a sequence 
S={GVNPGVAPLSLLI}, the 
task is to determine the three-
dimensional structure of the 
protein from the amino acid 

sequence.

Predict the tertiary structure 
topology for [S] with 
secondary structure 

annotations.

LLM

Protein Structure 
Modeling and Prediction Prompt Construction Output

Secondary structure: α-helix (residues 2-
6) ;β-strand (residues 8-12) ; Loop regions: 
1,7,13 ; Tertiary fold: Globular domain 
with helix-strand packing (RMSD: 1.2Å vs 
experimental).

Given a kinase-ligand pair Sl 
= {EGFR kinase: MGPSV... , 
Gefitinib: C1=CN=CC=C1}, 

the task is to study how 
proteins interact with other 

molecules.

Predict binding mode 
between EGFR kinase and 

Gefitinib, identifying 
critical hydrogen bonds and 

hydrophobic contacts.

LLM

Molecular Interaction Modeling Prompt Construction Output

Interface residues: L718/M793 (π-π 
stacking) ; D855 (H-bond, ΔG = -8.2 
kcal/mol) ; Allosteric pocket: L844-L858. 
Binding affinity: Kd = 2.1 nM (95\% CI: 
1.8–2.4).

Given a target, a 
thermostable enzyme, the 
task is to generate protein 

sequences and annotations.

Generate a β-lactamase 
variant with enhanced 
thermal stability and 
maintained catalytic 

efficiency.

LLM

Protein Language-
Based Generation Prompt Construction Output

Sequence: MRSLL...V240A
Structural features: 
(1)Increased hydrophobic core 
(2) Salt bridge network
(3) Catalytic motif
Predicted properties: Tm=78.3°C

Given a target, an 
antimicrobial peptide, the 

task is to design the peptide.

Design a 15-residue 
cationic peptide targeting 
Gram-negative bacteria 
with <10% hemolysis

LLM

Polypeptide Design Prompt Construction Output

Sequence: KLFKRILKWIKKFLK 
Structural features: 78% helicity 
Predicted MIC: 2 μg/mL 
Toxicity: 8% RBC lysis

Given a kinase sequence 
Sr={IGPGRAFVT}, the task 

is to perceive the 
conformation.

Predict conformational 
changes upon ATP binding. LLM

Conformation Perception Prompt Construction Output

Activation loop: Open→Closed  
DFG motif: Out→In state 
Allosteric communication: αC-helix 
rotation 23°

Given an ubiquitin-ligase pair 
Sr={Ubiquitin, E6AP},the 
task is reason about protein 

interactions.

Infer recognition 
mechanism for Ub-E6AP 

complex formation.
LLM

Protein Interaction Reasoning Prompt Construction Output

Interface: Ub L8/I44 hydrophobic 
patch binds E6AP UBA domain.
Key residues: E6AP L337/V340 
Post-translational regulation: 
Phosphorylation at S347 enhances 
binding 5-fold.

Given the anticancer drug 
Gefitinib and EGFR kinase, 

the task is to estimate the 
binding affinity between a 

drug and its molecular target.

Predict binding affinity and 
critical interactions between 
Gefitinib and EGFR kinase. 

LLM

Drug-Target 
Binding Prediction Prompt Construction Output

Binding affinity:  IC50 = 2.3nM 
Key interactions: 
(1)Quinazoline N1–Met793 (π-π stacking)
(2)Acrylamide O–Thr854 (H-bond, 2.9Å) 
(3)Chlorine–Leu718 (hydrophobic) 
Allosteric effects: L858R mutation reduces 
affinity 5.7-fold.

Given a target, NSAID, the 
task is to generate and 

optimize molecular structures 
with specific 

pharmacological properties.

Generate a COX-2 selective 
inhibitor with IC50 <10 nM, 

LogP 2.5–3.5, and >80% 
plasma stability at 24h.

LLM

Molecular Design Prompt Construction Output

Molecule: Celecoxib analog (SMILES: 
Cc1ccc(NS(=O)(=O)c2ccc(cc2)C(F)(F
)F)cc1) 
Predicted properties: COX-2 IC50 = 8 
nM; LogP: 3; 

DNA RNA

PROTEIN

DRUG

Figure 3: Representative prompting workflows across DNA, RNA, protein, and drug-related tasks.

specific tasks, has been widely applied across vari-404

ous domains. It is extensively used in natural lan-405

guage processing (e.g., GPT (Achiam et al., 2023),406

Llama (Touvron et al., 2023) for text categorization,407

summarization, Q&A, etc.) and bioinformatics408

(e.g., DNABERT (Ji et al., 2021) for recognizing409

DNA sequences, GPT-4 for annotating RNA-seq410

data (Hou and Ji, 2024), and sequential prompts for411

improving protein structure prediction and molecu-412

lar design). By embedding task-relevant informa-413

tion in prompts, this technique focuses the model’s414

attention on producing high-quality categorization,415

prediction, or generative output, making it an effec-416

tive tool for solving complex problems due to its417

flexibility and data efficiency. The following sec-418

tions categorize and summarize prompting meth-419

ods across DNA, RNA, protein, and drug discovery420

domains, with a detailed taxonomy illustrated in421

Figure 4.422

3.1 DNA Sequences423

NexLeth (Zhang et al., 2024a) is a novel approach424

for generating natural language explanations of SL425

mechanisms, which are critical for cancer drug dis-426

covery. The NexLeth pipeline integrates SL knowl- 427

edge graphs with personalized prompt templates, 428

enhancing explainability and textual coherence in 429

SL predictions. 430

PLPMpro (Li et al., 2023) is a prompt-learning 431

framework that leverages pre-trained models such 432

as DNABERT (Ji et al., 2021) for promoter se- 433

quence prediction. By employing soft templates 434

and verbalizers, PLPMpro effectively captures bio- 435

logically meaningful sequence patterns, such as the 436

TATA-box motif, achieving state-of-the-art (SOTA) 437

performance. 438

3.2 RNA Sequences 439

PathoTME (Meng et al., 2024) is a genomics- 440

guided deep learning framework for tumor microen- 441

vironment (TME) subtype prediction. Utilizing vi- 442

sual prompt tuning (VPT) and domain adversarial 443

networks, PathoTME achieves superior classifica- 444

tion performance while addressing tissue hetero- 445

geneity challenges. 446

GPTCellType (Hou and Ji, 2024) applies GPT-4 447

for automated cell type annotation in single-cell 448

RNA sequencing (scRNA-seq). GPTCellType out- 449
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performs traditional methods, demonstrating ro-450

bustness to noisy datasets and underscoring the451

potential of LLMs for RNA-related analyses.452

3.3 Protein Sequences453

InterDiff (Wu et al., 2024) is a diffusion-based454

molecular generative model. By incorporating in-455

teraction prompts, InterDiff guides molecular de-456

sign for protein-ligand interactions and achieves457

superior performance in predicting binding affinity458

and interaction specificity.459

Linker-Tuning (Zou et al., 2023) is a lightweight460

adaptation method for LLMs such as ESMFold461

(Lin et al., 2023). This approach improves the462

prediction of heterodimeric protein structures and463

achieves competitive accuracy while reducing com-464

putational costs.465

InstructProtein (Wang et al., 2023) is a bidirec-466

tional framework that bridges protein and human467

languages. By leveraging instruction tuning, this468

model excels at zero-shot protein function annota-469

tion and de novo sequence design.470

PromptMSP (Gao et al., 2024) enhances multimer471

structure prediction through just-in-time learning472

and meta-learning. PromptMSP integrates condi-473

tional PPI knowledge and improves accuracy by474

reorganizing multimer prediction into fixed-scale475

tasks. The results for PDB-M show that the method476

outperforms the baseline method.477

ConfProtein (Zhang et al., 2022) enhances pre-478

trained protein models (PTPMs) with the help of479

prompt learning, integrating sequence and interac-480

tion conformational cues to capture protein confor-481

mations. From the results, ConfProtein improves482

PPI prediction and antibody binding while main-483

taining sequence correlation performance, and is484

effectively validated on multiple datasets.485

ProLLM (Jin et al., 2024) leverages LLMs and the486

Protein Chain of Thought (ProCoT) mechanism487

to model direct and indirect protein-protein inter-488

actions (PPIs) as inference tasks. By integrating489

ProtTrans embeddings and instruction fine-tuning,490

it achieves SOTA performance in PPI prediction.491

3.4 Drug Discovery492

HGTDP-DTA (Xiao et al., 2024) is a hybrid Graph-493

Transformer framework with dynamic prompt gen-494

eration for drug-target binding affinity predic-495

tion. This model integrates both graph-based and496

sequence-based representations, achieving superior497

performance over SOTA methods on benchmark498

datasets.499

Latent Prompt Transformer (Kong et al., 2024) 500

is a generative framework for molecule design. By 501

incorporating latent prompts into a unified archi- 502

tecture, the Latent Prompt Transformer achieves 503

SOTA performance in multi-objective molecule op- 504

timization and drug-like molecule generation. 505

In-Context Learning for Drug Synergy Predic- 506

tion (Edwards et al., 2023) introduces an in-context 507

learning strategy for predicting synergistic drug 508

combinations. By leveraging masking techniques 509

and graph representations, this approach enhances 510

personalized drug synergy prediction. 511

3.5 The Significance of AlphaFold and ESM 512

AlphaFold. AlphaFold (Jumper et al., 2021; 513

Abramson et al., 2024) has revolutionized protein 514

structure prediction, achieving near-atomic accu- 515

racy in determining 3D structures directly from 516

amino acid sequences. By leveraging attention- 517

based architectures, it has made notable progress 518

toward addressing the challenge of protein folding, 519

thereby accelerating advancements in drug discov- 520

ery and enzyme engineering. 521

ESM Series. The ESM series, including ESMFold 522

(Lin et al., 2023) and ESM-2 (Rives et al., 2019), 523

represents a major leap in protein language model- 524

ing by enabling high-throughput structure predic- 525

tion without the need for multiple sequence align- 526

ments (MSAs). ESM-3 (Hayes et al., 2025) further 527

expands this capability, integrating sequence, struc- 528

ture, and function while maintaining computational 529

efficiency. These models are invaluable for large- 530

scale proteome analysis, facilitating the study of 531

poorly characterized protein families. 532

4 Challenges 533

Data Scarcity and High Labeling Costs. High- 534

quality datasets for DNA/RNA sequences, such 535

as NexLeth (Zhang et al., 2024a) for SL gene 536

pairs, often require manual curation and expert re- 537

view, making them expensive and limited in scale, 538

especially for rare diseases and minority species 539

(Graefe et al., 2025). In protein studies, experi- 540

mentally determined structures and reliable anno- 541

tations remain insufficient, particularly for multi- 542

chain complexes, protein interactions, and diverse 543

conformations. Without robust experimental valida- 544

tion or high-confidence labels, performance gains 545

from prompt-based methods are often hard to repro- 546

duce (Chen et al., 2024). Similarly, in drug discov- 547

ery, drug-target affinity (DTA) data is scarce and ex- 548
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pensive, limiting generalization across small sam-549

ples, species, and novel targets (Pei et al., 2023).550

Difficulties in Multimodal Feature Fusion. Bioin-551

formatics often involves integrating sequence,552

structure, image, and phenotypic data. While meth-553

ods like PathoTME (Meng et al., 2024) have com-554

bined visual prompts with genomic data for tu-555

mor subtype prediction, fusing high-dimensional556

data, such as images, protein 3D structures, tran-557

scriptomes, and molecular graphs, within a uni-558

fied prompt framework remains a significant chal-559

lenge (Koh et al., 2024). This complexity inten-560

sifies in tasks like protein-ligand interactions or561

polymer modeling, where rich contextual and de-562

pendency information is essential, yet current mod-563

els struggle to scale effectively (Cao et al., 2024).564

Computational Resource Constraints. Large-565

scale pre-trained models, such as ESM-2 (Rives566

et al., 2019) and Evo (Zhang et al., 2024c; Nguyen567

et al., 2024), excel at handling long sequences and568

large datasets but incur high computational and569

training costs. While higher-order models like570

AlphaFold-3 (Abramson et al., 2024) and ESMFold571

(Lin et al., 2023) offer impressive accuracy but de-572

mand substantial hardware, limiting accessibility573

for smaller research groups. Additionally, prompt-574

based approaches often require task-specific de-575

signs, such as linker-tuning or dynamic prompt576

generation, to adapt to different downstream tasks577

or data distributions (Giray, 2023). Without ef-578

ficient strategies, the cost of model iteration and579

optimization can become prohibitively high (Ye580

and Durrett, 2022).581

5 Future directions582

Data-Centric Synthetic Annotation Methods. To583

address data scarcity, future work can explore semi-584

supervised learning, domain adaptation, and syn-585

thetic data generation (Zha et al., 2025; Hu et al.,586

2024; Zhang et al., 2024b). For instance,generative587

models can augment limited experimental samples,588

while active learning frameworks can guide an-589

notation more effectively and help prompt-based590

models generalize in resource-poor domains (Zhao591

et al., 2020).592

Multi-Modal Prompt Fusion. Beyond sequence-593

level prompts, unifying structural, image, and594

metagenomic data, among others, is a future595

direction (Liu et al., 2024). Meanwhile, designing596

consistent cross-modal prompts and specialized597

attention layers helps models capture more598

complex correlations (Ampazis and Sakketou, 599

2024). To illustrate current capabilities, Figure 5 600

presents a case study where we apply four LLMs to 601

generate DNA sequences in response to a unified 602

prompt requesting TD-related sequences with 603

controlled GC content and codon usage, based on 604

a reference sequence: GATAGAGAGACAAA- 605

GAGGAAAAGAGAGCGAGGTAGAAAACG- 606

GATACTGCCTATGCCTACTCCATCCCTCT. 607

AlphaFold3 (Abramson et al., 2024) is then used 608

to predict the structures from each LLM-generated 609

DNA sequence. Structural alignment against the 610

ground truth reveals notable variation in accuracy, 611

with LLMs like Qwen-2.5-Max (Yang et al., 612

2024) achieving lower root mean square deviation 613

(RMSD) and higher local distance difference test 614

(LDDT) scores, indicating superior structural 615

fidelity. Building on this, we further evaluate the 616

performance of these four LLMs in generating 617

sequences related to three other rare diseases, 618

Landau Kleffner Syndrome (LKS) (Figure 6), 619

Progressive Multifocal Leukoencephalopathy 620

(PML) (Figure 7), and Paraneoplastic Neurologic 621

Syndromes (PNS) (Figure 8), using the same strat- 622

egy. Two summary tables showing the landscape 623

of both global RMSD and LDDT between ground 624

truth and predicted DNA structures can be found 625

in Table 1 and Table 2. 626

Lightweight and Efficient Adaptation. To allevi- 627

ate resource constraints, methods like quantization, 628

model pruning (Cheng et al., 2024), knowledge 629

refinement (Subagdja et al., 2024), and low-rank 630

adaptation (LoRA) (Hu et al., 2021; Wang et al., 631

2024b,a) reduce model size while preserving per- 632

formance. These scaffolds enable smaller labs to 633

utilize prompt-based models more efficiently and 634

accelerate model refinement. 635

6 Conclusion 636

In this survey, we examined how prompt-based 637

methods enhance LLMs for biological sequence 638

analysis, including applications in DNA, RNA, 639

proteins, and drug discovery. Prompt engineer- 640

ing enables generalization in low-resource settings 641

through zero- and few-shot learning. We out- 642

line three key directions for future research: data- 643

centric prompting, unified multimodal integration, 644

and scalable, efficient prompting. As LLMs evolve, 645

these approaches will be pivotal in advancing preci- 646

sion medicine and computational biology, unlock- 647

ing new opportunities for AI-driven bioinformatics. 648
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Limitations649

This study is the first survey of recent advance-650

ments in biological sequence with language model651

prompting. We have made our best effort, but some652

limitations remain. We present recent methods653

and application domains rather than an exhaustive654

coverage. Due to space constraints, we can only655

provide brief method summaries without exhaus-656

tive technical details. Due to focusing primarily on657

publication from bioinformatics-related journals or658

conferences, we may have overlooked significant659

work published in other venues. We will continue660

to monitor the research community, incorporate661

new perspectives, and address any omissions in662

future updates.663

In addition, we only use AI tools to polish the664

language of our paper.665

Ethics Statement666

This paper does not involve ethics-related issues.667
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Figure 4: Hierarchical taxonomy of prompt-based applications in biological sequence modeling.
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Figure 5: Structural alignment between the ground truth structure (light blue), a 70 bp DNA related to Tardive
Dyskinesia (TD) biogenesis, and the predicted structures based on prompt-based generated DNA sequences: (a)
DeepSeek-R1 (purple), Global RMSD = 16.88 Å, TM Score = 0.2702, LDDT = 0.441. (b) Qwen-2.5-Max (salmon),
Global RMSD = 5.01 Å, TM Score = 0.4132, LDDT = 0.815. (c) Llama-3.3-70B (light green), Global RMSD =
14.34 Å, TM Score = 0.3089, LDDT = 0.577. (d) GPT-4o (lavender), Global RMSD = 6.39 Å, TM Score = 0.3285,
LDDT = 0.653. (Reference sequence: GATAGAGAGACAAAGAGGAAAAGAGAGCGAGGTAGAAAACGGAT-
ACTGCCTATGCCTACTCCATCCCTCT)
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Figure 6: Structural alignment between the ground truth structure (light blue), a 70 bp DNA related to Landau Kl-
effner Syndrome (LKS) biogenesis, and the predicted structures based on prompt-based generated DNA sequences:
(a) DeepSeek-R1 (purple), Global RMSD = 21.87 Å, TM Score = 0.2096, LDDT = 0.401. (b) Qwen-2.5-Max
(salmon), Global RMSD = 9.58 Å, TM Score = 0.4462, LDDT = 0.551. (c) Llama-3.3-70B (light green), Global
RMSD = 23.73 Å, TM Score = 0.1422, LDDT = 0.257. (d) GPT-4o (lavender), Global RMSD = 33.72 Å, TM Score
= 0.1464, LDDT = 0.334. (Reference sequence: CTCTTTCTCTCCCTACCTCCCTCGCTCAGCAGCTCCCG-
GTCGCACAACTCCCAGCAGCCGGCGCTGGGGA)
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Figure 7: Structural alignment between the ground truth structure (light blue), a 70 bp DNA related to Progressive
Multifocal Leukoencephalopathy (PML) biogenesis, and the predicted structures based on prompt-based generated
DNA sequences: (a) DeepSeek-R1 (purple), Global RMSD = 4.85 Å, TM Score = 0.4547, LDDT = 0.405. (b)
Qwen-2.5-Max (salmon), Global RMSD = 5.93 Å, TM Score = 0.4086, LDDT = 0.850. (c) Llama-3.3-70B (light
green), Global RMSD = 25.45 Å, TM Score = 0.1769, LDDT = 0.326. (d) GPT-4o (lavender), Global RMSD =
35.53 Å, TM Score = 0.2717, LDDT = 0.388. (Reference sequence: CCAAAGGCTAGATTTAAAAACCCCAAAT-
GTGCAATCTGGTGAATTTATAGAAAGAAGTATTGCACCAGGA)
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Figure 8: Structural alignment between the ground truth structure (light blue), a 70 bp DNA related to Paraneo-
plastic Neurologic Syndromes (PNS) biogenesis, and the predicted structures based on prompt-based generated
DNA sequences: (a) DeepSeek-R1 (purple), Global RMSD = 5.12 Å, TM Score = 0.3245, LDDT = 0.407. (b)
Qwen-2.5-Max (salmon), Global RMSD = 10.26 Å, TM Score = 0.2387, LDDT = 0.682. (c) Llama-3.3-70B (light
green), Global RMSD = 6.74 Å, TM Score = 0.3604, LDDT = 0.441. (d) GPT-4o (lavender), Global RMSD = 25.20
Å, TM Score = 0.3232, LDDT = 0.326. (Reference sequence: AGCAGACGCTCCCTCAGCAAGGACAGCAGAG-
GACCAGCTAAGAGGGAGAGAAGCAACTACAGACCCCCCC)
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LLM
Disease

LKS PML PNS TD

DeepSeek-R1 22.77 24.21 11.14 9.94
Qwen-2.5-Max 20.68 35.45 15.98 4.82
Llama-3.3-70B 27.79 22.57 9.72 8.68
GPT-4o 25.03 26.29 13.67 11.48

Table 1: Landscape of global RMSD (Å) between
ground truth and predicted DNA structures for a 70
bp sequence associated with the biogenesis of the four
rare diseases listed above. The predicted structures
were generated by four LLMs prompted with the same
biological query. For each LLM and disease, n = 10 se-
quences were generated, and each cell reports the mean
RMSD across these predictions. The value of RMSD
is always used to quantify the structural divergence be-
tween each predicted DNA structure and the ground
truth, with lower values indicating higher structural
fidelity. Bolded values denote the lowest RMSD in
each disease column, highlighting the most accurate
prediction per condition.

LLM
Disease

LKS PML PNS TD

DeepSeek-R1 0.457 0.519 0.523 0.595
Qwen-2.5-Max 0.388 0.318 0.592 0.863
Llama-3.3-70B 0.361 0.327 0.517 0.540
GPT-4o 0.451 0.556 0.543 0.527

Table 2: Landscape of LDDT between ground truth
and predicted DNA structures for a 70 bp sequence
associated with the biogenesis of the four rare diseases
listed above. The predicted structures were generated
by four LLMs prompted with the same biological query.
For each LLM and disease, n = 10 sequences were
generated, and each cell reports the mean LDDT across
these predictions. The value of LDDT, ranging from 0
to 1, is always used to quantify the structural divergence
between each predicted DNA structure and the ground
truth, with higher values indicating higher structural
fidelity. Bolded values denote the highest LDDT in
each disease column, highlighting the most accurate
prediction per condition.
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