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Abstract

Large Language models (LLMs) have emerged
as powerful tools for addressing challenges
across diverse domains. Notably, recent stud-
ies have demonstrated that LLMs can substan-
tially improve the efficiency of biomolecular
analysis and synthesis, garnering increasing
attentions across both academic research and
medical applications. In this paper, we sys-
tematically investigate how LLMs, guided by
prompt-based methodologies,can be applied to
biological sequence analysis, including DNA,
RNA, proteins, and tasks related to drug dis-
covery. Specifically, we explore how prompt
engineering enables LLMs to tackle domain-
specific problems, such as promoter sequence
prediction, protein structure modeling, and
drug-target binding affinity prediction, often
in scenarios with limited labeled data. Further-
more, our discussion highlights the transforma-
tive potential of prompting in bioinformatics
while addressing key challenges such as data
scarcity, multimodal fusion, and computational
resource limitations. This paper is intended to
serve both as a foundational resource for new-
comers and as a springboard for ongoing inno-
vation in this rapidly evolving field of study.

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable advancements, primarily due
to their capabilities in modeling the hidden rela-
tionships within textual sequences (Achiam et al.,
2023; Dubey et al., 2024). This innovation presents
a compelling opportunity for bioinformatics, where
biological sequences (e.g., DNA, RNA, and pro-
teins) exhibit structural and statistical similarities
to natural languages (Searls, 1997). By leverag-
ing LLMs, researchers can uncover meaningful
patterns from these sequences, leading to notable
breakthroughs in diverse downstream tasks, such
as classification, structure prediction and drug dis-
covery, as illustrated in the general workflow of
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Figure 1: Diagram of LLM prompting for de novo de-
sign of biomolecules. (a) General workflow illustrating
how biological sequences and task-specific knowledge
are used to construct prompts. These prompts are then
processed by LLMs to generate biologically coherent
and task-aligned sequence predictions. (b) Diagram of
an RNA-specific case, where the task is to identify func-
tional binding sites within a given RNA sequence. A
prompt is constructed accordingly and used to guide the
LLM in generating the desired output sequence.

Figure 1a. Figure 1b further highlights a concrete
example in the context of RNA function analy-
sis, which underscores the importance of effective
prompt engineering in enabling LLMs to perform
meaningful biological inference even with limited
labeled data. However, despite this potential, sev-
eral challenges remain in applying LLMs to biolog-
ical sequence analysis. One of the most pressing
issues is data scarcity, as labeled biological datasets
are always expensive and labor-intensive to obtain.
This limitation significantly restricts the effective-
ness of traditional supervised learning approaches.

To address this issue, prompt engineering has
emerged as a powerful strategy to enhance the
adaptability of LLMs in biological contexts (Za-
ghir et al., 2024; Zhou and Ngo, 2024; Chang et al.,



2025). Specifically, prompt-based methods lever-
age in-context learning, allowing LLMs to perform
zero-shot and few-shot learning on biological tasks
with minimal labeled data. Representative models
(e.g., BERT (Devlin, 2018), GPT (Achiam et al.,
2023), ProtBERT (Brandes et al., 2022) and Evolu-
tionary Scale Modeling (ESM) (Lin et al., 2022))
have been successfully adapted to biological se-
quences through precisely designed prompts, al-
lowing them to generalize across a range of tasks
represented by promoter sequence prediction, pro-
tein structure modeling, and drug-target binding
affinity prediction. Figure 2 showcases this rapid
evolution, highlighting key milestones from foun-
dational models to recent prompt-driven advances.
Organization of This Survey: In this paper, we
conduct the first survey of recent advancements
in biological sequence analysis through language
model prompting. We begin by introducing the fun-
damentals of biological sequences and explaining
how prompt engineering facilitates LLMs applica-
tions in various downstream taks accross different
domains (§2). Representative examples of these
applications are visually summarized in Figure 3,
which categorizes prompt-based workflows across
four major biological areas, highlighting the role of
prompt construction in guiding LLMs outputs. We
then present a detailed survey of prompting method-
ologies (§3), classifying existing approaches by bi-
ological domains and task-specific objectives. A
structured taxonomy of involved literature is pro-
vided in Figure 4. In parallel, we examine the
transformative role of AlphaFold (Jumper et al.,
2021; Abramson et al., 2024) and the ESM series
(Rives et al., 2019; Lin et al., 2022, 2023) (§3),
highlighting their contributions to protein structure
prediction and proteome-scale modeling. Next, we
outline several key challenges (§4) such as data
scarcity and high labeling costs then explore future
research directions (§5), focusing on multi-modal
prompt fusion, efficient adaptation techniques and
data-centric annotation strategies. Finally, we con-
clude this survey (§6) by summarizing key insights
and underscoring the role of prompt engineering in
advancing Al-driven biological research.

2 Biological Sequence Prompting Tasks

In this section, we first introduce the concept of
biological sequences and how language model-
ing and prompt engineering fit into bioinformat-
ics. Then, we outline how various biological tasks

can be formulated as natural language processing
(NLP) problems and provide a concise categoriza-
tion of their application domains (DNA, RNA, pro-
teins, and drug discovery), setting the stage for the
methodological discussions in subsequent sections.

2.1 Biological Sequences

Biological sequences, such as DNA, RNA, and pro-
teins, can be viewed as linear arrangements of to-
kens from their respective alphabets. For instance,
DNA and RNA use nucleotides {A, C, G, T/U},
while proteins typically involve 20 standard amino
acids. Formally, a biological sequence of length L
is denoted as

S:{ZL‘l,...,l’L}, (1)
where each token x; is drawn from an alphabet
A. These sequences carry crucial information for
cellular processes, such as gene expression, protein
folding, and molecular interactions. Understanding
and modeling these sequences is central to many
tasks in computational biology.

2.2 Prompt Engineering

Prompts further enhance the power of LLMs by
integrating task-specific cues into the input of the
model. This is achieved through textual templates
or continuous embeddings, which we denote ab-
stractly as:

T = f(S, P;0), 2)

where .S represents biological sequence, P encodes
domain-specific information as a prompt, and 6 de-
notes the model parameters. Prompting is particu-
larly valuable in data-scarce scenarios (e.g., zero-
shot or few-shot learning), guiding the model to
focus on relevant biological patterns.

2.3 Overview of Prompt-Based Task Mapping

Biological tasks such as promoter prediction or
modeling of protein-ligand binding interactions
can be effectively reinterpreted as NLP tasks us-
ing prompts. For instance, in promoter prediction,
specific segments of a DNA sequence can be re-
placed with [MASK] tokens, transforming the task
into a masked language modeling problem. Simi-
larly, protein-ligand binding affinity prediction can
be framed as a question-answering or fill-in-the-
blank prompt, focusing on molecular compatibility.
By carefully designing prompts, researchers lever-
age the extensive pretraining of LLMs to achieve
strong performance even with limited labeled data.
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Figure 2: Milestones in the evolution of LL.Ms and prompt-based advances for computational biology.

In this section, we provide an overview of four key
application areas in biological sequence analysis:

2.3.1 DNA

Promoter Identification. Detects promoter re-
gions in DNA sequences, capturing key motifs
such as the TATA-box to understand gene regula-
tion. Benefiting from the remarkable performance
of prompting, we effectively reinterpreted this task
as an NLP task by constructing proper prompts,
which can be formally defined as follows:

H = MDNA(57 Pprom)y (3)
where S is the input DNA sequence, Mpna is the
large language model of DNA for promoter iden-
tification, Fyronm is is the constructed prompt, and
H is the predicted promoter region with functional
motifs.

For example, given a sequence S =
{ATGCGATACTAGGATATAAGCTAG}.
To detect the promoter region in this DNA
sequence, we design this prompt: "Locate the
promoter region between positions X-Y in [S]
containing TATA-box motifs." Then the DNA
sequence and constructed prompts are inputted into
the language models to generate more accurate
results.

Mechanism Explanation. Generates interpretable
insights into synthetic lethality (SL) mechanisms,

aiding in identifying potential cancer drug targets.
Benefiting from the remarkable performance of
prompting, we effectively reinterpreted this task
as an NLP task by constructing proper prompts,
which can be formally defined as follows:

J = Mpna(Sy, Pa), 4

where S, is the input gene pair, Mpna is the large
language model of DNA for mechanism explana-
tion, Py is the constructed prompt, and J is the
structured explanation of SL interactions.

For instance, given a gene pair S, =
{BRCA1, PARP1}. To explain the SL mech-
anism, we construct a corresponding prompt: "Ex-
plain the synthetic lethality mechanism between
[Gene A] and [Gene B], focusing on DNA repair
pathways". Then, the gene pair and constructed
prompts are inputted into the language models to
generate more accurate results.

2.3.2 RNA

RNA Functional Element Analysis. Identifies and
characterizes splicing signals, regulatory elements,
and sequence motifs associated with gene expres-
sion regulation. Benefiting from the remarkable
performance of prompting, we effectively reinter-
preted this task as an NLP task by constructing
proper prompts, which can be formally defined as
follows:

R= MRNA(Sv Pf)7 (5)



where S is the input RNA sequence, Mgrna is the
large language model of RNA for functional ele-
ment analysis, Py is the constructed prompt, and
R is the generated response, which corresponds to
the functional element E.

Moreover, we take a specific example to il-

lustrate how to use a prompt-based method
to model RNA-related tasks as NLP tasks.
For instance, given an RNA sequence S =
{AUCGGAUCCGY}, we want to identify specific
regions within .S, which are binding sites of RNA.
We can construct a corresponding prompt: "Iden-
tify the binding site in the following RNA sequence:
[S]1". Then, the RNA sequence and constructed
prompts are inputted into the language models to
generate more accurate results (Figure 1b).
Cell Type Annotation. Automates the classifica-
tion of cell types in single-cell RNA sequencing
(scRNA-seq) data, improving accuracy in diverse
and noisy datasets. Benefiting from the remarkable
performance of prompting, we effectively reinter-
preted this task as an NLP task by constructing
proper prompts, which can be formally defined as
follows:

L = Mgrna(Se, Peent), (6)

where S, is the input gene expression profile,
Mgna is large language model of RNA for cell
type annotation, Py is the constructed prompt,
and L corresponds to the predicted cell type labels
with confidence scores.

Moreover, we take a specific example to illus-
trate how to use a prompt-based method to model
RNA-related tasks as NLP tasks. For instance,
given a cell expression profile S, = {CD3FE :
12.8,CD8A : 9.4,CD19 : 0.3, MS4A1 : 0.1},
we construct a corresponding prompt: "Classify
this scRNA-seq cell’s type based on top expressed
genes: [S], and include canonical markers". Then,
the cell expression profile and constructed prompts
are inputted into the language models to generate
more accurate results.

2.3.3 Protein

Protein Structure Modeling and Prediction. Fo-
cuses on determining the three-dimensional struc-
ture of proteins from amino acid sequences, which
is crucial for understanding function and interac-
tions. Benefiting from the remarkable performance
of prompting, we effectively reinterpreted this task
as an NLP task by constructing proper prompts,

which can be formally defined as follows:
b = Mprotein(Sa Pfold) (7)

where S'is the input amino acid sequence, Mpotein
is large language model of protein for structure
modeling and prediction, Pryq is the is the con-
structed prompt, and ® corresponds to the predicted
structural coordinates.

For example, given a sequence S =

{GVNPGV APLSLLI}, we can construct a cor-
responding prompt: "Predict the tertiary structure
topology for [S] with secondary structure annota-
tions". Then, the protein sequence and constructed
prompts are inputted into the language models to
generate more accurate results.
Molecular Interaction Modeling. Studies how
proteins interact with other molecules, including
ligands and other proteins, to inform drug design
and functional analysis. Benefiting from the re-
markable performance of prompting, we effectively
reinterpreted this task as an NLP task through con-
structing proper prompts, which can be formally
defined as follows:

I' = Mprotein(Sla Pinteract)7 (8)

where S; is the input molecular pair, Mpotein 1S
large language model of protein for molecular in-
teraction modeling, Pipeeract 18 the is the constructed
prompt, and I" corresponds to the predicted binding
parameters.

For instance, given a kinase-ligand pair S; =

{EGF Rkinase MGPSV...,Gefitinib
Cl = CN = CC = C1}, we can construct
a corresponding prompt: "Predict binding mode
between EGFR kinase and Gefitinib, identifying
critical hydrogen bonds and hydrophobic contacts".
Then, the molecular pair and constructed prompts
are inputted into the language models to generate
more accurate results.
Protein Language-Based Generation. Explores
the generation of protein sequences and functional
annotations using language-inspired models, facili-
tating de novo protein design. Benefiting from the
remarkable performance of prompting, we effec-
tively reinterpreted this task as an NLP task by con-
structing proper prompts, which can be formally
defined as follows:

v = Mprotein(Pdesigm 0)7 (9)

where 0 is functional constraints, Mproein is a large
language model of protein for de novo protein de-



sign, Pesign 1 the constructed prompt, and W cor-
responds to the generated protein sequence with
structural and functional metadata.

For example, given a target,to engineer a ther-

mostable enzyme, we can construct a correspond-
ing prompt: "Generate a [3-lactamase variant with
enhanced thermal stability and maintained catalytic
efficiency". Then, the constructed prompts is in-
putted into the language models to generate more
accurate results.
Other Protein-Related Tasks. Includes Polypep-
tide Design, Conformation Perception, and Protein
Interaction Reasoning, expanding applications in
structural and functional biology. Benefiting from
the remarkable performance of prompting, we ef-
fectively reinterpreted this task as an NLP task
by constructing proper prompts, which can be for-
mally defined as follows:

K = Mprotein(sra Ptask)a (10)

where S, are the task-specific inputs, Mpoein 18
a large language model of protein for other tasks,
Pk 1s the constructed prompt, and K corresponds
to multimodal outputs spanning sequences, struc-
tures, and mechanistic insights.

For easy understanding, we will illustrate how
these protein-related tasks can be modeled as NLP
tasks using a cue-based approach by following
three concrete examples. First, in order to generate
antimicrobial peptides, we can construct a corre-
sponding prompt: "Design a 15-residue cationic
a-helical peptide targeting Gram-negative bacte-
ria with <10% hemolysis". Second, given a ki-
nase sequence S, = {IGPGRAFVTY}, in order
to predict conformational, we can construct a corre-
sponding prompt: "Predict conformational changes
upon ATP binding". Finally, given a ubiquitin-
ligase pair S, = {Ubiquitin, E6AP}. To reason
about protein interactions, we can construct a cor-
responding prompt: "Infer recognition mechanism
for Ub-E6AP complex formation". Then, the in-
puts and constructed prompts are inputted into the
language models to generate more accurate results.

2.3.4 Drug Discovery

Drug-Target Binding Prediction. Focuses on es-
timating the binding affinity between drugs and
their molecular targets, aiding in the identification
of potential therapeutics. Benefiting from the re-
markable performance of prompting, we effectively
reinterpreted this task as an NLP task by construct-
ing proper prompts, which can be formally defined

as follows:

N = Marg(S4, St, Boind), (11)
where S, is the drug molecular structure, S; is the
target protein sequence, Mg 18 the large language
model of drug for target binding prediction, Pping
is the constructed prompt, and N corresponds to
predicted binding metrics.

For example, given the anticancer drug Gefi-

tinib and EGFR kinase, we can construct a cor-
responding prompt: "Predict binding affinity and
critical interactions between Gefitinib and EGFR
kinase".Then, the inputs and constructed prompts
are inputted into the language models to generate
more accurate results.
Molecular Design. Involves generating and op-
timizing molecular structures to achieve desired
pharmaceutical properties, such as bioavailability
and synthetic accessibility. Benefiting from the re-
markable performance of prompting, we effectively
reinterpreted this task as an NLP task by construct-
ing proper prompts, which can be formally defined
as follows:

U= Mdrug(ea Pdesign>7 (12)
where 0 is target property specifications, Mgy is
a large language model of drug for molecular de-
sign, Pesign i the constructed prompt, and U cor-
responds to the generated molecule.

For instance, to design a non-steroidal anti-
inflammatory drug (NSAID) with reduced gastroin-
testinal toxicity, we can construct a correspond-
ing prompt: "Generate a COX-2 selective inhibitor
with IC59 < 10nM, LogP 2.5-3.5, and > 80%
plasma stability at 24h". Then, the constructed
prompts are inputted into the language models to
generate more accurate results.

In the next sections, we will delve deeper into the
specific methods, discussing their performance and
how prompt-based strategies are reshaping biologi-
cal sequence analysis. By encoding domain knowl-
edge through carefully designed prompts, LLMs
have become powerful tools for tackling complex
tasks in DNA, RNA, protein, and drug discovery.

3 Prompting Applications in Biological
Sequences

Prompting technology, which is especially suitable
for zero/few sample learning by designing prompts
for pre-trained models to guide them to accomplish
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Figure 3: Representative prompting workflows across DNA, RNA, protein, and drug-related tasks.

specific tasks, has been widely applied across vari-
ous domains. It is extensively used in natural lan-
guage processing (e.g., GPT (Achiam et al., 2023),
Llama (Touvron et al., 2023) for text categorization,
summarization, Q&A, etc.) and bioinformatics
(e.g., DNABERT (Ji et al., 2021) for recognizing
DNA sequences, GPT-4 for annotating RNA-seq
data (Hou and Ji, 2024), and sequential prompts for
improving protein structure prediction and molecu-
lar design). By embedding task-relevant informa-
tion in prompts, this technique focuses the model’s
attention on producing high-quality categorization,
prediction, or generative output, making it an effec-
tive tool for solving complex problems due to its
flexibility and data efficiency. The following sec-
tions categorize and summarize prompting meth-
ods across DNA, RNA, protein, and drug discovery
domains, with a detailed taxonomy illustrated in
Figure 4.

3.1 DNA Sequences

NexLeth (Zhang et al., 2024a) is a novel approach
for generating natural language explanations of SL
mechanisms, which are critical for cancer drug dis-

covery. The NexLeth pipeline integrates SL knowl-
edge graphs with personalized prompt templates,
enhancing explainability and textual coherence in
SL predictions.

PLPMpro (Li et al., 2023) is a prompt-learning
framework that leverages pre-trained models such
as DNABERT (Ji et al., 2021) for promoter se-
quence prediction. By employing soft templates
and verbalizers, PLPMpro effectively captures bio-
logically meaningful sequence patterns, such as the
TATA-box motif, achieving state-of-the-art (SOTA)
performance.

3.2 RNA Sequences

PathoTME (Meng et al., 2024) is a genomics-
guided deep learning framework for tumor microen-
vironment (TME) subtype prediction. Utilizing vi-
sual prompt tuning (VPT) and domain adversarial
networks, PathoTME achieves superior classifica-
tion performance while addressing tissue hetero-
geneity challenges.

GPTCellType (Hou and Ji, 2024) applies GPT-4
for automated cell type annotation in single-cell
RNA sequencing (scRNA-seq). GPTCellType out-



performs traditional methods, demonstrating ro-
bustness to noisy datasets and underscoring the
potential of LLMs for RNA-related analyses.

3.3 Protein Sequences

InterDiff (Wu et al., 2024) is a diffusion-based
molecular generative model. By incorporating in-
teraction prompts, InterDiff guides molecular de-
sign for protein-ligand interactions and achieves
superior performance in predicting binding affinity
and interaction specificity.

Linker-Tuning (Zou et al., 2023) is a lightweight
adaptation method for LLMs such as ESMFold
(Lin et al., 2023). This approach improves the
prediction of heterodimeric protein structures and
achieves competitive accuracy while reducing com-
putational costs.

InstructProtein (Wang et al., 2023) is a bidirec-
tional framework that bridges protein and human
languages. By leveraging instruction tuning, this
model excels at zero-shot protein function annota-
tion and de novo sequence design.

PromptMSP (Gao et al., 2024) enhances multimer
structure prediction through just-in-time learning
and meta-learning. PromptMSP integrates condi-
tional PPI knowledge and improves accuracy by
reorganizing multimer prediction into fixed-scale
tasks. The results for PDB-M show that the method
outperforms the baseline method.

ConfProtein (Zhang et al., 2022) enhances pre-
trained protein models (PTPMs) with the help of
prompt learning, integrating sequence and interac-
tion conformational cues to capture protein confor-
mations. From the results, ConfProtein improves
PPI prediction and antibody binding while main-
taining sequence correlation performance, and is
effectively validated on multiple datasets.
ProLLM (Jin et al., 2024) leverages LLMs and the
Protein Chain of Thought (ProCoT) mechanism
to model direct and indirect protein-protein inter-
actions (PPIs) as inference tasks. By integrating
ProtTrans embeddings and instruction fine-tuning,
it achieves SOTA performance in PPI prediction.

3.4 Drug Discovery

HGTDP-DTA (Xiao et al., 2024) is a hybrid Graph-
Transformer framework with dynamic prompt gen-
eration for drug-target binding affinity predic-
tion. This model integrates both graph-based and
sequence-based representations, achieving superior
performance over SOTA methods on benchmark
datasets.

Latent Prompt Transformer (Kong et al., 2024)
is a generative framework for molecule design. By
incorporating latent prompts into a unified archi-
tecture, the Latent Prompt Transformer achieves
SOTA performance in multi-objective molecule op-
timization and drug-like molecule generation.
In-Context Learning for Drug Synergy Predic-
tion (Edwards et al., 2023) introduces an in-context
learning strategy for predicting synergistic drug
combinations. By leveraging masking techniques
and graph representations, this approach enhances
personalized drug synergy prediction.

3.5 The Significance of AlphaFold and ESM

AlphaFold. AlphaFold (Jumper et al., 2021;
Abramson et al., 2024) has revolutionized protein
structure prediction, achieving near-atomic accu-
racy in determining 3D structures directly from
amino acid sequences. By leveraging attention-
based architectures, it has made notable progress
toward addressing the challenge of protein folding,
thereby accelerating advancements in drug discov-
ery and enzyme engineering.

ESM Series. The ESM series, including ESMFold
(Lin et al., 2023) and ESM-2 (Rives et al., 2019),
represents a major leap in protein language model-
ing by enabling high-throughput structure predic-
tion without the need for multiple sequence align-
ments (MSAs). ESM-3 (Hayes et al., 2025) further
expands this capability, integrating sequence, struc-
ture, and function while maintaining computational
efficiency. These models are invaluable for large-
scale proteome analysis, facilitating the study of
poorly characterized protein families.

4 Challenges

Data Scarcity and High Labeling Costs. High-
quality datasets for DNA/RNA sequences, such
as NexLeth (Zhang et al., 2024a) for SL gene
pairs, often require manual curation and expert re-
view, making them expensive and limited in scale,
especially for rare diseases and minority species
(Graefe et al., 2025). In protein studies, experi-
mentally determined structures and reliable anno-
tations remain insufficient, particularly for multi-
chain complexes, protein interactions, and diverse
conformations. Without robust experimental valida-
tion or high-confidence labels, performance gains
from prompt-based methods are often hard to repro-
duce (Chen et al., 2024). Similarly, in drug discov-
ery, drug-target affinity (DTA) data is scarce and ex-



pensive, limiting generalization across small sam-
ples, species, and novel targets (Pei et al., 2023).
Difficulties in Multimodal Feature Fusion. Bioin-
formatics often involves integrating sequence,
structure, image, and phenotypic data. While meth-
ods like PathoTME (Meng et al., 2024) have com-
bined visual prompts with genomic data for tu-
mor subtype prediction, fusing high-dimensional
data, such as images, protein 3D structures, tran-
scriptomes, and molecular graphs, within a uni-
fied prompt framework remains a significant chal-
lenge (Koh et al., 2024). This complexity inten-
sifies in tasks like protein-ligand interactions or
polymer modeling, where rich contextual and de-
pendency information is essential, yet current mod-
els struggle to scale effectively (Cao et al., 2024).
Computational Resource Constraints. Large-
scale pre-trained models, such as ESM-2 (Rives
et al., 2019) and Evo (Zhang et al., 2024c; Nguyen
et al., 2024), excel at handling long sequences and
large datasets but incur high computational and
training costs. While higher-order models like
AlphaFold-3 (Abramson et al., 2024) and ESMFold
(Lin et al., 2023) offer impressive accuracy but de-
mand substantial hardware, limiting accessibility
for smaller research groups. Additionally, prompt-
based approaches often require task-specific de-
signs, such as linker-tuning or dynamic prompt
generation, to adapt to different downstream tasks
or data distributions (Giray, 2023). Without ef-
ficient strategies, the cost of model iteration and
optimization can become prohibitively high (Ye
and Durrett, 2022).

5 Future directions

Data-Centric Synthetic Annotation Methods. To
address data scarcity, future work can explore semi-
supervised learning, domain adaptation, and syn-
thetic data generation (Zha et al., 2025; Hu et al.,
2024; Zhang et al., 2024b). For instance,generative
models can augment limited experimental samples,
while active learning frameworks can guide an-
notation more effectively and help prompt-based
models generalize in resource-poor domains (Zhao
et al., 2020).

Multi-Modal Prompt Fusion. Beyond sequence-
level prompts, unifying structural, image, and
metagenomic data, among others, is a future
direction (Liu et al., 2024). Meanwhile, designing
consistent cross-modal prompts and specialized
attention layers helps models capture more

complex correlations (Ampazis and Sakketou,
2024). To illustrate current capabilities, Figure 5
presents a case study where we apply four LLMs to
generate DNA sequences in response to a unified
prompt requesting TD-related sequences with
controlled GC content and codon usage, based on
a reference sequence: GATAGAGAGACAAA-
GAGGAAAAGAGAGCGAGGTAGAAAACG-
GATACTGCCTATGCCTACTCCATCCCTCT.
AlphaFold3 (Abramson et al., 2024) is then used
to predict the structures from each LLM-generated
DNA sequence. Structural alignment against the
ground truth reveals notable variation in accuracy,
with LLMs like Qwen-2.5-Max (Yang et al,
2024) achieving lower root mean square deviation
(RMSD) and higher local distance difference test
(LDDT) scores, indicating superior structural
fidelity. Building on this, we further evaluate the
performance of these four LLMs in generating
sequences related to three other rare diseases,
Landau Kleffner Syndrome (LKS) (Figure 6),
Progressive Multifocal Leukoencephalopathy
(PML) (Figure 7), and Paraneoplastic Neurologic
Syndromes (PNS) (Figure 8), using the same strat-
egy. Two summary tables showing the landscape
of both global RMSD and LDDT between ground
truth and predicted DNA structures can be found
in Table 1 and Table 2.

Lightweight and Efficient Adaptation. To allevi-
ate resource constraints, methods like quantization,
model pruning (Cheng et al., 2024), knowledge
refinement (Subagdja et al., 2024), and low-rank
adaptation (LoRA) (Hu et al., 2021; Wang et al.,
2024b,a) reduce model size while preserving per-
formance. These scaffolds enable smaller labs to
utilize prompt-based models more efficiently and
accelerate model refinement.

6 Conclusion

In this survey, we examined how prompt-based
methods enhance LLMs for biological sequence
analysis, including applications in DNA, RNA,
proteins, and drug discovery. Prompt engineer-
ing enables generalization in low-resource settings
through zero- and few-shot learning. We out-
line three key directions for future research: data-
centric prompting, unified multimodal integration,
and scalable, efficient prompting. As LLMs evolve,
these approaches will be pivotal in advancing preci-
sion medicine and computational biology, unlock-
ing new opportunities for Al-driven bioinformatics.



Limitations

This study is the first survey of recent advance-
ments in biological sequence with language model
prompting. We have made our best effort, but some
limitations remain. We present recent methods
and application domains rather than an exhaustive
coverage. Due to space constraints, we can only
provide brief method summaries without exhaus-
tive technical details. Due to focusing primarily on
publication from bioinformatics-related journals or
conferences, we may have overlooked significant
work published in other venues. We will continue
to monitor the research community, incorporate
new perspectives, and address any omissions in
future updates.

In addition, we only use Al tools to polish the
language of our paper.

Ethics Statement

This paper does not involve ethics-related issues.
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Figure 5: Structural alignment between the ground truth structure (light blue), a 70 bp DNA related to Tardive
Dyskinesia (TD) biogenesis, and the predicted structures based on prompt-based generated DNA sequences: (a)
DeepSeek-R1 (purple), Global RMSD = 16.88 A, TM Score = 0.2702, LDDT = 0.441. (b) Qwen-2.5-Max (salmon),
Global RMSD = 5.01 A, TM Score = 0.4132, LDDT = 0.815. (c) Llama-3.3-70B (light green), Global RMSD =
14.34 A, TM Score = 0.3089, LDDT = 0.577. (d) GPT-40 (lavender), Global RMSD = 6.39 A, TM Score = 0.3285,
LDDT = 0.653. (Reference sequence: GATAGAGAGACAAAGAGGAAAAGAGAGCGAGGTAGAAAACGGAT-
ACTGCCTATGCCTACTCCATCCCTCT)
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Figure 6: Structural alignment between the ground truth structure (light blue), a 70 bp DNA related to Landau KI-
effner Syndrome (LKS) biogenesis, and the predicted structures based on prompt-based generated DNA sequences:
(a) DeepSeek-R1 (purple), Global RMSD = 21.87 A, TM Score = 0.2096, LDDT = 0.401. (b) Qwen-2.5-Max
(salmon), Global RMSD = 9.58 A, TM Score = 0.4462, LDDT = 0.551. (¢) Llama-3.3-70B (light green), Global
RMSD =23.73 A, TM Score = 0.1422, LDDT = 0.257. (d) GPT-40 (lavender), Global RMSD = 33.72 A, TM Score
=0.1464, LDDT = 0.334. (Reference sequence: CTCTTTCTCTCCCTACCTCCCTCGCTCAGCAGCTCCCG-
GTCGCACAACTCCCAGCAGCCGGCGCTGGGGA)

14



(A) (B)

DeepSeek-R1 Qwen-2.5-Max
-
/ Yy N .
Y. \
-~ 7 — — A
\ p* / vV,Y/
-
Global RMSD: 4.85 A Global RMSD: 5.93 A
TM Score: 0.4547 TM Score: 0.4086
LDDT: 0.405 LDDT: 0.850
GPT-4¢
>
Y/
y
\ 3¢
\ )
4; 4
Global RMSD: 25.45 A Global RMSD: 35.53 A ",»/ \
TM Score: 0.1769 TM Score: 0.2717 o 4
LDDT: 0.326 LDDT: 0.388 -

Figure 7: Structural alignment between the ground truth structure (light blue), a 70 bp DNA related to Progressive
Multifocal Leukoencephalopathy (PML) biogenesis, and the predicted structures based on prompt-based generated
DNA sequences: (a) DeepSeek-R1 (purple), Global RMSD = 4.85 A, TM Score = 0.4547, LDDT = 0.405. (b)
Qwen-2.5-Max (salmon), Global RMSD = 5.93 A, TM Score = 0.4086, LDDT = 0.850. (¢) Llama-3.3-70B (light
green), Global RMSD = 25.45 A, TM Score = 0.1769, LDDT = 0.326. (d) GPT-40 (lavender), Global RMSD =

35.53 10%, TM Score = 0.2717, LDDT = 0.388. (Reference sequence: CCAAAGGCTAGATTTAAAAACCCCAAAT-
GTGCAATCTGGTGAATTTATAGAAAGAAGTATTGCACCAGGA)
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Figure 8: Structural alignment between the ground truth structure (light blue), a 70 bp DNA related to Paraneo-
plastic Neurologic Syndromes (PNS) biogenesis, and the predicted structures based on prompt-based generated
DNA sequences: (a) DeepSeek-R1 (purple), Global RMSD = 5.12 A, TM Score = 0.3245, LDDT = 0.407. (b)
Qwen-2.5-Max (salmon), Global RMSD = 10.26 A, TM Score = 0.2387, LDDT = 0.682. (c) Llama-3.3-70B (light
green), Global RMSD = 6.74 A, TM Score = 0.3604, LDDT = 0.441. (d) GPT-40 (lavender), Global RMSD = 25.20
10%, TM Score = 0.3232, LDDT = 0.326. (Reference sequence: AGCAGACGCTCCCTCAGCAAGGACAGCAGAG-
GACCAGCTAAGAGGGAGAGAAGCAACTACAGACCCCCCC)
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Disease

LKS PML PNS TD

LLM

DeepSeek-R1 22.77 2421 11.14 994
Qwen-2.5-Max 20.68 3545 1598 4.82
Llama-3.3-70B 27.79 22,57 972 8.68
GPT-40 25.03 26.29 13.67 1148

Table 1: Landscape of global RMSD (A) between
ground truth and predicted DNA structures for a 70
bp sequence associated with the biogenesis of the four
rare diseases listed above. The predicted structures
were generated by four LLMs prompted with the same
biological query. For each LLM and disease, n = 10 se-
quences were generated, and each cell reports the mean
RMSD across these predictions. The value of RMSD
is always used to quantify the structural divergence be-
tween each predicted DNA structure and the ground
truth, with lower values indicating higher structural
fidelity. Bolded values denote the lowest RMSD in
each disease column, highlighting the most accurate
prediction per condition.

Disease
LLM LKS PML PNS TD
DeepSeek-R1 0.457 0519 0.523 0.595
Qwen-2.5-Max 0.388 0.318 0.592 0.863
Llama-3.3-70B 0.361 0.327 0.517 0.540
GPT-40 0451 0.556 0.543 0.527

Table 2: Landscape of LDDT between ground truth
and predicted DNA structures for a 70 bp sequence
associated with the biogenesis of the four rare diseases
listed above. The predicted structures were generated
by four LLMs prompted with the same biological query.
For each LLM and disease, n = 10 sequences were
generated, and each cell reports the mean LDDT across
these predictions. The value of LDDT, ranging from 0
to 1, is always used to quantify the structural divergence
between each predicted DNA structure and the ground
truth, with higher values indicating higher structural
fidelity. Bolded values denote the highest LDDT in
each disease column, highlighting the most accurate
prediction per condition.
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