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ABSTRACT

Unsupervised domain adaptation (UDA) for multivariate time-series (MTS) data
in the wearable domain transfers knowledge from a labeled source to an unla-
beled target, typically with signals collected from multiple body-worn sensors.
Although existing UDA methods devote substantial effort to modeling temporal
shifts, they often rely on simple spatial alignment across domains, thereby limit-
ing their capacity for effective adaptation. Real systems in the wearable domain
exhibit sensor-wise domain shift, including changes in placement or orientation,
which necessitates the explicit consideration of inter-domain spatial sensor rela-
tions. Therefore, we introduce IDSA, Inter-Domain Sensor Alignment for wear-
able MTS-UDA, a plug-in module that augments any base UDA loss with two
complementary components: (i) an inter-domain sensor transport that learns a
cross-sensor relation matrix from domain-specific sensor embeddings and trans-
ports target channels toward the source, and (ii) a channel decorrelation regular-
izer that sparsifies intra-domain graphs to suppress redundant or noisy couplings.
Our sensor transportation loss is shown to be equivalent (up to a constant) to the
discrete 1-Wasserstein objective. When used as a plug-in with Deep CORAL or
CLUDA, IDSA achieves consistent gains across five HAR and sSEMG benchmarks
compared to recent baselines in activity classification accuracy, achieving a per-
formance enhancement in most scenarios.

1 INTRODUCTION

Multivariate time-series sensor data play a vital role in the wearable domain, where multi-sensor
signals enable tasks such as human activity recognition (Zhong et al., [2022) and gesture classifi-
cation (Tchantchane et al.,2023)). These tasks support high-impact applications in health monitor-
ing (Jijesh et al., [2021)), rehabilitation (Schrader et al., [2020)), and human-computer interaction (Q1
et al.l [2019), highlighting the practical importance of achieving reliable performance on wearable
sensor data. Body-worn devices record concurrent signals from multiple sensors, yielding data
with rich spatial dependencies between sensors as well as temporal dynamics. This inherent spatio-
temporal complexity gives rise to substantial distribution shifts, leading to significant discrepancies
across different domains, such as variations among subjects or across repeated measurements (Wang
et al.,[2023)). In practice, changes in placement, orientation of sensors induce sensor-wise domain
shift across different domains, which is distinct from the usual temporal covariate shift and remains
relatively underexplored. (Banos et al.} 2014)

Unsupervised domain adaptation (UDA) has been widely explored to enhance model performance
under domain shift (Huang et al.,|2022;|Ozyurt et al., 2023} [Li et al.| [2022), as an effective approach
to resolve this problem. The goal of UDA is to transfer knowledge from a source domain to a target
domain without access to labels in the target domain dataset, thereby saving annotation costs in the
target domain, and has shown significant performance improvements in various fields (Rangwani
et al.,[2022; |Wei et al.,|2024) and wearable applications (Ozyurt et al.,|2023)) in particular.

Existing UDA methods have devoted significant effort to modeling distribution shifts along the tem-
poral dimension, leading to performance gain for UDA on multivariate time series (MTS) data (He
et al.}[2023} Liu et al.,[2024). However, they leave the inter-domain multi-sensor spatial structure ei-
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Figure 1: (Left) Existing methods for handling spatial structures in UDA for wearable MTS data.
(Right) Examples of diverse inter-domain sensor relationships observed across scenarios.

ther collapsed or rigidly hard-coded as depicted in Figure[T](Left): 1) high-level matching between
source and target feature embeddings without explicit sensor alignment (Sun & Saenko, [2016; Wil-
son et al., [2020), or 2) strict 1:1 matching between sensors in the same location (Wang et al.|[2023).
Both tacitly assume fixed cross-domain sensor relations based on physical placement and rely solely
on intra-domain graphs (e.g., using GNNs or CNNs as feature encoder (Lai et al., 2021)) to learn
multi-sensor structure. This is more problematic in wearables, where intra-domain correlations are
noisy and domain-specific; treating them as static across domains can entangle semantics and shift,
and ultimately undercut adaptation.

The right side of Figure[T]illustrates two UDA scenarios involving three domains (people): two sub-
jects with the same dominant hand (Green and Orange in Figure[I)) and one subject with the opposite
dominant hand (Yellow). The same sensor attached to the same limb across source and target may
(Scenario 1) or may not (Scenario 2) produce the same distributions, depending on domains in the
UDA scenario, driven by domain information such as handedness. As in this illustrative example,
various dynamic inter-domain sensor relations occur, and existing approaches that assume simple
or static correspondence between inter-domain sensors may fail in domain adaptation. We further
substantiate the need to model inter-domain sensor relations in the real-world wearable MTS dataset
through an empirical analysis in Section 3}

To fully address the sensor-wise distribution shift in wearable MTS UDA, we propose Inter-Domain
Sensor Alignment for MTS-UDA (IDSA), a plug-in module that extends existing UDA methods
(e.g., Deep CORAL (Sun & Saenko) 2016) or CLUDA (Ozyurt et al.| 2023)) without architec-
tural changes. IDSA adds a principled inter-domain perspective and couples it with intra-domain
structure via domain-specific sensor embeddings and two additional losses for unified inter- and in-
tra-domain structure in a single training routine. IDSA introduces a principled inter-domain com-
ponent that learns a cross-sensor relation matrix from domain-specific sensor embeddings through
spatial transportation loss and uses it to transport target channels toward the source, thereby aligning
inter-domain sensor semantics. This is coupled with an intra-domain channel decorrelation reg-
ularizer that sparsifies within-domain graphs, suppressing redundant or noisy intra-domain sensor
couplings so that inter-domain relations remain distinctive and informative. Crucially, our spatial
transportation objective admits a clean optimal-transport interpretation: minimizing it is equivalent
(up to a constant) to the discrete 1-Wasserstein objective.

We evaluate our model on five real-world multivariate time-series (MTS) wearable sensor datasets,
encompassing Human Activity Recognition (HAR) under the cross-subject setting and surface elec-
tromyography (SEMG) under the cross-repetition setting. Both settings are classification tasks. In
the cross-subject setting, the source and target domains are two different subjects, whereas in the
cross-repetition setting, the source and target domains are two different repetitions from the same
subject.

2 RELATED WORK

Wearable sensor technologies, often embedded in devices such as smartphones and smartwatches,
have attracted significant attention owing to their accessibility and ease of use. These technologies
have been widely applied to classification tasks, including activity recognition (Roggen et al.| [2010)
and gesture recognition (Shen et al.| [2019). A notable characteristic of wearable sensor data is the
variation in distributions arising from differences in subjects and wearing conditions (Wang et al.,
2023). With the increasing availability of unlabeled datasets, Unsupervised Domain Adaptation
(UDA) has emerged as a promising strategy for improving the performance of classification models
tailored to wearable sensor data (Liu et al., 2025]).
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Figure 2: Illustration of the motivation analysis.

UDA seeks to learn representations or models that are robust to distributional discrepancies between
the source and target domains, and has been extensively adopted in various fields
2022} [Ozyurt et al.l 2023}, [Li et all 2022). A prominent class of methods leverages adversarial
training, where a discriminator is introduced to identify whether a given input representation orig-
inates from the source or target domain. (Ganin et al.| 2016} [Long et al., 2018). Another line of
research employs statistical alignment techniques to minimize domain divergence, such as moment
matching or correlation-based methods (Sun & Saenkol 2016; Redko et al.| 2019). However, these
UDA techniques are typically developed for univariate data. When applied to multivariate time se-
ries (MTS), a common strategy is to concatenate data from all sensors into a single representation,
which refers to the left side of Figure[T}1). This practice often neglects spatial dependencies across
domains, which may constrain the effectiveness of domain adaptation in wearable MTS scenarios,
where spatial relations are influenced by numerous factors.

UDA for MTS data, which considers the multi-sensor structure, has been recently explored
let al] 2023; [Sun et al 2024} |Guo et al] [2025). For example, SEA (Wang et all [2023) typically
models intra-domain dependencies among sensors and employs a fixed sensor alignment strategy,
as shown in Figure[T}2). A key underlying assumption is that corresponding sensors in the source
and target domains serve equivalent semantic functions or measure similar physical phenomena.
Other studies (Li et al| 2023}, [Cai et al [2021) extract sparse associative structure with intra- and
inter-variable attention mechanisms, further leveraging domain-invariant causal structures while also
modeling domain-specific components. However, as illustrated in the right side of Figure ] inter-
domain sensor relationships may differ from a straightforward one-to-one mapping between sensors
at corresponding positions. This mismatch can result in suboptimal adaptation performance due to
misaligned sensor interactions across domains. A more extensive comparison with these methods is
discussed in the Appendix.

3  EMPIRICAL ANALYSIS OF MOTIVATION

Figure[Tillustrates the importance of modeling meaningful inter-domain sensor relationships in mul-
tivariate time-series (MTS) unsupervised domain adaptation (UDA). It shows how existing methods
capture spatial dependencies and highlights scenarios where their underlying assumptions may be
insufficient. We conduct an empirical analysis on real-world MTS data to verify this motivation
with two objectives: 1) to demonstrate the existence of inter-domain sensor relationships that go
beyond simple 1:1 sensor matching; and 2) to reveal the limitations of utilizing intra-domain sensor
relationships naively to address spatial distribution shift in wearable MTS data.

Setup Two different domains (subjects) from the Opportunity HAR dataset (Roggen et al.,2010)
are selected, extracting the same 10 sensors randomly for both domains. First, we compute the
cosine similarity using a function f between the sensor signals, including sensors across domains
in the same position, to analyze relationships from both intra- and inter-domain perspectives. Next,
we design a simple target transformation based on the observed inter-domain sensor relations: for
each target sensor position, we replace its signal with a weighted sum of the three target sensors that
exhibit the highest similarity with the corresponding source sensor in the same position. We denote
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the original target data as 7T, the transformed version as Tyansform, and the source domain as S. We
define a UDA model & utilizing a Graph Neural Network structure (Kipf & Welling,|2017) and Deep
CORAL loss (Sun & Saenko, 2016)). Depending on the specified adjacency matrix, the model either
excludes intra-domain sensor relations (®p,g) or incorporates intra-domain sensor relations (Pipa ).

Results Figure [2] summarizes the findings. The top left panel is a cosine similarity heatmap for
position-matched sensors across source and target domains. Similarities vary widely, indicating that
fixed physical alignment does not ensure functional consistency across domains. We then focus on
Sensor 4, which showed the lowest inter-domain similarity among corresponding pairs. The three
plots in the bottom left depict similarity distributions for Sensor 4 from the source and target intra-
domain perspectives and the source—target inter-domain perspective. The intra-domain structural
patterns differ notably between the source and target domains. Regarding inter-domain relationships,
interestingly, sensors 5, 3, and 8 (which are not position-matched sensors) show greater similarity
than the position-matched sensor (e.g., sensor 4). These findings underscore the importance of
explicitly accounting for inter-domain sensor relationships beyond the intra-domain relations.

Building on this, we test whether incorporating sensor relations improves UDA performance. The

bottom right panel reports accuracy (mean = s.d., n=5 runs) under four settings: Baseline (<I>$’T),

base
27, Inter only ( ®5T=™) and Inter+Intra ( ®5; 7=, From the right side of

Intra only ( intra

Figure 2] applying Inter-domain relations yields performance gains consistently (Inter only > Base-
line, and Inter+Intra > Intra only), showing the usefulness of leveraging them in the adaptation
model. Although combining both inter- and intra-domain sensor relations yields the highest mean
performance, the standard deviation remains high. In particular, the larger error bars observed with
intra-domain relations suggest that they may propagate redundancy or noise when applied naively.

This indicates that their integration should be handled carefully.

Takeaway The analysis indicates two requirements for wearable MTS UDA: (i) inter-domain sen-
sor relations must be discovered in a data-dependent manner for each source and target domain
pair rather than assumed by position, and (ii) intra-domain structure must be handled carefully dur-
ing integration, since domain-specific correlations can either help or hinder when combined with
inter-domain alignment.

4 PRELIMINARIES

4.1 PROBLEM SETUP AND FORMULATION

In a UDA setting, an input spatio-temporal dataset of wearable MTS data can be represented as
D, = {(X%,y})} M for labeled source domain and D; = {(X?)}, for unlabeled target domain,
where M = M, + M, indicates the total number of data, and X’ € R¥*T is a multivariate sensor
data instance. For the dimension of each data instance, N denotes the number of sensors, and
T represents the number of timestamps. The term sensor refers to a single unit that outputs one
value per channel. Under this definition, an IMU sensor consists of six signals: three from the
accelerometer and three from the gyroscope. For clarity, we will omit the notation ¢ in the following
discussion. Thus, the source and target data will be denoted simply as X s and X, respectively.

4.2 SENSOR-WISE DOMAIN SHIFT

We define a new notion of domain shift in wearable MTS sensor data. This type of shift has not
been sufficiently addressed in existing work, yet it represents a critical challenge.

Definition 1 (Sensor-wise Domain Shift). Sensor-wise domain shift in wearable multivariate time
series (MTS) refers to the distributional discrepancy arising from variations in sensor configura-
tions, such as differences in sensor placement or orientation across domains, which affect both
intra- and inter-domain sensor relationships.

As discussed in Section [3| Sensor-wise Domain Shift can be easily found in real-world wearable
MTS data. Building on the takeaway from the motivational analysis, the following section in-
troduces a novel plug-in method that captures inter-domain sensor relations while further refining
intra-domain relations to address Sensor-wise Domain Shift.
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Figure 3: Illustration of IDSA. IDSA is designed to minimize spatial transportation loss (L) and
channel decorrelation loss (Lge.) by utilizing domain-specific sensor embeddings (P, Py).

5 METHODOLOGY

This section introduces Inter-Domain Sensor Alignment (IDSA) for wearable MTS-UDA. Figure 3]
illustrates the overall framework. IDSA is designed as a plug-in module, specifically designed to
mitigate sensor-wise domain shift, which can be combined with existing domain adaptation methods
and feature extractor modules. It integrates two key objectives through dedicated loss functions: (i) a
spatial transportation loss, which formulates inter-domain alignment as an optimal transport problem
and learns a relation matrix A 4 that captures essential cross-domain sensor dependencies to further
transform the target distribution, and (ii) a channel decorrelation loss, which suppresses redundant
or noisy sensor relations to preserve intrinsic intra-domain spatial information. The learnable sensor
embeddings for both domains are utilized in model processing with input data to couple these ob-
jectives. The embeddings encode decorrelated intra-domain features that make A ; distinctive and
robust. Together, these mechanisms allow IDSA to transform the target data into representations
that reflect inter-domain spatial dependencies, considering essential domain-specific characteristics.

5.1 INTER-DOMAIN SENSOR TRANSPORTATION

The aforementioned analyses underscore the need to account for dynamic inter-domain sensor rela-
tionships due to complex distributional discrepancies in wearable MTS data caused by sensor-wise
domain shift. Inter-domain sensor alignment aims to transform the target domain to match the
source domain’s sensor similarity. In order to identify the inter-domain sensor relations, we define
two learnable embeddings: source sensor embedding P, € RV*T and target sensor embedding
P, € RY*T which have the identical dimension as the input of MTS data. The embeddings cap-
ture the roles of sensors specific to each domain by learning through intra-domain graph generation
and feature extraction.

Moreover, these learnable embeddings can express an inter-domain sensor relation between the
source and target input. The inter-domain sensor relation A, € RY*% can be expressed as:

A, = Norm(a(PsPtT)), (1

where o is an activation function, and Norm is a normalization function. The learnable adjacency
matrix A associates multiple sensors across different domains.

Spatial Transportation Loss To effectively generate inter-domain sensor relations that mitigate
sensor-wise domain shift, it is essential to account for the differences between source and target
signals in a spatial perspective. Therefore, we propose a loss function to generate an inter-domain
sensor relation matrix that dynamically learn how to transport the target distribution to the source
distribution regarding the spatial relation across two domains. The spatial transportation loss is
defined as:

La=Y Au®C, Cy=|Xli,)— X3, )

where ® denotes the Hadamard product, and C € RN >N ig the distance matrix, with each entry
representing the squared Euclidean distance between two sensors from the source and target do-
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mains, respectively. The calculation of sensor-wise distance between two X;, X s can be extended
to other formulas. The time complexity associated with the spatial transportation loss is O(N?),
and the details are provided in Appendix Since N is typically small in wearable settings,
the quadratic complexity does not pose a usability concern. We theoretically show in Section [5.4]
that optimizing the derived inter-domain sensor relation yields a transport plan aligned with the
Wasserstein distance.

5.2 INTEGRATION OF INTER- AND INTRA-DOMAIN SENSOR RELATION

We incorporate the learnable sensor embeddings P, and P, into the input data, thereby enriching
each domain with domain-specific sensor characteristics from an intra-domain perspective. The
incorporated sensor data for the source and target is expressed as:

X, =X, +P;, X;=X;+P,. 3)

For the target domain, we further apply the inter-domain relation matrix A, as a transport map to
align its sensor arrangement with that of the source:

X; = Ay X;. 4)

This adjustment aims to diminish the sensor-wise domain shift and to diminish the distribution
discrepancies between the source and target domains.

To capture intra-domain spatial relationships among sensors, a graph neural network (GNN) (Kipf
& Welling, 2017) is employed. A graph structure should be predefined to apply the GNN structure.
In our graph, sensor channels are treated as nodes, and the connections between different sensors are
represented as edges, resulting in a graph with IV nodes. The adjacency matrix of the intra-domain
graph is denoted as A ; for the source graph and A for the target graph. We adopt a simple distance-
aware graph generation similar to acquiring the inter-domain sensor relation, which is defined as:

A, =0(XX]), A, =0(XX/). (5)

The features from the aggregation process of the GNN can be represented as follows by simply
adopting the GCN structure (Kipf & Welling, [2017):

Z, = AXW,, Z;=AXW, (6)

The extracted spatial embeddings Z,, Z; € RY*T so that per-sensor, per-timestamp structure is
preserved, and W, is the weight parameter that does not change the dimension.

Channel Decorrelation Loss To further enhance the model’s capability in capturing spatial rela-
tions, we propose incorporating an additional regularization loss. While the aggregation phase in
the spatial layer effectively integrates information from multiple related sensors, it also obscures the
independent feature characteristics of individual sensors and introduces additional noise. To pre-
serve sensor-wise distinctiveness, we introduce a channel decorrelation regularizer computed on the
spatial representations. The channel decorrelation loss can be expressed as:

D, = %zdzdT e RVXN, d e {s,t}, (7
Lie = Y. |Da—Inl} (8)

de{s,t}
where Iy is the NV x N identity matrix and D, denotes the feature correlation matrix constructed
from the spatial outputs for each domain d.

The decorrelation loss affects both types of graph generation. It indirectly induces the generated
intra-domain graph to have high weights on the self-loop, since that is a straightforward method to
optimize the decorrelation loss function. This implies that the loss function we adopt can lead to
graph sparsification, which keeps the weights of the different sensors comparatively low. Due to the
sparsification, our generated graph will only contain highly related sensors since graph sparsification
alleviates the redundant data and noise from the graph. These intra-domain graphs help learn each
domain’s sensor embedding only to contain essential domain-specific sensor characteristics, so the
A, constructed by them is more distinctive and informative.
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5.3 TRAINING AND INFERENCE

Since IDSA is designed as a plug-in module that can be integrated with existing domain adaptation
methods, we also include a base domain adaptation loss Lg,, for which we adopt Deep CORAL
and CLUDA (Ozyurt et al., 2023) for the experiment. L4, additionally includes
the supervised classification loss on the source domain. Besides the base domain adaptation loss,
L and Ly, are integrated into our final loss function. Therefore, the final loss for IDSA is denoted
as:

L= »Cda + )\1»Cst + )\QCdeCa (9)

where A1, Ay are hyperparameters used to adjust the effect of the incorporated losses. Since the
evaluation is performed on an unseen target domain, we apply the same target-side preprocessing
pipeline at test time.

5.4 THEORETICAL ANALYSIS ON THE SPATIAL TRANSPORTATION LOSS

We now formalize the spatial transportation procedure in our framework by showing that it naturally
aligns with an optimal transport (OT) (Kolouri et al.} 2017) perspective.

Theorem 1. Let wearable source MTS data X and target MTS data X be represented as sub-
elements in the X and ), respectively. Optimizing Ly, has the same form as solving a discrete
1-Wasserstein problem. In particular, if A achieves the global minimum of Ly, it provides an
optimal transport plan (up to constant scaling), so min Ly = N - W1 (X4, Xy), where W1 (X4, Xy)
is the discrete 1-Wasserstein distance.

The proof of Theorem[T]is provided in the Appendix. Theorem([I]implies that, if we train to minimize
the spatial transportation loss function, then A ,; effectively solves a linear assignment problem for
the sensor-level alignment. This result provides a principled justification for IDSA’s effectiveness
in mitigating sensor-wise domain shifts.

Furthermore, we emphasize that our OT formulation differs slightly from conventional OT ap-
proaches for domain adaptation (Kerdoncuff et al} 20206} [Courty et all 2016b} [Aritake & Hino}
[2022b). While traditional methods compute an OT plan at the data-instance level, our approach
operates at the sensor level, explicitly addressing sensor-wise domain shifts. A more detailed dis-
cussion of conventional OT methods is provided in the Appendix.

Another theorem is about the synergy when applying both loss functions we proposed. By optimiz-
ing the loss function, the target domain representation of IDSA satisfies the source-wise information
bottleneck.

Theorem 2. Let the source-wise information bottleneck be defined as:
IBS :I(Zt,XS) */BI(TCW, Zt), (10)

where X indicates the source distribution and T'ar denotes target domain-specific information. In
particular, if IDSA is optimized through loss functions, the transformed target representation satisfies
the source-wise information bottleneck.

min(Ly + Lgee) = max I Bj. (11)

This theorem formalizes the joint application of both loss functions to achieve a more effective
transformation. By considering the complementary roles of these losses, the theorem provides a
theoretical justification for their combined use in guiding the learning process. A detailed proof and
derivation are provided in the Appendix.

5.5 EMPIRICAL ANALYSIS OF THEOREM/III

Building on our theoretical result in Theorem [T} we assess whether the learned inter-domain sensor
relation A, aligns with the ground-truth optimal transport (OT) plan in practice. Specifically, we
investigate how closely A, (trained only under L) approximates the exact OT solution on a real
sensor dataset.



Under review as a conference paper at ICLR 2026

Setup We employ the SD-gesture SEMG dataset (Lee et al} [2023), containing 8 sensor
channels. To reduce each domain to a representative vector, we compute the mean value
of every sensor channel. From these means, we form a distance matrix [|X! — XJ|,
for every sensor pair (¢,j) and solve a linear assignment problem to obtain a ground-truth
OT plan 7n*. Meanwhile, we train A, end-to-end via Ly alone, as per our method.

— Mean
0034 std.

Results Figure [ shows that, during training, the mean
squared error between A, and the ground-truth OT plan 7*
decreases and converges. The y-axis is the mean squared error
(MSE) between our learned A ;; and the ground-truth OT plan.
Empirically, the figure confirms that the learned alignment ma-
trix A4; approximates a transport plan, consistent with Theo- R

Epoch
rem[Il

6 EXPERIMENT
6.1 DATASETS AND BASELINES

Figure 4: Convergence toward the
optimal transport (OT) plan.

We conduct extensive evaluations to verify how IDSA performs and compare it with state-of-the-art
methods on public wearable MTS datasets, categorized into two groups: (1) human activity recogni-
tion (HAR) datasets for cross-subject adaptation and (2) surface electromyography (SEMG) datasets
for cross-repetition adaptation. We compare IDSA with ten UDA baselines: Deep Coral

Saenkol, [2016), CDAN (Long et al., 2018), CoDATS (Wilson et al.| 2020), AdvSKM (Liu & Xue,
2021), CLUDA (Ozyurt et al., 2023), SEA (Wang et al., 2023), RAINCOAT (He et al., 2023),

ACON 2024), SASA (Cai et al|[2021)), and UniMTS (Zhang et al.| [2024). A detailed de-

scription of the datasets and baselines is provided in the Appendix. Additional experiments, includ-
ing hyperparameter sensitivity, an ablation study, and visualization, are detailed in Appendix [A.4]

6.2 PERFORMANCE COMPARISON

Cross-subject The performance for cross-subject settings on two HAR datasets, the Opportunity
HAR and WISDM datasets, is presented in Table [T} where the domain is defined as each subject.
For the Opportunity HAR dataset, We report results on all 12 scenarios. For the WISDM dataset,
we follow prior works (Ozyurt et al.} [2023} [Wilson et al} [2020) by evaluating on 10 selected sce-
narios, where the specific random scenario pairs are taken from the CLUDA (Ozyurt et all, 2023))
implementation. As shown in the table, IDSA outperforms the other baselines because of reflecting
inter-domain sensor alignment. Table[T]indicates that not considering inter-domain sensor alignment
is insecure and may underperform in specific scenarios. For example, CoDATS (Wilson et al.,[2020)
severely underperforms in scenarios 19 — 2 on the WISDM dataset and CLUDA (Ozyurt et al.,
in 3 — 1 on the Opportunity HAR dataset. On the other hand, IDSA, which incorporates
the spatial transportation loss to alleviate the sensor-wise domain shift, maintains robust perfor-
mance in most scenarios. IDSA closes the gap between the two distinct distributions by estimat-
ing the Wasserstein distance between the distributions, which leads to state-of-the-art performance
when comparing the average performance across all scenarios. UniMTS (Zhang et al} [2024) shows
strongest performance in WISDM benefiting from an additional textual modality during pretrain-
ing, unlike ours and other baselines. On Opportunity dataset composed of heterogenous sensor set,
UniMTS’s relatively low performance may because its constrained IMU-only input, as it is archi-
tecturally tailored to IMU sensor-channel structure, while others use the full set of available sensors.
We therefore further analyze and report an additional controlled comparison between UniMTS and
our method under an IMU-only setting in Appendix.

Cross-Repetition Model performance on the three SEMG datasets for cross-repetition adaptation
is presented in Table 2} where each domain corresponds to a specific repetition. For evaluation, we
designate a sampled repetition from a subject as the source domain and the remaining repetition
data from the same subject as the target domain. Across all three datasets, our model consistently
outperforms existing UDA baselines, demonstrating its robustness and effectiveness in hand ges-
ture recognition tasks. For the Nina-53 dataset, which exhibits a large gap between accuracy and
F1-score due to severe label imbalance, we observe a notable improvement in Fl-score when our
model is added to CLUDA. In the SEMG datasets, most domain discrepancies arise due to varia-
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Table 1: Overall performance comparison on cross-subject scenarios. Each scenario corresponds to
a source — target scenario. The boldfaced score denotes the best result, and the underlined score
represents the second-best result. Parentheses denote relative gains/losses over base models.

Metric Models
S=T | @) — [ Sas IDSA +
Deep Coral CDAN CoDATS AdvSKM CLUDA SEA RAINCOAT ACON SASA UniMTS Deep Coral CLUDA
Opportunity HAR
152 Acc. 81.56 81.56 80.73 83.52 8520  80.93 82.89 7898  81.09 61.73 86.82 (5.26) 86.03 (0.83)
F1 85.07 84.74 84.10 86.66 87.96  82.11 83.56 83.06  84.65 64.89 88.69 (+3.62)  88.09 (+0.13)
153 Acc. 79.50 7857 78.57 80.74 86.02 7531 7723 7531 76.87 74.54 81.06 (+1.56)  86.96 (+0.94)
N F1 62.11 60.52 60.59 63.26 8771  55.11 58.02 5512 51.58 75.86 63.41 (+1.30)  88.11 (+0.40)
154 Acc. 82.31 76.41 84.72 83.91 83.65 74.43 75.39 78.13  82.62 69.17 82.57 (+0.26) 84.45 (+0.80)
F1 85.78 59.42 87.19 86.40 88.91  82.52 58.99 82.62 8471 74.94 77.11 (-8.67)  88.89 (-0.02)
21 Acc. 84.53 82.52 85.67 82.81 8510  85.62 81.64 87.50 77.22 81.37 89.30 (+4.87)  85.96 (+0.86)
F1 87.18 62.76 87.88 82.23 87.93 8875 65.09 88.75 7845 83.12 90.95 (+3.77)  88.38 (+0.45)
23 Acc. 81.67 75.16 81.99 80.75 77.95 75.94 77.73 77.50  75.86 67.08 81.37 (-0.30) 84.78 (+6.83)
) F1 82.74 58.66 83.42 77.11 81.12 58.47 58.45 60.29  77.38 42.96 79.42 (-3.32) 87.15 (+6.03)
24 Acc. 79.09 82.84 79.36 73.73 84.45 76.70 71.48 70.17 58.71 74.27 (-4.82) 81.23 (-3.32)
F1 82.70 76.12 84.48 82.68 89.32 53.70 75.45 75.00 59.43 80.63 (-2.07) 87.45 (-1.87)
3.1 Acc. 81.66 69.91 83.67 77.08 63.32 75.31 70.49 85.54 78.75 83.38 (+1.72) 79.08 (15.76)
3 Fl1 62.35 41.64 84.74 58.85 S51.10  46.60 63.83 53.49 55.41 63.32 (+0.97) 6242 (+11.32)
3.0 Acc. 66.20 5391 62.57 64.25 76.54 67.61 78.52 70.17 6739 61.73 81.01 (+14.81)  80.45 (+3.91)
3 Fl1 49.46 33.77 50.44 49.64 58.99 44.17 60.28 48.56  50.44 49.48 62.23 (+12.77)  61.62 (+2.63)
34 Acc. 75.60 64.88 83.11 78.02 87.67 66.48 58.20 66.48  80.35 58.98 80.43 (+4.83) 82.84 (-4.83)
3 Fl1 84.06 72.20 87.32 83.30 91.39 72.89 64.00 72.89 7231 48.10 86.67 (+12.77)  88.09 (+2.63)
451 Acc. 81.38 76.79 87.97 86.24 86.25 79.69 87.89 83.13  88.55 47.85 83.38 (+2.00)  93.69 (+7.44)
Fl1 83.55 71.88 88.99 80.97 88.11 75.26 88.32 81.91 83.11 40.92 83.98 (+0.43)  94.71 (+6.60)
452 Acc. 74.58 68.43 86.31 73.74 85.75 76.14 75.00 7727  84.04 46.09 76.82 (+2.24) 82.12 (-3.64)
Fl1 57.42 46.72 88.64 56.43 8791 78.29 61.56 78.19  63.28 42.66 76.62 (+19.20)  84.66 (-3.25)
43 Acc. 71.12 72.05 79.19 75.15 84.47 82.81 69.14 80.94 85.14 6491 76.71 (+5.59)  88.51 (+4.04)
Fl1 64.11 47.86 60.99 61.49 85.22 81.40 72.19 79.94 6437 49.05 69.83 (+5.72)  89.39 (+4.17)
Avs Acc. 78.27 73.59 81.16 78.33 82.20 76.41 76.37 77.03 8051 63.55 81.44 (+3.17)  84.68 (+2.48)
& Fl1 73.88 59.69 79.07 72.42 82.14 68.27 67.48 71.65  70.08 57.24 76.91 (+3.03)  84.08 (+1.94)
WISDM
2408 Acc. 82.27 7111 80.92 80.90 84.96 80.00 83.15 75.60 8494 77.77 86.67 (+4.40) 86.67 (+1.71)
F1 69.64 44.96 70.93 54.51 80.48 69.35 76.62 74.07 7181 73.36 78.33 (+8.69)  83.47 (+2.99)
750 Acc. 62.40 75.61 61.06 61.06 78.05 68.29 78.05 8333 7125 90.24 68.30 (+5.90) 82.93 (+4.88)
F1 53.61 51.79 48.04 41.95 59.15 53.61 56.68 60.25 4998 81.11 55.20 (+1.59)  73.22 (+14.07)
7.2 Acc. 75.61 7317 78.05 78.05 73.17 63.41 73.17 81.25 58.54 78.05 (+2.44)  73.17 (+0.00)
F1 43.19 40.94 47.87 48.51 34.50 33.16 55.31 59.46 65.05 46.76 (+3.57)  39.40 (+4.90)
1257 Acc. 59.21 70.83 72.10 74.20 79.23 75.00 79.17 81.81 89.58 83.33 (+24.13)  81.25 (+2.05)
Fl1 35.73 50.30 65.16 65.61 69.52 50.83 69.21 71.21 89.88 73.10 (+37.37)  79.27 (+9.75)
12519 Acc. 43.33 46.97 63.38 63.98 69.44 54.55 46.97 50.00 89.39 54.54 (+11.21) 80.30 (+10.86)
F1 23.16 23.04 46.02 46.51 60.70 37.56 31.82 39.22 89.83 40.52 (+17.36)  74.93 (+14.23)
18 -5 20 Acc. 38.03 70.73 63.45 39.03 78.03 80.49 76.83 77.35 3. 53.66 68.29 (+30.26)  82.93 (+4.90)
F1 29.17 45.83 39.17 40.63 68.29 70.35 64.65 41.78 5.34 57.36 43.89 (+14.72)  78.58 (+10.29)
19 52 Acc. 47.35 34.68 39.58 43.45 56.01 41.46 63.41 81.81 58.59 85.37 63.41 (+16.06)  65.85 (+9.84)
F1 46.21 17.36 3491 42.43 43.98 5231 63.48 57.85 4532 74.86 62.34 (+16.13)  47.46 (+3.48)
28 520 Acc. 73.17 75.61 74.10 73.17 80.49 82.93 85.37 8222 9476 71.17 97.56 (+24.39)  87.80 (+7.31)
Fl1 63.33 54.18 53.98 68.25 72.57 67.17 81.14 63.89  84.67 61.01 97.76 (+34.43)  85.37 (+12.80)
26 52 Acc. 73.77 61.48 72.70 62.01 86.34 53.66 67.07 80.48  76.72 95.12 80.50 (+6.80)  90.24 (+3.94)
Fl1 61.78 40.37 59.76 46.30 70.05 37.88 52.48 63.35  69.46 91.53 82.37 (+20.57)  73.89 (+3.79)
28 50 Acc. 64.92 58.03 71.70 70.69 74.08 65.85 87.80 8222 67.28 70.73 75.61 (+10.71)  90.24 (+16.14)
F1 49.50 39.98 49.21 48.35 71.06 59.13 72.87 62.88  51.82 65.56 52.16 (+2.66)  81.11 (+10.11)
Av Acc. 62.00 63.82 67.70 64.65 75.98 66.56 74.10 77.61 73.94 78.36 75.61 (+13.61)  82.14 (+6.16)
& F1 47.53 40.88 51.51 50.31 63.03 53.14 62.43 53.40 59.16 74.96 63.24 (+15.71)  71.67 (+8.64)

Table 2: Performance comparison for cross-repetition adaptation
cell reports the mean =+ standard deviation across runs. The boldfaced score denotes the best, and
underlined represents the second-best result. Parentheses denote gains of IDSA over its base model.

on three SEMG datasets.

Each

Models Nina5-18 Nina5-53 SD-gesture
Accuracy (%) Fl-score (%) Accuracy (%) Fl-score (%) Accuracy (%) Fl-score (%)

Deep Coral 83.47 +2.1 60.72 +2.8 75.68 +25 40.00 +4.2 73.02 +2.1 72.32 +26
CDAN 83.48 19 61.11 +22 75.82 +3.1 39.75 457 72.84 +25 71.87 +2.1
CoDATS 81.74 +1.6 57.43 +30 67.58 +2.0 15.74 133 75.48 +2.9 74.90 +23
AdvSKM 83.52 +1.7 61.30 +29 76.22 +18 40.38 +3.4 75.28 +30 74.46 +26
CLUDA 80.64 +2.2 53.77 +21 65.56 +2.7 10.44 +29 72.49 422 71.36 +27
SEA 82.73 +25 58.02 +3.4 75.53 +30 40.36 £33 7741 +13 76.48 +26
RAINCOAT 80.82 +2.0 55.73 +23 75.14 +25 39.88 +4.7 74.14 +29 73.44 134
ACON 82.07 +1.5 58.40 +36 76.31 +18 40.72 +53 76.96 +1.7 75.51 +27
IDSA + Deep Coral | 85.53 +2.1 (+2.06) 63.32 £33 (+2.60) | 78.80 +12 (+3.12)  43.77 +49 (+3.77) | 80.15 +2.1 (+7.13)  78.58 +3.3 (+6.26)
IDSA + CLUDA 81.88 +1.7 (+1.24)  54.42 +32 (+0.65) | 70.35 24 (+4.79) 34.50 £33 (+24.06) | 75.68 +23 (+3.19)  74.15 +26 (+2.79)

tions in sensor attachment locations across repetitions within the same subject. By incorporating
inter-domain sensor alignment, these sensor-wise domain shifts can be addressed more effectively,
mitigating complex distribution discrepancies more successfully than existing UDA methods.

6.3 ANALYSIS OF SENSOR-WISE DOMAIN SHIFT

Sensor Permutation Experiment We conduct a sensor-wise permutation experiment to ver-
ify how well the model responds to the drastic sensor-wise domain shift setting, simi-
lar to the right side of Figure [II We randomly select two sensors in the target do-
main and swap their data to create a synthetic setting with severe sensor-wise domain shift.
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72 7

(a) Original target data (b) Augmented target data (sensor 3, 6)

Figure 6: Transportation map visualization in a bipartite graph across source-target sensors.

Figure [5] shows the percentage of retained per- %100

formance, defined as the ratio between the per- 2 go

formance on the permuted target domain and §

that on the original (non-permuted) target do- § 60

main, for the SD-gesture dataset. IDSA (with &

Deep Coral as the base), along with two base- E 40

line models (selected as the second-best in the g = CLUDA
cross-subject and cross-repetition settings, re- g 20 e SEA
spectively) across five random sensor permuta- § o = IDSA

tion cases, are compared. The results highlight 063 106 205 3604 567 Ag
that IDSA consistently retains the highest per-

formance preservation rate, demonstrating its Fjgure 5: Performance preservation rate under

sensor-wise domain shift. The actual values of  gjgnals of sensors 0 and 3).

the performance preservation rate are provided
in the Appendix.

Spatial Transportation Visualization Figure [0] illustrates the learned transport map Ag on the
SD-gesture dataset in the cross-repetition scenario as a bipartite graph between source and target
sensor channels. Figure [f] (a) shows the graph generated with the original data, and Figure [§] (b)
depicts the graph with sensor-wise permutation (between sensor 3 and sensor 6) applied to the target
data. For both cases, two plots are provided: one displaying the entire graph and the other high-
lighting only the edges corresponding to the switched target sensors. The edge thickness represents
the edge weights, showing that each sensor in the target domain is transformed using a different
weighted combination of the source-domain sensors. In other words, the mapping is not one-to-
one; each target sensor is reconstructed from a distinct mixture of source sensors rather than being
directly matched to a single source sensor. This further underscores the importance of accounting
for sensor-wise domain shifts, in contrast to existing approaches that primarily assume one-to-one
domain alignment or focus only on intra-domain alignment. In the sensor-wise misalignment point
of view, Figure(a), target sensor 6 exhibits stronger connections with source sensors, while sensor
3 shows weaker connections. In contrast, Figure [6] (b) demonstrates the opposite tendency for the
swapped sensors, with target sensor 3 gaining higher relations and sensor 6 showing reduced connec-
tions. The result highlights that the IDSA can adaptively capture inter-domain sensor relationships
in response to possible changes in the target domain.

7 CONCLUSION

We propose a plug-in module for UDA of wearable MTS sensor data, IDSA, to especially mitigate
sensor-wise domain shift by exploiting the inter-domain sensor alignment. We offer theoretical in-
sights that optimizing the proposed spatial transportation loss function provides a way to acquire
the Wasserstein distance, effectively transporting the target distribution to the source distribution in
spatial perspective. Extensive experiments across five benchmarks demonstrate that IDSA consis-
tently improves over baselines, achieving substantial gains under sensor-wise shifts. These results
highlight the importance of explicitly addressing sensor-wise domain shift and suggest that IDSA
offers a general and effective framework for robust adaptation in the wearable domain.

10
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provide our source code as supplementary material.
Our theoretical analysis is presented in Section[5.4] with detailed proofs for all theorems and support-
ing lemmas provided in Appendix All experimental settings are described in Section [6.1] and
Appendix [A.5] which includes dataset statistics, the client subgraph clustering methodology, base-
line model details, and a complete list of hyperparameters. We provide our implementation in the
following URL: https://anonymous.4open.science/r/IDSA_TICLR2026-ED36/.

ETHICS STATEMENT

This work is grounded in sensor-based multivariate time series (MTS) data, which inherently cap-
tures high-dimensional, temporally structured signals. As such, the proposed framework is not
limited to a specific domain or dataset, but can be readily extended to other settings involving multi-
dimensional time series. This generality enables its application across a wide range of domains, such
as healthcare and industrial monitoring, where sensor networks are used to collect complex, tem-
porally evolving data. By supporting flexible integration with diverse MTS datasets, our approach
has the potential to contribute broadly to real-world deployments requiring robust, adaptable, and
interpretable models.

While we acknowledge the broader concerns associated with machine learning technologies (e.g.,
surveillance, profiling, or disinformation), our method poses relatively low risk in these areas.
Specifically, the approach operates on sensor data that does not identify personal information. Fur-
thermore, it does not involve generating or manipulating content, nor does it make autonomous de-
cisions that directly affect individuals. As such, while the responsible use of any Al system remains
essential, the likelihood of our method being misused for harmful societal purposes is comparatively
limited.
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APPENDIX OVERVIEW

This appendix is organized as follows. All experiments were conducted on an NVIDIA RTX A6000
GPU.

A.1 Feature Extractor of IDSA (Page[16):
A.2 Proof of Theorems (Page|[I6):
* Definition of discrete 1-Wasserstein Distance
* Proof of Theorem/[I]
* Proof of Theorem
A.3 Datasets (Page|[I8):
* HAR dataset (Cross-Subject setting)
* sEMG dataset (Cross-Repetition setting)
A.4 Baselines (Page|[I9):
A.5 Reproducibility and Performance Analysis (Page [20):
* Hyperparameter Search Space
A.6 Extended Experiments (Page [20):
* Detailed results of Figure 3]
* Ablation Study on the Loss Functions
* Hyperparameter Sensitivity
¢ Time complexity of Ly
A.7 Extended Related Work (Page 23):
* Discussion with similar structural alignment methods in MTS-UDA
* Discussion with Optimal Transport-based methods
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A APPENDIX

A.1 FEATURE EXTRACTOR OF IDSA

Following prior studies (Ozyurt et al., 2023)), we adopt a TCN-based structure for the feature extrac-
tor. Therefore, after applying IDSA, the TCN-based feature extractor is applied to extract meaning-
ful representations. The detailed structure of TCN is as follows: for the Opportunity HAR dataset,
the feature extractor consists of three layers of TCN structure with a hidden dimension of 64, and
five layers with a 32-dimensional hidden dimension for the WISDM dataset.

A.2 PROOF OF THEOREMS

A.2.1 DEFINITION OF DISCRETE 1-WASSERSTEIN DISTANCE

First, we introduce the definition of the discrete version of the Wasserstein distance as follows:

Definition 2 (Discrete 1-Wasserstein distance (Kolouri et al., 2017)). Suppose that when X and Y
are discrete sets, each having total mass 1 (i.e., each point has mass 1/n and 1/m respectively).
n and m denote the number of data points of X and Y. Then, using the Euclidean distance, the
1-Wasserstein (or Earth Mover’s) distance for the discrete distribution is defined as:

Wi(X,Y) =min() > mi il — Vjll2) st w1, (12)
(2

where Il is nx'm nonnegative coupling matrices whose row sums and column sums are equal to 1/n
and 1/m, respectively.

A.2.2 PROOF OF THEOREM(I]

We restate Theorem[I] as follows:

Theorem 3. Under the above notation, let source MTS data X s and target MTS data X, be repre-
sented as sub-elements in the X and Y, respectively. Optimizing Ly has the same form as solving a
discrete 1-Wasserstein problem. In particular, if A g achieves the global minimum of Ly, it provides
an optimal transport plan (up to constant scaling), so min Lg; = N - W1 (X, X5).

Proof. We begin the proof by assuming that the Norm function in equation [I] yields a doubly
stochastic matrix, which can be ensured with a slight variation through the Sinkhorn—Knopp al-
gorithm Knight| (2008). From equation [2| we introduce the L here as follows, where (A); ;
represents the element in the ¢-th row and j-th column of the matrix A 4;:

N N
La=)" (Au)i; = distance((X,);, (X,);)- (13)
i

Optimizing Ly leads to the following:

mlnﬁgtfmmzz st)igll(Xe)i — (Xs)jll2-

Because A ,; is doubly stochastic, each row/column sums to 1. Consequently, ZZ j(ASt) = N.

Define 7 = Ast Then 7 has row- and column-sums 1/N, placing it precisely in the set IT of
valid OT couplmgs in equation[I2] Therefore,

D (Aa)iy IXE=Xll2 = N Y7y [1X] = X
4, 2}

Minimizing the left-hand side with respect to A; is thus equivalent to minimizing the right-hand
side with respect to ™ € II. The latter is exactly the 1-Wasserstein cost (as in Def. fdef:Wasserstein)
up to a factor /N. Consequently:

min Ly = N manmJ [Xi—XI|l, = N Wi (Xe, Xs).
i,j
Thus, the statement holds true. L]
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A.2.3 PROOF OF THEOREM[Z]

First, an assumption that the source data instance and target data instance are required. However,
this assumption is reasonable because, during mini-batch training, source and target instances can
be paired by their ground-truth labels, ensuring that each matched pair belongs to the same class.

We restate Theorem 2] as follows:

Theorem 4. Let the source-wise information bottleneck be defined as:
IBs = I(Zy, Xs) — BI(Tar,Zy), (14)

where X indicates the source distribution and T'ar denotes target domain-specific information. In
particular, if IDSA is optimized through loss functions, the transformed target representation satisfies
the source-wise information bottleneck.

min(Ly + Lgee) = max [ B. (15)

Proof. With the assumption of identical class, the representation Z, becomes similar to Z; since a
similar representation of identical class makes the final classifier easier to classify. Therefore, we
can conclude that optimizing Ly is identical to Z; ~ Z,. Finally, we can express the relation of L
as:

min Ly ~ max I(Z;, Xs), (16)

The decorrelation loss for the target domain is related to minimizing the mutual information of the
generated target representation and the target-specific domain information.

min Ly ~ max H(Z¢), 17

indicating that the spatial decorrelation loss maximizes the entropy of the target-domain’s represen-
tation Z,. If we assume that Z, obeys a gaussian distribution, the entropy of Z; can be transformed
as:

H(Z) =~ [ 0(2)logp(2:)2,

— Eflog NV (11, 3¢)]

= — Ellog[(2m) /2|~ 2exp(—3 (2 — pu)

2 N2 — )] (18)

1 1
log(27) + 3 log [ %] + 3 E[(Z: — )

1
= 21+ log(2m)) + [,
where 114, ¥; denotes the mean and the covariance of Z;. | %] is the determinant of the covariance
matrix of Z,. Therefore, maximizing the entropy is identical to maximizing the covariance matrix.
If we assume that A\, Ao, ..., \y are the N eigenvalues of 3;, then vazl A; = trace(X;) = N.
Finally, we have the following equation:

N
Zz’:l Ai

=0 (19)

N
log [B¢] =logITIL, A; = > log \; < Nlog

i=1

The inequality is due to Jensen’s Inequality. The equation indicates that the upper bound of |3;| is
1, and it is satisfied when the covariance matrix is the identity matrix. Therefore, maximizing the
entropy of the target representation matches with optimizing the decorrelation loss. With the two
relations, we can easily extend that optimizing both loss functions leads the target representation to
satisfy the source-wise information bottleneck I B;. O
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A.3 DATASETS

A.3.1 HAR DATASET (CROSS-SUBJECT SCENARIO)

The Opportunity HAR dataset (Roggen et al.l [2010) comprises signals from 113 sensors placed at
various locations on the body. It contains recordings from 4 subjects, each of which is treated as a
separate domain. The dataset provides two levels of label annotation: (1) locomotion, representing
low-level activities such as sitting, standing, walking, and lying; and (2) gestures, representing 17
higher-level actions. Following prior work (Wang et al.} 2023)), we focus on the locomotion label
annotations, resulting in a 4-class classification setting. To be specific, only the sensors that are
attached to the subject are regarded, resulting in a total of 113 sensors. Spatio-temporal data is
constructed by adopting 128 timestamps as one data point X, and the overlapping ratio is 50%.
We conduct an experiment by setting one subject as a source dataset and another subject as a tar-
get dataset, resulting in 12 scenarios. We randomly select six scenarios from 12 to compare the
performance with baselines. Each subject’s recording is repeated five times. The first three repeti-
tions of both the source and target subjects are used as the training dataset, while the remaining two
repetitions of the target dataset are used for validation and testing, respectively.

The WISDM dataset (Kwapisz et al., 201 1) consists of signals from a 3-axis accelerometer collected
from 30 subjects. The data is recorded from both a smartphone and a smartwatch at a sampling
rate of 20 Hz. The labels represent six types of human activities: walking, jogging, sitting, stand-
ing, walking upstairs, and walking downstairs. Label imbalance exists across subjects (domains).
Spatio-temporal data is constructed by segmenting the signals into non-overlapping windows of 128
timestamps per data point, denoted as X.

A.3.2 SEMG DATASET (CROSS-REPETITION SCENARIO)

Three real-world sSEMG datasets are used to evaluate the proposed model on a hand gesture recog-
nition task: Ninapro DB 5 (Pizzolato et al., [2017) with 18 gestures (Nina5-18), Ninapro DB 5 with
53 gestures (Nina5-53), and static and dynamic gesture (SD-gesture) (Lee et al., [2023). All three
datasets are sparse SEMG datasets, each containing a small number of SEMG electrodes. In the
SEMG datasets, each repetition manifests considerable variation in distribution due to spatially mis-
aligned sensors resulting from the reattachment process between repetitions (Farina et al.,[2014). For
this reason, we consider each repetition within a single subject as a domain in the sEMG datasets.
The Nina5-18 and the Nina5-53 datasets have 6 repetitions each, while the SD-gesture dataset has 4
repetitions.

NinaPro DB 5 is one of 10 large databases of the NinaPro dataset, which is a representative SEMG
dataset frequently used for verification in this domain (Josephs et al., [2020; |[Ketyko et al.l 2019;
Cote-Allard et al., [2017). The dataset is measured with two wearable MYO armband devices, each
equipped with 8 channels, resulting in a total of 16 channels. Furthermore, the NinaPro DB 5
is comprised of three hand exercise sets, which are denoted as Exercises A, B, and C. Nina5-18
utilizes only the label set of Exercise B, which contains isometric and isotonic hand configurations,
as well as basic wrist movements. Nina5-53 additionally utilizes a label set of Exercises A and C,
which are basic movements of the fingers and grasping and functional movements, respectively. For
both Nina5-18 and Nina5-53, the 6 repetitions for each subject are divided into two parts with a
ratio of 2:4. Each part is considered a distinct domain. For evaluation, the first part is utilized as
the source dataset, half of the second segment is allocated to the target dataset, and the remainder is
designated as the test dataset.

SD-gesture is a SEMG dataset with an 8-channel device, conducted on 9 subjects (Lee et al., [2023).
The paper that introduces this dataset focuses on static and dynamic gestures, and in our paper, we
refer to this dataset as SD-gesture. A dynamic gesture indicates that the sensor data for this label
is acquired when the subject performs an active movement rather than a paused gesture. The SD-
gesture comprises 18 gestures (14 static and 4 dynamic). The whole 4 repetitions for each subject are
divided into two parts with a ratio of 2:2. The first part is designated as the source dataset. Similar
to the NinaPro DB 5, half of the second part is reserved for the target domain, while the remainder
is used for testing.
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A.4 BASELINES

We compared IDSA with 10 recent UDA baselines (Deep Coral (Sun & Saenko] 2016),

CDAN

Long et al} [2018), CoDATS (Wilson et al} [2020), AdvSKM (Liu & Xuel [2021)),

CLUDA (Ozyurt et al} [2023)), SEA (Wang et al., 2023), RAINCOAT (He et al.| 2023, ACON (Liu

et al} [2024), SASA (Cai et al] [2021), and UniMTS [Zhang et al,| (2024)). Each UDA model is

described in the following.

Deep Coral (Sun & Saenkol 2016) aligns the correlation statistics of the source and target
distributions by processing an MLP transformation similar to our invariance learning loss.

CDAN (Long et all, [2018) is an extended version of DANN. It introduces a conditional
adversarial domain adaptation method that leverages disentangled and transferable repre-
sentations by embedding adversarial learning into deep networks. They exploit classifier
predictions to condition the adversarial models, employing conditioning strategies: multi-
linear conditioning and entropy conditioning.

CoDATS (Wilson et al.| [2020) attempts the domain adaptation for the time-series data.
They propose a weak supervision model for the target labels, which are more readily ob-
tainable than true labels. They additionally train the domain classifier to identify if the data
originated from a source or target.

AdvSKM 2021) is a model that attempts the statistical technique (Maximum
Mean Discrepancy (MMD)) on the univariate time-series data. A hybrid spectral kernel net-
work is proposed, in which the first kernel adjusts the MMD metric suitable for time-series
data. Furthermore, they apply adversarial learning to discriminate between the representa-
tions of source and target data.

CLUDA (Ozyurt et al.}[2023)) proposes a contrastive learning framework to learn represen-
tations in multivariate time-series data. They capture the relations between the source and
target through a nearest-neighbor contrastive learning method. Additionally, they utilize
adversarial training to enhance the performance in multivariate time-series UDA settings.

SEA (Wang et al. [2023)) introduces an unsupervised domain adaptation method for mul-
tivariate time-series sensor data. For the domain adaptation method, they introduce an
endo-feature alignment loss, composed of a sensor-correlation alignment loss, a sensor-
feature alignment loss, and an exo-feature alignment loss, which leads to obtaining local
and global sensor-level embeddings, respectively.

RAINCOAT is a domain adaptation method for time series that can han-
dle both feature and label shifts. They address feature and label shifts by considering both
temporal and frequency features, aligning them across domains, and correcting for mis-
alignments to facilitate the detection of private labels. Raincoat improves transferability by
identifying label shifts in target domains.

ACON 2024) uncovers the characteristics of both temporal features and fre-
quency features, claiming that they cannot be equally treated in transfer learning. ACON
contains three key aspects: a multi-period feature learning module to enhance the discrim-
inability of frequency features, a temporal-frequency domain mutual learning module, and
a domain adversarial learning module in the temporal-frequency correlation subspace.

SASA is a time-series domain adaptation method that aligns sparse as-
sociative structures across domains. It extracts intra- and inter-variable association graphs

using attention mechanisms, then matches these graphs between source and target to cap-
ture domain-invariant dependencies, while also allowing for domain-specific components.
In contrast to our sensor-level transport, SASA operates under the assumption that inter-
variable relationships are largely stable across domains.

UniMTS (Zhang et al] 2024)) is a pretraining and finetuning approach for motion time
series data that inputs only IMU sensors. To ensure a fair and consistent evaluation, we
conduct experiments on both the WISDM and Opportunity datasets. While WISDM con-
sists exclusively of IMU sensor signals, the Opportunity dataset includes a heterogeneous
combination of IMU and additional sensor modalities. For this baseline, we restrict the
input to IMU signals only, reflecting the methodological constraints. On the pretraining
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Table 3: Hyperparameters to reproduce our SEMG results.

Hyperparameter | Nina5-18 Nina5-53 SD-gesture
Ir 0.001 0.001 0.001
batch size 64 128 32
A1 le-1 le-2 le-1
A2 le-0 le-1 le-1
Sensor 8 Sensor 10 Sensor 1 Sensor 2
7 N NE - - -
Joe | - N %
| &* M
. -
A

Opportunity HAR WISDM
® :Source @ :Target @ :Transformed Target

Figure 7: The t-SNE visualization of selected sensor with the source dataset, target dataset, and the
transformed target representation.

stage, they apply random sensor configuration mixing augmentation to handle various sen-
sor misalignments. The pretraining stage is trained with synthetic datasets. With the do-
main generalized model, they adopt a finetuning approach for domain adaptation as well.
For a fair comparison, we fine-tuned UniMTS on the source training data from the pre-
trained model. However, they utilize the text information of the labels, which leads to extra
information compared to other existing methods.

A.5 REPRODUCIBILITY AND PERFORMANCE ANALYSIS

A.5.1 ANALYSIS OF HYPERPARAMETERS

To ensure the reproducibility of our model, we list the hyperparameters used in IDSA in Table [3]
These parameters were selected based on the validation splits across all datasets. The search space
for the learning rate includes [0.001, 0.005, 0.01, 0.05], and for batch size, we consider [128, 256,
512, 1,024, 2048]. For hyperparameters related to the loss functions (A1, A2), our search space
corresponds to [0.01, 0.1, 1, 2, 10]. The embedding dimension of the Temporal layer is experimented
with values ranging from 32 to 512, specifically using powers of 2 within this range.

A.6 EXTENDED EXPERIMENTS

Sensor-aware Visualization To further validate the effectiveness of our method, we conduct an
additional experiment demonstrating that transforming target data using the inter-domain sensor
relation matrix effectively mitigates sensor-wise domain shifts. We visualize three types of single-
sensor representations using t-SNE: source, target, and transformed target representations (via the
learned matrix).

Figure [7] presents t-SNE (Van der Maaten & Hinton| 2008) results for sensors 8 and 10 from Op-
portunity HAR and sensors 1 and 2 from WISDM. The original source and target representations
show a clear separation, indicating sensor-level domain shifts. After applying the transformation,
the target representations align closely with the source.

These results confirm that inter-domain transformation reduces domain discrepancy by aligning
sensor-wise distributions, making target data more compatible with the source-trained model. The
effect is more pronounced in Opportunity HAR (113 sensors) than WISDM (3 sensors), indicating
that richer sensor information enables more precise alignment and improved target performance.

20



Under review as a conference paper at ICLR 2026

Table 4: Ablation study of L and L ge..

Lst | Lgee | Nina5-18 Nina5-53 SD-gesture
X X 83.37 75.63 73.02
X o 82.67 75.83 76.92
o X 84.98 76.89 79.27
o o 85.53 78.80 80.15

Table 5: Performance comparison of sensor-wise permutation experiment on the SD-gesture dataset.
The performance of five random sensor-wise permutation cases is presented. The result shows the
actual model performance value according to the preservation rate.

Models | 0+ 3 16 245 34 5 <> 7 | Avg. Preservation Rate
CLUDA | 69.56% 68.41% 76.45% 60.42% 64.43% 67.05%

SEA 66.60% 57.59% 65.60% 58.33% 73.41% 64.31%

IDSA | 93.13% 78.62% 86.75% 83.94% 93.36% 87.56%

A.6.1 ABLATION STUDY

Table [ shows the effectiveness of the newly proposed loss functions. The performances in the three
datasets, along with the existence of the loss functions, are exhibited in the table. From the table, we
can easily observe that the best results in all datasets are when both losses are incorporated. Further-
more, accuracy increases significantly if we compare the existence of spatial transportation loss to
the values without applying every loss function. This result further strengthens our assumption that
identifying inter-domain sensor relations in spatial transportation loss is essential for complicated
distribution shifts in MTS sensor data. Moreover, jointly applying both loss functions yields repre-
sentations that behave as an effective information bottleneck, indicating that their combined use is
essential for improving domain adaptation performance.

Sensitivity of Spatial Loss
Analysis of Hyperparameter Sensitivity Fig- TR
ure [§]illustrates the variation in accuracy across dif- 5 /\/_1 ,
ferent values of A for the two loss functions. For £ /\ |

both functions, performance improves up to a peak

Accuracy (%

and subsequently exhibits a slight decline. Notably,
the patterns across scenarios demonstrate subtle dif- .

ferences. These observations underscore the impor- A R
tance of selecting appropriate \ values to enhance = e
overall performance. In particular, values within the
range [0,1] strike a balance between performance
and stability, whereas excessively high or low val- “

ues tend to introduce performance inconsistencies. o = = n : W

Accuracy (%)

A.6.2 VISUALIZATION
OF DECORRELATION LOSS

This section visualizes the resultant decorrela-
tion matrix Dy ; of IDSA. The decorrelation
loss is designed to remove target-specific infor-
mation by encouraging the embedding’s corre-
lation matrix to approximate the identity ma-
trix. To verify this effect, we visualize the cor-
relation matrix of the learned representations on
the Nina5-53 dataset, as shown in Figure[J] The

resulting matrix closely resembles the iden- Figure 9: Intra-domain sensor correlation

tity matrix, indicating that the learned fea- heatmaps on Nina5-53 dataset. (Left: Source,
tures are effectively decorrelated. This demon-  Rjght: Target)

strates that the model successfully suppresses
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Scenario | UniMTS-Acc UniMTS-F1 | Ours(IMU)-Acc  Ours(IMU)-F1 | Ours-Acc Ours-F1
1—-2 61.73 64.89 77.65 81.77 86.82 88.69
1—3 74.54 75.86 79.50 66.61 86.96 88.11
1—4 69.17 74.94 73.19 77.47 84.45 88.89
21 81.37 83.12 82.80 84.76 89.30 90.95
2—3 67.08 42.96 67.39 39.67 84.78 87.15
2—4 58.71 59.43 65.15 48.75 81.23 87.45
3—>1 70.49 55.41 86.82 90.54 83.38 63.32
352 61.73 49.48 73.46 72.69 81.01 62.23
34 58.98 48.10 65.15 52.80 82.84 88.09
41 47.85 40.92 81.95 83.25 93.69 94.71
4—2 46.09 42.66 76.82 55.32 82.12 84.66
43 6491 49.05 77.02 76.21 88.51 89.39

Table 6: Opportunity Dataset Results with UniMTS under various settings.

target-domain—specific dependencies, thereby
promoting better alignment with the source domain.

A.6.3 DETAILED RESULTS OF SENSOR-WISE DOMAIN SHIFT ANALYSIS

Table [3] presents the actual model performance values corresponding to Figure [5] which visualizes
the analysis of sensor-wise permutation experiment. Our model achieves the highest performance
across all cases compared to two baselines, which rank second-best on the HAR and sSEMG datasets,
respectively. Furthermore, the performance preservation rate of our model consistently surpasses
that of the baselines by a significant margin across all cases. This result highlights the effective-
ness of our approach in addressing sensor-wise domain shifts by leveraging the inter-domain sensor
alignment method.

A.6.4 PERFORMANCE COMPARISON WITH UNIMTS

Table [6] presents a fair comparison of UniMTS on the Opportunity dataset. As described in the
Experiment section, UniMTS operates exclusively on IMU sensors and thus relies on a partial subset
of the available sensors. In contrast, the other baselines and IDSA are designed to utilize the full
sensor set. To ensure a controlled comparison, we additionally evaluate IDSA using only the IMU
sensors accessible to UniMTS. From Table [] we observe that even under this restricted sensor
configuration, IDSA consistently outperforms UniMTS across most transfer settings. This result is
notable, given that UniMTS benefits from supplementary textual label information, whereas IDSA
does not.

A.6.5 TIME COMPLEXITY OF THE SPATIAL TRANSPORTATION LOSS

The time complexity of Ly corresponds to O(NN?), as the inter-domain sensor relations and distance
matrix calculation take both O(N?). We observe that the number of sensors is 113 or 3 for HAR
datasets and 8 or 16 for sSEMG datasets, indicating that the time complexity of Ly remains compu-
tationally feasible. In cases where the number of sensors is large, we extract top-k values to reduce
computational overhead.

The 1-d Wasserstein distance is known to be computed using the Hungarian algorithm (Kuhnl [1955),
in which the time complexity is O(N?3). Therefore, optimizing Ly, can be stated as an efficient way
of estimating the Wasserstein distance. In contrast to efficient methods for acquiring optimal trans-
port, such as the Sinkhorn algorithm (Cuturi, [2013)), IDSA is a learning-based approach. This dis-
tinction implies that IDSA eliminates the need for additional estimation or approximation iterations,
thereby enhancing time efficiency.
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Table 7: Comparison of domain types, variable sets, and tasks across methods.

Method

Domain E

Task

Variable Set Example

SASA (Cai et al.|{2021
GCA (Lietal.

Regions, Age-based groups
Simulations, Regions

(Blood Glucose, Glucagon, Insulin)

(Blood Glucose, Glucagon, Insulin)

Timeseries UDA
Semi-supervised timeseries forecasting DA

IDSA (Ours) Subjects, Repetitions IMU/SEMG sensor channels (channel 1, channel 2, ..., channel n) | Timeseries UDA
Table 8: Domain-similarity statistics across four datasets.
Dataset Domains # Variables | Mean Sim. (%) | Std (%) | Min—-Max (%)
Opportunity | 4 subjects 113 44.89 11.57 | 35.44-69.83
WISDM 30 subjects 3 66.61 18.71 | 40.19-88.06
Air quality | 4 cities 11 81.29 791 | 67.49-91.75
Boiler 3 conditions 20 94.38 ~2.7 | 92.47-97.84

A.7 EXTENDED RELATED WORK

A.7.1 DISCUSSION WITH SIMILAR STRUCTURAL ALIGNMENT METHODS IN MTS-UDA

A growing line of research explicitly models and aligns inter-variable structure across domains for
time-series DA. Representative examples include SASA [2021), which learns sparse asso-
ciative graphs using intra- and inter-variable attention and aligns them across domains, and GCA
[2023)), which formalizes causal conditional shift and extracts a domain-invariant causal skele-
ton while allowing domain-specific components for forecasting. These methods are compelling
when variable semantics are stable across domains (e.g., clinical or environmental variables whose
relationships vary slowly, such as Glucagone and Insulin), and they have demonstrated strong trans-
fer under that assumption. Let X = (X7, ..., X ) denote variables (channels), o a feature map, and
C their structural dependency (associative/causal). Structure-alignment methods typically operate

under
Ps(y|e(X)) # Pr(yl¢(X)),  Ps(Cle(X))~ Pr(Cle(X)),

i.e., the inter-variable structure is approximately shared while label conditionals (or marginals) can
shift.

Table [7] summarizes the conceptual differences between SASA, GCA, and IDSA in domain types,
variable sets, and tasks. Our setting targets wearable MTS under cross-subject or cross-repetition
domain shift scenarios, where each “variable” is a sensor channel whose semantics can easily change
across domains due to placement, orientation, or user characteristics. In such cases, the assumption
of a single shared inter-variable structure often fails. We therefore adopt the hypothesis that regards
sensor-wise domain shift:

Ps(Clp(X)) # Pr(C|e(X)),

where Ay € RV*N denotes a cross-domain sensor correspondence. Accordingly, IDSA learns an
explicit channel-wise transport map to realign target channels to the source before reasoning about
structure, and couples this with intra-domain channel decorrelation to suppress spurious couplings.
To verify the conceptual difference in the empirical view, we proceeded to conduct the following
experiment. The experiment examined differences in inter-variable correlation consistency across
domains within the dataset based on variables.

Ps(Clo(X)) = Pr(Cle(X), Ax),

Inter-variable relation difference analysis. To examine whether a single shared correlation or
covariance structure is appropriate for multivariate sensor data, we compute inter-variable correla-
tion matrices for each domain within the same dataset. This procedure is repeated independently
for all four datasets, using PCA-stabilized channel statistics. The resulting domain similarity is de-
fined as the cosine similarity between the vectorized correlation matrices. For each domain d in a
dataset, we compute per-channel statistics (mean and standard deviation), concatenate them to form
F; € RT*2N  z_score features within domain, and apply PCA fitted on F}; to retain 95% variance
to stabilize dimensionality. We then derive a variable-variable correlation matrix Cy; € RV <N by
Pearson correlation using the PCA-stabilized features. Domain similarity between two domains ¢, j
is defined as the cosine similarity of the vectorized upper-triangular (excluding diagonal) parts of
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Table 9: Comparison of optimal-transport-based UDA methods.

Method OT granularity | Modality Task
MLOT (Kerdoncuff et al.|[2020a) | Instance-level Generic vector/image UDA
Instance-level Generic vector/image UDA
Instance-level Generic vector/sensor (target-only extra features) | UDA with dimensional mismatch
. Instance-level Timeseries UDA w/wo label shift
IDSA (Ours) Sensor-level Multivariate timeseries UDA with sensor-wise domain shift

their correlation matrices. For each dataset, we report the mean, standard deviation, and min—max of
sim (%, j) over all unordered domain pairs in Table Wearable datasets, Opportunity and WISDM
datasets, show substantial drift: Opportunity mean similarity ~45% (113 channels), WISDM
~67% with high variance (3 channels), whereas non-wearable Air ~81% and Boiler ~94% are
more stable. These results justify sensor-level transport rather than assuming one invariant structure.
The overall results, including all cross-domain similarity based on each domain’s own variable-wise
correlation matrix per all four datasets, are visualized in Figure[I0]

A.7.2 DISCUSSION WITH OPTIMAL TRANSPORT-BASED METHODS

There is a line of works adopting optimal transport (OT) for domain adaptation (Kerdoncuft et al.|

2020a} [Courty et al ] 2016a} [Aritake & Hino}[2022a). Table[]summarizes the conceptual comparison
across prior OT-based domain adaptation methods and IDSA. OTDA (Courty et all, 2016a) and

MLOT (Kerdoncuff et al.] 2020a) align sample distributions in a feature space whose coordinates
are assumed to have stable semantics across domains. DAEVS (Aritake & Hinol [2022a) addresses
a heterogeneous setting where the target has extra features, applying OT on the shared part while
modeling the extra part with pseudo-labeling. RAINCOAT [2023), which we already
include as a baseline, aligns latent time and frequency features via Sinkhorn divergence and corrects
possible label shift. In contrast, our IDSA treats each sensor channel as an entity and performs OT
at the sensor level by learning a sensor channel-wise transport map to resolve sensor-wise domain
shift, which is illustrated in our motivation. Thus, our approach differs from instance-level OT
methods and instead addresses a distinct and commonly encountered problem in wearable MTS.

We additionally implement the MLOT (Kerdoncuff et all,[2020a) and OTDA (Courty et al} 20164)

models for more thorough performance comparison on OT-based DA methods, while excluding
DAEVS (Aritake & Hino| 2022a)), whose setting is different from ours, requiring additional target
dimension. The results are presented in the Table From the results, we can infer that Raincoat,
which models OT specifically for time-series data, performs better than the other two traditional
OT-based UDA methods. Our methodology, which models the transportation map for sensor-level
optimal transport, still demonstrates the highest performance even when compared to newly adopted
traditional OT methods.

A.8 LIMITATION

While IDSA demonstrates strong performance in unsupervised domain adaptation for spatio-
temporal sensor data, there are some limitations to consider. First, when each domain is associated
with a very large number of sensors, the model introduces additional computational overhead due
to the graph generation and the need to compute pairwise similarities for spatial transportation loss.
This may limit scalability to very large datasets, and existing mini-batch training methods
let all 2018} [Zheng et al.} [2022) could be leveraged to mitigate the burden. Second, IDSA contains
several hyperparameters that may require dataset-specific tuning for optimal performance. Develop-
ing more adaptive or automated hyperparameter selection techniques could improve usability. There
are risks of compromising privacy if the model enables the re-identification of individuals from
anonymized sensor data. Rigorous testing and the development of appropriate safeguards would be
necessary before deployment in high-stakes scenarios. Despite these limitations and with respon-
sible usage, we believe IDSA provides a valuable tool for learning robust sensor representations
across domains to enable label-efficient yet accurate downstream predictions.
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Table 10: Performance comparison with OT baselines on HAR datasets (Opportunity, WISDM).

§—=T | Metric (%) Ll IDSAF IDSA ¥
MLOT OTDA RAINCOAT Deep Coral CLUDA
Opportunity
o Acc. 7430 70.39 82.89 86.82 86.03
F1 76.66  66.25 83.56 88.69 88.09
3 Acc. 6925  69.83 7123 81.06 86.96
Fl 4232 4258 58.02 63.41 88.11
o4 Acc. 7239 75.64 75.39 8257 8445
FI 7996  68.85 58.99 77.11 88.89
S Acc. 8338 75.03 81.64 §9.30 85.96
F1 85.92 7224 65.09 90.95 88.38
s Acc. 70.19  69.88 7173 81.37 8478
FI 65.05 42.58 58.45 79.42 87.15
> s Acc. 7346 70.95 7148 74727 8123
F1 81.81  67.79 75.45 80.63 87.45
P Acc. 6762 6701 85.54 83.38 79.08
Fl 4007 4037 63.83 63.32 62.42
PR Acc. 6508 62.57 7852 8T.01 80.45
FI 4032 4220 60.28 62.23 61.62
3 s Acc. 5684 55.50 3820 80.43 82.84
F1 4190 5097 64.00 86.67 88.09
P Acc. 7020 7249 §7.89 83.38 93.69
Fl 5869  58.62 88.32 83.98 94.71
4 Acc. 6899 6592 75.00 76.82 §2.12
FI 5001 40.99 61.56 76.62 84.66
P Acc. 6988 69.83 60.14 76.71 8851
Fl 59.15  59.11 72.19 69.83 89.39
AE Acc. 70.13 6891 76.72 81.44 84.63
FI 60.16 5438 67.48 76.91 84.08
WISDM

> o8 Acc. 8222 80.00 83.15 86.67 86.67
Fl 59.60  81.52 76.62 78.33 83.47
2 Acc. 6585 6585 78.05 6830 82.03
FI 5201 50.84 56.68 55.20 73.22
26 Acc. EAVEENE 7317 78.05 7317
Fl 3896 3627 5531 46.76 39.40
27 Acc. 6458 6458 79.17 8333 81.25
FI 5514 7122 69.21 73.10 79.27
Do A 5455 7121 7697 5454 80.30
F1 4138 67.81 31.82 40.52 74.93
80| A 146 3659 76.83 68.29 §2.93
Fl 3284 36.53 64.65 43.89 78.58
0 0 Acc. 5854 5122 6341 6341 65.85
FI 5194  51.60 63.48 62.34 47.46
% 20| Acc 7073 75.61 8537 97.56 87.80
F1 6551  54.83 81.14 97.76 85.37
%62 Acc. 6331 53.66 67.07 80.50 90.24
Fl 4893 35.63 52.48 82.37 73.89
% 2 Acc. 6098 63.41 87.80 75.61 9004
FI 4893 5276 72.87 52.16 81.11
Ave Acc. 6354 63.59 7410 75.61 8214
- Fl 4952 53.90 62.43 63.24 71.67
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