

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 INTER-DOMAIN SENSOR ALIGNMENT FOR UNSUPERVISED DOMAIN ADAPTATION OF WEARABLE MULTIVARIATE TIME SERIES

Anonymous authors

Paper under double-blind review

ABSTRACT

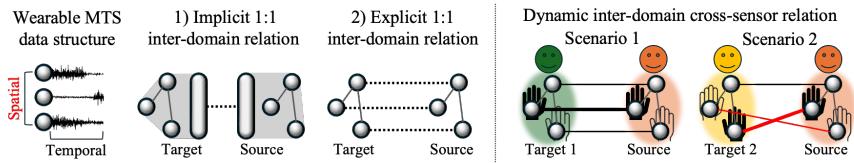
Unsupervised domain adaptation (UDA) for multivariate time-series (MTS) data in the wearable domain transfers knowledge from a labeled source to an unlabeled target, typically with signals collected from multiple body-worn sensors. Although existing UDA methods devote substantial effort to modeling temporal shifts, they often rely on simple spatial alignment across domains, thereby limiting their capacity for effective adaptation. Real systems in the wearable domain exhibit *sensor-wise domain shift*, including changes in placement or orientation, which necessitates the explicit consideration of inter-domain spatial sensor relations. Therefore, we introduce **IDSA**, *Inter-Domain Sensor Alignment for wearable MTS-UDA*, a plug-in module that augments any base UDA loss with two complementary components: (i) an *inter-domain sensor transport* that learns a cross-sensor relation matrix from domain-specific sensor embeddings and transports target channels toward the source, and (ii) a *channel decorrelation* regularizer that sparsifies intra-domain graphs to suppress redundant or noisy couplings. Our sensor transportation loss is shown to be equivalent (up to a constant) to the discrete 1-Wasserstein objective. **When used as a plug-in with Deep CORAL or CLUDA, IDSA achieves consistent gains across five HAR and sEMG benchmarks compared to recent baselines in activity classification accuracy, achieving a performance enhancement in most scenarios.**

1 INTRODUCTION

Multivariate time-series sensor data play a vital role in the wearable domain, where multi-sensor signals enable tasks such as human activity recognition (Zhong et al., 2022) and gesture classification (Tchantchane et al., 2023). These tasks support high-impact applications in health monitoring (Jijesh et al., 2021), rehabilitation (Schrader et al., 2020), and human-computer interaction (Qi et al., 2019), highlighting the practical importance of achieving reliable performance on wearable sensor data. Body-worn devices record concurrent signals from multiple sensors, yielding data with rich spatial dependencies between sensors as well as temporal dynamics. This inherent spatio-temporal complexity gives rise to substantial distribution shifts, leading to significant discrepancies across different domains, such as variations among subjects or across repeated measurements (Wang et al., 2023). **In practice, changes in placement, orientation of sensors induce *sensor-wise domain shift* across different domains, which is distinct from the usual temporal covariate shift and remains relatively underexplored.** (Banos et al., 2014)

Unsupervised domain adaptation (UDA) has been widely explored to enhance model performance under domain shift (Huang et al., 2022; Ozyurt et al., 2023; Li et al., 2022), as an effective approach to resolve this problem. The goal of UDA is to transfer knowledge from a source domain to a target domain without access to labels in the target domain dataset, thereby saving annotation costs in the target domain, and has shown significant performance improvements in various **fields** (Rangwani et al., 2022; Wei et al., 2024) and wearable **applications** (Ozyurt et al., 2023) in particular.

Existing UDA methods have devoted significant effort to modeling distribution shifts along the temporal dimension, leading to performance gain for UDA on **multivariate time series** (MTS) data (He et al., 2023; Liu et al., 2024). However, they leave the *inter-domain multi-sensor spatial structure* *ei*-

054
055
056
057
058
059060
061
062
Figure 1: (Left) Existing methods for handling spatial structures in UDA for wearable MTS data.
(Right) Examples of diverse inter-domain sensor relationships observed across scenarios.063
064
065
066
067
068
069
070
ther collapsed or rigidly hard-coded as depicted in Figure 1 (Left): 1) high-level matching between
071 source and target feature embeddings without explicit sensor alignment (Sun & Saenko, 2016; Wil-
072 son et al., 2020), or 2) strict 1:1 matching between sensors in the same location (Wang et al., 2023).
073 Both tacitly assume fixed cross-domain sensor relations based on physical placement and rely solely
074 on *intra-domain* graphs (e.g., using GNNs or CNNs as feature encoder (Lai et al., 2021)) to learn
075 multi-sensor structure. This is more problematic in wearables, where intra-domain correlations are
076 noisy and domain-specific; treating them as static across domains can entangle semantics and shift,
077 and ultimately undercut adaptation.078
079
080 The right side of Figure 1 illustrates two UDA scenarios involving three domains (people): two sub-
081 jects with the same dominant hand (Green and Orange in Figure 1) and one subject with the opposite
082 dominant hand (Yellow). The same sensor attached to the same limb across source and target may
083 (Scenario 1) or may not (Scenario 2) produce the same distributions, depending on domains in the
084 UDA scenario, driven by domain information such as handedness. As in this illustrative example,
085 various dynamic inter-domain sensor relations occur, and existing approaches that assume simple
086 or static correspondence between inter-domain sensors may fail in domain adaptation. We further
087 substantiate the need to model inter-domain sensor relations in the real-world wearable MTS dataset
088 through an empirical analysis in Section 3.
089090
091 To fully address the sensor-wise distribution shift in wearable MTS UDA, we propose ***Inter-Domain***
092 ***Sensor Alignment for MTS-UDA (IDSA)***, a *plug-in* module that extends existing UDA methods
093 (e.g., Deep CORAL (Sun & Saenko, 2016) or CLUDA (Ozyurt et al., 2023)) without architec-
094 tural changes. IDSA adds a principled **inter-domain** perspective and couples it with **intra-domain**
095 structure via domain-specific sensor embeddings and two additional losses for unified *inter-* and
096 *intra*-domain structure in a single training routine. IDSA introduces a principled **inter-domain**
097 component that learns a cross-sensor relation matrix from domain-specific sensor embeddings through
098 spatial transportation loss and uses it to *transport* target channels toward the source, thereby aligning
099 inter-domain sensor semantics. This is coupled with an **intra-domain** *channel decorrelation*
100 regularizer that sparsifies within-domain graphs, suppressing redundant or noisy intra-domain sensor
101 couplings so that inter-domain relations remain distinctive and informative. Crucially, our spatial
102 transportation objective admits a clean optimal-transport interpretation: minimizing it is equivalent
103 (up to a constant) to the discrete 1-Wasserstein objective.104
105
106
107
108 We evaluate our model on five real-world multivariate time-series (MTS) wearable sensor datasets,
109 encompassing Human Activity Recognition (HAR) under the cross-subject setting and surface elec-
110 tromyography (sEMG) under the cross-repetition setting. **Both settings are classification tasks. In**
111 **the cross-subject setting, the source and target domains are two different subjects, whereas in the**
112 **cross-repetition setting, the source and target domains are two different repetitions from the same**
113 **subject.**114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
177

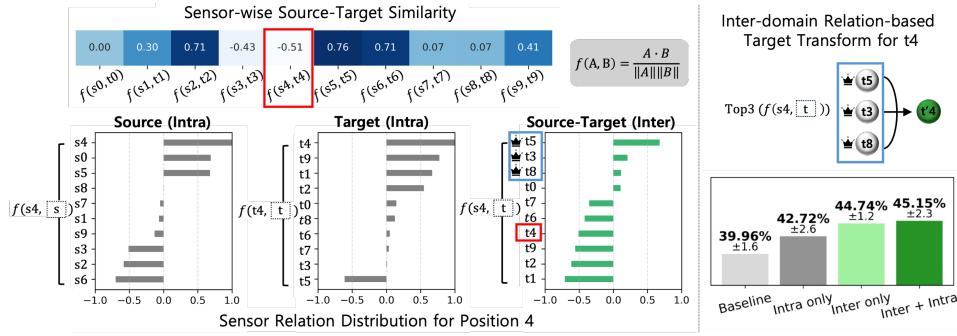


Figure 2: Illustration of the motivation analysis.

UDA seeks to learn representations or models that are robust to distributional discrepancies between the source and target domains, and has been extensively adopted in various fields (Huang et al., 2022; Ozyurt et al., 2023; Li et al., 2022). A prominent class of methods leverages adversarial training, where a discriminator is introduced to identify whether a given input representation originates from the source or target domain. (Ganin et al., 2016; Long et al., 2018). Another line of research employs statistical alignment techniques to minimize domain divergence, such as moment matching or correlation-based methods (Sun & Saenko, 2016; Redko et al., 2019). However, these UDA techniques are typically developed for univariate data. When applied to multivariate time series (MTS), a common strategy is to concatenate data from all sensors into a single representation, which refers to the left side of Figure 1-1). This practice often neglects spatial dependencies across domains, which may constrain the effectiveness of domain adaptation in wearable MTS scenarios, where spatial relations are influenced by numerous factors.

UDA for MTS data, which considers the multi-sensor structure, has been recently explored (Wang et al., 2023; Sun et al., 2024; Guo et al., 2025). For example, SEA (Wang et al., 2023) typically models intra-domain dependencies among sensors and employs a fixed sensor alignment strategy, as shown in Figure 1-2). A key underlying assumption is that corresponding sensors in the source and target domains serve equivalent semantic functions or measure similar physical phenomena. Other studies (Li et al., 2023; Cai et al., 2021) extract sparse associative structure with intra- and inter-variable attention mechanisms, further leveraging domain-invariant causal structures while also modeling domain-specific components. However, as illustrated in the right side of Figure 1, inter-domain sensor relationships may differ from a straightforward one-to-one mapping between sensors at corresponding positions. This mismatch can result in suboptimal adaptation performance due to misaligned sensor interactions across domains. A more extensive comparison with these methods is discussed in the Appendix.

3 EMPIRICAL ANALYSIS OF MOTIVATION

Figure 1 illustrates the importance of modeling meaningful inter-domain sensor relationships in multivariate time-series (MTS) unsupervised domain adaptation (UDA). It shows how existing methods capture spatial dependencies and highlights scenarios where their underlying assumptions may be insufficient. We conduct an empirical analysis on **real-world MTS data** to verify this motivation with two objectives: **1)** to demonstrate the existence of inter-domain sensor relationships that go beyond simple 1:1 sensor matching; and **2)** to reveal the limitations of utilizing intra-domain sensor relationships naively to address spatial distribution shift in wearable MTS data.

Setup Two different domains (subjects) from the Opportunity HAR dataset (Roggen et al., 2010) are selected, extracting the same 10 sensors randomly for both domains. First, we compute the cosine similarity using a function f between the sensor signals, including sensors across domains in the same position, to analyze relationships from both intra- and inter-domain perspectives. Next, we design a simple target transformation based on the observed inter-domain sensor relations: for each target sensor position, we replace its signal with a weighted sum of the three target sensors that exhibit the highest similarity with the corresponding source sensor in the same position. We denote

162 the original target data as \mathcal{T} , the transformed version as $\mathcal{T}_{\text{transform}}$, and the source domain as \mathcal{S} . We
 163 define a UDA model Φ utilizing a Graph Neural Network structure (Kipf & Welling, 2017) and Deep
 164 CORAL loss (Sun & Saenko, 2016). Depending on the specified adjacency matrix, the model either
 165 excludes intra-domain sensor relations (Φ_{base}) or incorporates intra-domain sensor relations (Φ_{intra}).
 166

167 **Results** Figure 2 summarizes the findings. The top left panel is a cosine similarity heatmap for
 168 position-matched sensors across source and target domains. Similarities vary widely, indicating that
 169 fixed physical alignment does not ensure functional consistency across domains. We then focus on
 170 Sensor 4, which showed the lowest inter-domain similarity among corresponding pairs. The three
 171 plots in the bottom left depict similarity distributions for Sensor 4 from the source and target intra-
 172 domain perspectives and the source–target inter-domain perspective. The intra-domain structural
 173 patterns differ notably between the source and target domains. Regarding inter-domain relationships,
 174 interestingly, sensors 5, 3, and 8 (which are not position-matched sensors) show greater similarity
 175 than the position-matched sensor (e.g., sensor 4). These findings underscore the importance of
 176 explicitly accounting for inter-domain sensor relationships beyond the intra-domain relations.
 177

178 Building on this, we test whether incorporating sensor relations improves UDA performance. The
 179 bottom right panel reports accuracy (mean \pm s.d., $n=5$ runs) under four settings: *Baseline* ($\Phi_{\text{base}}^{\mathcal{S}, \mathcal{T}}$),
 180 *Intra only* ($\Phi_{\text{intra}}^{\mathcal{S}, \mathcal{T}}$), *Inter only* ($\Phi_{\text{base}}^{\mathcal{S}, \mathcal{T}_{\text{transform}}}$), and *Inter+Intra* ($\Phi_{\text{intra}}^{\mathcal{S}, \mathcal{T}_{\text{transform}}}$). From the right side of
 181 Figure 2, applying Inter-domain relations yields performance gains consistently (Inter only > Baseline,
 182 and Inter+Intra > Intra only), showing the usefulness of leveraging them in the adaptation
 183 model. Although combining both inter- and intra-domain sensor relations yields the highest mean
 184 performance, the standard deviation remains high. In particular, the larger error bars observed with
 185 intra-domain relations suggest that they may propagate redundancy or noise when applied naively.
 186 This indicates that their integration should be handled carefully.

187 **Takeaway** The analysis indicates two requirements for wearable MTS UDA: (i) inter-domain sensor
 188 relations must be *discovered* in a data-dependent manner for each source and target domain pair rather than assumed by position, and (ii) intra-domain structure must be handled carefully during
 189 integration, since domain-specific correlations can either help or hinder when combined with inter-domain alignment.
 190

192 4 PRELIMINARIES

194 4.1 PROBLEM SETUP AND FORMULATION

196 In a UDA setting, an input spatio-temporal dataset of wearable MTS data can be represented as
 197 $\mathcal{D}_s = \{(\mathbf{X}_s^i, y_s^i)\}_{i=1}^{M_s}$ for **labeled** source domain and $\mathcal{D}_t = \{(\mathbf{X}_t^i)\}_{i=1}^{M_t}$ for **unlabeled** target domain,
 198 where $M = M_s + M_t$ indicates the total number of data, and $\mathbf{X}^i \in \mathbb{R}^{N \times T}$ is a multivariate sensor
 199 data instance. For the dimension of each data instance, N denotes the number of sensors, and
 200 T represents the number of timestamps. **The term sensor refers to a single unit that outputs one
 201 value per channel. Under this definition, an IMU sensor consists of six signals: three from the
 202 accelerometer and three from the gyroscope.** For clarity, we will omit the notation i in the following
 203 discussion. Thus, the source and target data will be denoted simply as \mathbf{X}_s and \mathbf{X}_t , respectively.
 204

205 4.2 SENSOR-WISE DOMAIN SHIFT

206 We define a new notion of domain shift in wearable MTS sensor data. This type of shift has not
 207 been sufficiently addressed in existing work, yet it represents a critical challenge.
 208

209 **Definition 1** (Sensor-wise Domain Shift). ***Sensor-wise domain shift*** in wearable multivariate time
 210 series (MTS) refers to the distributional discrepancy arising from variations in sensor configura-
 211 tions, such as differences in sensor placement or orientation across domains, which affect both
 212 intra- and inter-domain sensor relationships.
 213

214 As discussed in Section 3, *Sensor-wise Domain Shift* can be easily found in real-world wearable
 215 MTS data. Building on the takeaway from the motivational analysis, the following section in-
 216 troduces a novel plug-in method that captures inter-domain sensor relations while further refining
 217 intra-domain relations to address *Sensor-wise Domain Shift*.
 218

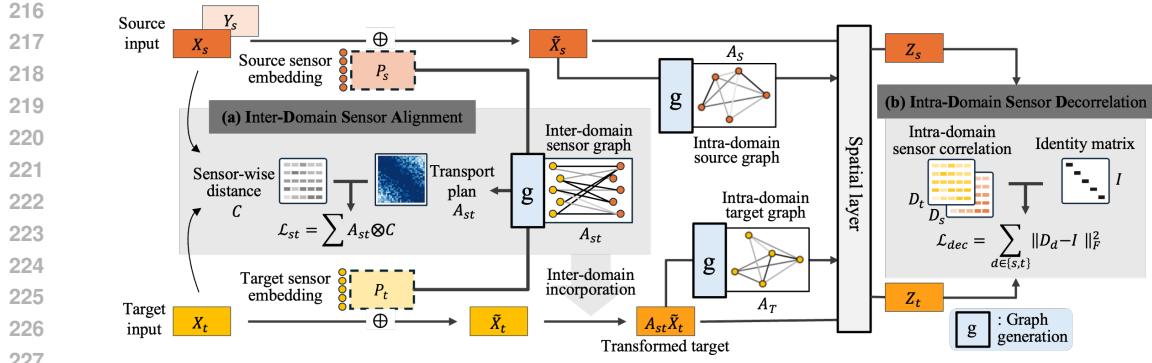


Figure 3: Illustration of IDSA. IDSA is designed to minimize spatial transportation loss (\mathcal{L}_{st}) and channel decorrelation loss (\mathcal{L}_{dec}) by utilizing domain-specific sensor embeddings ($\mathbf{P}_s, \mathbf{P}_t$).

5 METHODOLOGY

This section introduces **Inter-Domain Sensor Alignment (IDSA)** for wearable MTS-UDA. Figure 3 illustrates the overall framework. IDSA is designed as a plug-in module, specifically designed to mitigate sensor-wise domain shift, which can be combined with existing domain adaptation methods and feature extractor modules. It integrates two key objectives through dedicated loss functions: (i) a spatial transportation loss, which formulates inter-domain alignment as an optimal transport problem and learns a relation matrix \mathbf{A}_{st} that captures essential cross-domain sensor dependencies to further transform the target distribution, and (ii) a channel decorrelation loss, which suppresses redundant or noisy sensor relations to preserve intrinsic intra-domain spatial information. The learnable sensor embeddings for both domains are utilized in model processing with input data to couple these objectives. The embeddings encode decorrelated intra-domain features that make \mathbf{A}_{st} distinctive and robust. Together, these mechanisms allow IDSA to transform the target data into representations that reflect inter-domain spatial dependencies, considering essential domain-specific characteristics.

5.1 INTER-DOMAIN SENSOR TRANSPORTATION

The aforementioned analyses underscore the need to account for dynamic inter-domain sensor relationships due to complex distributional discrepancies in wearable MTS data caused by sensor-wise domain shift. Inter-domain sensor alignment aims to transform the target domain to match the source domain's sensor similarity. In order to identify the inter-domain sensor relations, we define two learnable embeddings: source sensor embedding $\mathbf{P}_s \in \mathbb{R}^{N \times T}$ and target sensor embedding $\mathbf{P}_t \in \mathbb{R}^{N \times T}$, which have the identical dimension as the input of MTS data. The embeddings capture the roles of sensors specific to each domain by learning through intra-domain graph generation and feature extraction.

Moreover, these learnable embeddings can express an inter-domain sensor relation between the source and target input. The inter-domain sensor relation $\mathbf{A}_{st} \in \mathbb{R}^{N \times N}$ can be expressed as:

$$\mathbf{A}_{st} = \text{Norm}(\sigma(\mathbf{P}_s \mathbf{P}_t^\top)), \quad (1)$$

where σ is an activation function, and Norm is a normalization function. The learnable adjacency matrix \mathbf{A}_{st} associates multiple sensors across different domains.

Spatial Transportation Loss To effectively generate inter-domain sensor relations that mitigate sensor-wise domain shift, it is essential to account for the differences between source and target signals in a spatial perspective. Therefore, we propose a loss function to generate an inter-domain sensor relation matrix that dynamically learn how to transport the target distribution to the source distribution regarding the spatial relation across two domains. The spatial transportation loss is defined as:

$$\mathcal{L}_{st} = \sum \mathbf{A}_{st} \otimes \mathbf{C}, \quad \mathbf{C}_{ij} = \|X_t(i, \cdot) - X_s(j, \cdot)\|_2^2, \quad (2)$$

where \otimes denotes the Hadamard product, and $\mathbf{C} \in \mathbb{R}^{N \times N}$ is the distance matrix, with each entry representing the squared Euclidean distance between two sensors from the source and target do-

270 mains, respectively. The calculation of sensor-wise distance between two $\mathbf{X}_t, \mathbf{X}_s$ can be extended
 271 to other formulas. The time complexity associated with the spatial transportation loss is $\mathcal{O}(N^2)$,
 272 and the details are provided in Appendix A.6.5. Since N is typically small in wearable settings,
 273 the quadratic complexity does not pose a usability concern. We theoretically show in Section 5.4
 274 that optimizing the derived inter-domain sensor relation yields a transport plan aligned with the
 275 Wasserstein distance.

277 5.2 INTEGRATION OF INTER- AND INTRA-DOMAIN SENSOR RELATION

279 We incorporate the learnable sensor embeddings \mathbf{P}_s and \mathbf{P}_t into the input data, thereby enriching
 280 each domain with domain-specific sensor characteristics from an intra-domain perspective. The
 281 incorporated sensor data for the source and target is expressed as:

$$282 \tilde{\mathbf{X}}_s = \mathbf{X}_s + \mathbf{P}_s, \quad \tilde{\mathbf{X}}_t = \mathbf{X}_t + \mathbf{P}_t. \quad (3)$$

283 For the target domain, we further apply the inter-domain relation matrix \mathbf{A}_{st} as a transport map to
 284 align its sensor arrangement with that of the source:

$$285 \hat{\mathbf{X}}_t = \mathbf{A}_{st} \tilde{\mathbf{X}}_t. \quad (4)$$

287 This adjustment aims to diminish the sensor-wise domain shift and to diminish the distribution
 288 discrepancies between the source and target domains.

289 To capture intra-domain spatial relationships among sensors, a graph neural network (GNN) (Kipf
 290 & Welling, 2017) is employed. A graph structure should be predefined to apply the GNN structure.
 291 In our graph, sensor channels are treated as nodes, and the connections between different sensors are
 292 represented as edges, resulting in a graph with N nodes. The adjacency matrix of the intra-domain
 293 graph is denoted as \mathbf{A}_s for the source graph and \mathbf{A}_t for the target graph. We adopt a simple distance-
 294 aware graph generation similar to acquiring the inter-domain sensor relation, which is defined as:

$$295 \mathbf{A}_s = \sigma(\tilde{\mathbf{X}}_s \tilde{\mathbf{X}}_s^\top), \quad \mathbf{A}_t = \sigma(\hat{\mathbf{X}}_t \hat{\mathbf{X}}_t^\top). \quad (5)$$

297 The features from the aggregation process of the GNN can be represented as follows by simply
 298 adopting the GCN structure (Kipf & Welling, 2017):

$$300 \mathbf{Z}_s = \mathbf{A}_s \tilde{\mathbf{X}}_s \mathbf{W}_l, \quad \mathbf{Z}_t = \mathbf{A}_t \hat{\mathbf{X}}_t \mathbf{W}_l, \quad (6)$$

301 The extracted spatial embeddings $\mathbf{Z}_s, \mathbf{Z}_t \in \mathbb{R}^{N \times T}$ so that per-sensor, per-timestamp structure is
 302 preserved, and \mathbf{W}_l is the weight parameter that does not change the dimension.

303 **Channel Decorrelation Loss** To further enhance the model’s capability in capturing spatial
 304 relations, we propose incorporating an additional regularization loss. While the aggregation phase in
 305 the spatial layer effectively integrates information from multiple related sensors, it also obscures the
 306 independent feature characteristics of individual sensors and introduces additional noise. To pre-
 307 serve sensor-wise distinctiveness, we introduce a channel decorrelation regularizer computed on the
 308 spatial representations. The channel decorrelation loss can be expressed as:

$$310 \mathbf{D}_d = \frac{1}{T} \mathbf{Z}_d \mathbf{Z}_d^\top \in \mathbb{R}^{N \times N}, \quad d \in \{s, t\}, \quad (7)$$

$$313 \mathcal{L}_{\text{dec}} = \sum_{d \in \{s, t\}} \|\mathbf{D}_d - \mathbf{I}_N\|_F^2, \quad (8)$$

315 where \mathbf{I}_N is the $N \times N$ identity matrix and \mathbf{D}_d denotes the feature correlation matrix constructed
 316 from the spatial outputs for each domain d .

317 The decorrelation loss affects both types of graph generation. It indirectly induces the generated
 318 intra-domain graph to have high weights on the self-loop, since that is a straightforward method to
 319 optimize the decorrelation loss function. This implies that the loss function we adopt can lead to
 320 graph sparsification, which keeps the weights of the different sensors comparatively low. Due to the
 321 sparsification, our generated graph will only contain highly related sensors since graph sparsification
 322 alleviates the redundant data and noise from the graph. These intra-domain graphs help learn each
 323 domain’s sensor embedding only to contain essential domain-specific sensor characteristics, so the
 \mathbf{A}_{st} constructed by them is more distinctive and informative.

324 5.3 TRAINING AND INFERENCE
325

326 Since IDSA is designed as a plug-in module that can be integrated with existing domain adaptation
327 methods, we also include a base domain adaptation loss \mathcal{L}_{da} , for which we adopt Deep CORAL (Sun
328 & Saenko, 2016) and CLUDA (Ozyurt et al., 2023) for the experiment. \mathcal{L}_{da} additionally includes
329 the supervised classification loss on the source domain. Besides the base domain adaptation loss,
330 \mathcal{L}_{st} and \mathcal{L}_{dec} , are integrated into our final loss function. Therefore, the final loss for IDSA is denoted
331 as:

$$\mathcal{L} = \mathcal{L}_{da} + \lambda_1 \mathcal{L}_{st} + \lambda_2 \mathcal{L}_{dec}, \quad (9)$$

332 where λ_1, λ_2 are hyperparameters used to adjust the effect of the incorporated losses. Since the
333 evaluation is performed on an unseen target domain, we apply the same target-side preprocessing
335 pipeline at test time.

336 5.4 THEORETICAL ANALYSIS ON THE SPATIAL TRANSPORTATION LOSS
337

339 We now formalize the spatial transportation procedure in our framework by showing that it naturally
340 aligns with an optimal transport (OT) (Kolouri et al., 2017) perspective.

341 **Theorem 1.** *Let wearable source MTS data \mathbf{X}_s and target MTS data \mathbf{X}_t be represented as sub-
342 elements in the \mathcal{X} and \mathcal{Y} , respectively. Optimizing \mathcal{L}_{st} has the same form as solving a discrete
343 1-Wasserstein problem. In particular, if \mathbf{A}_{st} achieves the global minimum of \mathcal{L}_{st} , it provides an
344 optimal transport plan (up to constant scaling), so $\min \mathcal{L}_{st} = N \cdot W_1(\mathbf{X}_t, \mathbf{X}_s)$, where $W_1(\mathbf{X}_t, \mathbf{X}_s)$
345 is the discrete 1-Wasserstein distance.*

346 The proof of Theorem 1 is provided in the Appendix. Theorem 1 implies that, if we train to minimize
347 the spatial transportation loss function, then \mathbf{A}_{st} effectively solves a linear assignment problem for
348 the sensor-level alignment. This result provides a principled justification for IDSA’s effectiveness
349 in mitigating sensor-wise domain shifts.

350 Furthermore, we emphasize that our OT formulation differs slightly from conventional OT ap-
351 proaches for domain adaptation (Kerdoncuff et al., 2020b; Courty et al., 2016b; Aritake & Hino,
352 2022b). While traditional methods compute an OT plan at the data-instance level, our approach
353 operates at the sensor level, explicitly addressing sensor-wise domain shifts. A more detailed dis-
354 cussion of conventional OT methods is provided in the Appendix.

355 Another theorem is about the synergy when applying both loss functions we proposed. By optimiz-
356 ing the loss function, the target domain representation of IDSA satisfies the source-wise information
357 bottleneck.

358 **Theorem 2.** *Let the source-wise information bottleneck be defined as:*

$$IB_s = I(\mathbf{Z}_t, \mathcal{X}_s) - \beta I(Tar, \mathbf{Z}_t), \quad (10)$$

360 *where \mathcal{X}_s indicates the source distribution and Tar denotes target domain-specific information. In
361 particular, if IDSA is optimized through loss functions, the transformed target representation satisfies
363 the source-wise information bottleneck.*

$$\min(\mathcal{L}_{st} + \mathcal{L}_{dec}) \Rightarrow \max IB_s. \quad (11)$$

368 This theorem formalizes the joint application of both loss functions to achieve a more effective
369 transformation. By considering the complementary roles of these losses, the theorem provides a
370 theoretical justification for their combined use in guiding the learning process. A detailed proof and
371 derivation are provided in the Appendix.

372 5.5 EMPIRICAL ANALYSIS OF THEOREM 1
373

375 Building on our theoretical result in Theorem 1, we assess whether the learned inter-domain sensor
376 relation \mathbf{A}_{st} aligns with the ground-truth optimal transport (OT) plan in practice. Specifically, we
377 investigate how closely \mathbf{A}_{st} (trained only under \mathcal{L}_{st}) approximates the exact OT solution on a real
sensor dataset.

378 **Setup** We employ the SD-gesture sEMG dataset (Lee et al., 2023), containing 8 sensor
 379 channels. To reduce each domain to a representative vector, we compute the mean value
 380 of every sensor channel. From these means, we form a distance matrix $\|\mathbf{X}_t^i - \mathbf{X}_s^j\|_2$
 381 for every sensor pair (i, j) and solve a linear assignment problem to obtain a ground-truth
 382 OT plan π^* . Meanwhile, we train \mathbf{A}_{st} end-to-end via \mathcal{L}_{st} alone, as per our method.
 383

384
 385 **Results** Figure 4 shows that, during training, the mean
 386 squared error between \mathbf{A}_{st} and the ground-truth OT plan π^*
 387 decreases and converges. The y-axis is the mean squared error
 388 (MSE) between our learned \mathbf{A}_{st} and the ground-truth OT plan.
 389 Empirically, the figure confirms that the learned alignment matrix
 390 \mathbf{A}_{st} approximates a transport plan, consistent with Theorem 1.
 391

392 6 EXPERIMENT

393 6.1 DATASETS AND BASELINES

394 We conduct extensive evaluations to verify how IDSA performs and compare it with state-of-the-art
 395 methods on public wearable MTS datasets, categorized into two groups: (1) human activity recogni-
 396 tion (HAR) datasets for cross-subject adaptation and (2) surface electromyography (sEMG) datasets
 397 for cross-repetition adaptation. We compare IDSA with ten UDA baselines: Deep Coral (Sun &
 398 Saenko, 2016), CDAN (Long et al., 2018), CoDATS (Wilson et al., 2020), AdvSKM (Liu & Xue,
 399 2021), CLUDA (Ozyurt et al., 2023), SEA (Wang et al., 2023), RAINCOAT (He et al., 2023),
 400 ACON (Liu et al., 2024), SASA (Cai et al., 2021), and UniMTS (Zhang et al., 2024). A detailed de-
 401 scription of the datasets and baselines is provided in the Appendix. Additional experiments, includ-
 402 ing hyperparameter sensitivity, an ablation study, and visualization, are detailed in Appendix A.4.
 403

404 6.2 PERFORMANCE COMPARISON

405 **Cross-subject** The performance for cross-subject settings on two HAR datasets, the Opportunity
 406 HAR and WISDM datasets, is presented in Table 1, where the domain is defined as each subject.
 407 For the Opportunity HAR dataset, We report results on all 12 scenarios. For the WISDM dataset,
 408 we follow prior works (Ozyurt et al., 2023; Wilson et al., 2020) by evaluating on 10 selected sce-
 409 narios, where the specific random scenario pairs are taken from the CLUDA (Ozyurt et al., 2023)
 410 implementation. As shown in the table, IDSA outperforms the other baselines because of reflecting
 411 inter-domain sensor alignment. Table 1 indicates that not considering inter-domain sensor alignment
 412 is insecure and may underperform in specific scenarios. For example, CoDATS (Wilson et al., 2020)
 413 severely underperforms in scenarios $19 \rightarrow 2$ on the WISDM dataset and CLUDA (Ozyurt et al.,
 414 2023) in $3 \rightarrow 1$ on the Opportunity HAR dataset. On the other hand, IDSA, which incorporates
 415 the spatial transportation loss to alleviate the sensor-wise domain shift, maintains robust per-
 416 formance in most scenarios. IDSA closes the gap between the two distinct distributions by estimat-
 417 ing the Wasserstein distance between the distributions, which leads to state-of-the-art performance
 418 when comparing the average performance across all scenarios. UniMTS (Zhang et al., 2024) shows
 419 strongest performance in WISDM benefiting from an additional textual modality during pretrain-
 420 ing, unlike ours and other baselines. On Opportunity dataset composed of heterogenous sensor set,
 421 UniMTS’s relatively low performance may because its constrained IMU-only input, as it is archi-
 422 tecturally tailored to IMU sensor-channel structure, while others use the full set of available sensors.
 423 We therefore further analyze and report an additional controlled comparison between UniMTS and
 424 our method under an IMU-only setting in Appendix.

425 **Cross-Repetition** Model performance on the three sEMG datasets for cross-repetition adaptation
 426 is presented in Table 2, where each domain corresponds to a specific repetition. For evaluation, we
 427 designate a sampled repetition from a subject as the source domain and the remaining repetition
 428 data from the same subject as the target domain. Across all three datasets, our model consistently
 429 outperforms existing UDA baselines, demonstrating its robustness and effectiveness in hand ges-
 430 ture recognition tasks. For the Nina-53 dataset, which exhibits a large gap between accuracy and
 431 F1-score due to severe label imbalance, we observe a notable improvement in F1-score when our
 432 model is added to CLUDA. In the sEMG datasets, most domain discrepancies arise due to varia-

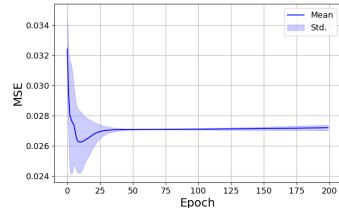


Figure 4: Convergence toward the optimal transport (OT) plan.

432

433
434
435
Table 1: Overall performance comparison on cross-subject scenarios. Each scenario corresponds to
a source → target scenario. The **boldfaced** score denotes the best result, and the underlined score
represents the second-best result. Parentheses denote relative gains/losses over base models.

S → T	Metric (%)	Models										IDSA + Deep Coral	IDSA + CLUDA
		Deep Coral	CDAN	CoDATS	AdvSKM	CLUDA	SEA	RAINCOAT	ACON	<u>SASA</u>	UniMTS		
Opportunity HAR													
1 → 2	Acc. F1	81.56 85.07	81.56 84.74	80.73 84.10	83.52 86.66	85.20 87.96	80.93 82.11	82.89 83.56	78.98 83.06	<u>81.09</u> <u>84.65</u>	61.73 64.89	86.82 <small>(5.26)</small> 88.69 <small>(+3.62)</small>	86.03 <small>(0.83)</small> 88.09 <small>(+0.13)</small>
1 → 3	Acc. F1	79.50 62.11	78.57 60.52	78.57 60.59	80.74 63.26	86.02 87.71	75.31 55.11	77.23 58.02	75.31 55.12	76.87 <u>51.58</u>	74.54 75.86	81.06 <small>(+1.56)</small> 63.41 <small>(+1.30)</small>	86.96 <small>(+0.94)</small> 88.11 <small>(+0.40)</small>
1 → 4	Acc. F1	82.31 85.78	76.41 59.42	84.72 87.19	83.91 86.40	83.65 88.91	74.43 82.52	75.39 58.99	78.13 82.62	<u>69.17</u> <u>84.71</u>	74.94	82.57 <small>(+0.26)</small> 77.11 <small>(-8.67)</small>	84.45 <small>(+0.80)</small> 88.89 <small>(-0.02)</small>
2 → 1	Acc. F1	84.53 87.18	82.52 62.76	85.67 87.88	82.81 82.23	85.10 87.93	85.62 88.75	81.64 65.09	87.50 88.75	77.22 <u>78.45</u>	81.37 83.12	89.30 <small>(+4.87)</small> 90.95 <small>(+3.77)</small>	85.96 <small>(+0.86)</small> 88.38 <small>(+0.45)</small>
2 → 3	Acc. F1	81.67 82.74	75.16 58.66	81.99 83.42	80.75 77.11	77.95 81.12	75.94 58.47	77.73 58.45	77.50 60.29	75.86 77.38	67.08 42.96	81.37 <small>(+0.30)</small> 79.42 <small>(-3.32)</small>	84.78 <small>(+6.83)</small> 87.15 <small>(+6.03)</small>
2 → 4	Acc. F1	79.09 82.70	82.84 76.12	79.36 84.48	84.45 82.68	73.73 89.32	67.60 53.70	71.48 75.45	70.17 75.00	82.57 <u>74.44</u>	58.71 59.43	80.63 <small>(+2.07)</small> 87.45 <small>(-1.87)</small>	74.27 <small>(+4.82)</small> 79.08 <small>(+1.57)</small>
3 → 1	Acc. F1	81.66 62.35	69.91 41.64	83.67 84.74	77.08 58.85	63.32 51.10	75.31 46.60	70.49 63.83	85.54 53.49	<u>84.43</u> 56.20	78.75 55.41	83.38 <small>(+1.72)</small> 63.32 <small>(+0.97)</small>	79.08 <small>(+15.76)</small> 62.42 <small>(+11.32)</small>
3 → 2	Acc. F1	66.20 49.46	53.91 33.77	62.57 50.44	64.25 49.64	76.54 58.99	67.61 44.17	78.52 60.28	70.17 48.56	67.39 <u>50.44</u>	61.73 49.48	81.01 <small>(+14.81)</small> 62.23 <small>(+12.77)</small>	80.45 <small>(+3.91)</small> 61.62 <small>(+2.63)</small>
3 → 4	Acc. F1	75.60 84.06	64.88 72.20	83.11 83.30	78.02 83.30	87.67 91.39	66.48 72.89	58.20 64.00	66.48 72.89	80.35 <u>72.31</u>	59.98 48.10	80.43 <small>(+4.83)</small> 86.67 <small>(+12.77)</small>	82.84 <small>(-4.83)</small> 88.09 <small>(+2.63)</small>
4 → 1	Acc. F1	81.38 83.55	76.79 71.88	87.97 88.99	86.24 80.97	86.25 81.11	79.69 75.26	87.89 88.32	83.13 81.91	88.55 83.11	47.85 40.92	83.38 <small>(+2.00)</small> 83.98 <small>(+0.43)</small>	93.69 <small>(+7.44)</small> 94.71 <small>(+6.60)</small>
4 → 2	Acc. F1	74.58 57.42	68.43 46.72	86.31 88.64	73.74 56.43	85.75 87.91	76.14 61.56	75.00 78.19	77.27 63.28	84.04 78.19	46.09 42.66	76.82 <small>(+2.24)</small> 76.62 <small>(+19.20)</small>	82.12 <small>(-3.64)</small> 84.66 <small>(-3.25)</small>
4 → 3	Acc. F1	71.12 64.11	72.05 47.86	79.19 60.99	75.15 61.49	84.47 85.22	82.81 81.40	69.14 72.19	80.94 79.94	85.14 64.37	64.91 49.05	76.71 <small>(+5.59)</small> 69.83 <small>(+5.72)</small>	88.51 <small>(+4.04)</small> 89.39 <small>(+4.17)</small>
Avg.	Acc. F1	78.27 73.88	73.59 59.69	81.16 79.07	78.33 72.42	82.20 82.14	76.41 68.27	76.37 67.48	77.03 71.65	80.51 70.08	63.55 57.24	81.44 <small>(+3.17)</small> 76.91 <small>(+3.03)</small>	84.68 <small>(+2.48)</small> 84.08 <small>(+1.94)</small>
WISDM													
2 → 28	Acc. F1	82.27 69.64	71.11 44.96	80.92 70.93	80.90 54.51	84.96 80.48	80.00 69.35	83.15 76.62	75.60 74.07	84.94 71.81	77.77 73.36	86.67 <small>(+4.40)</small> 78.33 <small>(+8.69)</small>	83.47 <small>(+2.99)</small>
7 → 2	Acc. F1	62.40 53.61	75.61 51.79	61.06 48.04	61.06 41.95	78.05 59.15	68.29 53.61	78.05 56.68	83.33 60.25	71.25 81.98	90.24 81.11	68.30 <small>(+5.90)</small> 55.20 <small>(+1.59)</small>	82.93 <small>(+4.88)</small> 73.22 <small>(+14.07)</small>
7 → 26	Acc. F1	75.61 43.19	73.17 40.94	78.05 47.87	78.05 48.51	73.17 34.50	63.41 33.16	73.17 55.31	81.25 59.46	81.08 55.33	58.54 65.05	78.05 <small>(+2.44)</small> 46.76 <small>(+3.57)</small>	73.17 <small>(+0.00)</small> 39.40 <small>(+4.90)</small>
12 → 7	Acc. F1	59.21 35.73	70.83 50.30	72.10 65.16	74.20 65.61	79.23 69.52	75.00 50.83	79.17 69.21	81.81 71.21	67.30 50.59	89.58 88.88	83.33 <small>(+24.13)</small> 62.34 <small>(+16.13)</small>	81.25 <small>(+2.05)</small> 40.52 <small>(+17.36)</small>
12 → 19	Acc. F1	43.33 23.16	46.97 23.04	63.38 46.02	63.98 46.51	69.44 60.70	54.55 37.56	46.97 31.82	50.00 39.22	73.58 67.27	89.39 89.83	54.54 <small>(+11.21)</small> 40.52 <small>(+17.36)</small>	80.30 <small>(+10.86)</small> 74.93 <small>(+14.23)</small>
18 → 20	Acc. F1	38.03 29.17	70.73 45.83	63.45 39.17	39.03 40.63	78.03 68.29	80.49 64.65	76.83 64.65	77.35 41.78	63.88 45.32	53.66 74.86	68.29 <small>(+30.26)</small> 43.89 <small>(+14.72)</small>	82.93 <small>(+4.90)</small> 78.58 <small>(+10.29)</small>
19 → 2	Acc. F1	47.35 46.21	34.68 17.36	39.58 34.91	43.45 42.43	56.01 43.98	41.46 52.31	63.41 63.48	81.81 57.85	58.59 45.32	85.37 74.86	63.41 <small>(+16.06)</small> 62.34 <small>(+16.13)</small>	65.85 <small>(+9.84)</small> 47.46 <small>(+3.48)</small>
28 → 20	Acc. F1	73.17 63.33	75.61 54.18	74.10 53.98	73.17 68.25	80.49 72.57	82.93 67.17	85.37 81.14	82.22 63.89	94.76 84.67	71.17 61.01	97.56 <small>(+24.39)</small> 97.76 <small>(+34.43)</small>	87.80 <small>(+7.31)</small> 85.37 <small>(+12.80)</small>
26 → 2	Acc. F1	73.77 61.78	61.48 40.37	72.70 59.76	62.01 46.30	86.34 70.05	53.66 37.88	67.07 52.48	80.48 63.35	76.72 69.46	95.12 91.53	80.50 <small>(+6.80)</small> 82.37 <small>(+20.57)</small>	90.24 <small>(+3.94)</small> 73.89 <small>(+3.79)</small>
28 → 2	Acc. F1	64.92 49.50	58.03 39.98	71.70 49.21	70.69 48.35	74.08 71.06	65.85 59.13	87.80 72.87	82.22 62.88	67.28 51.82	70.73 65.56	75.61 <small>(+10.71)</small> 52.16 <small>(+2.66)</small>	90.24 <small>(+16.14)</small> 81.11 <small>(+10.11)</small>
Avg.	Acc. F1	62.00 47.53	63.82 40.88	67.70 51.51	64.65 50.31	75.98 63.03	66.56 53.14	74.10 62.43	77.61 53.40	73.94 59.16	78.36 74.96	75.61 <small>(+13.61)</small> 63.24 <small>(+15.71)</small>	82.14 <small>(+6.16)</small> 71.67 <small>(+8.64)</small>

464

465
466
467
Table 2: Performance comparison for cross-repetition adaptation on three sEMG datasets. Each
cell reports the mean ± standard deviation across runs. The **boldfaced** score denotes the best, and
underlined represents the second-best result. Parentheses denote gains of IDSA over its base model.

Models	Nina5-18		Nina5-53		SD-gesture	
	Accuracy (%)	F1-score (%)	Accuracy (%)	F1-score (%)	Accuracy (%)	F1-score (%)
Deep Coral	83.47 <small>±2.1</small>	60.72 <small>±2.8</small>	75.68 <small>±2.5</small>	40.00 <small>±4.2</small>	73.02 <small>±2.1</small>	72.32 <small>±2.6</small>
CDAN	83.48 <small>±1.9</small>	61.11 <small>±2.2</small>	75.82 <small>±3.1</small>	39.75 <small>±5.7</small>	72.84 <small>±2.5</small>	71.87 <small>±2.1</small>
CoDATS	81.74 <small>±1.6</small>	57.43 <small>±3.0</small>	67.58 <small>±2.0</small>	15.74 <small>±3.3</small>	75.48 <small>±2.9</small>	74.90 <small>±2.3</small>
AdvSKM	<u>83.52</u> <small>±1.7</small>	<u>61.30</u> <small>±2.9</small>	76.22 <small>±1.8</small>	40.38 <small>±3.4</small>	75.28 <small>±3.0</small>	74.46 <small>±2.6</small>
CLUDA	80.64 <small>±2.2</small>	53.77 <small>±2.1</small>	65.56 <small>±2.7</small>	10.44 <small>±2.9</small>	72.49 <small>±2.2</small>	71.36 <small>±2.7</small>
SEA	82.73 <small>±2.5</small>	58.02 <small>±3.4</small>	75.53 <small>±3.0</small>	40.36 <small>±3.3</small>	77.41 <small>±1.3</small>	76.48 <small>±2.6</small>
RAINCOAT	80.82 <small>±2.0</small>	55.73 <small>±2.3</small>	75.14 <small>±2.5</small>	39.88 <small>±4.7</small>	74.14 <small>±2.9</small>	73.44 <small>±3.4</small>
ACON	82.07 <small>±1.5</small>	58.40 <small>±3.6</small>	76.31 <small>±1.8</small>	40.72 <small>±5.3</small>	76.96 <small>±1.7</small>	75.51 <small>±2.7</small>
IDSA + Deep Coral	85.53 <small>±2.1</small> <small>(+2.06)</small>	63.32 <small>±3.3</small> <small>(+2.60)</small>	78.80 <small>±1.2</small> <small>(+3.12)</small>	43.77 <small>±4.9</small> <small>(+3.77)</small>	80.15 <small>±2.1</small> <small>(+7.13)</small>	78.58 <small>±3.3</small> <small>(+6.26)</small>
IDSA + CLUDA	81.88 <small>±1.7</small> <small>(+1.24)</small>	54.42 <small>±3.2</small> <small>(+0.65)</small>	70.35 <small>±2.4</small> <small>(+4.79)</small>	34.50 <small>±3.3</small> <small>(+24.06)</small>	75.68 <small>±2.3</small> <small>(+3.19)</small>	74.15 <small>±2.6</small> <small>(+2.79)</small>

476

477
478
479
tions in sensor attachment locations across repetitions within the same subject. By incorporating
inter-domain sensor alignment, these sensor-wise domain shifts can be addressed more effectively,
mitigating complex distribution discrepancies more successfully than existing UDA methods.

480

481
6.3 ANALYSIS OF SENSOR-WISE DOMAIN SHIFT
482483
484
485
Sensor Permutation Experiment We conduct a sensor-wise permutation experiment to verify
how well the model responds to the drastic sensor-wise domain shift setting, similar
to the right side of Figure 1. We randomly select two sensors in the target domain and swap their data to create a synthetic setting with severe sensor-wise domain shift.

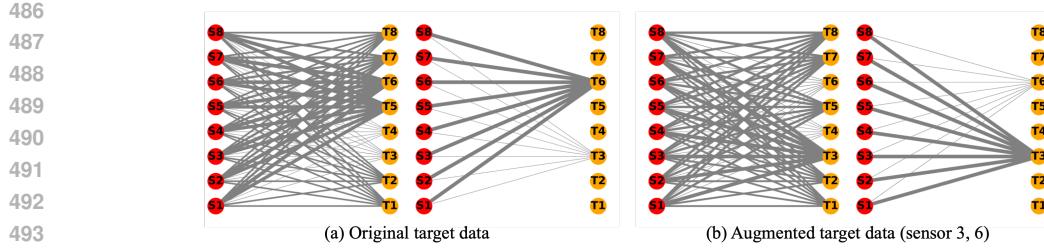


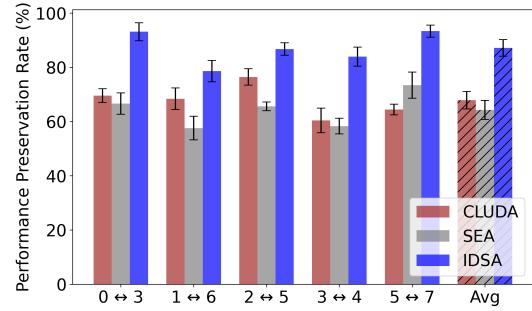
Figure 6: Transportation map visualization in a bipartite graph across source-target sensors.

Figure 5 shows the percentage of retained performance, defined as the ratio between the performance on the permuted target domain and that on the original (non-permuted) target domain, for the SD-gesture dataset. IDSA (with Deep Coral as the base), along with two baseline models (selected as the second-best in the cross-subject and cross-repetition settings, respectively) across five random sensor permutation cases, are compared. The results highlight that IDSA consistently retains the highest performance preservation rate, demonstrating its robustness to sensor permutation, an extreme sensor-wise domain shift. The actual values of the performance preservation rate are provided in the Appendix.

Spatial Transportation Visualization Figure 6 illustrates the learned transport map \mathbf{A}_{st} on the SD-gesture dataset in the cross-repetition scenario as a bipartite graph between source and target sensor channels. Figure 6 (a) shows the graph generated with the original data, and Figure 6 (b) depicts the graph with sensor-wise permutation (between sensor 3 and sensor 6) applied to the target data. For both cases, two plots are provided: one displaying the entire graph and the other highlighting only the edges corresponding to the switched target sensors. The edge thickness represents the edge weights, showing that each sensor in the target domain is transformed using a different weighted combination of the source-domain sensors. In other words, the mapping is not one-to-one; each target sensor is reconstructed from a distinct mixture of source sensors rather than being directly matched to a single source sensor. This further underscores the importance of accounting for sensor-wise domain shifts, in contrast to existing approaches that primarily assume one-to-one domain alignment or focus only on intra-domain alignment. In the sensor-wise misalignment point of view, Figure 6 (a), target sensor 6 exhibits stronger connections with source sensors, while sensor 3 shows weaker connections. In contrast, Figure 6 (b) demonstrates the opposite tendency for the swapped sensors, with target sensor 3 gaining higher relations and sensor 6 showing reduced connections. The result highlights that the IDSA can adaptively capture inter-domain sensor relationships in response to possible changes in the target domain.

7 CONCLUSION

We propose a plug-in module for UDA of wearable MTS sensor data, IDSA, to especially mitigate sensor-wise domain shift by exploiting the inter-domain sensor alignment. We offer theoretical insights that optimizing the proposed spatial transportation loss function provides a way to acquire the Wasserstein distance, effectively transporting the target distribution to the source distribution in spatial perspective. Extensive experiments across five benchmarks demonstrate that IDSA consistently improves over baselines, achieving substantial gains under sensor-wise shifts. These results highlight the importance of explicitly addressing sensor-wise domain shift and suggest that IDSA offers a general and effective framework for robust adaptation in the wearable domain.

Figure 5: Performance preservation rate under sensor-wise permutations (e.g., $0 \leftrightarrow 3$ swaps the signals of sensors 0 and 3).

540 REPRODUCIBILITY STATEMENT
541

542 To ensure the reproducibility of our work, we provide our source code as supplementary material.
 543 Our theoretical analysis is presented in Section 5.4, with detailed proofs for all theorems and support-
 544 ing lemmas provided in Appendix A.2. All experimental settings are described in Section 6.1 and
 545 Appendix A.5, which includes dataset statistics, the client subgraph clustering methodology, base-
 546 line model details, and a complete list of hyperparameters. We provide our implementation in the
 547 following URL: https://anonymous.4open.science/r/IDSA_ICLR2026-ED36/.
 548

549 ETHICS STATEMENT
550

551 This work is grounded in sensor-based multivariate time series (MTS) data, which inherently cap-
 552 tures high-dimensional, temporally structured signals. As such, the proposed framework is not
 553 limited to a specific domain or dataset, but can be readily extended to other settings involving multi-
 554 dimensional time series. This generality enables its application across a wide range of domains, such
 555 as healthcare and industrial monitoring, where sensor networks are used to collect complex, tem-
 556 porally evolving data. By supporting flexible integration with diverse MTS datasets, our approach
 557 has the potential to contribute broadly to real-world deployments requiring robust, adaptable, and
 558 interpretable models.

559 While we acknowledge the broader concerns associated with machine learning technologies (e.g.,
 560 surveillance, profiling, or disinformation), our method poses relatively low risk in these areas.
 561 Specifically, the approach operates on sensor data that does not identify personal information. Fur-
 562 thermore, it does not involve generating or manipulating content, nor does it make autonomous de-
 563 cisions that directly affect individuals. As such, while the responsible use of any AI system remains
 564 essential, the likelihood of our method being misused for harmful societal purposes is comparatively
 565 limited.

566
567 REFERENCES

568 Toshimitsu Aritake and Hideitsu Hino. Unsupervised domain adaptation for extra features in the
 569 target domain using optimal transport. *Neural Computation*, 34(12):2432–2466, 2022a. doi:
 570 10.1162/neco__01545.

572 Toshimitsu Aritake and Hideitsu Hino. Unsupervised domain adaptation for extra features in the
 573 target domain using optimal transport. *Neural Computation*, 2022b.

575 Oresti Banos, Mate Attila Toth, Miguel Damas, Hector Pomares, and Ignacio Rojas. Dealing
 576 with the effects of sensor displacement in wearable activity recognition. *Sensors*, 14(6):9995–
 577 10023, 2014. ISSN 1424-8220. doi: 10.3390/s140609995. URL <https://www.mdpi.com/1424-8220/14/6/9995>.

579 Ruichu Cai, Jiawei Chen, Zijian Li, Wei Chen, Keli Zhang, Junjian Ye, Zhuozhang Li, Xiaoyan
 580 Yang, and Zhenjie Zhang. Time series domain adaptation via sparse associative structure align-
 581 ment. In *Proceedings of the AAAI conference on artificial intelligence*, 2021.

582 Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: fast learning with graph convolutional networks via
 583 importance sampling. In *International Conference on Learning Representations*, 2018.

585 Ulysse Côté-Allard, Cheikh Latyr Fall, Alexandre Campeau-Lecours, Clément Gosselin, François
 586 Laviolette, and Benoit Gosselin. Transfer learning for semg hand gestures recognition using con-
 587 volutional neural networks. In *IEEE International Conference on Systems, Man, and Cybernetics*,
 588 2017.

589 Nicolas Courty, Rémi Flamary, Devis Tuia, and Alain Rakotomamonjy. Optimal transport for do-
 590 main adaptation. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 39(9):1853–
 591 1865, 2016a. doi: 10.1109/TPAMI.2016.2615921.

593 Nicolas Courty, Rémi Flamary, Devis Tuia, and Alain Rakotomamonjy. Optimal transport for do-
 594 main adaptation. *IEEE transactions on pattern analysis and machine intelligence*, 2016b.

594 Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In *Proceedings of*
 595 *Advances in Neural Information Processing Systems*, 2013.
 596

597 Dario Farina, Ning Jiang, Hubertus Rehbaum, Aleš Holobar, Bernhard Graimann, Hans Dietl, and
 598 Oskar C. Aszmann. The extraction of neural information from the surface emg for the control of
 599 upper-limb prostheses: Emerging avenues and challenges. *IEEE Transactions on Neural Systems*
 600 and *Rehabilitation Engineering*, 22(4):797–809, 2014.

601 Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
 602 Laviolette, Mario March, and Victor Lempitsky. Domain-adversarial training of neural networks.
 603 *Journal of machine learning research*, 2016.

604 Haoren Guo, Haiyue Zhu, Jiahui Wang, Prahlad Vadakkepat, Weng Khuen Ho, and Tong Heng Lee.
 605 Enhancing multivariate time-series domain adaptation via contrastive frequency graph discovery
 606 and language-guided adversary alignment. In *Proceedings of the AAAI Conference on Artificial*
 607 *Intelligence*, 2025.

608

609 Huan He, Owen Queen, Teddy Koker, Consuelo Cuevas, Theodoros Tsiligkaridis, and Marinka Zit-
 610 nik. Domain adaptation for time series under feature and label shifts. In *International Conference*
 611 *on Machine Learning*, 2023.

612 Jiaxing Huang, Dayan Guan, Aoran Xiao, Shijian Lu, and Ling Shao. Category contrast for un-
 613 supervised domain adaptation in visual tasks. In *Proceedings of the European Conference on*
 614 *Computer Vision*, 2022.

615 JJ Jijesh, Shivashankar, and Keshavamurthy. A supervised learning based decision support system
 616 for multi-sensor healthcare data from wireless body sensor networks. *Wireless Personal Commu-*
 617 *niques*, 116:1795–1813, 2021.

618

619 David Josephs, Carson Drake, Andy Heroy, and John Santerre. semg gesture recognition with a
 620 simple model of attention. In *Machine Learning for Health*, 2020.

621

622 Tanguy Kerdoncuff, Rémi Emonet, and Marc Sebban. Metric learning in optimal transport for
 623 domain adaptation. In *Proceedings of the International Joint Conference on Artificial Intelligence*
 624 (*IJCAI*), 2020a.

625

626 Tanguy Kerdoncuff, Rémi Emonet, and Marc Sebban. Metric learning in optimal transport for
 627 domain adaptation. In *International joint conference on artificial intelligence*. IJCAI, 2020b.

628

629 István Ketykó, Ferenc Kovács, and Krisztián Zsolt Varga. Domain adaptation for semg-based ges-
 630 ture recognition with recurrent neural networks. In *IEEE International Joint Conference on Neu-*
 631 *ral Networks*, 2019.

632

633 Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
 634 works. *Proceedings of the International Conference on Learning Representations*, 2017.

635

636 Philip A Knight. The sinkhorn–knopp algorithm: convergence and applications. *SIAM Journal on*
 637 *Matrix Analysis and Applications*, 2008.

638

639 Soheil Kolouri, Se Rim Park, Matthew Thorpe, Dejan Slepcev, and Gustavo K. Rohde. Optimal
 640 mass transport: Signal processing and machine-learning applications. *IEEE Signal Processing*
 641 *Magazine*, 2017.

642

643 Harold W Kuhn. The hungarian method for the assignment problem. *Naval Research Logistics*
 644 *Quarterly*, 1955.

645

646 Jennifer R Kwapisz, Gary M Weiss, and Samuel A Moore. Activity recognition using cell phone
 647 accelerometers. *ACM SigKDD Explorations Newsletter*, 2011.

648

649 Zhiping Lai, Xiaoyang Kang, Hongbo Wang, Weiqi Zhang, Xueze Zhang, Peixian Gong,
 650 Lan Niu, and Huijie Huang. Stcn-gr: Spatial-temporal convolutional networks for surface-
 651 electromyography-based gesture recognition. In Teddy Mantoro, Minho Lee, Media Anugerah
 652 Ayu, Kok Wai Wong, and Achmad Nizar Hidayanto (eds.), *Neural Information Processing*, pp.
 653 27–39, Cham, 2021. Springer International Publishing. ISBN 978-3-030-92238-2.

648 Hyeyun Lee, Soyoung Lee, Jaeseong Kim, Heesoo Jung, Kyung Jae Yoon, Srinivas Gandla, Hogun
 649 Park, and Sunkook Kim. Stretchable array electromyography sensor with graph neural network
 650 for static and dynamic gestures recognition system. *npj Flexible Electronics*, 2023.

651

652 Shuang Li, Fan Li, Kunpeng Wang, Guanqiu Qi, and Huafeng Li. Mutual prediction learning and
 653 mixed viewpoints for unsupervised-domain adaptation person re-identification on blockchain.
 654 *Simulation Modelling Practice and Theory*, 2022.

655

656 Zijian Li, Ruichu Cai, Tom ZJ Fu, Zhifeng Hao, and Kun Zhang. Transferable time-series forecasting
 657 under causal conditional shift. *IEEE Transactions on Pattern Analysis and Machine Intelli-
 658 gence*, 46(4):1932–1949, 2023.

659

660 Mingyang Liu, Xinyang Chen, Yang Shu, Xiucheng Li, Weili Guan, and Liqiang Nie. Boosting
 661 transferability and discriminability for time series domain adaptation. In *Annual Conference on
 662 Neural Information Processing Systems (NeurIPS)*, 2024.

663

664 Qiao Liu and Hui Xue. Adversarial spectral kernel matching for unsupervised time series domain
 665 adaptation. In *Proceedings of the International Joint Conference on Artificial Intelligence*, 2021.

666

667 Xiao-Yin Liu, Guotao Li, Xiao-Hu Zhou, Xu Liang, and Zeng-Guang Hou. A weight-aware-based
 668 multisource unsupervised domain adaptation method for human motion intention recognition.
 669 *IEEE Transactions on Cybernetics*, 2025.

670

671 Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I Jordan. Conditional adversarial
 672 domain adaptation. *Advances in Neural Information Processing Systems*, 2018.

673

674 Yilmazcan Ozyurt, Stefan Feuerriegel, and Ce Zhang. Contrastive learning for unsupervised domain
 675 adaptation of time series. In *International Conference on Learning Representations*, 2023.

676

677 Stefano Pizzolato, Luca Tagliapietra, Matteo Cognolato, Monica Reggiani, Henning Müller, and
 678 Manfredo Atzori. Comparison of six electromyography acquisition setups on hand movement
 679 classification tasks. *PLoS one*, 12(10):e0186132, 2017.

680

681 Jinxian Qi, Guozhang Jiang, Gongfa Li, Ying Sun, and Bo Tao. Intelligent human-computer in-
 682 teraction based on surface emg gesture recognition. *IEEE Access*, 7:61378–61387, 2019. doi:
 683 10.1109/ACCESS.2019.2914728.

684

685 Harsh Rangwani, Sumukh K Aithal, Mayank Mishra, Arijant Jain, and Venkatesh Babu Radhakri-
 686 shnan. A closer look at smoothness in domain adversarial training. In *International Conference
 687 on Machine Learning*, 2022.

688

689 Ievgen Redko, Nicolas Courty, Rémi Flamary, and Devis Tuia. Optimal transport for multi-source
 690 domain adaptation under target shift. In *Proceedings of the International Conference on Artificial
 691 Intelligence and Statistics*, 2019.

692

693 Daniel Roggen, Alberto Calatroni, Mirco Rossi, Thomas Holleczek, Kilian Förster, Gerhard Tröster,
 694 Paul Lukowicz, David Bannach, Gerald Pirkl, Alois Ferscha, Jakob Doppler, Clemens Holzmann,
 695 Marc Kurz, Gerald Holl, Ricardo Chavarriaga, Hesam Sagha, Hamidreza Bayati, Marco Creatura,
 696 and José del R. Millán. Collecting complex activity datasets in highly rich networked sensor
 697 environments. *2010 Seventh International Conference on Networked Sensing Systems (INSS)*, pp.
 698 233–240, 2010.

699

700 Lisa Schrader, Agustín Vargas Toro, Sebastian Konietzny, Stefan Rüping, Barbara Schäpers, Mar-
 701 tina Steinböck, Carmen Krewer, Friedemann Müller, Jörg Gütter, and Thomas Bock. Advanced
 702 sensing and human activity recognition in early intervention and rehabilitation of elderly people.
 703 *Journal of Population Ageing*, 13(2):139–165, 2020. doi: 10.1007/s12062-020-09260-z. URL
 704 <https://doi.org/10.1007/s12062-020-09260-z>.

705

706 Shu Shen, Kang Gu, Xin-Rong Chen, Ming Yang, and Ru-Chuan Wang. Movements classification
 707 of multi-channel semg based on cnn and stacking ensemble learning. *Ieee Access*, 7:137489–
 708 137500, 2019.

702 Baochen Sun and Kate Saenko. Deep coral: Correlation alignment for deep domain adaptation.
 703 In *Computer Vision–ECCV 2016 Workshops: Amsterdam, The Netherlands, October 8–10 and*
 704 *15–16, 2016, Proceedings, Part III 14, 2016.*

705 Shiliang Sun et al. Caudits: Causal disentangled domain adaptation of multivariate time series. In
 706 *Proceedings of International Conference on Machine Learning*, 2024.

708 Rayane Tchantchane, Hao Zhou, Shen Zhang, and Gursel Alici. A review of hand gesture recogni-
 709 tion systems based on noninvasive wearable sensors. *Advanced Intelligent Systems*, 5(10):
 710 2300207, 2023. doi: <https://doi.org/10.1002/aisy.202300207>. URL <https://advanced.onlinelibrary.wiley.com/doi/abs/10.1002/aisy.202300207>.

712 Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. *Journal of machine*
 713 *learning research*, 2008.

715 Yucheng Wang, Yuecong Xu, Jianfei Yang, Zhenghua Chen, Min Wu, Xiaoli Li, and Lihua Xie.
 716 Sensor alignment for multivariate time-series unsupervised domain adaptation. In *Proceedings of*
 717 *the AAAI conference on Artifical Intelligence*, 2023.

718 Pengfei Wei, Lingdong Kong, Xinghua Qu, Yi Ren, Zhiqiang Xu, Jing Jiang, and Xiang Yin. Un-
 719 supervised video domain adaptation for action recognition: A disentanglement perspective. *Ad-*
 720 *vances in Neural Information Processing Systems*, 2024.

722 Garrett Wilson, Janardhan Rao Doppa, and Diane J Cook. Multi-source deep domain adaptation with
 723 weak supervision for time-series sensor data. In *Proceedings of the ACM SIGKDD Conference*
 724 *on Knowledge Discovery and Data Mining*, 2020.

725 Xiyuan Zhang, Diyan Teng, Ranak Roy Chowdhury, Shuheng Li, Dezhi Hong, Rajesh Gupta, and
 726 Jingbo Shang. Unimts: Unified pre-training for motion time series. *Advances in Neural Infor-*
 727 *mation Processing Systems*, 2024.

729 Chenguang Zheng, Hongzhi Chen, Yuxuan Cheng, Zhezheng Song, Yifan Wu, Changji Li, James
 730 Cheng, Hao Yang, and Shuai Zhang. Bytegnn: efficient graph neural network training at large
 731 scale. In *Proceedings of the International Conference on Very Large Data Bases*, 2022.

732 Chongyang Zhong, Lei Hu, Zihao Zhang, Yongjing Ye, and Shihong Xia. Spatio-temporal gating-
 733 adjacency gen for human motion prediction. In *Proceedings of the IEEE/CVF Conference on*
 734 *Computer Vision and Pattern Recognition*, 2022.

735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755

756 APPENDIX OVERVIEW
757758 This appendix is organized as follows. All experiments were conducted on an NVIDIA RTX A6000
759 GPU.
760761 **A.1 Feature Extractor of IDSA** (Page 16):
762763 **A.2 Proof of Theorems** (Page 16):
764765

- Definition of discrete 1-Wasserstein Distance
- Proof of Theorem 1
- Proof of Theorem 2

766 **A.3 Datasets** (Page 18):
767768

- HAR dataset (Cross-Subject setting)
- sEMG dataset (Cross-Repetition setting)

769 **A.4 Baselines** (Page 19):
770771 **A.5 Reproducibility and Performance Analysis** (Page 20):
772773

- Hyperparameter Search Space

774 **A.6 Extended Experiments** (Page 20):
775776

- Detailed results of Figure 5
- Ablation Study on the Loss Functions
- Hyperparameter Sensitivity
- Time complexity of \mathcal{L}_{st}

777 **A.7 Extended Related Work** (Page 23):
778779

- Discussion with similar structural alignment methods in MTS-UDA
- Discussion with Optimal Transport-based methods

780 **A.8 Limitation** (Page 25):
781782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810 A APPENDIX
811812 A.1 FEATURE EXTRACTOR OF IDSA
813

814 Following prior studies (Ozyurt et al., 2023), we adopt a TCN-based structure for the feature extrac-
815 tor. Therefore, after applying IDSA, the TCN-based feature extractor is applied to extract meaning-
816 ful representations. The detailed structure of TCN is as follows: for the Opportunity HAR dataset,
817 the feature extractor consists of three layers of TCN structure with a hidden dimension of 64, and
818 five layers with a 32-dimensional hidden dimension for the WISDM dataset.

819 A.2 PROOF OF THEOREMS
820821 A.2.1 DEFINITION OF DISCRETE 1-WASSERSTEIN DISTANCE
822

823 First, we introduce the definition of the discrete version of the Wasserstein distance as follows:

824 **Definition 2** (Discrete 1-Wasserstein distance (Kolouri et al., 2017)). *Suppose that when \mathcal{X} and \mathcal{Y} are discrete sets, each having total mass 1 (i.e., each point has mass $1/n$ and $1/m$ respectively). n and m denote the number of data points of \mathcal{X} and \mathcal{Y} . Then, using the Euclidean distance, the 1-Wasserstein (or Earth Mover's) distance for the discrete distribution is defined as:*

$$828 \quad 829 \quad 830 \quad W_1(\mathcal{X}, \mathcal{Y}) = \min \left(\sum_i^n \sum_j^m \pi_{i,j} \|\mathcal{X}_i - \mathcal{Y}_j\|_2 \right) \text{ s.t. } \pi \in \Pi, \quad (12)$$

831 where Π is $n \times m$ nonnegative coupling matrices whose row sums and column sums are equal to $1/n$
832 and $1/m$, respectively.

833 A.2.2 PROOF OF THEOREM 1
834

835 We restate Theorem 1 as follows:

836 **Theorem 3.** *Under the above notation, let source MTS data \mathbf{X}_s and target MTS data \mathbf{X}_t be repre-
837 sented as sub-elements in the \mathcal{X} and \mathcal{Y} , respectively. Optimizing \mathcal{L}_{st} has the same form as solving a
838 discrete 1-Wasserstein problem. In particular, if \mathbf{A}_{st} achieves the global minimum of \mathcal{L}_{st} , it provides
839 an optimal transport plan (up to constant scaling), so $\min \mathcal{L}_{st} = N \cdot W_1(\mathbf{X}_t, \mathbf{X}_s)$.*

840 *Proof.* We begin the proof by assuming that the Norm function in equation 1 yields a doubly
841 stochastic matrix, which can be ensured with a slight variation through the Sinkhorn–Knopp al-
842 gorithm Knight (2008). From equation 2, we introduce the \mathcal{L}_{st} here as follows, where $(\mathbf{A}_{st})_{i,j}$
843 represents the element in the i -th row and j -th column of the matrix \mathbf{A}_{st} :

$$844 \quad 845 \quad 846 \quad \mathcal{L}_{st} = \sum_i^N \sum_j^N (\mathbf{A}_{st})_{i,j} * \text{distance}((\mathbf{X}_t)_i, (\mathbf{X}_s)_j). \quad (13)$$

847 Optimizing \mathcal{L}_{st} leads to the following:

$$848 \quad 849 \quad 850 \quad \min \mathcal{L}_{st} = \min \sum_i^N \sum_j^N (\mathbf{A}_{st})_{i,j} \|(\mathbf{X}_t)_i - (\mathbf{X}_s)_j\|_2.$$

851 Because \mathbf{A}_{st} is doubly stochastic, each row/column sums to 1. Consequently, $\sum_{i,j} (\mathbf{A}_{st})_{i,j} = N$.
852 Define $\tilde{\pi} = \frac{1}{N} \mathbf{A}_{st}$. Then $\tilde{\pi}$ has row- and column-sums $1/N$, placing it precisely in the set Π of
853 valid OT couplings in equation 12. Therefore,

$$854 \quad 855 \quad 856 \quad \sum_{i,j} (\mathbf{A}_{st})_{i,j} \|\mathbf{X}_t^i - \mathbf{X}_s^j\|_2 = N \sum_{i,j} \tilde{\pi}_{i,j} \|\mathbf{X}_t^i - \mathbf{X}_s^j\|_2.$$

857 Minimizing the left-hand side with respect to \mathbf{A}_{st} is thus equivalent to minimizing the right-hand
858 side with respect to $\tilde{\pi} \in \Pi$. The latter is *exactly* the 1-Wasserstein cost (as in Def. fdef:Wasserstein)
859 up to a factor N . Consequently:

$$860 \quad 861 \quad 862 \quad \min_{\mathbf{A}_{st}} \mathcal{L}_{st} = N \min_{\tilde{\pi} \in \Pi} \sum_{i,j} \tilde{\pi}_{i,j} \|\mathbf{X}_t^i - \mathbf{X}_s^j\|_2 = N W_1(\mathbf{X}_t, \mathbf{X}_s).$$

863 Thus, the statement holds true. □

864

865

866 A.2.3 PROOF OF THEOREM 2

867

868 First, an assumption that the source data instance and target data instance are required. However,
 869 this assumption is reasonable because, during mini-batch training, source and target instances can
 870 be paired by their ground-truth labels, ensuring that each matched pair belongs to the same class.

871 We restate Theorem 2 as follows:

872 **Theorem 4.** *Let the source-wise information bottleneck be defined as:*

873

874
$$IB_s = I(\mathbf{Z}_t, \mathcal{X}_s) - \beta I(\text{Tar}, \mathbf{Z}_t), \quad (14)$$

875

876 where \mathcal{X}_s indicates the source distribution and Tar denotes target domain-specific information. In
 877 particular, if IDSA is optimized through loss functions, the transformed target representation satisfies
 878 the source-wise information bottleneck.

879

880
$$\min(\mathcal{L}_{st} + \mathcal{L}_{dec}) \Rightarrow \max IB_s. \quad (15)$$

881

882 *Proof.* With the assumption of identical class, the representation \mathbf{Z}_s becomes similar to \mathbf{Z}_t since a
 883 similar representation of identical class makes the final classifier easier to classify. Therefore, we
 884 can conclude that optimizing \mathcal{L}_{st} is identical to $\mathbf{Z}_t \approx \mathbf{Z}_s$. Finally, we can express the relation of \mathcal{L}_{st}
 885 as:

886

887
$$\min \mathcal{L}_{st} \approx \max I(\mathbf{Z}_t, \mathcal{X}_s), \quad (16)$$

888

889 The decorrelation loss for the target domain is related to minimizing the mutual information of the
 890 generated target representation and the target-specific domain information.

891

892
$$\min \mathcal{L}_{dec} \approx \max H(\mathbf{Z}_t), \quad (17)$$

893

894 indicating that the spatial decorrelation loss maximizes the entropy of the target-domain's repres-
 895 entation \mathbf{Z}_t . If we assume that \mathbf{Z}_t obeys a gaussian distribution, the entropy of \mathbf{Z}_t can be transformed
 896 as:

897

$$\begin{aligned} H(\mathbf{Z}_t) &= - \int p(\mathbf{Z}_t) \log p(\mathbf{Z}_t) d\mathbf{Z}_t \\ &= - \mathbb{E}[\log \mathcal{N}(\mu_t, \Sigma_t)] \\ &= - \mathbb{E}[\log[(2\pi)^{-D/2} |\Sigma_t|^{-1/2} \exp(-\frac{1}{2}(\mathbf{Z}_t - \mu_t) \\ &\quad \Sigma_t^{-1}(\mathbf{Z}_t - \mu_t))]] \\ &= \frac{D}{2} \log(2\pi) + \frac{1}{2} \log |\Sigma_t| + \frac{1}{2} \mathbb{E}[(\mathbf{Z}_t - \mu_t) \\ &\quad \Sigma_t^{-1}(\mathbf{Z}_t - \mu_t)] \\ &= \frac{D}{2}(1 + \log(2\pi)) + \frac{1}{2} |\Sigma_t|, \end{aligned} \quad (18)$$

898

900 where μ_t, Σ_t denotes the mean and the covariance of \mathbf{Z}_t . $|\Sigma_t|$ is the determinant of the covariance
 901 matrix of \mathbf{Z}_t . Therefore, maximizing the entropy is identical to maximizing the covariance matrix.
 902 If we assume that $\lambda_1, \lambda_2, \dots, \lambda_N$ are the N eigenvalues of Σ_t , then $\sum_{i=1}^N \lambda_i = \text{trace}(\Sigma_t) = N$.
 903 Finally, we have the following equation:

904

$$\log |\Sigma_t| = \log \prod_{i=1}^N \lambda_i = \sum_{i=1}^N \log \lambda_i \leq N \log \frac{\sum_{i=1}^N \lambda_i}{N} = 0. \quad (19)$$

905

906 The inequality is due to Jensen's Inequality. The equation indicates that the upper bound of $|\Sigma_t|$ is
 907 1, and it is satisfied when the covariance matrix is the identity matrix. Therefore, maximizing the
 908 entropy of the target representation matches with optimizing the decorrelation loss. With the two
 909 relations, we can easily extend that optimizing both loss functions leads the target representation to
 910 satisfy the source-wise information bottleneck IB_s . \square

918 A.3 DATASETS
919920 A.3.1 HAR DATASET (CROSS-SUBJECT SCENARIO)
921922 The Opportunity HAR dataset (Roggen et al., 2010) comprises signals from 113 sensors placed at
923 various locations on the body. It contains recordings from 4 subjects, each of which is treated as a
924 separate domain. The dataset provides two levels of label annotation: (1) locomotion, representing
925 low-level activities such as sitting, standing, walking, and lying; and (2) gestures, representing 17
926 higher-level actions. Following prior work (Wang et al., 2023), we focus on the locomotion label
927 annotations, resulting in a 4-class classification setting. To be specific, only the sensors that are
928 attached to the subject are regarded, resulting in a total of 113 sensors. Spatio-temporal data is
929 constructed by adopting 128 timestamps as one data point \mathbf{X} , and the overlapping ratio is 50%.
930 We conduct an experiment by setting one subject as a source dataset and another subject as a tar-
931 get dataset, resulting in 12 scenarios. We randomly select six scenarios from 12 to compare the
932 performance with baselines. Each subject’s recording is repeated five times. The first three repeti-
933 tions of both the source and target subjects are used as the training dataset, while the remaining two
934 repetitions of the target dataset are used for validation and testing, respectively.935 The WISDM dataset (Kwapisz et al., 2011) consists of signals from a 3-axis accelerometer collected
936 from 30 subjects. The data is recorded from both a smartphone and a smartwatch at a sampling
937 rate of 20 Hz. The labels represent six types of human activities: walking, jogging, sitting, stand-
938 ing, walking upstairs, and walking downstairs. Label imbalance exists across subjects (domains).
939 Spatio-temporal data is constructed by segmenting the signals into non-overlapping windows of 128
940 timestamps per data point, denoted as \mathbf{X} .941
942943 A.3.2 sEMG DATASET (CROSS-REPETITION SCENARIO)
944945 Three real-world sEMG datasets are used to evaluate the proposed model on a hand gesture recog-
946 nition task: NinaPro DB 5 (Pizzolato et al., 2017) with 18 gestures (Nina5-18), NinaPro DB 5 with
947 53 gestures (Nina5-53), and static and dynamic gesture (SD-gesture) (Lee et al., 2023). All three
948 datasets are sparse sEMG datasets, each containing a small number of sEMG electrodes. In the
949 sEMG datasets, each repetition manifests considerable variation in distribution due to spatially mis-
950 aligned sensors resulting from the reattachment process between repetitions (Farina et al., 2014). For
951 this reason, we consider each repetition within a single subject as a domain in the sEMG datasets.
952 The Nina5-18 and the Nina5-53 datasets have 6 repetitions each, while the SD-gesture dataset has 4
953 repetitions.954 NinaPro DB 5 is one of 10 large databases of the NinaPro dataset, which is a representative sEMG
955 dataset frequently used for verification in this domain (Josephs et al., 2020; Ketykó et al., 2019;
956 Côté-Allard et al., 2017). The dataset is measured with two wearable MYO armband devices, each
957 equipped with 8 channels, resulting in a total of 16 channels. Furthermore, the NinaPro DB 5
958 is comprised of three hand exercise sets, which are denoted as Exercises A, B, and C. Nina5-18
959 utilizes only the label set of Exercise B, which contains isometric and isotonic hand configurations,
960 as well as basic wrist movements. Nina5-53 additionally utilizes a label set of Exercises A and C,
961 which are basic movements of the fingers and grasping and functional movements, respectively. For
962 both Nina5-18 and Nina5-53, the 6 repetitions for each subject are divided into two parts with a
963 ratio of 2:4. Each part is considered a distinct domain. For evaluation, the first part is utilized as
964 the source dataset, half of the second segment is allocated to the target dataset, and the remainder is
designated as the test dataset.965 SD-gesture is a sEMG dataset with an 8-channel device, conducted on 9 subjects (Lee et al., 2023).
966 The paper that introduces this dataset focuses on static and dynamic gestures, and in our paper, we
967 refer to this dataset as SD-gesture. A dynamic gesture indicates that the sensor data for this label
968 is acquired when the subject performs an active movement rather than a paused gesture. The SD-
969 gesture comprises 18 gestures (14 static and 4 dynamic). The whole 4 repetitions for each subject are
970 divided into two parts with a ratio of 2:2. The first part is designated as the source dataset. Similar
971 to the NinaPro DB 5, half of the second part is reserved for the target domain, while the remainder
is used for testing.

972
973

A.4 BASELINES

974
975
976
977
978

We compared IDSA with 10 recent UDA baselines (Deep Coral (Sun & Saenko, 2016), CDAN (Long et al., 2018), CoDATS (Wilson et al., 2020), AdvSKM (Liu & Xue, 2021), CLUDA (Ozyurt et al., 2023), SEA (Wang et al., 2023), RAINCOAT (He et al., 2023), ACON (Liu et al., 2024), SASA (Cai et al., 2021), and UniMTS Zhang et al. (2024)). Each UDA model is described in the following.

979
980
981
982
983
984
985
986

- Deep Coral (Sun & Saenko, 2016) aligns the correlation statistics of the source and target distributions by processing an MLP transformation similar to our invariance learning loss.
- CDAN (Long et al., 2018) is an extended version of DANN. It introduces a conditional adversarial domain adaptation method that leverages disentangled and transferable representations by embedding adversarial learning into deep networks. They exploit classifier predictions to condition the adversarial models, employing conditioning strategies: multi-linear conditioning and entropy conditioning.
- CoDATS (Wilson et al., 2020) attempts the domain adaptation for the time-series data. They propose a weak supervision model for the target labels, which are more readily obtainable than true labels. They additionally train the domain classifier to identify if the data originated from a source or target.
- AdvSKM (Liu & Xue, 2021) is a model that attempts the statistical technique (Maximum Mean Discrepancy (MMD)) on the univariate time-series data. A hybrid spectral kernel network is proposed, in which the first kernel adjusts the MMD metric suitable for time-series data. Furthermore, they apply adversarial learning to discriminate between the representations of source and target data.
- CLUDA (Ozyurt et al., 2023) proposes a contrastive learning framework to learn representations in multivariate time-series data. They capture the relations between the source and target through a nearest-neighbor contrastive learning method. Additionally, they utilize adversarial training to enhance the performance in multivariate time-series UDA settings.
- SEA (Wang et al., 2023) introduces an unsupervised domain adaptation method for multivariate time-series sensor data. For the domain adaptation method, they introduce an endo-feature alignment loss, composed of a sensor-correlation alignment loss, a sensor-feature alignment loss, and an exo-feature alignment loss, which leads to obtaining local and global sensor-level embeddings, respectively.
- RAINCOAT (He et al., 2023) is a domain adaptation method for time series that can handle both feature and label shifts. They address feature and label shifts by considering both temporal and frequency features, aligning them across domains, and correcting for misalignments to facilitate the detection of private labels. Raincoat improves transferability by identifying label shifts in target domains.
- ACON (Liu et al., 2024) uncovers the characteristics of both temporal features and frequency features, claiming that they cannot be equally treated in transfer learning. ACON contains three key aspects: a multi-period feature learning module to enhance the discriminability of frequency features, a temporal-frequency domain mutual learning module, and a domain adversarial learning module in the temporal-frequency correlation subspace.
- SASA (Cai et al., 2021) is a time-series domain adaptation method that aligns sparse associative structures across domains. It extracts intra- and inter-variable association graphs using attention mechanisms, then matches these graphs between source and target to capture domain-invariant dependencies, while also allowing for domain-specific components. In contrast to our sensor-level transport, SASA operates under the assumption that inter-variable relationships are largely stable across domains.
- UniMTS (Zhang et al., 2024) is a pretraining and finetuning approach for motion time series data that inputs only IMU sensors. To ensure a fair and consistent evaluation, we conduct experiments on both the WISDM and Opportunity datasets. While WISDM consists exclusively of IMU sensor signals, the Opportunity dataset includes a heterogeneous combination of IMU and additional sensor modalities. For this baseline, we restrict the input to IMU signals only, reflecting the methodological constraints. On the pretraining

1026

1027

Table 3: Hyperparameters to reproduce our sEMG results.

1028

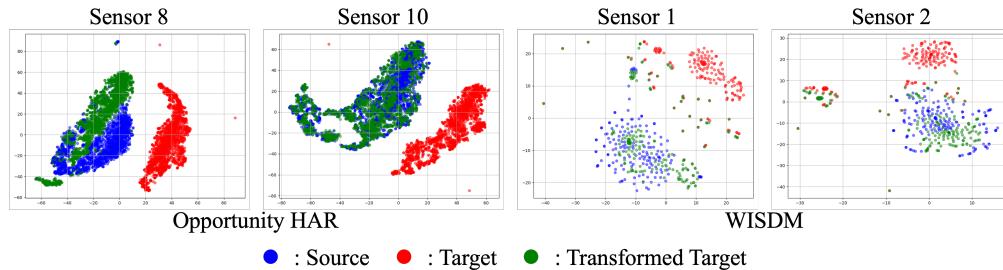
1029

1030

1031

1032

1033



1040

1041

1042

1043

Figure 7: The t-SNE visualization of selected sensor with the source dataset, target dataset, and the transformed target representation.

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

A.5 REPRODUCIBILITY AND PERFORMANCE ANALYSIS

1056

1057

A.5.1 ANALYSIS OF HYPERPARAMETERS

1058

1059

1060

1061

1062

1063

1064

1065

1066

stage, they apply random sensor configuration mixing augmentation to handle various sensor misalignments. The pretraining stage is trained with synthetic datasets. With the domain generalized model, they adopt a finetuning approach for domain adaptation as well. For a fair comparison, we fine-tuned UniMTS on the source training data from the pre-trained model. However, they utilize the text information of the labels, which leads to extra information compared to other existing methods.

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

A.6 EXTENDED EXPERIMENTS

Sensor-aware Visualization To further validate the effectiveness of our method, we conduct an additional experiment demonstrating that transforming target data using the inter-domain sensor relation matrix effectively mitigates sensor-wise domain shifts. We visualize three types of single-sensor representations using t-SNE: source, target, and transformed target representations (via the learned matrix).

Figure 7 presents t-SNE (Van der Maaten & Hinton, 2008) results for sensors 8 and 10 from Opportunity HAR and sensors 1 and 2 from WISDM. The original source and target representations show a clear separation, indicating sensor-level domain shifts. After applying the transformation, the target representations align closely with the source.

These results confirm that inter-domain transformation reduces domain discrepancy by aligning sensor-wise distributions, making target data more compatible with the source-trained model. The effect is more pronounced in Opportunity HAR (113 sensors) than WISDM (3 sensors), indicating that richer sensor information enables more precise alignment and improved target performance.

1080

1081

Table 4: Ablation study of \mathcal{L}_{st} and \mathcal{L}_{dec} .

\mathcal{L}_{st}	\mathcal{L}_{dec}	Nina5-18	Nina5-53	SD-gesture
×	×	83.37	75.63	73.02
×	○	82.67	75.83	76.92
○	×	84.98	76.89	79.27
○	○	85.53	78.80	80.15

1086

1087

Table 5: Performance comparison of sensor-wise permutation experiment on the SD-gesture dataset. The performance of five random sensor-wise permutation cases is presented. The result shows the actual model performance value according to the preservation rate.

Models	0 ↔ 3	1 ↔ 6	2 ↔ 5	3 ↔ 4	5 ↔ 7	Avg. Preservation Rate
CLUDA	69.56%	68.41%	76.45%	60.42%	64.43%	67.05%
SEA	66.60%	57.59%	65.60%	58.33%	73.41%	64.31%
IDSA	93.13%	78.62%	86.75%	83.94%	93.36%	87.56%

1095

1096

A.6.1 ABLATION STUDY

Table 4 shows the effectiveness of the newly proposed loss functions. The performances in the three datasets, along with the existence of the loss functions, are exhibited in the table. From the table, we can easily observe that the best results in all datasets are when both losses are incorporated. Furthermore, accuracy increases significantly if we compare the existence of spatial transportation loss to the values without applying every loss function. This result further strengthens our assumption that identifying inter-domain sensor relations in spatial transportation loss is essential for complicated distribution shifts in MTS sensor data. **Moreover, jointly applying both loss functions yields representations that behave as an effective information bottleneck, indicating that their combined use is essential for improving domain adaptation performance.**

1108

1109

Analysis of Hyperparameter Sensitivity Figure 8 illustrates the variation in accuracy across different values of λ for the two loss functions. For both functions, performance improves up to a peak and subsequently exhibits a slight decline. Notably, the patterns across scenarios demonstrate subtle differences. These observations underscore the importance of selecting appropriate λ values to enhance overall performance. In particular, values within the range $[0,1]$ strike a balance between performance and stability, whereas excessively high or low values tend to introduce performance inconsistencies.

1120

1121

A.6.2 VISUALIZATION OF DECORRELATION LOSS

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

This section visualizes the resultant decorrelation matrix $D_{s,t}$ of IDSA. The decorrelation loss is designed to remove target-specific information by encouraging the embedding’s correlation matrix to approximate the identity matrix. To verify this effect, we visualize the correlation matrix of the learned representations on the Nina5-53 dataset, as shown in Figure 9. The resulting matrix closely resembles the identity matrix, indicating that the learned features are effectively decorrelated. This demonstrates that the model successfully suppresses

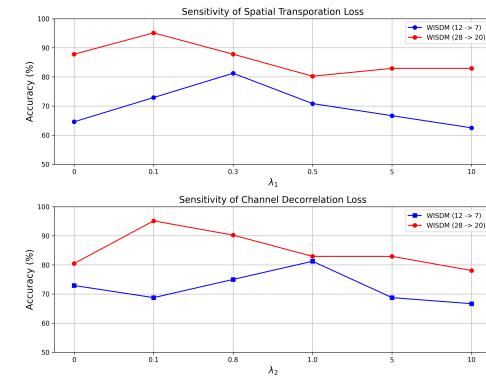


Figure 8: Hyperparameter sensitivity.

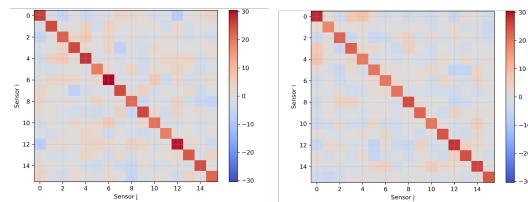


Figure 9: Intra-domain sensor correlation heatmaps on Nina5-53 dataset. (Left: Source, Right: Target)

1134	Scenario	UniMTS-Acc	UniMTS-F1	Ours(IMU)-Acc	Ours(IMU)-F1	Ours-Acc	Ours-F1
1135	1 → 2	61.73	64.89	77.65	81.77	86.82	88.69
1136	1 → 3	74.54	75.86	79.50	66.61	86.96	88.11
1137	1 → 4	69.17	74.94	73.19	77.47	84.45	88.89
1138	2 → 1	81.37	83.12	82.80	84.76	89.30	90.95
1139	2 → 3	67.08	42.96	67.39	39.67	84.78	87.15
1140	2 → 4	58.71	59.43	65.15	48.75	81.23	87.45
1141	3 → 1	70.49	55.41	86.82	90.54	83.38	63.32
1142	3 → 2	61.73	49.48	73.46	72.69	81.01	62.23
1143	3 → 4	58.98	48.10	65.15	52.80	82.84	88.09
1144	4 → 1	47.85	40.92	81.95	83.25	93.69	94.71
1145	4 → 2	46.09	42.66	76.82	55.32	82.12	84.66
	4 → 3	64.91	49.05	77.02	76.21	88.51	89.39

Table 6: Opportunity Dataset Results with UniMTS under various settings.

target-domain-specific dependencies, thereby promoting better alignment with the source domain.

A.6.3 DETAILED RESULTS OF SENSOR-WISE DOMAIN SHIFT ANALYSIS

Table 5 presents the actual model performance values corresponding to Figure 5, which visualizes the analysis of sensor-wise permutation experiment. Our model achieves the highest performance across all cases compared to two baselines, which rank second-best on the HAR and sEMG datasets, respectively. Furthermore, the performance preservation rate of our model consistently surpasses that of the baselines by a significant margin across all cases. This result highlights the effectiveness of our approach in addressing sensor-wise domain shifts by leveraging the inter-domain sensor alignment method.

A.6.4 PERFORMANCE COMPARISON WITH UNIMTS

Table 6 presents a fair comparison of UniMTS on the Opportunity dataset. As described in the Experiment section, UniMTS operates exclusively on IMU sensors and thus relies on a partial subset of the available sensors. In contrast, the other baselines and IDSA are designed to utilize the full sensor set. To ensure a controlled comparison, we additionally evaluate IDSA using only the IMU sensors accessible to UniMTS. From Table 6, we observe that even under this restricted sensor configuration, IDSA consistently outperforms UniMTS across most transfer settings. This result is notable, given that UniMTS benefits from supplementary textual label information, whereas IDSA does not.

A.6.5 TIME COMPLEXITY OF THE SPATIAL TRANSPORTATION LOSS

The time complexity of \mathcal{L}_{st} corresponds to $\mathcal{O}(N^2)$, as the inter-domain sensor relations and distance matrix calculation take both $\mathcal{O}(N^2)$. We observe that the number of sensors is 113 or 3 for HAR datasets and 8 or 16 for sEMG datasets, indicating that the time complexity of \mathcal{L}_{st} remains computationally feasible. In cases where the number of sensors is large, we extract top- k values to reduce computational overhead.

The 1-d Wasserstein distance is known to be computed using the Hungarian algorithm (Kuhn, 1955), in which the time complexity is $\mathcal{O}(N^3)$. Therefore, optimizing \mathcal{L}_{st} can be stated as an efficient way of estimating the Wasserstein distance. In contrast to efficient methods for acquiring optimal transport, such as the Sinkhorn algorithm (Cuturi, 2013), IDSA is a learning-based approach. This distinction implies that IDSA eliminates the need for additional estimation or approximation iterations, thereby enhancing time efficiency.

1188

1189

Table 7: Comparison of domain types, variable sets, and tasks across methods.

1190

1191

Method	Domain Examples	Variable Set Example	Task
SASA (Cai et al., 2021)	Regions, Age-based groups	(Blood Glucose, Glucagon, Insulin)	Timeseries UDA
GCA (Li et al., 2023)	Simulations, Regions	(Blood Glucose, Glucagon, Insulin)	Semi-supervised timeseries forecasting DA
IDSA (Ours)	Subjects, Repetitions	IMU/EMG sensor channels (channel 1, channel 2, ..., channel n)	Timeseries UDA

1192

1193

1194

Table 8: Domain-similarity statistics across four datasets.

1195

Dataset	Domains	# Variables	Mean Sim. (%)	Std (%)	Min–Max (%)
Opportunity	4 subjects	113	44.89	11.57	35.44–69.83
WISDM	30 subjects	3	66.61	18.71	40.19–88.06
Air quality	4 cities	11	81.29	7.91	67.49–91.75
Boiler	3 conditions	20	94.38	~2.7	92.47–97.84

1196

1197

A.7 EXTENDED RELATED WORK

1201

A.7.1 DISCUSSION WITH SIMILAR STRUCTURAL ALIGNMENT METHODS IN MTS-UDA

1202

1203

1204

A growing line of research explicitly models and *aligns inter-variable structure* across domains for time-series DA. Representative examples include SASA (Cai et al., 2021), which learns sparse associative graphs using intra- and inter-variable attention and aligns them across domains, and GCA (Li et al., 2023), which formalizes causal conditional shift and extracts a domain-invariant causal skeleton while allowing domain-specific components for forecasting. These methods are compelling when variable semantics are stable across domains (e.g., clinical or environmental variables whose relationships vary slowly, such as Glucagone and Insulin), and they have demonstrated strong transfer under that assumption. Let $X = (X_1, \dots, X_N)$ denote variables (channels), φ a feature map, and C their structural dependency (associative/causal). Structure-alignment methods typically operate under

$$P_S(y | \varphi(X)) \neq P_T(y | \varphi(X)), \quad P_S(C | \varphi(X)) \approx P_T(C | \varphi(X)),$$

i.e., the inter-variable structure is approximately shared while label conditionals (or marginals) can shift.

Table 7 summarizes the conceptual differences between SASA, GCA, and IDSA in domain types, variable sets, and tasks. Our setting targets wearable MTS under cross-subject or cross-repetition domain shift scenarios, where each “variable” is a sensor channel whose semantics can easily change across domains due to placement, orientation, or user characteristics. In such cases, the assumption of a single shared inter-variable structure often fails. We therefore adopt the hypothesis that regards sensor-wise domain shift:

$$P_S(C | \varphi(X)) \neq P_T(C | \varphi(X)), \quad P_S(C | \varphi(X)) \approx P_T(C | \varphi(X), \mathbf{A}_{st}),$$

where $\mathbf{A}_{st} \in \mathbb{R}^{N \times N}$ denotes a cross-domain sensor correspondence. Accordingly, IDSA learns an explicit channel-wise transport map to realign target channels to the source before reasoning about structure, and couples this with intra-domain channel decorrelation to suppress spurious couplings. To verify the conceptual difference in the empirical view, we proceeded to conduct the following experiment. The experiment examined differences in inter-variable correlation consistency across domains within the dataset based on variables.

Inter-variable relation difference analysis. To examine whether a single shared correlation or covariance structure is appropriate for multivariate sensor data, we compute inter-variable correlation matrices for each domain within the same dataset. This procedure is repeated independently for all four datasets, using PCA-stabilized channel statistics. The resulting domain similarity is defined as the cosine similarity between the vectorized correlation matrices. For each domain d in a dataset, we compute per-channel statistics (mean and standard deviation), concatenate them to form $F_d \in \mathbb{R}^{T \times 2N}$, z-score features within domain, and apply PCA fitted on F_d to retain 95% variance to stabilize dimensionality. We then derive a variable-variable correlation matrix $C_d \in \mathbb{R}^{N \times N}$ by Pearson correlation using the PCA-stabilized features. Domain similarity between two domains i, j is defined as the cosine similarity of the vectorized upper-triangular (excluding diagonal) parts of

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

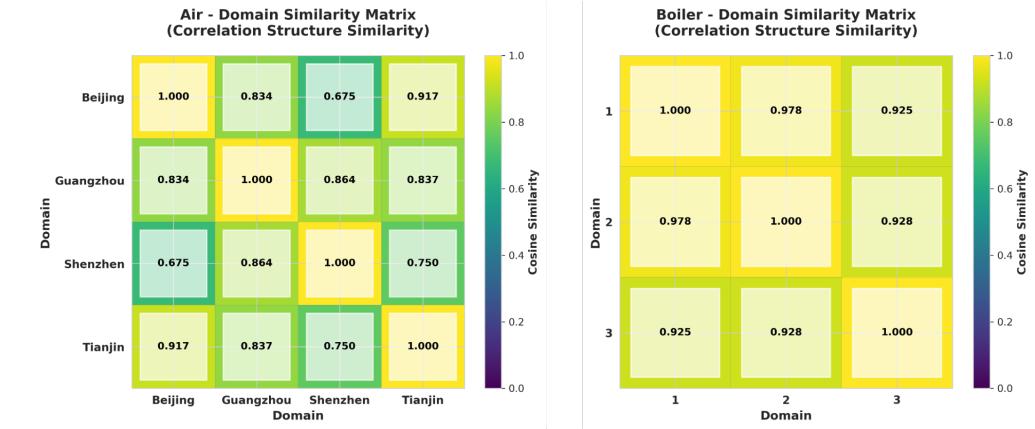


Figure 10: Heatmaps representing cross-domain similarity based on variable correlation on four datasets: Opportunity, WISDM, Air quality, and Boiler.

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

Table 9: Comparison of optimal-transport-based UDA methods.

Method	OT granularity	Modality	Task
MLOT (Kerdoncuff et al., 2020a)	Instance-level	Generic vector/image	UDA
OTDA (Courty et al., 2016a)	Instance-level	Generic vector/image	UDA
DAEVS (Aritake & Hino, 2022a)	Instance-level	Generic vector/sensor (target-only extra features)	UDA with dimensional mismatch
RAINCOAT (He et al., 2023)	Instance-level	Timeseries	UDA w/wo label shift
IDSA (Ours)	Sensor-level	Multivariate timeseries	UDA with sensor-wise domain shift

their correlation matrices. For each dataset, we report the mean, standard deviation, and min–max of $\text{sim}(i, j)$ over all unordered domain pairs in Table 8. Wearable datasets, Opportunity and WISDM datasets, show substantial drift: **Opportunity** mean similarity $\approx 45\%$ (113 channels), **WISDM** $\approx 67\%$ with high variance (3 channels), whereas non-wearable **Air** $\approx 81\%$ and **Boiler** $\approx 94\%$ are more stable. These results justify sensor-level transport rather than assuming one invariant structure. The overall results, including all cross-domain similarity based on each domain’s own variable-wise correlation matrix per all four datasets, are visualized in Figure 10

A.7.2 DISCUSSION WITH OPTIMAL TRANSPORT-BASED METHODS

There is a line of works adopting optimal transport (OT) for domain adaptation (Kerdoncuff et al., 2020a; Courty et al., 2016a; Aritake & Hino, 2022a). Table 9 summarizes the conceptual comparison across prior OT-based domain adaptation methods and IDSA. OTDA (Courty et al., 2016a) and MLOT (Kerdoncuff et al., 2020a) align sample distributions in a feature space whose coordinates are assumed to have stable semantics across domains. DAEVS (Aritake & Hino, 2022a) addresses a heterogeneous setting where the target has extra features, applying OT on the shared part while modeling the extra part with pseudo-labeling. RAINCOAT (He et al., 2023), which we already include as a baseline, aligns latent time and frequency features via Sinkhorn divergence and corrects possible label shift. In contrast, our IDSA treats each sensor channel as an entity and performs OT at the **sensor level** by learning a sensor channel-wise transport map to resolve sensor-wise domain shift, which is illustrated in our motivation. Thus, our approach differs from instance-level OT methods and instead addresses a distinct and commonly encountered problem in wearable MTS.

We additionally implement the MLOT (Kerdoncuff et al., 2020a) and OTDA (Courty et al., 2016a) models for more thorough performance comparison on OT-based DA methods, while excluding DAEVS (Aritake & Hino, 2022a), whose setting is different from ours, requiring additional target dimension. The results are presented in the Table 10. From the results, we can infer that Raincoat, which models OT specifically for time-series data, performs better than the other two traditional OT-based UDA methods. Our methodology, which models the transportation map for sensor-level optimal transport, still demonstrates the highest performance even when compared to newly adopted traditional OT methods.

A.8 LIMITATION

While IDSA demonstrates strong performance in unsupervised domain adaptation for spatio-temporal sensor data, there are some limitations to consider. First, when each domain is associated with a very large number of sensors, the model introduces additional computational overhead due to the graph generation and the need to compute pairwise similarities for spatial transportation loss. This may limit scalability to very large datasets, and existing mini-batch training methods (Chen et al., 2018; Zheng et al., 2022) could be leveraged to mitigate the burden. Second, IDSA contains several hyperparameters that may require dataset-specific tuning for optimal performance. Developing more adaptive or automated hyperparameter selection techniques could improve usability. There are risks of compromising privacy if the model enables the re-identification of individuals from anonymized sensor data. Rigorous testing and the development of appropriate safeguards would be necessary before deployment in high-stakes scenarios. Despite these limitations and with responsible usage, we believe IDSA provides a valuable tool for learning robust sensor representations across domains to enable label-efficient yet accurate downstream predictions.

1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357

Table 10: Performance comparison with OT baselines on HAR datasets (Opportunity, WISDM).

S → T	Metric (%)	Models				
		MLOT	OTDA	RAINCOAT	IDSA + Deep Coral	IDSA + CLUDA
Opportunity						
1 → 2	Acc.	74.30	70.39	82.89	86.82	86.03
	F1	76.66	66.25	83.56	88.69	88.09
1 → 3	Acc.	69.25	69.88	77.23	81.06	86.96
	F1	42.32	42.58	58.02	63.41	88.11
1 → 4	Acc.	72.39	75.64	75.39	82.57	84.45
	F1	79.96	68.85	58.99	77.11	88.89
2 → 1	Acc.	83.38	75.93	81.64	89.30	85.96
	F1	85.92	72.24	65.09	90.95	88.38
2 → 3	Acc.	70.19	69.88	77.73	81.37	84.78
	F1	65.05	42.58	58.45	79.42	87.15
2 → 4	Acc.	73.46	70.95	71.48	74.27	81.23
	F1	81.81	67.79	75.45	80.63	87.45
3 → 1	Acc.	67.62	67.91	85.54	83.38	79.08
	F1	40.07	40.37	63.83	63.32	62.42
3 → 2	Acc.	65.08	62.57	78.52	81.01	80.45
	F1	40.32	42.20	60.28	62.23	61.62
3 → 4	Acc.	56.84	55.50	58.20	80.43	82.84
	F1	41.90	50.97	64.00	86.67	88.09
4 → 1	Acc.	70.20	72.49	87.89	83.38	93.69
	F1	58.69	58.62	88.32	83.98	94.71
4 → 2	Acc.	68.99	65.92	75.00	76.82	82.12
	F1	50.01	40.99	61.56	76.62	84.66
4 → 3	Acc.	69.88	69.88	69.14	76.71	88.51
	F1	59.15	59.11	72.19	69.83	89.39
Avg.	Acc.	70.13	68.91	76.72	81.44	84.68
	F1	60.16	54.38	67.48	76.91	84.08
WISDM						
2 → 28	Acc.	82.22	80.00	83.15	86.67	86.67
	F1	59.60	81.52	76.62	78.33	83.47
7 → 2	Acc.	65.85	65.85	78.05	68.30	82.93
	F1	52.01	50.84	56.68	55.20	73.22
7 → 26	Acc.	73.17	73.73	73.17	78.05	73.17
	F1	38.96	36.27	55.31	46.76	39.40
12 → 7	Acc.	64.58	64.58	79.17	83.33	81.25
	F1	55.14	71.22	69.21	73.10	79.27
12 → 19	Acc.	54.55	71.21	46.97	54.54	80.30
	F1	41.38	67.81	31.82	40.52	74.93
18 → 20	Acc.	41.46	36.59	76.83	68.29	82.93
	F1	32.84	36.53	64.65	43.89	78.58
19 → 2	Acc.	58.54	51.22	63.41	63.41	65.85
	F1	51.94	51.60	63.48	62.34	47.46
28 → 20	Acc.	70.73	75.61	85.37	97.56	87.80
	F1	65.51	54.83	81.14	97.76	85.37
26 → 2	Acc.	63.31	53.66	67.07	80.50	90.24
	F1	48.93	35.63	52.48	82.37	73.89
28 → 2	Acc.	60.98	63.41	87.80	75.61	90.24
	F1	48.93	52.76	72.87	52.16	81.11
Avg.	Acc.	63.54	63.59	74.10	75.61	82.14
	F1	49.52	53.90	62.43	63.24	71.67

1398
 1399
 1400
 1401
 1402
 1403