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ABSTRACT

Comprehensive modeling of the surrounding 3D world is crucial for the success
of autonomous driving. However, existing perception tasks like object detection,
road structure segmentation, depth & elevation estimation, and open-set object lo-
calization each only focus on a small facet of the holistic 3D scene understanding
task. This divide-and-conquer strategy simplifies the algorithm development pro-
cess but comes at the cost of losing an end-to-end unified solution to the problem.
In this work, we address this limitation by studying camera-based 3D panoptic
segmentation, aiming to achieve a unified occupancy representation for camera-
only 3D scene understanding. To achieve this, we introduce a novel method called
PanoOcc, which utilizes voxel queries to aggregate spatiotemporal information
from multi-frame and multi-view images in a coarse-to-fine scheme, integrating
feature learning and scene representation into a unified occupancy representation.
We have conducted extensive ablation studies to validate the effectiveness and
efficiency of the proposed method. Our approach achieves new state-of-the-art re-
sults for camera-based semantic segmentation and panoptic segmentation on the
nuScenes dataset. Furthermore, our method can be easily extended to dense oc-
cupancy prediction and has demonstrated promising performance on the Occ3D
benchmark. The code will be made available.

1 INTRODUCTION

Holistic 3D scene understanding is vital in autonomous driving. The capability to perceive the
environment, identify and categorize objects, and contextualize their positions in the 3D space of
the scene is fundamental for developing a safe and reliable autonomous driving system.

Recent advancements in camera-based Bird’s Eye View (BEV) methods have shown great potential
in enhancing 3D scene understanding. By integrating multi-view observations into a unified BEV
space, these methods have achieved remarkable success in tasks such as 3D object detection (Wang
et al., 2022b; Li et al., 2022d; Liu et al., 2022c; Li et al., 2022c), BEV semantic segmentation (Phil-
ion & Fidler, 2020; Hu et al., 2021; Zhou & Krähenbühl, 2022), and vector map construction (Liu
et al., 2022b; Liao et al., 2022a). However, existing perception tasks have certain limitations as
they primarily focus on specific aspects of the scene. Object detection is primarily concerned with
identifying foreground objects, BEV semantic segmentation only predicts the semantic map on the
BEV plane, and vector map construction emphasizes the static road structure of the scene. To ad-
dress these limitations, there is a need for a more comprehensive and integrated paradigm for 3D
scene understanding. In this paper, we propose camera-based panoptic segmentation, which aims
to encompass all the elements within the scene in a unified representation for the 3D output space.

However, directly utilizing Bird’s Eye View (BEV) features for camera-based panoptic segmentation
leads to poor performance due to the omission of finer geometry details, such as shape and height
information, which are crucial for decoding fine-grained 3D structures. This limitation motivates us
to explore a more effective 3D feature representation. Occupancy representation has gained popular-
ity as it effectively describes various elements in the scene, including open-set objects (e.g., debris),
irregular-shaped objects (e.g., articulated trailers, vehicles with protruding structures), and special
road structures (e.g., construction zones). Therefore, a burst of recent methods (Cao & de Charette,
2022; Huang et al., 2023; Miao et al., 2023; Cao & de Charette, 2022; Wang et al., 2023a; Li et al.,
2023) have focused on dense semantic occupancy prediction. However, simply lifting 2D to 3D
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occupancy representation has been considered inefficient in terms of memory cost. This limitation
has driven methods like TPVFormer (Huang et al., 2023) to split the 3D representation into three
2D planes. Although these methods attempt to mitigate the memory issue, they still struggle to
capture the complete 3D information and may experience reduced performance. Moreover, these
existing works primarily concentrate on the semantic comprehension of the scene and do not tackle
instance-level discrimination. Fine-grained foreground segmentation is crucial for 3D perception.

In this work, we propose a novel method called PanoOcc, which seamlessly integrates object de-
tection and semantic segmentation in a joint-learning framework, facilitating a more comprehensive
comprehension of the 3D environment. Both detection and segmentation performance can benefit
from this joint-learning framework. Our approach employs voxel queries to learn a unified occu-
pancy representation. This occupancy is learned in a coarse-to-fine scheme, solving the problem
of memory cost and significantly enhancing efficiency. We then take a step further to explore the
sparse nature of 3D space and propose an occupancy sparsify module. This module progressively
prunes occupancy to a spatially sparse representation during the coarse-to-fine upsampling, greatly
boosting memory efficiency. Our contributions are summarized as follows:

• We introduce camera-based 3D panoptic segmentation as a new paradigm for holistic 3D
scene understanding, which utilizes multi-view images to create a unified occupancy rep-
resentation for the 3D scene. This allows us to jointly model object detection and semantic
segmentation within a single end-to-end model, leading to a more cohesive and holistic
understanding of the scene.

• Our proposed framework, PanoOcc, adopts a coarse-to-fine scheme to learn the unified
occupancy representation from multi-frame and multi-view images. We demonstrate that
using 3D voxel queries with a coarse-to-fine learning scheme is effective and efficient. This
scheme could be further made spatially sparse to boost memory efficiency by an occupancy
sparsify module.

• Experiments on the nuScenes dataset show that our approach achieves state-of-the-art per-
formance on camera-based semantic segmentation and panoptic segmentation. Further-
more, our approach can extend to dense occupancy prediction and has shown promising
performance on the Occ3D benchmark.

2 RELATED WORK

Camera-based 3D Perception. Camera-based 3D perception has received extensive attention in
the autonomous driving community due to its cost-effectiveness and rich visual attributes. Previous
methods perform 3D object detection and map segmentation tasks independently. Recent BEV-
based methods unify these tasks on the problem of feature view transformation from image space
to BEV space. One line of works follows the lifting paradigm proposed in LSS (Philion & Fi-
dler, 2020); they explicitly predict a depth map and lift multi-view image features onto the BEV
plane (Huang et al., 2021; Li et al., 2022c;b; Park et al., 2022). Another line of works inherits the
spirit of querying from 3D to 2D in DETR3D (Wang et al., 2022b); they employ learnable queries
to extract information from image features by cross-attention mechanism (Li et al., 2022d; Lu et al.,
2022; Jiang et al., 2023; Wang et al., 2023b). While these methods efficiently compress information
onto the BEV plane, they may sacrifice some of the integral scene structure inherent in 3D space. To
address this limitation, voxel representation is better suited for obtaining a holistic understanding of
3D space, making it ideal for tasks such as 3D semantic segmentation and panoptic segmentation.

3D Occupancy Prediction. Occupancy prediction can be traced back to Occupancy Grid Mapping
(OGM) (Thrun, 2002), a classic task in mobile robot navigation that aims to generate probabilistic
maps from sequential noisy range measurements. Recently, there has been considerable attention
given to camera-based 3D occupancy prediction, which aims to reconstruct the 3D scene structure
from images. Existing tasks in this area can be categorized into two lines based on the type of
supervision: sparse prediction and dense prediction. Sparse prediction methods obtain supervision
from LiDAR points and are evaluated on LiDAR benchmarks. Huang et al. (2023) proposes a
tri-perspective view method for predicting 3D occupancy. Dense prediction methods are closely
related to Semantic Scene Completion (SSC) (Armeni et al., 2017; Song et al., 2017; Dai et al.,
2017a; Liao et al., 2022b). MonoScene (Cao & de Charette, 2022) first uses U-Net to infer dense
3D occupancy with semantic labels from a single monocular RGB image. VoxFormer (Li et al.,
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Figure 1: The overall framework of PanoOcc. Our framework begins by utilizing an image back-
bone network to extract multi-scale features from multi-view images across multiple frames. Subse-
quently, voxel queries are employed to learn voxel features through the View Encoder. The Temporal
Encoder then aligns the previous voxel features with the current frame and combines these features.
Voxel Upsample restores the high-resolution voxel representation for fine-grained semantic classi-
fication. Task Head predicts object detection and semantic segmentation by two separate heads.
Refine Module further refines the thing class prediction with the help of 3D object detection and
assigns the instance ID to generate 3D panoptic segmentation results.

2023) utilizes depth estimation to select voxel queries in a two-stage framework. Subsequently,
a series of studies have focused on the task of dense occupancy prediction and have introduced
new benchmarks. OpenOccupancy (Wang et al., 2023a) provides a carefully annotated occupancy
benchmark, while Occ3D (Tian et al., 2023) proposes an occupancy prediction benchmark using
the Waymo and nuScenes datasets. Openocc (Tong et al., 2023) further provides occupancy flow
annotation for dynamic objects modeling on the nuScenes dataset.

LiDAR Panoptic Segmentation. LiDAR panoptic segmentation (Milioto et al., 2020) offers a
comprehensive understanding of the environment by unifying semantic segmentation and object
detection. However, traditional object detection methods often lose height information, making
it challenging to learn fine-grained feature representations for accurate 3D segmentation. Recent
LiDAR panoptic methods (Zhou et al., 2021; Razani et al., 2021; Hong et al., 2021) have been
developed based on well-designed semantic segmentation networks (Zhang et al., 2020; Cheng et al.,
2021) to address this limitation. Instead of predicting sparse semantic segmentation on LiDAR
points, camera-based panoptic segmentation aims to output dense voxel segmentation of the scene.

3 METHODOLOGY

3.1 PROBLEM SETUP

Camera-based 3D panoptic segmentation aims to predict a dense panoptic voxel volume sur-
rounding the ego-vehicle using multi-view images as input. Specifically, we take current multi-view
images denoted as It = {I1t , I2t , ..., Int } and previous frames It−1, ..., It−k as input. n denotes the
camera view index, while k denotes the number of history frames. The model outputs the current
frame semantic voxel volume Yt ∈ {w0, w1, ..., wC}H×W×Z and its corresponding instance ID
Nt ∈ {v0, v1, v2, ..., vP }H×W×Z . Here C denotes the total number of semantic classes in the
scene, while w0 represents the empty voxel grid. P are the total number of instances in the current
frame t; for each grid belonging to the foreground classes (thing), it would assign a specific instance
ID vj . v0 is assigned to all voxel grids belonging to the stuff categories and empty. H,W,Z denotes
the length, width, and height of the voxel volume.

Camera-based 3D semantic occupancy prediction can be considered a sub-problem of camera-
based 3D panoptic segmentation. The former focus only on predicting the semantic voxel volume
Yt ∈ {w0, w1, ..., wC}H×W×Z . The emphasis is placed on accurately distinguishing the empty
class (w0) from the other classes to determine whether a voxel grid is empty or occupied.
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3.2 OVERALL ARCHITECTURE

In this section, we introduce the overall architecture of PanoOcc, serving as a baseline for 3D panop-
tic segmentation. As illustrated in Figure 1, our approach takes multi-frame multi-view images as
input and outputs 3D panoptic segmentation for the current scene. Firstly, the image backbone ex-
tracts multi-scale features of input images. These features are then processed by the Occupancy
Encoder, which consists of the View Encoder and Temporal Encoder, to generate a coarse unified
occupancy representation. Specifically, the View Encoder utilizes voxel queries to learn voxel fea-
tures, preserving the actual 3D structure of the scene by explicitly encoding height information. The
Temporal Encoder aligns and fuses previous voxel features with the current frame, capturing tempo-
ral information and enhancing the representation. The Occupancy Decoder employs a coarse-to-fine
scheme to recover fine-grained occupancy representation. The Coarse-to-fine Upsampling module
restores the high-resolution voxel representation, enabling efficient learning of precise occupancy
representation. With the advantage of a unified occupancy representation, the model can jointly
learn object detection and semantic segmentation through the Task Head. Finally, the Refine Module
refine the prediction of thing classes and output 3D panoptic segmentation results.

Our model follows two key design principles: 1. Unified occupancy representation for learning
and task output. 2. Efficient feature learning for 3D scene. In the following, we provide detailed
descriptions of designs in these two aspects.

3.3 UNIFIED OCCUPANCY REPRESENTATION

Occupancy serves as a unified 3D representation, not only reflected in different tasks unity (ob-
ject detection and semantic segmentation), but also in unifying feature learning and output spaces.
Therefore we introduce our method from Unified Learning and Unified Task in the following.

Unified Learning. We adopt occupancy as feature representation in the learning process. To achieve
this, we use voxel queries to aggregate multi-frame multi-view image features within occupancy
encoder. Occupancy encoder consists of view encoder and temporal encoder. We define a group
of 3D-grid-shape learnable parameters Q ∈ RH×W×Z×D as voxel queries. H and W are the
spatial shape of the BEV plane, while Z represents the height dimension, and D is the embedding
dimension. A single voxel query q ∈ RD located at (i, j, k) position of Q is responsible for the
corresponding 3D voxel grid cell region. Each grid cell in the voxel corresponds to a real-world size
of (sh, sw, sz) meters. Given voxel queries Q and extracted image feats F as input, the occupancy
encoder outputs the fused voxel features Qf ∈ RH×W×Z×D.

Compared to previous feature transformation based on BEV queries, the primary difference lies in
the attention operations (Zhu et al., 2020) and temporal alignments. In view encoder, we adapt the
attention operations to voxel space by designing voxel self-attention and voxel cross-attention. To
lift the BEV queries to voxel queries computation, the core difference lies in the choice of reference
points, details refer to A.1 in the appendix. Temporal encoder consists of two specific opera-
tions: temporal align and temporal fuse. Different from previous temporal alignment methods (Li
et al., 2022d; Park et al., 2022), which align history features on the BEV plane, our approach em-
ploys voxel alignment in 3D space. This allows us to correct for the inaccuracies caused by the
assumptions made in previous BEV-based methods that road height remains unchanged throughout
the scene, which is not always valid in real-world driving scenarios, particularly when encounter-
ing uphill and downhill terrain. Voxel alignment is crucial for fine-grained voxel representations to
perceive the environment accurately. Specifically, the process of voxel alignment is formulated as
follows:

Qt−k→t = GridSample(Qt−k,Gt−k), Gt−k = Tt→t−k ·Gt (1)

where Gt ∈ RH×W×Z is the voxel grid at current frame t, Gt−k ∈ RH×W×Z represents the
current frame grid at frame t − k. Tt→t−k is the transformation matrix for transforming the points
at frame t to previous frame t − k. Then the queries at frame t − k are aligned to current frame
t by interpolation sampling, denoted as Qt−k→t. After the alignment, the previous aligned voxel
queries [Qt−k→t, ...,Qt−1→t] are concated with the current voxel queries Qt. We employ a block
of residual 3D convolution to fuse the queries and output fused voxel queries Qf .

Unified Task. With the advantage of occupancy representation, the model has a strong capacity to
handle different tasks. We can unify the 3D object detection and semantic segmentation into 3D
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panoptic segmentation, achieving a more comprehensive understanding of the scene and a finer-
grained modeling of objects. This allow us to train jointly and benefit from each other through the
foreground information propagation.

Specifically, our model is trained end-to-end for joint detection and segmentation while previous
methods usually train separately due to the conflicting learning objectives. To address this problem,
we leverage foreground occupancy to communicate between semantic head and detection head. The
total loss L has two parts: LDet and LSeg. The semantic voxel segmentation head is supervised by
LSeg, a dense loss consisting of focal loss (Lin et al., 2017b) (all voxels) and Lovasz loss (Berman
et al., 2018) (non-empty voxels). We adopt voxel selection to convey the foreground information to
detection head, which predicts a binary voxel mask to select the foreground categories (thing) voxel
features. The voxel mask is supervised by focal loss (Lin et al., 2017b) Lthing . The total loss LSeg

is formulated as:
LSeg = λ1Lfocal + λ2Llovasz + λ3Lthing (2)

The detection head is supervised by LDet, a sparse loss consisting of focal loss (Lin et al., 2017b)
for classification and L1 loss for bounding box regression:

LDet = λ4Lcls + λ5Lreg (3)

Refine module further refines the predicted foreground (thing) voxels using the detection results
and generate 3D panoptic segmentation results. We start by sorting all box predictions based
on their confidence scores. Then, we select a set of high-confidence bounding boxes denoted as
G = {bi|si > τ}, where bi represents a 3D bounding box, si is the confidence score, and τ is a
threshold (default: τ = 0.8). For the voxels within each bounding box bi, we assign the class predic-
tion ci to all of them. To perform panoptic voxel segmentation, we assign instance IDs sequentially
based on confidence scores. If the current instance overlaps with previous instances beyond a cer-
tain threshold, we ignore it to avoid duplication. Finally, we assign instance ID 0 to all voxels
corresponding to the stuff class.

3.4 EFFICIENT FEATURE LEARNING

Compared the information density in image space, 3D space obvious exhibits greater sparsity. Be-
sides, directly extending BEV features to voxel features would incur significant memory and com-
putational costs. Therefore, we make two designs within occupancy decoder: Coarse-to-fine Up-
sampling and Occupancy Sparsify to mitigate this problem.

Coarse-to-fine Upsampling. This design enables us to only learn a coarse voxel feature Qf in the
occupancy encoder. This module upsamples the fused voxel query Qf ∈ RH×W×Z×D to the high-
resolution occupancy features O ∈ RH′×W ′×Z′×D′

by 3D deconvolutions. Such a coarse-to-fine
manner not only avoids directly applying expensive 3D convolutions to high-resolution occupancy
features, but also leads to no performance loss. We have a quantitative discussion in the Table 6.

Pruning Pruning

Sparse 
Deconvolution

Figure 2: Illustration of occupancy sparsify. It
serves as an optional technique to boost efficiency.
We use BEV representation for simple illustration,
while it is actually a 3D process. The light yel-
low region will be pruned according to occupancy
masks.

Occupancy Sparsify. Although the coarse-to-
fine manner guarantees the high efficiency of
our method, there is a considerable computa-
tional waste on the spatially dense feature Qf

and O. This is because our physical world is
essentially sparse in spatial dimensions, which
means a large portion of space is not occupied.
Dense operations (i.e., dense convolution) vio-
late such essential sparsity. Inspired by the suc-
cess of sparse architecture in LiDAR-based per-
ception (Yan et al., 2018; Liu et al., 2022a; Fan
et al., 2023), we optionally turn to the Sparse
Convolution (Graham & van der Maaten, 2017)
for occupancy sparsify. In particular, we first
learn an occupancy mask for Qf to indicate if
positions on Qf are occupied. Then we prune
Qf to a sparse feature Qsparse ∈ RN×D by
discarding those empty positions according to
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the learned occupancy mask, where N ≪ HWZ and N is determined by a predefined keeping ratio
Rkeep. After the pruning, all the following dense convolutions are replaced by corresponding sparse
convolutions. Since sparse deconvolution will dilate the sparse features to empty positions and re-
duce the sparsity, we conduct similar pruning operations after each upsampling to maintain the spa-
tial sparsity. Finally, we obtain a high-resolution and sparse occupancy feature Osparse ∈ RN ′×D′

,
where N ′ ≪ H ′W ′Z ′. Figure 2 illustrates the occupancy sparsify process.

4 EXPERIMENT

4.1 DATASETS

nuScenes dataset (Caesar et al., 2020) contains 1000 scenes in total, split into 700 in the training
set, 150 in the validation set, and 150 in the test set. Each sequence is captured at 20Hz frequency
with 20 seconds duration. Each sample contains RGB images from 6 cameras with 360◦ horizontal
FOV and point cloud data from 32 beam LiDAR sensor. For the task of object detection, the key
samples are annotated at 2Hz with ground truth labels for 10 foreground object classes (thing). For
the task of semantic segmentation and panoptic segmentation, every point in the key samples is
annotated using 6 more background classes (stuff ) in addition to the 10 foreground classes (thing).

Occ3D-nuScenes (Tian et al., 2023) contains 700 training scenes and 150 validation scenes. The
occupancy scope is defined as −40m to 40m for X and Y-axis, and −1m to 5.4m for the Z-axis in the
ego coordinate. The voxel size is 0.4m×0.4m×0.4m for the occupancy label. The semantic labels
contain 17 categories (including ‘others’). Besides, it also provides visibility masks for LiDAR and
camera modality, indicating which regions are visible from the sensor.

Evaluation metrics. nuScenes dataset uses mean Average Precision (mAP) and nuScenes Detection
Score (NDS) metrics for the detection task, mean Intersection over Union (mIoU), and Panoptic
Quality (PQ) metrics (Kirillov et al., 2019) for the semantic and panoptic segmentation. PQ† is
a modified panoptic quality (Porzi et al., 2019), which maintains the PQ metric for thing classes,
but modifies the metric for stuff classes. The Occ3D-nuScenes benchmark calculates the mean
Intersection over Union (mIoU) for 17 semantic categories within the camera’s visible region.

4.2 EXPERIMENTAL SETTINGS

Implementation Details. For the implementation details of the model, please refer to the Sec-
tion A.1 in the appendix. On the nuScenes dataset (Caesar et al., 2020), we set the point cloud range
for the x and y axes to [−51.2m, 51.2m], and [−5m, 3m] for the z axis. The voxel grid size used for
loss supervision is (0.256m, 0.256m, 0.125m). We trained the model on 8 NVIDIA A100 GPUs
with a batch size of 1 per GPU. During training, we utilized the AdamW (Loshchilov & Hutter,
2017) optimizer for 24 epochs, with an initial learning rate of 3 × 10−4 and the step schedule in
[20, 23]. The input image size is cropped to 640 × 1600. When using the R101-DCN (Dai et al.,
2017b) or InternImage (Wang et al., 2022a) as the backbone, we default to the 1.0 image scale.
However, when using the R50 (He et al., 2016) backbone, we adopt a 0.5 image scale. More details
please refer to the Section A.3 in the appendix.

Evaluation. For the sparse evaluation on the LiDAR benchmark, our approach can evaluate Li-
DAR semantic segmentation by assigning voxel semantic predictions to LiDAR points. We further
extend it with object detection results, enabling panoptic evaluation on the LiDAR panoptic segmen-
tation (Fong et al., 2022). As PQ is only computed on sparse points and cannot comprehensively
reflect the understanding of foreground objects, we still choose to use mAP, NDS, and mIoU to mea-
sure the effectiveness of our approach in the experiments. For the dense evaluation on the occupancy
benchmark, we directly compute the mIoU based on the occupancy label.

4.3 MAIN RESULTS

We validate our methods’ performance on three benchmarks: 3D semantic segmentation, 3D panop-
tic segmentation and 3D occupancy prediction within the nuScenes dataset. The results demonstrate
that our PanoOcc achieves state-of-the-art performance across all benchmarks. Notably, we are also
the first to implement an end-to-end method for camera-based panoptic segmentation.
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3D Semantic Segmentation. As shown in Table 1 and Table 2, we evaluate the semantic segmen-
tation performance on the nuScenes test and validation set. In Table 1, we adopt the ResNet101-
DCN (Dai et al., 2017b) initialized from FCOS3D (Wang et al., 2021) checkpoint, the same setting
as (Huang et al., 2023) and (Zhang et al., 2023). Without bells and whistles, our PanoOcc surpass
all the previous camera-based methods. In Table 2, we adopt three types of backbone to conduct
experiments. Under the R50 (He et al., 2016) and ResNet101-DCN (Dai et al., 2017b) setting, our
method achieves 68.1 mIoU and 71.6 mIoU, a new state-of-the-art. To further validate our approach,
we experiment with a larger image backbone (Wang et al., 2022a) and achieve an impressive 74.5
mIoU, approaching the performance of current state-of-the-art LiDAR-based methods.
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MINet Li et al. (2021) LiDAR 56.3 54.6 8.2 62.1 76.6 23.0 58.7 37.6 34.9 61.5 46.9 93.3 56.4 63.8 64.8 79.3 78.3
PolarNet Zhang et al. (2020) LiDAR 69.4 72.2 16.8 77.0 86.5 51.1 69.7 64.8 54.1 69.7 63.5 96.6 67.1 77.7 72.1 87.1 84.5
PolarSteam Chen et al. (2021) LiDAR 73.4 71.4 27.8 78.1 82.0 61.3 77.8 75.1 72.4 79.6 63.7 96.0 66.5 76.9 73.0 88.5 84.8
JS3C-Net Yan et al. (2021) LiDAR 73.6 80.1 26.2 87.8 84.5 55.2 72.6 71.3 66.3 76.8 71.2 96.8 64.5 76.9 74.1 87.5 86.1
AMVNet Liong et al. (2020) LiDAR 77.3 80.6 32.0 81.7 88.9 67.1 84.3 76.1 73.5 84.9 67.3 97.5 67.4 79.4 75.5 91.5 88.7
SPVNAS Tang et al. (2020) LiDAR 77.4 80.0 30.0 91.9 90.8 64.7 79.0 75.6 70.9 81.0 74.6 97.4 69.2 80.0 76.1 89.3 87.1
Cylinder3D++ Zhu et al. (2021) LiDAR 77.9 82.8 33.9 84.3 89.4 69.6 79.4 77.3 73.4 84.6 69.4 97.7 70.2 80.3 75.5 90.4 87.6
AF2S3Net Cheng et al. (2021) LiDAR 78.3 78.9 52.2 89.9 84.2 77.4 74.3 77.3 72.0 83.9 73.8 97.1 66.5 77.5 74.0 87.7 86.8
DRINet++ Ye et al. (2021) LiDAR 80.4 85.5 43.2 90.5 92.1 64.7 86.0 83.0 73.3 83.9 75.8 97.0 71.0 81.0 77.7 91.6 90.2
LidarMultiNet Ye et al. (2022) LiDAR 81.4 80.4 48.4 94.3 90.0 71.5 87.2 85.2 80.4 86.9 74.8 97.8 67.3 80.7 76.5 92.1 89.6

TPVFormer Huang et al. (2023) Camera 69.4 74.0 27.5 86.3 85.5 60.7 68.0 62.1 49.1 81.9 68.4 94.1 59.5 66.5 63.5 83.8 79.9
OccFormer Zhang et al. (2023) Camera 70.8 72.8 29.9 87.9 85.6 57.1 74.9 63.2 53.4 83.0 67.6 94.8 61.9 70.0 66.0 84.0 80.5
PanoOcc(Ours) Camera 71.4 82.5 32.3 88.1 83.7 46.1 76.5 67.6 53.6 82.9 69.5 96.0 66.3 72.3 66.3 80.5 77.3

Table 1: LiDAR semantic segmentation results on nuScenes test set. Our method achieves new
state-of-the-art performance on camera-based semantic segmentation. For a fair comparison, we use
the same backbone R101-DCN and train for 24 epochs.
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RangeNet++ (Milioto et al., 2019) LiDAR - 65.5 66.0 21.3 77.2 80.9 30.2 66.8 69.6 52.1 54.2 72.3 94.1 66.6 63.5 70.1 83.1 79.8
PolarNet (Zhang et al., 2020) LiDAR - 71.0 74.7 28.2 85.3 90.9 35.1 77.5 71.3 58.8 57.4 76.1 96.5 71.1 74.7 74.0 87.3 85.7
Salsanext (Cortinhal et al., 2020) LiDAR - 72.2 74.8 34.1 85.9 88.4 42.2 72.4 72.2 63.1 61.3 76.5 96.0 70.8 71.2 71.5 86.7 84.4
Cylinder3D++ (Zhu et al., 2021) LiDAR - 76.1 76.4 40.3 91.2 93.8 51.3 78.0 78.9 64.9 62.1 84.4 96.8 71.6 76.4 75.4 90.5 87.4
RPVNet (Xu et al., 2021) LiDAR - 77.6 78.2 43.4 92.7 93.2 49.0 85.7 80.5 66.0 66.9 84.0 96.9 73.5 75.9 76.0 90.6 88.9

TPVFormer (Huang et al., 2023) Camera R50 59.3 64.9 27.0 83.0 82.8 38.3 27.4 44.9 24.0 55.4 73.6 91.7 60.7 59.8 61.1 78.2 76.5
PanoOcc Camera R50 68.1 70.7 37.9 92.3 85.0 50.7 64.3 59.4 35.3 63.8 81.6 94.2 66.4 64.8 68.0 79.1 75.6

BEVFormer (Li et al., 2022d) Camera R101-DCN 56.2 54.0 22.8 76.7 74.0 45.8 53.1 44.5 24.7 54.7 65.5 88.5 58.1 50.5 52.8 71.0 63.0
TPVFormer (Huang et al., 2023) Camera R101-DCN 68.9 70.0 40.9 93.7 85.6 49.8 68.4 59.7 38.2 65.3 83.0 93.3 64.4 64.3 64.5 81.6 79.3
OccFormer (Zhang et al., 2023) Camera R101-DCN 70.4 70.3 43.8 93.2 85.2 52.0 59.1 67.6 45.4 64.4 84.5 93.8 68.2 67.8 68.3 82.1 80.4
PanoOcc Camera R101-DCN 71.6 74.3 43.7 95.4 87.0 56.1 64.6 66.2 41.4 71.5 85.9 95.1 70.1 67.0 68.1 80.9 77.4

PanoOcc Camera Intern-XL 74.5 75.3 51.1 96.9 87.5 56.6 85.6 68.0 43.0 74.1 87.1 95.1 71.0 68.7 70.3 82.3 79.3

Table 2: LiDAR semantic segmentation results on nuScenes validation set. Our method achieves
comparable performance with state-of-the-art LiDAR-based methods and notably surpasses the re-
cently proposed camera-based methods.

3D Occupancy Prediction. In Table 3, we evaluate our method for 3D occupancy prediction on
the Occ3D-nuScenes validation set. All methods utilize camera input and are trained for 24 epochs.
The performance of MonoScene (Cao & de Charette, 2022), BEVDet (Huang et al., 2021), BEV-
Former (Li et al., 2022d), and CTF-Occ (Tian et al., 2023) is reported in the work of (Tian et al.,
2023). The use of the camera visible mask during training has proven to be an effective technique.
We re-implemented BEVFormer (Li et al., 2022d) with the inclusion of the camera mask during
training. Similarly, BEVDet (Huang et al., 2021) also adopts this trick and reports improved perfor-
mance on its official code repository. Our PanoOcc also use camera visibile mask during training
and achieves a new state-of-art performance. We adopt the R101-DCN as the backbone and use 4
frames for temporal fusion.
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MonoScene (Cao & de Charette, 2022) R101-DCN 6.06 1.75 7.23 4.26 4.93 9.38 5.67 3.98 3.01 5.90 4.45 7.17 14.91 6.32 7.92 7.43 1.01 7.65
BEVDet (Huang et al., 2021) R101-DCN 11.73 2.09 15.29 0.0 4.18 12.97 1.35 0.0 0.43 0.13 6.59 6.66 52.72 19.04 26.45 21.78 14.51 15.26
BEVFormer (Li et al., 2022d) R101-DCN 26.88 5.85 37.83 17.87 40.44 42.43 7.36 23.88 21.81 20.98 22.38 30.70 55.35 28.36 36.0 28.06 20.04 17.69
CTF-Occ (Tian et al., 2023) R101-DCN 28.53 8.09 39.33 20.56 38.29 42.24 16.93 24.52 22.72 21.05 22.98 31.11 53.33 33.84 37.98 33.23 20.79 18.0
BEVFormer* (Li et al., 2022d) R101-DCN 39.24 10.13 47.91 24.9 47.57 54.52 20.23 28.85 28.02 25.73 33.03 38.56 81.98 40.65 50.93 53.02 43.86 37.15
BEVDet† (Huang et al., 2021) Swin-B 42.02 12.15 49.63 25.10 52.02 54.46 27.87 27.99 28.94 27.23 36.43 42.22 82.31 43.29 54.62 57.9 48.61 43.55

PanoOcc R101-DCN 42.13 11.67 50.48 29.64 49.44 55.52 23.29 33.26 30.55 30.99 34.43 42.57 83.31 44.23 54.40 56.04 45.94 40.40

Table 3: 3D Occupancy prediction performance on the Occ3D-nuScenes dataset. † denotes the
performance is reported by its official code implementation. * means the performance is achieved
by our implementation using the camera mask during training.

Method Input
Modality PQ PQ† RQ SQ mAP

EfficientLPS Sirohi et al. (2021) LiDAR 62.0 65.6 73.9 83.4 /
Panoptic-PolarNet Zhou et al. (2021) LiDAR 63.4 67.2 75.3 83.9 /

Panoptic-PHNet Li et al. (2022a) LiDAR 74.7 77.7 84.2 88.2 /
LidarMulitiNet Ye et al. (2022) LiDAR 81.8 / 90.8 89.7 63.8

PanoOcc Camera 62.1 66.2 75.1 82.1 48.4

Table 4: LiDAR panoptic segmentation results on
nuScenes validation set. Our PanoOcc based on the camera
input has approached LiDAR-based methods’ performance.

3D Panoptic Segmentation.
PanoOcc is the first work to im-
plement an end-to-end train model
for camera-based panoptic segmen-
tation. We compare our method
with previous LiDAR-based panoptic
segmentation methods. The results
in Table 4 show that our PanoOcc
achieves 62.1 PQ, demonstrating
comparable performance to some
LiDAR-based methods such as
EfficientLPS (Sirohi et al., 2021) and
PolarNet (Zhang et al., 2020). However, our approach still has a performance gap compared to state-
of-the-art LIDAR-based methods, which can be attributed to the inferior detection performance
(48.4 mAP v.s. 63.8 mAP).

4.4 ABLATION

In this section, we mainly validate the key design choices of PanoOcc on the nuScenes validation
set. More ablation studies of the model design please refer to Section A.2 in the appendix.

Det. Seg. Vox. Sel. mIoU mAP NDS

(a) ✓ / 0.252 0.310
(b) ✓ 0.652 / /
(c) ✓ ✓ 0.656 0.266 0.319
(d) ✓ ✓ ✓ 0.661 0.271 0.324

Table 5: Effectiveness of joint detection and
segmentation. Det. stands for detection head.
Seg. denotes segmentation head. Vox. Sel. repre-
sents voxel selection for foreground voxels.

Effectiveness of Joint Detection and Segmen-
tation. Table 5 demonstrates the significant
positive impact of training for joint detection
and segmentation. When compared to single-
task models, the jointly-trained model excels
in both the segmentation and detection tasks.
Voxel selection further enhances the interaction
between detection and segmentation learning,
improving performance in both tasks. The uni-
fied occupancy representation also enables effi-
cient learning of voxel features.

Voxel
Resolution

Voxel
Upsampling Memory Latency Param FPS mIoU

200x200x8 37G / 9.5G 255 ms 117.7 M 4.1 67.9
50x50x16 ✓ 18G / 5.7G 149 ms 48.7 M 9.2 68.3

Table 6: Ablation study for the coarse-to-fine
design. We show the train / inference memory
consumption, respectively. The experiments were
conducted on the A100 GPU.

Efficiency of Coarse-to-Fine Design. Table 6
illustrates the advantages of our coarse-to-fine
scheme, which utilizes a low-resolution 3D
voxel grid. This approach not only helps in in-
creasing performance and inference speed but
also effectively reduces memory consumption.
By comparing it with the direct use of high-
resolution voxel queries (200x200x8), we ob-
serve that our coarse-to-fine design achieves
comparable or even superior performance while
consuming nearly half the memory. This show-
cases the efficiency and effectiveness of our design choice.
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4.5 DISCUSSION

Method Query form Resolution Memory Latency FPS mIoU

TPVFormer∗ 2D Tri-plane 200x(200+16+16) 33.5G / 7.1G 268 ms 3.7 68.9
PanoOcc 3D Voxel 50x50x16 24G / 6.0G 203 ms 4.8 71.6

Table 7: Model efficiency comparison with different query forms. The symbol ∗ denotes per-
formance obtained using the official code and released checkpoints. We report the train / inference
memory consumption in the experiment.

Voxel v.s. Tri-plane. Traditionally, it has been widely believed that using 3D voxel grids alone
is an inefficient solution due to the memory cost. This has led methods like TPVFormer (Huang
et al., 2023) to split the 3D representation into three 2D planes. However, we have demonstrated
for the first time that using the coarse-to-fine voxel representation can solve the memory increasing
problem. In Table 7, we compare the performance and efficiency of our method with the previous
state-of-the-art approach, TPVFormer (Huang et al., 2023), under the same experimental setup.
Despite having an additional detection branch and the capability to output detection results, our
model still exhibits lower memory consumption and faster inference speed.

Convolution Latency Memory FPS mIoU

(a) Dense 126 ms 15 G 9.3 0.654
(b) Sparse 112 ms 9 G 9.7 0.639

Table 8: Exploration of sparse architecture de-
sign. The experiment is conducted under the R50
setting without temporal fusion.

Occupancy Sparsify. In contrast to 2D space,
3D space exhibits high sparsity, indicating that
the majority of voxels are empty. In Table 8,
we investigate the effectiveness of the occu-
pancy sparsify strategy. Here we have 3 lay-
ers of sparse deconvolution for upsampling in
total. In coarse-to-fine order, the keeping ratio
after each upsampling is 0.2, 0.5, and 0.5, re-
spectively. It suggests that finally we only keep
5% voxels, and this reduction has not resulted
in a significant performance decrease.

Temporal Enhancement. In Table 9, we compared the impact of temporal information on different
categories. The findings revealed that the semantic segmentation performance improved for almost
all categories except for the barrier category. The motorcycle and trailer categories demonstrated
a significant improvement, with a boost of 11.7 mIoU and 8.2 mIoU, respectively. These two cat-
egories are typically affected by occlusion, and thus, the utilization of temporal information can
enhance the model’s ability to accurately detect and segment occluded objects.
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65.6 72.3 35.8 91.4 84.4 47.2 52.6 57.7 31.5 55.6 80.6 94.0 64.3 63.2 66.5 77.7 73.9
68.1

(2.5↑)
70.7

(1.6↓)
37.9

(2.1↑)
92.3

(0.9↑)
85.0

(0.6↑)
50.7

(3.5↑)
64.3

(11.7↑)
59.4

(1.7↑)
35.3

(3.8↑)
63.8

(8.2↑)
81.6

(1.0↑)
94.2

(0.2↑)
66.4

(2.1↑)
64.8

(1.6↑)
68.0

(1.5↑)
79.1

(1.4↑)
75.6

(1.7↑)

Table 9: Effect of temporal enhancement on different categories. The findings indicated that
incorporating temporal information improved segmentation performance for most categories.

5 CONCLUSION

In this paper, we propose camera-based 3D panoptic segmentation, aiming for a comprehensive
understanding of the scene by a unified occupancy representation. To facilitate occupancy repre-
sentation learning, we propose a novel framework called PanoOcc that utilizes voxel queries to
incorporate information from multi-frame and multi-view images in a coarse-to-fine scheme. Ex-
tensive experiments on the nuScenes dataset and Occ3D-nuScenes demonstrate the effectiveness of
PanoOcc and its potential to advance holistic 3D scene understanding. We envision 3D occupancy
representation as a promising new paradigm for future 3D scene perception.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS OF PANOOCC

In this section, we introduce the implementation details of PanoOcc.

Image Backbone. The backbone used in our approach includes ResNet50 (He et al., 2016),
ResNet101-DCN (Dai et al., 2017b), and InternImage-XL (Wang et al., 2022a), with output multi-
scale features from FPN (Lin et al., 2017a) at sizes of 1/8,1/16,1/32 and 1/64.

Voxel Queries. The initial resolution of the voxel queries is 50x50x16 for H,W,Z. We use an
embedding dimension D of 256, and learnable 3D position encoding is added to the voxel queries.

Occupancy Encoder. The camera view encoder includes 3 layers, with each layer consisting of
voxel self-attention, voxel cross-attention, norm layer, and feed-forward layer, with both M1 and
M2 set to 4. The temporal encoder fuses 4 frames (including the current frame) with a time interval
of 0.5s. Our key difference from previous BEV-based methods primarily lies in the learning of
voxel features. We designed voxel cross-attention and voxel self-attention to facilitate the interaction
between multi-scale image features and voxel queries.

• Voxel Cross-Attention: Specifically, for a voxel query q located at (i, j, k), the process of
voxel cross-attention (VCA) can be formulated as follows:

VCA(q,F) =
1

|v|
∑
n∈v

M1∑
m=1

DA(q, πn(Refmi,j,k),Fn) (4)

where n indexes the camera view, m indexes the reference points, and M1 is the total
number of sampling points for each voxel query. v is the set of image views for which
the projected 2D point of the voxel query can fall on. Fn is the image features of the n-th
camera view. πn(Refmi,j,k) denotes the m-th projected reference point in n-th camera view,
projected by projection matrix πn from the voxel grid located at (i, j, k). DA represents
deformable attention. The real position of a reference point located at voxel grid (i, j, k) in
the ego-vehicle frame is (xm

i , ymj , zmk ). The projection between m-th projected reference
point Refmi,j,k and its corresponding 2D reference point (un,m

ijk , vn,mijk ) on the n-th view can
be formulate as:

Refmi,j,k = (xm
i , ymj , zmk ) (5)

dn,mijk · [un,m
ijk , vn,mijk , 1] = Pn · [xm

i , ymj , zmk , 1]T (6)

where Pn ∈ R3×4 is the projection matrix of the n-th camera. (un,m
ijk , vn,mijk ) denotes the

m-th 2D reference point on n-th image view. dn,mijk is the depth in the camera frame.

• Voxel Self-Attention: Voxel self-attention (VSA) facilitates the interaction between voxel
queries. For a voxel query q located at (i, j, k), it only interacts with the voxel queries
at the reference points nearby. The process of voxel self-attention can be formulated as
follows:

VSA(q,Q) =

M2∑
m=1

DA(q,Refmi,j,k,Q) (7)

where m indexes the reference points, and M2 is the total number of reference points for
each voxel query. DA represents deformable attention. Contrary to the reference points on
the image plane in voxel cross-attention, Refmi,j,k in voxel self-attention is defined on the
BEV plane.

Refmi,j,k = (xm
i , ymj , zk) (8)

where (xm
i , ymj , zk) denotes the m-th reference point for query q. These sampling points

share the same height zk, but with different learnable offsets for (xm
i , ymj ). This encourages

the voxel queries to interact in the BEV plane, which contains more semantic information.

Occupancy Decoder. The voxel upsample module employs 3 layers of 3D deconvolutions to up-
scale 4x for H and W , and 2x for Z, with detailed parameters in the Table 10. The upsampled voxel
features have dimensions of 200x200x32 for H ′,W ′, Z ′, and a feature dimension D′ of 64.
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Hyperparameters Values
#Input features 50x50x16x256 (H,W,Z,D)
#Output features 200x200x32x64 (H’,W’,Z’,D’)

ConvTranspose3D#1 kernel:(1,5,5), stride:(1,1,1)
ConvTranspose3D#2 kernel:(1,4,4), stride:(1,2,2)
ConvTranspose3D#3 kernel:(2,4,4), stride:(2,2,2)

Activate function ReLU
Normalize BN3D

Table 10: Network hyper-parameters of voxel upsample module.

Task Head. The segmentation head has 2 MLP layers with a hidden dimension of 128 and uses soft-
plus (Zheng et al., 2015) as the activation function. The number of object queries for the detection
head is set to 900, and has 6 layers decoder, similar to (Li et al., 2022d).

A.2 ABLATION STUDIES ON MODEL DESIGN

Initial Voxel Resolution. Table 11 compares the results of different initial resolutions used for
voxel queries in our experiments. In experiments (b), (c), and (d), we maintained fixed dimensions
of H and W while varying the resolution of Z. Our findings clearly demonstrate that encoding
height information is a crucial factor in achieving superior performance in both segmentation(+5.3
mIoU) and detection tasks(+1.2 mAP and +1.6 NDS), with a more significant impact observed in
segmentation tasks. Furthermore, we observed that (a) and (b) have the same number of query
parameters and perform similarly in detection tasks. However, there is a significant gap in the
segmentation tasks between these two. Specifically, the mIoU gain from (d) to (a) is much less
compared to that from (d) to (b). The experiment (e) results suggest that when the dimensions of H
and W are too small, there will be a significant reduction in the performance of both detection and
segmentation tasks. Overall, our findings emphasize the importance of encoding height information
to achieve fine-grained scene understanding.

Query Resolution mIoU mAP NDS

(a) 100x100x4 0.617 0.276 0.327
(b) 50x50x16 0.661 0.271 0.324
(c) 50x50x8 0.631 0.267 0.316
(d) 50x50x4 0.608 0.259 0.308
(e) 25x25x16 0.591 0.244 0.294

Table 11: Ablation study for different initial query resolutions. Height information is important
to achieve fine-grained 3D scene understanding.

Design of Camera View Encoder. Table 12 presents the ablation study conducted on the design
choices in the camera view encoder. Specifically, we experimented with different combinations of at-
tention modules in (b), (c), and (d). The results demonstrated that incorporating voxel self-attention
(VSA) enhanced the interaction between queries, leading to improved performance. Considering
both performance and parameters, we choose 3 layers as default.

Layers Attention module mIoU mAP NDS

(a) 1 VSA + VCA 0.648 0.251 0.294
(b) 3 VCA 0.644 0.264 0.312
(c) 3 VSA + VCA 0.653 0.267 0.314
(d) 3 VSA×2 + VCA 0.661 0.271 0.324
(e) 6 VSA×2 + VCA 0.662 0.267 0.319

Table 12: Ablation study for camera view encoder. VSA denotes voxel self-attention, while VCA
means voxel cross-attention.
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Design of Temporal Encoder. Table 13 presents extensive ablation studies on the design of the
temporal encoder, including different time intervals, number of frames, fusion methods, and encoder
network architectures. Compared to (a) and (b) designs, both detection and segmentation tasks show
a significant improvement (+2.5 mIoU, +2.4 mAP, and +7.1 NDS), which suggests the importance of
temporal information. In (b)(c)(d), we compared the influence of different time intervals and found
that longer intervals do not improve the fine-grained segmentation performance. In (e) and (f), we
also compared different ways to fuse the historical features and found that directly concatenating the
features performs better than using temporal self-attention (Li et al., 2022d).

Temp. Intv. Frames Fuse Arch. mIoU mAP NDS

(a) / 1 / C3D×1 0.656 0.269 0.319
(b) ✓ 0.5s 4 Cat. C3D×1 0.681 0.293 0.390
(c) ✓ 1s 4 Cat. C3D×1 0.657 0.294 0.385
(d) ✓ 2s 4 Cat. C3D×1 0.660 0.294 0.375
(e) ✓ 1s 4 Cat. C3D×3 0.658 0.290 0.379
(f) ✓ 0.5 4 TSA DA 0.648 0.271 0.323

Table 13: Ablation study for temporal encoder. Temp. stands for temporal fusion, while ✓denotes
using temporal fusion. Intv. denotes time interval. Arch. refers to the architecture used in tempo-
ral encoder. C3D represents 3D convolution. ×3 means using 3 blocks of the architecture. Cat.
means concatenating features from different frames, and TSA represents the temporal self-attention
structure in (Li et al., 2022d). DA means deformable attention (Zhu et al., 2020).

The Supervision for Voxel Representation. Table 14 ablates the effects of different resolutions for
segmentation loss supervision. The experiment results indicate that resolution at 400x400x64 has
the best performance.

Supervision Voxel feats Loss Resolution mIoU mAP NDS

LiDAR 200x200x32 400x400x64 0.661 0.271 0.324
LiDAR 200x200x32 200x200x32 0.644 0.267 0.316
LiDAR 100x100x16 100x100x16 0.609 0.264 0.317

Table 14: Supervision for voxel representation. We utilize sparse LiDAR point labels as the
supervision for voxel representation.

Loss Terms and Weights. Table 15 presents the comparison of various combinations of loss terms
and weights. It indicates that the Llovasz plays a crucial role in the segmentation learning process, as
its removal led to a significant drop in performance (from 65.6 to 59.6 mIoU). We also experimented
with various weight combinations and found that λ1 = 10, λ2 = 10, λ3 = 5 performs best.

A.3 TRAINING AND INFERENCE DETAILS

Training. We trained the model on 8 NVIDIA A100 GPUs with a batch size of 1 per GPU. During
training, we utilized the AdamW (Loshchilov & Hutter, 2017) optimizer for 24 epochs, with an
initial learning rate of 3×10−4 and the step schedule in [20, 23]. Additionally, we employed several
data augmentation techniques, including image scaling, color distortion, and Gridmask (Chen et al.,
2020). The input image size is cropped to 640 × 1600. The loss weights used in our approach are
λ1=10.0, λ2=10.0, λ3=5.0, λ4=2.0,and λ5=0.25.

Supervision. For the detection head, we use object-level annotations as the supervision. We employ
sparse LiDAR point-level semantic labels for the segmentation head to supervise voxel prediction.
When multiple semantic labels are present within a voxel grid, we prioritize the category label with
the highest count of LiDAR points. As for the occupancy prediction, we rely on the occupancy label
as the source of supervision.
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Lfocal Llovasz Lthing λ1 λ2 λ3 mIoU mAP NDS

✓ 10.0 / / 0.596 0.259 0.315
✓ ✓ 10.0 10.0 / 0.656 0.266 0.319

✓ ✓ / 10.0 5.0 0.643 0.260 0.311

✓ ✓ ✓ 10.0 10.0 5.0 0.661 0.271 0.324
✓ ✓ ✓ 10.0 10.0 10.0 0.652 0.265 0.317
✓ ✓ ✓ 5.0 10.0 5.0 0.656 0.266 0.315
✓ ✓ ✓ 15.0 10.0 5.0 0.650 0.265 0.314
✓ ✓ ✓ 10.0 15.0 5.0 0.654 0.263 0.312

Table 15: Ablation for loss terms and weights. We ablates different loss combinations and its
weight.

A.4 VISUALIZATION

Figure 3 showcases qualitative results achieved by PanoOcc on the nuScenes validation set. The
voxel predictions are visualized at a resolution of 200x200x32 and assign to LiDAR points. These
visualizations highlight the accuracy and reliability of our predictions for 3D semantic segmentation
and panoptic segmentation. Figure 4 illustrates the dense occupancy prediction on the Occ3D-
nuScenes validation set, where voxel predictions are visualized at the resolution of 200x200x16.

Output:
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Figure 3: Qualitative results on nuScenes validation set. Our PanoOcc takes multi-view images
as input and produces voxel predictions, which are visualized at a resolution of 200x200x32. We
evaluate 3D segmentic segmentation and panoptic segmentation on LiDAR points.

B REPRODUCIBILITY STATEMENTS

We are committed to providing the research community with the necessary resources to replicate our
work. We will release the training and inference codes, accompanied by well-documented instruc-
tions to facilitate the replication process. Our codebase is built upon mmdetection3D1, ensuring that
it is user-friendly and accessible to the wider community. The data and annotations of nuScenes2

are publicly available.

1https://github.com/open-mmlab/mmdetection3d
2https://nuscenes.org
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Pred GTMulti-view Images
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Figure 4: Qualitative results on Occ3D-nuScenes validation set. Our PanoOcc takes multi-view
images as input and produces dense occupancy predictions, which are visualized at the resolution of
200x200x16.
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