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ABSTRACT

Large Language Models have received significant attention due to their abilities
to solve a wide range of complex tasks. However these models memorize a sig-
nificant proportion of their training data, posing a serious threat when disclosed
at inference time. To mitigate this unintended memorization, it is crucial to un-
derstand what elements are memorized and why. Most existing works provide a
posteriori explanations, which has a limited interest in practice. To address this
gap, we propose a new approach to detect memorized samples a priori in LLMs
fine-tuned on classification tasks. This method is efficient from the early stages
of training and readily adaptable to other classification settings, such as training
vision models from scratch. Our method is supported by new theoretical results
that we demonstrate, and requires a low computational budget. We obtain strong
empirical results, paving the way for systematic inspection and protection of these
vulnerable samples before memorization happens.

1 INTRODUCTION

Large Language Models (LLMs) have revolutionized the way we approach natural language under-
standing. The availability to the general public of models such as ChatGPT, capable of solving a
wide range of tasks without adaptation, has democratized their use. However, a growing body of re-
search have shown that these models memorize a significant proportion of their training data, raising
legal and ethical challenges (Zhang et al., 2017; Carlini et al., 2023; Mireshghallah et al., 2022b).
The impact of memorization is ambiguous. On the one hand, it poses a serious threat to privacy
and intellectual property because LLMs are often trained on large datasets including sensitive and
private information. Practical attacks have been developed to extract this information from training
datasets (Carlini et al., 2021; Lukas et al., 2023; Yu et al., 2023; Nasr et al., 2023), and LLMs have
also been shown to plagiarize copyrighted content at inference time (Lee et al., 2023; Henderson
et al., 2024). On the other hand, memorization can positively impact model’s performance, because
memorized samples are highly informative. Studies have revealed that outliers are more likely to be
memorized, and that these memorized outliers help the model generalize to similar inputs (Feldman,
2020; Feldman & Zhang, 2020; Wang et al., 2024).

Mitigating the negative impacts of memorization while still harnessing its advantages is a chal-
lenging task, that requires varying approaches based on the sensitivity of the training data and the
purpose of the model. However, practitioners often struggle to evaluate the potential risk of mem-
orized samples, as empirical defenses often fail to capture the most vulnerable samples from the
training set (Aerni et al., 2024). To address this limitation, we propose a new method to audit mod-
els under development and predict, from the early stages of training, the elements of the training
data that the LLM is likely to memorize. Our first goal is to provide practitioners with an efficient
tool to inspect vulnerable elements and select an appropriate mitigation strategy: anonymization,
differential privacy, acceptance of the risk, etc. Our second goal is to enable researchers to design
new empirical defenses that optimally allocate their privacy budgets to protect the most vulnerable
samples, thereby achieving a better privacy-utility trade-off. For both goals, it is crucial to predict
memorization early in the training pipeline and at minimal cost. Indeed, a-posteriori measures of
memorization, such as LiRA (Carlini et al., 2022a) or counterfactual memorization (Feldman &
Zhang, 2020), require not only the completion of the training of the model, but also the training of
several shadow models, making them prohibitively computationally expensive for most practition-
ers. On the other hand, for researcher developing empirical defenses, it is crucial to detect vulnerable

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Untrained
model

Partially trained
model

Fully trained
model

Memorized

Not
memorized

Forward
pass Hidden vectors

and labels

PSMI(X, Y) Measure final
memorization

Predict

Predict

We predict memorization before it happens

Training of the model

X, Y

(a) We predict memorization from the early stages of training

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Predicting final memorization
(MMLU dataset, Mistral 7B model)

PSMI
Loss
Logit
Mahalanobis
Baseline

(b) Performance of the prediction

Figure 1: Figure 1a: We interrupt training when the median training loss has decreased by 95%. We
compute a forward pass to retrieve X , the hidden representation of the inputs within the partially
trained model. We measure the consistency between X and the label Y , and use it to predict memo-
rization within the fully trained model. Figure 1b: Evaluation of the four metrics we used to quantify
the consistency between X and Y : PSMI, loss, logit gap, and Mahalanobis distance. ”Early memo”
is our baseline, adapted from Biderman et al. (2023) (see Appendix C.1). The cross represents the
default threshold for PSMI, equal to zero (see Algorithm 1 and Theorem 1).

samples as soon as possible to protect them before they are memorized. Our method achieves this
by predicting memorization after only a fraction of an epoch, without requiring any shadow model.

To predict memorization before it occurs, we interrupt training when the median training loss has
significantly decreased, typically by 95% (see Figure 1). This drop indicates that the model has
learned simple patterns in the hidden representations, enabling it to accurately classify the majority
of samples, without relying on memorization. At this stage, we measure the consistency between
the labels and the hidden representations of the elements within the partially trained model. If a
hidden representation fails to adequately explain its assigned label, it indicates that the data sample
behaves as a local outlier, within the data distribution’s long tail (Zhu et al., 2014). Such outliers
are particularly vulnerable to memorization, because the model will likely fail to learn meaningful
representations for them, and will instead resort to memorizing them (Feldman & Zhang, 2020).

We evaluated four approaches to quantify the consistency between the hidden representations and
the labels, with the objective of predicting memorization in the fully trained model: loss, logit
gap, Mahalanobis distance (Mahalanobis, 1936), and Pointwise Sliced Mutual Information (PSMI)
(Goldfeld & Greenewald, 2021; Wongso et al., 2023a). With the exception of Mahalanobis distance,
all approaches achieved strong empirical results. The loss is straightforward to implement and fast
to compute, but requires an additional hyperparameter to define a threshold for separating elements
predicted to be memorized. The logit gap offers no advantage over the loss. On the other hand,
PSMI saves one hyperparameter because we demonstrated that zero is a natural threshold to use.
However, it marginally increases computational cost and is more complex to implement.

To the best of our knowledge, Biderman et al. (2023) provides the only baseline to which our ap-
proach can be compared. They predict memorization in LLMs trained on generative tasks, with a
reasonable computational budget and before the end of training. However, memorization is defined
differently for generative and discriminative tasks. They use k-extractability (Carlini et al., 2021),
which is very cheap to compute for generative models, but not applicable to classification models.
For these models, memorization is typically defined as vulnerability to membership inference attack
(Shokri et al., 2017), which is more computationally expensive. Our approach is only applicable to
classification models, for which we found no directly comparable baseline. This is why we adapted
the method of Biderman et al. (2023) to a classification setting, despite the prohibitive computational
cost arising from the increased complexity of measuring memorization (see Appendix C.1). Even
with this adaptation, we observed similar results: at the early stages of training, it is possible to
achieve a low False Positive Rate (FPR), but not a high True Positive Rate (TPR), because vulnera-
ble samples have not yet been memorized. Conversely, our approach obtains both high TPR and low
FPR, paving the way for inspecting and protecting vulnerable samples under realistic conditions.
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Our main contributions can be summarized as follows.

• We demonstrate that it is possible to predict, from the early stages of training, whether a
sample will be memorized when fine-tuning a LLM for a classification task;

• We formalize the threat model and propose FPR at high TPR as the evaluation metric;
• We compare several metrics and discuss their respective advantages;
• We validate the effectiveness of our approach for three different 7B LLMs fine-tuned on

three distinct multi-choice question datasets;
• We demonstrate its adaptability by applying it as-is to vision models trained from scratch.

1.1 RELATED WORK

Membership Inference Attacks (MIA) These attacks were first introduced by Shokri et al.
(2017), and aim to determine whether a target individual element was part of a target model’s training
set. Although they are less realistic and practical than extraction attacks (Carlini et al., 2021; Lukas
et al., 2023; Nasr et al., 2023), membership inference attacks have become the standard approach
for measuring the amount of private information a model can leak. Popular attacks such as those
of Shokri et al. (2017); Carlini et al. (2022a); Wen et al. (2023) involve training a large number of
shadow models with different training data. Due to the significant computational resources required,
alternative attack methods have been developed that necessitate training fewer shadow models or
none at all (Yeom et al., 2018; Mattern et al., 2023; Zarifzadeh et al., 2024).

Several definitions of unintended memorization in neural networks For discriminative models,
memorization is usually defined as vulnerability to MIA, as in (Mireshghallah et al., 2022a; Carlini
et al., 2022b; Aerni et al., 2024). Counterfactual memorization can also be applied to such models,
requiring the training of multiple models with varying datasets to capture the influence of individual
data samples (Feldman & Zhang, 2020). On the opposite, to focus on more realistic threats, mem-
orization can be defined as vulnerability to extraction or reconstruction attacks (Carlini et al., 2018;
2021; 2023; Biderman et al., 2023; Lukas et al., 2023; Dentan et al., 2024). These definitions are
mostly used with generative models, as such attacks are more complex to implement on discrimi-
native models and often achieve lower performance. As pointed out by Lee et al. (2022); Prashanth
et al. (2024), a large majority of elements extracted consist of common strings frequently repeated
in standard datasets. This is why counterfactual memorization was adapted to generative models
(Zhang et al., 2023; Wang et al., 2024; Pappu et al., 2024; Lesci et al., 2024). Finally, MIA can also
be used for generative models (Meeus et al., 2024).

Explaining and predicting memorization In machine learning, memorization has been com-
monly associated with overfitting and considered the opposite of generalization. However, this be-
lief was challenged by Zhang et al. (2017), who proved that a model can simultaneously perfectly fit
random labels and real samples. This phenomenon was studied further by Arpit et al. (2017); Chat-
terjee (2018), followed by Feldman (2020) who provided a theoretical framework to explain how
memorization can in fact increase generalization. His idea is that a substantial number of elements
in typical datasets belong to the long tail of the distribution (Zhu et al., 2014), meaning that they be-
have like local outliers that are unrepresentative of the overall distribution. As a result, memorizing
these elements enables the model to generalize to similar samples at inference time. This idea was
confirmed empirically by Feldman & Zhang (2020), and later by Zhang et al. (2023), who observed
that memorized samples are relatively difficult for the model. Similarly, Wang et al. (2024) observed
that memorization in self-supervised learning can increase generalization.

A different approach to explain memorization is to analyze the hidden representations learned by the
model. For example, Azize & Basu (2024) linked the privacy leakage of a sample to the Mahalanobis
distance (Mahalanobis, 1936) between the sample and its data distribution. Leemann et al. (2024)
evaluated several metrics to predict memorization from a reference model, and concluded that test
loss is the best predictor. Wongso et al. (2023b) computed Sliced Mutual Information (Goldfeld &
Greenewald, 2021) between the hidden representations and the labels. They theoretically explain
why a low SMI indicates memorization, and successfully observed this phenomenon in practice.

These approaches provide a posteriori explanations of memorization, because they are either com-
puted from the fully trained model or from a reference model. On the opposite, Biderman et al.
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(2023) introduced a new method to predict memorization before the end of pre-training. They
achieve promising results with high accuracy. However, they obtain low recall scores, indicating
that a significant proportion of the samples that are memorized by the final model cannot be de-
tected using their metrics. As they acknowledge, this is an important shortcoming of their method.

1.2 PROBLEM SETTING

Threat model: predicting memorization, not mitigating it We adapt the setting of Biderman
et al. (2023). We assume that an engineer is planning to fine-tune a LLM on a private dataset for
a classification task, where a small proportion of the dataset contains sensitive information that
should not be memorized by the model for privacy concerns. The engineer has full access to the
model, its training pipeline and intermediate checkpoints. They do not have the computational
budget to train the shadow models required for a posteriori measures of memorization such as LiRA
or counterfactual memorization (see Section 1.1). Consequently, they aim to conduct some tests at
the beginning of the full training run to approximate a posteriori memorization, and determine if the
sensitive samples will be memorized by the fully trained model (see Figure 1).

The engineer wishes to dedicate only a small amount of compute for these tests, to reduce the
overhead of confidentiality checks. Moreover, they aim to detect vulnerable samples early to in-
spect them before they are memorized and decide whether to accept the privacy risk, anonymize
or remove the samples, or implement mitigation techniques. This is particularly important for re-
searchers developing empirical defense that optimally allocate their privacy budgets to protect the
most vulnerable samples without altering non-vulnerable ones, thereby achieving a better privacy-
utility trade-off. We make no assumptions about the subsequent decisions made by the engineer, and
only focus on developing a good predictor of which elements will be memorized by the final model.

Evaluation metrics: FPR at high TPR We use predictions from on the partially trained model
to predict memorization in the fully trained model. As for membership inference attacks, we eval-
uate the True Positive Rate / False Positive Rate (TPR / FPR) trade-off in the prediction (Carlini
et al., 2022a). The TPR represents the proportion of memorized samples in the final model that are
correctly detected based on the partially trained one, and the FPR represents the proportion of non-
memorized samples that are wrongly detected. We prefer TPR / FPR to precision / recall because
it is independent of the prevalence of memorized samples. However, as noted by Biderman et al.
(2023), a high TPR is more important than a low FPR. Indeed, false positives lead the engineer to
be overly cautious, which is unprofitable, but does not threaten privacy. Conversely, false negatives
lead the engineer to underestimate memorization, which entails a privacy risk. As a consequence,
we will focus on regions of the TPR / FPR curves that achieve a high TPR, typically greater than
75%. The Area Under the Curve (AUC) provides a single numerical value for comparing metrics,
although it presents a simplistic view of the TPR / FPR trade-off.

Experimental settings Most studies on memorization in classification settings focus on models
of intermediate size trained on datasets such as CIFAR-10 or CIFAR-100 (Aerni et al., 2024; Carlini
et al., 2022b; Feldman & Zhang, 2020). We have decided to consider more recent scenarios using
LLMs fine-tuned for classification tasks. Indeed, generative models are increasingly trained to pro-
duce formatted outputs for tasks previously handled by discriminative models, such as information
extraction (Kim et al., 2022; Dhouib et al., 2023), sentiment analysis (Šmı́d et al., 2024), or recom-
mendation (Geng et al., 2022; Cui et al., 2022). Moreover, privacy is often a significant concern for
fine-tuning, as the datasets used for this purpose frequently contain sensitive private information.

Although our experiments focus on fine-tuned LLMs, our method relies on the specific properties of
neither LLMs nor fine-tuning. Consequently, our method is suitable for any model trained for clas-
sification tasks. In Section 3.2, we apply our method as-is to a Wide Residual Network (Zagoruyko
& Komodakis, 2016) trained from scratch on CIFAR-10, yielding conclusive results.

For most experiments, we used three pretrained models with similar architectures: Mistral 7B v1
(Jiang et al., 2023), Llama 7B v2 (Touvron et al., 2023), and Gemma 7B (Team et al., 2024). We
used three popular academic benchmarks: MMLU (Hendrycks et al., 2021b), ETHICS (Hendrycks
et al., 2021a) and ARC (Boratko et al., 2018). We fine-tuned these models using LoRA (Hu et al.,
2022) and question-answering templates asking the model to output the label. Models are trained
using Next Token Prediction task, computing the loss only for the token corresponding to the label.
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2 METHODOLOGY

2.1 PRELIMINARY

Hidden representations in Large Language Models We consider a decoder-only transformer-
based LLM such as Llama 2 (Touvron et al., 2023) trained on a multi-choice question (MCQ) dataset
such as MMLU (Hendrycks et al., 2021b). With this type of architecture, all tokens of the input are
embedded into hidden representations in Rd. They are successively transformed at each of the K
layers to incorporate information from the context. For example, Llama 2 7B uses d = 4096 and
K = 32. Finally, the representation of the last token at the last layer is used to predict the answer.

For k ∈ J1,KK, let Xk ∈ Rd be the hidden representation of the last token after the k-th layer,
and Y ∈ {0, 1, 2, . . . , r} the answer of the MCQ. We can think of Xk and Y as random variables
following a joint probability distribution Dk that can be estimated from the dataset. In the following,
we use information-theoretic tools to analyze the interplay between variables Xk and Y . Note that
Dk and Xk depend of the training step, but we omit this aspect in our notations to consider a LLM
that we freeze to analyze its representations.

(Pointwise) Sliced Mutual Information Sliced Mutual Information (SMI) was introduced by
Goldfeld & Greenewald (2021). Similar to Shannon’s Mutual Information (denoted I), it measures
the statistical dependence between two random variables such as Xk and Y . Intuitively, it measures
how much the realization of Xk tells us about the realization of Y . If they are independent, the
mutual information is zero ; and if Xk fully determines Y , the mutual information is maximal. In
our setting, it represents how useful the hidden representations are to predict the labels. Thus, we
expect the SMI to increase with k as the representations become more efficient over layers. Indeed,
SMI is not subject to the data processing inequality, contrary to I (Goldfeld & Greenewald, 2021).

Definition 1 Sliced Mutual Information (SMI) is the expectation of Mutual Information (denoted I)
over one-dimensional projections sampled uniformly at random on the unit sphere (denoted U(Sd)):

SMI(Xk, Y ) = E
θ∼U(Sd)

[
I(θTXk, Y )

]
= E

θ∼U(Sd)

[
E

(Xk,Y )∼Dk

[
log

p(θTXk, Y )

p(θTXk)p(Y )

]]
(1)

Pointwise Sliced Mutual Information (PSMI) was introduced by Wongso et al. (2023a) and used as
an explainability tool. For every individual realization (xk, y) of the variables (Xk, Y ), it represents
how surprising it is to observe xk and y together. For example, a low PSMI means that label y was
unexpected with representation xk, maybe because all similar representations to xk are associated
with another y′ ̸= y in the dataset.

Definition 2 Pointwise Sliced Mutual Information (PSMI) is defined for every realization (xk, y) ∈
Rd × J0; rK of the variables (Xk, Y ) as:

PSMI(xk, y) = E
θ∼U(Sd)

[
log

p(θTxk, y)

p(θTxk)p(y)

]
(2)

Here, p represents the value of the probability distribution function. It depends on the joint distribu-
tion Dk, and can be estimated numerically by approximating p(θTxk | y) by a Gaussian (Wongso
et al., 2023a). The resulting estimator of PSMI is very fast to compute and easy to parallelize. The
bottleneck is to compute the hidden representations xk, which requires one forward pass per sample.

2.2 WHY ELEMENTS WITH LOW PSMI ARE LIKELY TO BE MEMORIZED

Intuitively, PSMI measures the dependency between the hidden representation of a data sample and
its label. As a result, PSMI should be lower for outliers and points that are hard to classify. Following
the results of Feldman & Zhang (2020), these are the points that are most likely to be memorized.

The following theorem validates this intuition. We consider a binary classification setting with
balanced classes and some outliers. With probability 1−ε, the point is not an outlier, and the hidden
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representation X follows a Gaussian distribution (Eq. 3). This Gaussian behavior is a classical
hypothesis derived from the central limit theorem applied to deep neural networks (Matthews et al.,
2018). Conversely, with probability ε, the point is an outlier: X does not necessarily follow the
Gaussian distributions, and Y is sampled uniformly at random (Eq. 4). We prove that on average
PSMI is positive for non-outliers (Eq. 5), and zero for outliers (Eq. 6). See proof in Appendix B.

Theorem 1 Let (X,Y ) ∈ Rd × {0, 1} be random variables. We assume that p(Y = 0) = p(Y =
1) = 0.5 and that X is a continuous random variable. We also assume that there exist µ0, µ1 ∈ Rd

with µ0 ̸= µ1, and Σ0,Σ1 ∈ Rd×d, and a Bernoulli variable ∆ ∼ B(ε) with ε ∈]0, 1[ such that:

p(X | Y = 0,∆ = 0) ∼ N (µ0,Σ0) and p(X | Y = 1,∆ = 0) ∼ N (µ1,Σ1) (3)

∀x ∈ Rd, p(Y = 0 |∆ = 1, X = x) = p(Y = 1 |∆ = 1, X = x) = 0.5 (4)

Given this, we then have:

E
X,Y

[PSMI(X,Y ) |∆ = 0] > 0 (5)

E
X,Y

[PSMI(X,Y ) |∆ = 1] = 0 (6)

2.3 OUR METHOD

Based on Theorem 1, we propose Algorithm 1 to predict memorization. The three hyperparameters
in bold performed well in every setting we evaluated. We interrupt training when the median training
loss decreases by 95%, as this metric remains stable even in the presence of outliers. We measure
PSMI at the last layer, which is consistently informative, and use a threshold of zero, as supported
by Theorem 1. These default values yielded conclusive results when applied to CIFAR-10, for which
they were not optimized (see ablation studies in Section 3.2). Consequently, these hyperparameters
are likely suitable for practitioners auditing models in diverse classification settings. To facilitate the
use of this method, we provide a PyPI package containing an automated estimator of PSMI.1

As noted in the introduction, using the loss instead of PSMI also produced convincing results. An
alternative to Algorithm 1 is to replace lines 2-3 with a forward pass to retrieve the loss (see Al-
gorithm 2). The implementation is simpler, but it requires the practitioner to select a threshold to
separate samples predicted to be memorized, as there is no natural threshold like zero for the PSMI.

Algorithm 1 Using PSMI to predict memorization

1: Interrupt training when the median training loss has decreased by at least 95%.
2: Compute a forward pass for every sample to retrieve the hidden vector after the last layer.
3: Use Algorithm 1 in (Wongso et al., 2023a) to estimate PSMI for every sample.
4: Predict that every sample with PSMI ≤ 0 will be memorized.

3 EXPERIMENTAL RESULTS

We evaluate the efficiency of predicting memorization from the early stages of training, using several
metrics that quantify the consistency between the hidden representations and the assigned label:
PSMI (Algorithm 1), loss, logit gap, and Mahalanobis distance (see Appendix C.3). We compare
these predictors to the baseline of Biderman et al. (2023), which we adapted to our classification
setting. While its computational cost is much higher, it remains the only comparable approach
we are aware of (see Appendix C.1). We use five combinations of dataset/model: ARC/Mistral,
ETHICS/Mistral, MMLU/Mistral, MMLU/Llama and MMLU/Gemma (see Section 1.2).

To evaluate our approach, we resume training and measure memorization at the end. To ensure a
fair comparison between our experiments and prevent over-training, we always stop training after

1hidden_github_url_pypi_package_for_review
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Figure 2: Figure 2a: TPR/FPR trade-off of PSMI using the default hyperparameters of Algorithm
1 (crosses) compared to the trade-offs that can be obtained with the best layer (dashed lines). The
prediction is computed when the median training loss has decreased by 95%. Figure 2b: Our base-
line and Mahalanobis distance have near-random performance, whereas PSMI, loss, and logit gap
are good predictors. ”23” and ”19” denote the layers used for computation, which perform best in
these settings. Figure 2c: Comparing the AUC of the best predictors.

one epoch. As in (Carlini et al., 2022b; Mireshghallah et al., 2022b; Aerni et al., 2024), we use
vulnerability to LiRA membership inference attack as our ground truth memorization metric (see
Appendix A.1). This attack provides a numeric score for each sample, which is a likelihood ratio
computed from a large number of shadow models. We always display the natural logarithm of LiRA,
so a positive score indicates that the element was memorized. Unless otherwise stated, memorized
samples are defined as those with log-LiRA ≥ 4, which corresponds to LiRA ≳ 54.6.

Computational gains The bottleneck of Algorithm 1 is computing a forward pass for every sam-
ple, which costs as much as 1/3 of an epoch (Hobbhahn & Jsevillamol, 2021). Moreover, we
typically compute our metric after only 0.2 to 0.4 epochs (see Section 3.2). Thus, our method costs
about as much as 2/3 of an epoch. On the opposite, our ground truth memorization requires training
100 models for one epoch, which is 150 times more expensive. As explained in Section 1.2, prac-
titioners within our threat model do not have the budgets to compute such a posteriori measures of
memorization. Our approach enables them to approximate memorization at minimal cost.

We used a HPC cluster with Nvidia A100 80G GPUs and Intel Xeon 6248 40-cores CPUs. The total
computational cost of our experiments is 10961 GPU hours and 5787 single-core CPU hours. This
represents 0.57 tCO2eq for this cluster (see hidden_hpc_url_for_review).

3.1 MEMORIZATION CAN BE RELIABLY PREDICTED

Our experiments demonstrate that memorization can be predicted accurately from the early stages
of training. In Figure 2a, we present the TPR and FPR values achieved with the procedure and the
default hyperparameters provided in Algorithm 1. On average, we obtained a FPR of 23.3% and
a TPR of 65.8%. These excellent scores prove that most memorized samples can be detected very
early (high TPR) and with a great exactness (low FPR).

The crosses corresponding to the default procedure are not exactly on the dashed lines of the same
color. This is because the dashed lined are obtained by optimizing both the layer used to compute
PSMI and the threshold used to separate samples predicted to be memorized. The proximity of the
crosses to the dashed lines indicates that the performance improvement gained from optimizing the
layer is minimal (see Section 3.2 for more details).

TPR/FPR trade-off when optimizing the thresholds (Figures 2b and 2c) We vary the threshold
used to separate samples predicted to be memorized, resulting in the TPR/FPR trade-off presented
in Figure 2b. Our baseline and Mahalanobis distance proved ineffective. On the opposite, the
FPR@TPR=75% is equal to 24.1% for PSMI, 24.6% for the loss and 23.1% for the logit gap, which
demonstrates that a practitioner can detect the majority of memorized samples with an acceptable
FPR. In Figure 2c we observe that PSMI, loss and logit gap perform similarly, and achieve a very
high AUC values on average. This demonstrates that they accurately capture susceptible samples
from the early stages of training. See Appendix D.1 for additional results.

7

hidden_hpc_url_for_review


378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

3.2 ABLATION STUDIES
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(a) Timing of the measure
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Figure 3: Memorized samples can be detected from epoch 0.4, though they are not yet memorized.
Figure 3a: in blue, orange and green, the AUC of PSMI, Loss and Logit Gap ; in red, the median
train loss. The vertical line marks the 95% decrease in training loss. Figure 3b: the solid line shows
the median PSMI for memorized and non-memorized samples, while the shaded area represents the
25%-75% quantiles. Figure 3c outlines memorization using a similar representation.

Impact of the timing of the measure (Figure 3) In Algorithm 1, we predict memorization when
the median training loss has decreased by 95%. To validate this choice empirically, we save the mod-
els every 0.2 epochs, and evaluate how efficiently memorization can be predicted at each checkpoint.
As we observe in Figure 3a, the predictions begin to be effective only when the median training loss
has decreased significantly, and the 95% threshold proved to be effective in all our settings. We
observe in Figure 3b that it corresponds to the moment when the PSMI of samples memorized by
the final model is much lower than that of non-memorized samples. Indeed, the patterns learned by
the model earlier are not relevant enough for PSMI to accurately quantify if a sample will likely be
hard to learn. Importantly, as shown in Figure 3c, memorized samples are not yet memorized at that
moment. This indicates that a practitioner within our threat model can implement mitigation tech-
niques based on the privacy risks associated with memorized samples without restarting the training
process. See Section 1.2 for details on our threat model and see Appendix D.2 for additional plots.

Impact of the memorization threshold (Figure 4a) As stated at the beginning of Section 3,
memorized samples are defined by default as those with log-LiRA ≥ 4, which corresponds LiRA
≥ e4 ≃ 54.6. This indicates strong memorization, as the attack predicts that these elements are 54.6
times more likely to be members of the dataset than non-member (see details in Appendix A.1.1).
For example, with MMLU/Llama, 2.8% of the elements meet this definition after one epoch of train-
ing (see Appendix D.3 for results in other settings). In Figure 4a, we vary this threshold and measure
the AUC using PSMI, loss and logit gap. We also represent the proportion of memorized samples
associated with the threshold. We observe that our method is more effective for most vulnerable
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(a) How memorization is defined
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(b) Impact of the choice of layer

Figure 4: Figure 4a: impact of the threshold used to define ”memorized” and ”non-memorized”
samples. The vertical bar indicates the default threshold log-LiRA = 4. Figure 4b: impact of the
choice of the layer on the performance of PSMI. The solid lines represent the AUC for PSMI at that
layer, and the dashed lines represent the AUC for the loss, which does not depend on the layer. The
right plot is a zoomed-in view focusing on high AUC regions.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

samples, obtaining the highest log-LiRA score. We interpret this as meaning that elements that are
clearly detected as memorized by LiRA were necessarily hard to learn for the model, so they can be
detected by our method. See Appendix A.2 and Appendix D.4 for additional results and discussions.

Impact of the layer used to compute PSMI (Figure 4b) The default method presented in Algo-
rithm 1 uses hidden representations from the last layer to predict memorization. However, depending
on the model and the dataset, different layers can be more effective. We observe that in every setting,
only the last layers are useful for predicting memorization. However, it appears that the importance
of layers varies depending on the dataset. When we fix the model to Mistral and vary the dataset, we
observe that for complex tasks such as MMLU or ARC datasets (with up to 5 possible labels), the
curve rises sharply around layers 15–20 and then stabilizes with minor variations. We interpret this
to mean that more complex tasks require more intricate interactions between token representations,
so relevant layers are concentrated towards the end of the network. On the opposite, for ETHICS
dataset, which is a simpler task of binary classification, the curve increases more smoothly. This
indicates that samples are easier to separate with fewer interactions between tokens, allowing mem-
orization to be detected from the earliest layers. Conversely, we observed that for a fixed dataset
(MMLU), the choice of model has little impact on the shape of the curve. Finally, we observe that
across all settings, the difference between the AUC with the last layer and the AUC with the best
layer is minor, which justifies selecting the last layer in Algorithm 1.

Applicability to other classification settings (Figure 5) As noted in Section 1.2, our method
relies on the specific properties of neither LLMs nor fine-tuning. Consequently, it is suitable for
any model trained for classification tasks. To validate this hypothesis, we applied our method as-is
to a Wide Residual Network (WRN16-4) (Zagoruyko & Komodakis, 2016) trained from scratch on
CIFAR-10. This setting differs significantly from the fine-tuning of LLMs studied so far: the model
uses convolutions instead of transformers, is trained on a visual task rather than a textual one, and is
trained from scratch rather than fine-tuned. We believe that the excellent performance of our method
in this setting indicates that it is applicable to a wide range of classification scenarios.

We adapted the framework of Aerni et al. (2024) to interrupt training and measure the PSMI, loss,
and logit gap on a model trained without any mitigation techniques. The authors introduced out-of-
distribution canaries within the training set, and demonstrated that they correctly mimic the most
vulnerable samples. In Figure 5a, we predict memorization using the same definition as above, with a
threshold of 4 applied to log-LiRA. Even though our method was applied without any modifications,
we obtained very high AUC scores, surpassing those achieved with MMLU/Mistral, which is our
best setting for fine-tuned LLMs. However, we note that the default hyperparameters of Algorithm
1 lead to a very good FPR but a low TPR. Indeed, in this setting, 3.8% of samples satisfy log-LiRA
≥ 4, which is relatively high (see Appendix D.3). In contrast, in Figure 5b, we focus on the most
vulnerable samples by predicting the canaries that mimic them. We observe that our method yields
excellent results, and that the hyperparameters of Algorithm 1 are well-suited for detecting these
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Figure 5: Applying our method as-is on a WRN16-4 trained from scratch on CIFAR-10, adapting
the framework of Aerni et al. (2024). Figure 5a: Using PSMI (last layer), loss and logit gap to
predict memorized samples. The cross marks the default hyperparameters of Algorithm 1. Figure
5b: Predicting canaries that mimic most memorized samples. Figure 5c The solid line represents the
impact of the choice of threshold applied to LiRA to defined ”memorized” and ”non memorized”
samples. The dashed line is the AUC when memorized samples are defined as the canaries.
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highly vulnerable samples. In Figure 5c, we confirm that our method obtains better results when
detecting samples that are very well memorized, with a high log-LiRA score (see Appendix D.6 for
more details).

4 FINAL REMARKS

Ethical considerations This paper discusses vulnerability to privacy attacks against language
models in practical settings, raising ethical considerations due to similar models trained on pri-
vate data already being attacked in production (Nasr et al., 2023). However, we believe that our
work is unlikely to benefit adversaries with harmful intent, for several reasons. First, our approach
necessitates access to the checkpoint of a partially trained model, and to the training dataset. In prac-
tice, adversaries do not possess this capability, making it impossible for them to apply our method.
Second, even though our work improves our understanding of unintended memorization, we believe
that this will benefit privacy researchers more than adversaries. Indeed, it can help practitioners to
better audit models under development, and empirical defenses could be derived from our work in
the future.

Limitations and future works Our method is specifically applicable to classification tasks. Most
of our experiments focus on LLMs fine-tuned for textual classification, applied to multiple-choice
questions. This setting was chosen because datasets such as MMLU are known to be challenging for
language models and are often used to evaluate models’ abilities. However, it would be interesting to
explore whether our method can be modified to be applicable to LLMs trained on generative tasks.
This scenario is indeed widely used and poses significant privacy risks.

Moreover, the approach we developed to predict memorization from the early stages of training
could be used to develop empirical defenses. Several methods have already been proposed to mit-
igate unintended memorization in practice, achieving good privacy-utility trade-offs (Chen et al.,
2022; Tang et al., 2022; Chen & Pattabiraman, 2024; Aerni et al., 2024). Our algorithm could be
employed to design adaptive defenses that concentrate their efforts on most vulnerable samples to
improve the privacy-utility trade-off.

Reproducibility statement We have detailed all essential hyperparameters necessary to reproduce
our experiments. In addition, we provide the following repository containing the Python, Bash and
Slurm scripts that we used to deploy our experiments on an HPC cluster. We also provide a PyPI
package containing an automated estimator of PSMI that can be used in a wide range of scenarios.

hidden_github_url_experiment_repo_for_review
hidden_github_url_pypi_package_for_review

5 CONCLUSION

In this work, we demonstrate that it is possible to predict which samples will be memorized by a lan-
guage model in a classification setting. Our metric is computationally efficient, and it can be utilized
from the early stages of training. We provide a theoretical justification for our approach, and we
validate its effectiveness on three different language model architectures fine-tuned on three differ-
ent classification datasets. Moreover, we demonstrate that our method is easily applicable to other
classification scenarios by successfully applying it, without modification, to a vision model trained
from scratch. We view this method as a first step towards developing useful tools to evaluate models
during training, understand the privacy risks they entail, and prevent unintended memorization in
the most efficient way.

Hidden acknowledgements for double-blind reviews.
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A DEFINING AND MEASURING MEMORIZATION FOR CLASSIFICATION TASKS

Defining and measuring memorization for classification tasks is a challenging task. As explained
in Section 1.1, vulnerability to extraction attacks is rarely used for such models. Conversely, in
these settings, it is standard to define memorization as vulnerability to membership inference attacks
such as LiRA or to use counterfactual memorization. In Section A.1, we present two variants of
LiRA (Carlini et al., 2022a): a local version (used in the main body of the paper), which targets a
fixed model and its training set, and a global version, which targets a dataset used to train multiple
models. In Section A.2, we compare LiRA and counterfactual memorization. It appears that these
two definitions are consistent with each others, especially for highly memorized samples. This
confirms the relevance of choosing LiRA as the ground truth memorization for our experiments.

A.1 LIRA ATTACK

A.1.1 ATTACKING A MODEL: LOCAL VERSION

In this section we present the original version of LiRA (Carlini et al., 2022a). We call it the local
version, because it targets a fixed model and tries to determine if a target sample was part of its
training set. Note that this setting is aligned with our threat model (See Section 1.2): the model is
fixed; and for each sample, if the attack confidently predict that it was part of the training set, we
say that it is memorized. This is why we used this local version in the main body of this paper.

Notations Let X = {(xi, yi)}i∈J1,NK be a training set of N labelled elements. We focus on multi-
choice question (MCQ) academic benchmarks such as MMLU (Hendrycks et al., 2021b). Let S be
a random variable representing a subset of elements in J1, NK. Let XS = {(xi, yi) | i ∈ S} be the
corresponding subset of training elements, and fS ∼ T (XS) be a model trained on this subset with
the randomized training procedure T . Then, let L(x, fS) be the logit gap of the evaluation of x with
model fS , i.e. the difference between the highest and second-highest logit.

The Likelihood Ratio Attack (LiRA) Let fix a target subset S∗, a target model fS∗ ∼ T (XS∗)
trained on these elements, and a target element x ∈ X. As every membership inference attack,
LiRA aims to determine whether x was in XS∗ . First, we train a great number of shadow models
fS on random subsets of X, and evaluates the logit gap L(x, fS) for theses shadow models. Then,
we gather Lin = {L(x, fS) | x ∈ S}, the logit gaps of model that were trained on x ; and Lout for
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models that were not trained on x. We model these two sets as Gaussian distributions, and compute
the probabilities pin and pout of the target logit gap L(x, fS∗) under these distributions.

The original LiRA score of Carlini et al. (2022a) is defined as LiRA(x, f∗
S) = pin/pout. However,

it takes very high and low values positive values. For convenient representations in our graphs,
we used the natural logarithm of this score in the main body of this paper. A value greater that 0
indicates that the sample is memorized, because pin > pout. For example, a value of 4 indicates
strong memorization, because it means that pin ≥ e4 · pout ≃ 54.6 · pout. In other words, the attack
suggests that it is 54.6 times more likely that the target samples belongs to the dataset of the target
model, which is significant. This is why, unless otherwise stated, memorized samples are defined as
the ones with log-LiRA ≥ 4 for our experiments in Section 3.

The number of shadow model needed to compute LiRA score is an important hyperparameter. In
our experiments, we used 100 shadow models to evaluate memorization in each setting, which is in
line with the empirical findings of Carlini et al. (2022a).

A.1.2 ATTACKING A DATASET: GLOBAL VERSION

It is also possible to use another version of LiRA, as in (Carlini et al., 2022b) for example. We call
it the global version, because it does not target a fixed model; on the opposite, it attacks multiple
models trained on a random splits of the same datasets, and measures the attack success rate of LiRA
against each samples, which is defined below.

The Attack Success Rate (ASR) It indicates whether a given element x ∈ X is likely to be mem-
orized by any model trained on a subset XS with training procedure T . Let D be the distribution
of S corresponding the choosing a random subset of ⌊N/2⌋ elements in J1, NK, meaning that ev-
ery element is selected with probability 50%. For every target element x, the attack success rate is
computed as follows:

ASR(x) = P
S∼D, fS∼T (XS)

[
1[pin > pout] = 1[x ∈ XS ]

]
(7)

The global LiRA attack represents the likelihood that a sample in a dataset gets memorized by any
model trained with a given procedure. As a result, this score is not consistent with our threat model.
Indeed, in our threat model we want to audit a fixed model, because this is what practitioners do.
This is why we did not use the global version in the main body of this paper.

A.2 COMPARING SEVERAL DEFINITIONS OF MEMORIZATION

We compare two definitions of memorization: counterfactual memorization (Feldman & Zhang,
2020; Zhang et al., 2023) and vulnerability to LiRA membership inference attack (Carlini et al.,
2022a). Counterfactual memorization is a global measure of memorization. Indeed, it quantifies the
impact of a given sample x being in the training set on a population of model trained on random
splits of a dataset. Similar to the global variant of LiRA (see Section A.1.2), it is not in line with
our threat model, because practitioners want to audit a fixed model, and not a population of model
trained on random splits of a dataset. Note that because counterfactual memorization is a global
definition, we compared it to the global version of LiRA. We recall that this is not the one used in
the main body of this paper (see Section A.1). We used Equation 2 in (Zhang et al., 2023) to define
counterfactual memorization. We used the logit gap as the performance metric M in their equation.

Our results are presented in Figure 6. We use Spearman’s R score to quantify the consistency
between the two definitions. Indeed, we are interested in the order of samples with respect to the
memorization metric. We observe that Spearman’s R between the two definition is high in every
settings: it is always greater than 0.75, and escalates to 0.88 for Mistral models trained on ARC
dataset. This demonstrates that LiRA and counterfactual memorization are consistent with each
other. In addition, we can separate the samples in two groups: a first, weakly memorized group,
for which there is greater variability between the two definitions (bottom left of the graphs), and a
strongly memorized group, for which the two definitions are much more consistent with each other
(top right of the graphs). The second group is the most important one in our setting, because we are
interested in predicting memorized samples (and not predicting non-memorized ones).
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Figure 6: Comparing two definitions of memorization: counterfactual memorization (Feldman &
Zhang, 2020; Zhang et al., 2023) and LiRA membership inference (Carlini et al., 2022a). We mea-
sure Spearmans’R coefficient to evaluate the consistency between the definitions. These experiments
are conducted on models trained for 10 epochs.

The coherence of these two definitions, especially for highly memorized samples, confirms the
relevance of choosing LiRA as the ground truth memorization for our experiments.

B PROOF OF THEOREM 1 AND DISCUSSION

In this section we prove Theorem 1 and discuss it. We recall the theorem:

Theorem 1 Let (X,Y ) ∈ Rd × {0, 1} be random variables. We assume that p(Y = 0) = p(Y =
1) = 0.5 and that X is a continuous random variable. We also assume that there exist µ0, µ1 ∈ Rd

with µ0 ̸= µ1, and Σ0,Σ1 ∈ Rd×d, and a Bernoulli variable ∆ ∼ B(ε) with ε ∈]0, 1[ such that:

p(X | Y = 0,∆ = 0) ∼ N (µ0,Σ0) and p(X | Y = 1,∆ = 0) ∼ N (µ1,Σ1) (3)

∀x ∈ Rd, p(Y = 0 |∆ = 1, X = x) = p(Y = 1 |∆ = 1, X = x) = 0.5 (4)

Given this, we then have:

E
X,Y

[PSMI(X,Y ) |∆ = 0] > 0 (5)

E
X,Y

[PSMI(X,Y ) |∆ = 1] = 0 (6)

Proof of Equation 6 Let x, y ∈ Rd × {0, 1}. We use the hypothesis we made in Equation 4:

p(X = x, Y = y |∆ = 1) = p(Y = y |∆ = 1, X = x)× p(X = x |∆ = 1) (8)
= 0.5× p(X = x |∆ = 1) (9)
= p(Y = y |∆ = 1)× p(X = x |∆ = 1) (10)

(11)

Consequently, given ∆ = 1, X and Y are independent. We conclude that the expected value of
PSMI is zero, which proves Equation 6.
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E
X,Y

[PSMI(X,Y ) |∆ = 1] =

∫
X,Y

∫
θ∼U(Sd)

log
p(θTx, y)

p(θTx)p(y)
dp(X,Y |∆ = 1)dp(θ) (12)

=

∫
X,Y

∫
θ∼U(Sd)

log
p(θTx)p(y)

p(θTx)p(y)
dp(X,Y |∆ = 1)dp(θ) (13)

= 0 (14)

Proof of Equation 5 First, we have:

SMI(X,Y ) = E[PSMI(X,Y )] (15)
= E[PSMI(X,Y ) |∆ = 0]p(∆ = 0) + E[PSMI(X,Y ) |∆ = 1]p(∆ = 1) (16)

Using Equation 6 that we have proved, we obtain:

E[PSMI(X,Y ) |∆ = 0] > SMI(X,Y ) (17)

As a result, it is sufficient to demonstrate Equation 5 with SMI(X,Y ) instead of
E[PSMI(X,Y ) | ∆ = 0]. To do this, we will apply Theorem 1 in (Wongso et al., 2023b). To
do this, we search (R0, R1,mg, ν) ∈ R4

+,∗ such that (X,Y ) is (R1, R2,mg, ν)-SSM separated with
respect to Definition 3 in (Wongso et al., 2023b). Let D = ||µ0 − µ1||. Using µ0 and µ1 and the
centers of the spheres, this means that (R0, R1,mg, ν) should satisfy:

p(||X − µ0|| > R0) = p(||X + µ1|| > R1) = ν and R0 +R1 +mg = D (18)

There are many values of (R0, R1,mg, ν) which satisfy these conditions. When applying Theorem
1 in (Wongso et al., 2023b), these values give different lower bounds. Here is an algorithm to create
a valid tuple (R0, R1,mg, ν) given a hyperparameter R ∈]0, D/2[.

1. Let S0 (resp. S1) be the sphere of center µ0 (resp. µ1) and radius R.
2. Let ν0 = p(X ∈ S0 | Y = 0) and ν1 = p(X ∈ S1 | Y = 1). Given the Gaussian

assumptions we made in Equation 3, we have ν0, ν1 ∈]0, 1[.
3. Let i ∈ {0, 1} and j = i− 1 such that νi ≥ νj . We fix Ri = R and ν = νi.
4. We will now start with Rj = R and decrease its value until Equation 18 is satisfied. Be-

cause X is a continuous random variable, the following function is continuous, decreasing,
equal to 1 when t = 0, and because νj ≤ νi, its value is ≤ ν for t = 1:

t ∈ [0, 1] 7→ p(||X − µj || > t ·R | Y = j) (19)

5. As a consequence, due to the intermediate values theorem, there exists tj in ]0, 1] such that
p(||X − µj || > t ·R | Y = j) = ν.

6. We set Rj = t ·R and mg = D−R0−R1. Because R0, R1 ≤ R < D/2, we have mg > 0

7. Now, we can apply Theorem 1 in (Wongso et al., 2023b) :

SMI(X,Y ) > (1−H(ν, 1− ν))×Bγ(mg,R0,R1)

(
d− 1

2
,
1

2

)
(20)

Where:

• H is the entropy function H(p1, p2) = −p1 log p1 − p2 log p2. We can easily prove that
(1−H(ν, 1− ν) is convex on ]0, 1[ and that its minimal value is > 0.

• γ(mg, R0, R1) =
mg

mg+R0+R1

(
2− mg

mg+R0+R1

)
=

mg

D

(
2− mg

D

)
∈]0, 1[

18
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• B is the incomplete beta function defined as follows. Because γ(mg, R0, R1) ∈]0, 1[, it is
clear that its value is always > 0.

Bγ(a, b) =

∫ γ

0

ta−1(1− t)b−1dt (21)

This proves that SMI(X,Y ) > 0, which demonstrates Equation 6 and concludes the proof.
□

Discussion on a better bound for Equation 5 The proof above provides a constructive algorithm
to obtain (R0, R1,mg, ν) ∈ R4

+,∗ such that (X,Y ) is (R1, R2,mg, ν)-SSM separated with respect
to Definition 3 in (Wongso et al., 2023b). Depending on the hyperparameter R ∈]0, D/2[, the bound
is different. As a result, this hyperparameter can be optimized to find the better possible bound with
this algorithm. We did not performed this optimization because it is not useful for the purpose of
Theorem 1. Indeed, we only use this theorem to illustrate why we expect outliers in the hidden
representations distribution to have a lower PSMI (see Section 2.1).

C IMPLEMENTATION DETAILS

To help reproducing our results, we provide a GitHub repository containing the Python source code
of our experiments, as well as the Bash and Slurm scripts to deploy them on a HPC cluster.2 We
also provide a PyPI package containing an automated estimator of PSMI that can be used in a wide
range of scenarios.3

In this section we discuss how we implemented our experiments in practice. In Section C.1, we
discuss how we adapted the baseline of Biderman et al. (2023) to classification, in Section C.2, we
discuss how we implemented our measures of memorization, in Section C.3 we elaborate on the
implementation of our predictors.

C.1 IMPLEMENTING OUR BASELINE

As explained in the introduction, the baseline of Biderman et al. (2023) is the only comparable
method we are aware of. However, it is not directly applicable to our classification setting. Their
method measures k-extractability (Carlini et al., 2021) on the partially trained model to predict mem-
orization in the fully trained model. However, as explained in Section 1.1, extractability is rarely
used to define memorization in a classification setting. Indeed, current extraction or reconstruction
attacks against classification models are both more complex and less powerful than extraction at-
tacks against generative models (Carlini et al., 2023). Consequently, we modified the baseline of
Biderman et al. (2023) to suit our classification setting. While we still use memorization within the
partially trained model to predict memorization in the final model, we replaced k-extractability by
the vulnerability to LiRA attack.

The computational cost of this adapted baseline is significantly higher than that of the methods we
evaluate, as it requires training the shadow models needed for LiRA attack. As a consequence, this
baseline would not be suitable for practitioner within our threat model (see Section 1.2). Neverthe-
less, we compare our method to this baseline because it is the only comparable approach that assess
the possibility of predicting memorization before the end of training.

C.2 IMPLEMENTING MEMORIZATION MEASURES

The local version of LiRA, the global version, and counterfactual memorization all require a large
number of shadow models (see details in Section A). To minimize the computational cost of our
experiments, for each dataset, we trained 100 shadow models on random splits containing half of
the elements of the dataset. Each random split (and the model trained on it) is associated to a number

2hidden_github_url_experiment_repo_for_review
3hidden_github_url_pypi_package_for_review
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between 0 and 99 (see split_id attribute in training_cfg.py) corresponding to the seed of
the random split.

• Local LiRA: We select the model trained on random split 0 to be our target model, and use
the 99 other models as the shadow models for the attack. In addition to the training cost,
this requires one forward pass per shadow model on the training set of the target model
(i.e. random split 0). Note that this is the setting used in the main body of the paper, so the
PSMI is computed on this random split 0 and used to predict memorization for the model
trained on it.

• Global LiRA: We attack each model with the 99 other models trained on different random
splits, and measure the attack success rate on each sample x of the dataset. In addition to
the training cost, this requires one forward pass per shadow model on all elements of the
dataset.

• Counterfactual memorization: For each element x of the complete dataset, we separate
the shadow models into two groups: the one that had x in the training set, and the others.
Given that each random split contains half of the samples, these two groups have roughly
the same size. We used them to compute counterfactual memorization (Zhang et al., 2023).
In addition to the training cost, this requires one forward pass per shadow model on all
elements of the dataset.

Note that in our GitHub repository, we use the term dynamic to describe local measures such as
the local version of LiRA or the PSMI of the target model; and we use the term static to describe
global measures on a population of models such as the global version of LiRA or counterfactual
memorization. The training of these shadow model was by far the most expensive part of our ex-
periments from a computational perspective. However, this operation can be parallelized on a many
workers within an HPC cluster, because each shadow model is trained independently.

C.3 IMPLEMENTING PREDICTORS

Algorithm 1 in Section 2.3 explains how we use PSMI to predict memorization in the final model.
This algorithm can be easily adapted to use other predictors instead of PSMI. For instance, Algo-
rithm 2 illustrates how to use the loss as a predictor. Unlike PSMI, it does not require a hyperpa-
rameter to select a layer. However, as shown in Section 3.2, the choice of the last layer is robust
across all empirical settings we evaluated, so this hyperparameter does not introduce additional com-
plexity. Conversely, using the loss instead of PSMI requires an extra hyperparameter (denoted x in
Algorithm 2) to define the proportion of samples to filter based on their loss values.

Algorithm 2 Using Loss to predict memorization

1: Interrupt training when the median training loss has decreased by at least 95%.
2: Compute a forward pass for every sample to retrieve the loss.
3: Predict that every sample with top x% highest loss will be memorized.

We evaluated five possible metrics to predict memorization at the early stages of training. For the
metrics that require the hidden states of the model (PSMI and Mahalanobis distance), we recall that
the hidden state at layer k is defined as the representation of the last token (the one before the label)
after layer k (see section 2.1).

• PSMI. We use algorithm 1 in (Wongso et al., 2023a) to estimate PSMI. We sample 2000
direction uniformly on the unit sphere. Indeed, we observed that the mutual information
between random directions and the label has a mean of about 4.5 · 10−3 and a standard
deviation of about 5.5 ·10−3. Thus, if we approximate these distributions by Gaussians, we
get a margin at 95% confidence interval of about (1.96× 5.5 · 10−3)/

√
2000 ≃ 2.4 · 10−4.

This is about 20 times smaller than the mean, so we consider that our metric is stable
enough with 2000 estimators.

• Loss. We directly use the cross-entropy loss of the model for the last token before the label.
This metric was suggested by Leemann et al. (2024).
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• Logit Gap. The logits are the outputs of the fully-connected layer applied to the last token,
before the softmax. We define the logit gap as the difference between the logit of the correct
prediction and the maximum logit of an incorrect prediction.

• Mahalanobis distance. It is the Mahalanobis distance (Mahalanobis, 1936) of the hidden
representation of a training sample to the distribution of hidden representation of the other
training samples. To reduce computational costs, we first project every hidden states using
a Principal Component Analysis (PCA) with a target dimension of 500. This metric was
suggested by Azize & Basu (2024).

• Our baseline: early memorization. We define early memorization as the natural loga-
rithm of LiRA attack against the partially trained model. See Appendix C.1.

D ADDITIONAL EXPERIMENTS

D.1 TPR/FPR TRADE-OFFS FOR EACH SETTING AT EVERY CHECKPOINT
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Figure 7: TPR/FPR trade-offs for each setting at every checkpoint. The number in parentheses
corresponds to the AUC of the curve. The blue cross indicates the result using the default hyperpa-
rameters of Algorithm 1. The AUC of the baseline (”Base”) converges to 1.0 at epoch 1.0 because,
at that stage, the baseline is the same as what we are trying to predict. We remind that practitioners
within our threat model do not have the resources to compute the baseline and instead attempt to
approximate it using other metrics early in the training pipeline.

D.2 ADDITIONAL RESULTS ON THE DYNAMICS OF TRAINING

We always interrupt training when the median training loss has decreased by 95%, and measure
ground truth memorization after 1 epoch of training (see Section 3). To validate this choice, we con-
ducted the experiments described in Section 3.2. Figure 8 presents additional plots for experimental
settings not discussed in that section. These results confirm that memorization can be predicted early
in the training pipeline and that memorized samples have not yet been memorized at that point.
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Epoch 0 Epoch 0.2 Epoch 0.4 Epoch 0.6 Epoch 0.8 Epoch 1

ARC/Mistral 0.000% 93.724% 98.015% 99.397% 98.907% 99.222%
ETHICS/Mistral 0.000% 86.036% 95.198% 98.985% 99.665% 99.739%
MMLU/Mistral 0.000% 98.967% 99.776% 99.916% 99.916% 99.895%
MMLU/Llama 0.000% 91.674% 98.186% 99.329% 99.336% 99.267%
MMLU/Gemma 0.000% 99.543% 99.606% 99.855% 99.980% 99.979%

Table 1: Decrease in the median training loss relative to epoch 0 throughout training.

Special case of ARC/Mistral Table 1 presents the decrease of the median training loss relative to
epoch 0 throughout training. We saved models every 0.2 epoch to analyze them and measure their
performance. We observe that for ARC/Mistral, the median training loss has decreased by 93.724%
at epoch 0.2, which is close to 95%. Conversely, by epoch 0.4, the median training loss has decreased
by significantly more than 95%. This is why, for that setting, we predict memorization at epoch 0.2,
the checkpoint where the decrease is closest to 95%. For the other settings, as indicated in Section
3, we predict memorization at the first checkpoint where the median training loss has decreased by
at least 95%.
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Figure 8: Additional results related to the dynamics of training and the appropriate moment to
interrupt training. First row: Training loss, testing loss, and epoch of the best testing loss for
each experimental setting. Second row: Training accuracy, testing accuracy, and epoch of the best
testing accuracy for each experimental setting. Third row: AUC of PSMI, Loss and Logit Gap for
predicting memorization. The vertical line indicates the point at which training loss has decreased
by 95%, marking the moment when training is stopped to predict memorization. Fourth row:
The solid line shows the median PSMI for samples that will be memorized or not within the fully
trained model. The shaded area represents the 25%-75% quantiles. PSMI is measured at the layer
that obtained the highest AUC. Fifth row: Similar representation for the memorization within the
partially trained model.
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D.3 HISTOGRAMS OF MEMORIZATION THROUGHOUT TRAINING
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Figure 9: Histograms of memorization throughout training. The legend displays the proportion of
samples with log-LiRA ≥ 4, which is the threshold used to define memorization in all figures unless
otherwise specified.

D.4 ADDITIONAL RESULTS ON THE IMPACT OF THE MEMORIZATION THRESHOLD
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Figure 10: Impact of the threshold used to define ”memorized” and ”non memorized” samples. The
vertical bar indicates the default threshold log-LiRA = 4.

D.5 ABLATION STUDY ON THE LAYERS FOR MAHALANOBIS DISTANCE

Similar to the approach in Section 3.2 and Figure 4b, we conducted an ablation study on the layers
for Mahalanobis distance (see Figure 11). These results were used in the other figures to ensure that
the Mahalanobis distance is computed at the layer that maximizes the resulting AUC value.
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Figure 11: Impact of the choice of layer on the AUC using the Mahalanobis distance. The dashed
lines represent the AUC with the loss, which is independent of the layer.

D.6 ADDITIONAL RESULTS WITH CIFAR-10

Figure 12 presents additional results obtained by applying our method as-is to a wide residual net-
work trained from scratch on CIFAR-10. We vary the threshold applied to log-LiRA to define
memorized samples. We observe that our method becomes increasingly effective as the samples to
be detected become more highly memorized. It converges towards the experiment on the right of
the figure, where memorized samples are defined as the canaries crafted by (Aerni et al., 2024) to
mimic the most vulnerable samples.

For these experiments, the model was trained for 300 epochs, and we interrupted training after 4
epochs, when the median training loss had decreased by 95%.
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Figure 12: Predicting memorized samples on a WRN16-4 (Zagoruyko & Komodakis, 2016) trained
from scratch on CIFAR-10 using the framework of Aerni et al. (2024). In the first four graphs,
we vary the threshold applied to log-LiRA to define memorized samples. The title displays the
proportion of memorized samples in the fully trained model using this definition. The blue cross
marks the performance of the default hyperparameters from Algorithm 1. The last graph presents
the same experiment, where memorized samples are defined as the canaries inserted by Aerni et al.
(2024) to mimic the most vulnerable samples in the training set.
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