
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PERMUTATION-INVARIANT HIERARCHICAL
REPRESENTATION LEARNING FOR REINFORCEMENT-
GUIDED FEATURE TRANSFORMATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Feature transformation aims to refine tabular feature spaces by mathematically
transforming existing features into more predictive representations. Recent ad-
vances leverage generative intelligence to encode transformation knowledge into
continuous embedding spaces, facilitating the exploration of superior feature
transformation sequences. However, such methods face three critical limitations:
1) Neglecting hierarchical relationships between low-level features, mathematical
operations and the resulting high-level feature abstractions, causing incomplete
representations of the transformation process; 2) Incorrectly encoding transforma-
tion sequences as order-sensitive, introducing unnecessary biases into the learned
continuous embedding space; 3) Relying on gradient-based search methods under
the assumption of embedding space convexity, making these methods susceptible
to being trapped in local optima. To address these limitations, we propose a novel
framework consisting of two key components. First, we introduce a permutation-
invariant hierarchical modeling module that explicitly captures hierarchical inter-
actions from low-level features and operations to high-level feature abstractions.
Within this module, an self-attention pooling mechanism ensures permutation in-
variance of the learned embedding space, aligning generated feature abstractions
directly with predictive performance. Second, we develop a policy-guided multi-
objective search strategy using reinforcement learning (RL) to effectively explore
the embedding space. We select locally optimal search seeds from empirical data
based on model performance, then simultaneously optimize predictive accuracy
and minimize transformation sequence length starting from these seeds. Finally,
extensive experiments are conducted to evaluate the effectiveness,efficiency and
robustness of our framework. Our code and data are publicly accessible 1.

1 INTRODUCTION

Feature transformation aims to improve tabular feature spaces by mathematically deriving more
predictive representations from original features. Although deep learning has recently achieved
remarkable success, it struggles to deliver strong performance on tabular data due to heterogeneous
feature types, varying feature scales, and the presence of missing values or outliers. Furthermore, the
black-box nature of deep learning models limits their interpretability, hindering their application in
further data analysis and critical decision-making systems. Thus, automated feature transformation,
which aims to generate distinguishable and informative features to enhance predictive performance,
has emerged as a significant research direction in tabular data analysis.

Existing methods for automated feature transformation can be categorized into three main groups:
1) Expansion-reduction approaches (Kanter & Veeramachaneni, 2015; Horn et al., 2019b; Khu-
rana et al., 2016b), which first enlarge the original feature space using mathematical transforma-
tions and subsequently reduce dimensionality through feature selection; 2) Evolution-evaluation
approaches (Wang et al., 2022; Khurana et al., 2018a; Tran et al., 2016), which utilize Evolutionary
Algorithms (EA) or Reinforcement Learning (RL) to iteratively generate and evaluate transforma-
tion candidates based on model performance feedback; 3) Auto ML-based approaches (Chen et al.,

1https://anonymous.4open.science/r/PHER-32A6

1

https://anonymous.4open.science/r/PHER-32A6

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

2019a; Zhu et al., 2022b), which formulate feature transformation as a search problem, employ-
ing automated machine learning techniques to identify optimal transformations. Despite achieving
considerable success, these methods still face challenges in effectively modeling intricate patterns
inherent in feature transformation knowledge.

Inspired by the success of generative AI, recent advances formulate automated feature trans-
formation as a token generation task (Wang et al., 2023; Ying et al., 2024b;a). They com-
press feature transformation knowledge into a continuous embedding space and subsequently
explore this space via gradient-based methods to identify superior feature transformation se-
quences. However, there are three primary limitations: 1) Neglecting hierarchical relation-
ships between original features, mathematical operations, and generated feature abstractions.

BMI
Weight
Height2

= WHR Waist
Hip

= Concepts

PreDM T2DM IR MetS

Predictive Model

Output

TokensWeight Height Hip + × ÷Waist

Figure 1: Illustration of hierarchical relationships
between generated feature abstractions (concepts)
and original features. Body Mass Index (BMI)
and Waist-to-Hip Ratio (WHR) are obtained by
mathematically transforming original features.

For example, as illustrated in Figure 1, Body
Mass Index (BMI) and Waist-to-Hip Ra-
tio (WHR) are high-level feature abstractions
(i.e. concepts) derived from original features
through mathematical transformations, signifi-
cantly contributing to accurate predictions. Ne-
glecting explicit modeling of these hierarchical
relationships results in incomplete feature rep-
resentations, limiting the capture of meaningful
interactions and reducing the distinguishability
of the embedding space. 2) Ignoring the order
invariance of the generated feature abstrac-
tions with respect to the predictive perfor-
mance of the associated feature space. Prior
studies treat the entire feature transformation
process as a sequential model to capture trans-
formation knowledge. However, this formulation introduces unnecessary permutation bias among
generated concepts into the embedding space, hindering effective exploration and limiting the iden-
tification of the globally optimal feature transformation embedding. 3) Relying on gradient-based
search methods that strongly assume convexity of the learned embedding space. Existing meth-
ods typically assume convexity in the learned embedding space, relying on gradient-based search
methods to identify globally optimal solutions. However, in practice, due to complex interactions
among features and mathematical operations, it is challenging to guarantee the convexity of the
embedding space. This misalignment between the convexity assumption and the practical charac-
teristics of the embedding space increases the risk of becoming trapped in local optima, resulting in
suboptimal feature transformation sequences.

Our Contribution: A Hierarchical Modeling and Policy-Guided Feature Transformation Per-
spective. To address these limitations, we propose PHER, a novel feature transformation frame-
work that integrates permutation-invariant hierarchical modeling and multi-objective policy-guided
search. Specifically, given a large volume of feature transformation records—each consisting of
a transformation sequence and the associated model performance—we first design a hierarchical
modeling module. This module preserves transformation knowledge at both low-level feature in-
teractions and high-level feature abstractions (i.e. concepts) into a continuous embedding space.
To ensure permutation invariance, we develop a self-attention pooling mechanism that symmetri-
cally computes attention scores across various generated concepts. This structure guarantees that
any permutation of generated concepts yields identical embeddings, resulting in a global continu-
ous embedding space that unbiasedly preserves feature transformation knowledge. Subsequently,
we employ a policy-guided multi-objective search strategy to explore the global embedding space
and identify the optimal feature transformation sequence. In detail, we first select the top-K feature
transformation sequences based on model performance as search seeds. Then, we convert these
seeds into embeddings, which serve as initial positions for exploration within the learned global
embedding space. Next, we treat seed embeddings as states and implement a reinforcement learning
(RL) agent to explore the embedding space, guided by maximizing downstream task performance
and minimizing the length of transformation sequences. The exploratory nature of reinforcement
learning enables effective navigation of the embedding space, reducing the risk of becoming trapped
in local optima, even when the embedding space lacks convexity. Finally, extensive experiments are
conducted on 19 real-world datasets to evaluate the efficiency, resilience, and traceability of PHER.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

 Permutation-Invariant Hierarchical Modeling

Policy-Guided Multi-Objective Search

Concept
Embeddings

.

..

G1

G2

G3

GlobalEmbeddingSpace

Performance

Transformation
Length

Token
Decoder

Top-K
Records

.

.

.

f1 f2+ xf3 f5,() (),...

Eval:0.96

f2 f4- f3,() (),Sin(f),...7

Eval:0.83

...(),Exp(f),f5 7
Eval:0.75

Seed
Embeddings

K

Token
Encoder

Aggregation
Layer

Transformation
Sequence

..

.

f1

f2

+

x
f3

f5

Sin()
7f

State

K

stack

Converge

..

.

f1

f2

+

x
f3

f5

Sin()
7f

Reconstructed
Sequence

Performance
Transformation

Length

Token
Encoder

*

Concept
Encoder

*

Concept
Decoder

*

Token
Decoder

*

Agent

GlobalEmbeddings

'G1
G2'

G3'

Downstream
Tasks

seed Vector

Multi-Head
Attention

xavier uniform

Linear

Random Initialized

Concept Decoder

seed Vector

Multi-Head
Attention

xavier uniform

Linear

Random Initialized

Concept Encoder

Action
K K

Old State

Figure 2: An overview of our framework. PHER comprises two main components: 1) Permutation-
Invariant Hierarchical Modeling, which unbiasedly preserves feature transformation knowledge at
both the feature-operation token level and the generated-concept level within a global embedding
space; 2) Policy-Guided Multi-objective Search, which effectively explores the learned embedding
space to identify optimal feature transformation sequences.

2 PROBLEM STATEMENT

We aim to develop an automated feature transformation framework through the lens of genera-
tive intelligence, integrating permutation-invariant hierarchical modeling and policy-guided multi-
objective search strategy. Formally, given a dataset D = {X, y} , where X denotes features and
y represents the corresponding labels, along with a set of mathematical operation set O (e.g., ad-
dition, subtraction, multiplication). We first gather n feature transformation records, denoted by
{(Γi, vi)}ni=1 based on the dataset D, where each record consists of transformation sequence Γi and
the associated downstream predictive performance vi. We then train a token-level encoder ϕtok and
decoder ψtok to encode interactions between original features and mathematical operations into em-
beddings, optimized through minimizing the reconstruction loss at the token-level. Next, using the
embeddings from ϕtok, we aggregate them to obtain the concept-level embeddings. A concept-level
permutation-invariant encoder ϕcon is then employed to eliminate order sensitivity among concepts,
resulting in a global, unbiased embedding space G. A corresponding concept-level decoder ψcon is
simultaneously trained to capture patterns from generated concepts. After that, we employ a policy-
guided strategy to explore G, aiming to identify the optimal global embedding G

′

opt. This embed-
ding can be decoded by the concept-level decoder ψcon and token-level decoder ψtok to reconstruct
the optimal feature transformation sequence Γ∗, thus generating a feature space that maximizes
downstream task performance M (See Appendix A for all notations). The optimization objective is:

Γ∗ = ψtok(ψcon(G
′

opt)) = argmaxG′∈GM(X[ψtok(ψcon(G
′
))]), (1)

3 METHODOLOGY

3.1 FRAMEWORK OVERVIEW

Figure 2 illustrates the overall structure of PHER, comprising two primary components: 1)
Permutation-Invariant Hierarchical Modeling and 2) Policy-Guided Multi-Objective Search. Specif-
ically, given a large collection of feature transformation records, each record consists of one feature
transformation sequence and the corresponding model performance. We first develop a token-level
encoder to embed original features and mathematical operations, capturing token-level transforma-
tion patterns. Next, we aggregate token embeddings into concept embeddings according to the
correspondence between original features, operations, and generated concepts. We then apply a
concept-level encoder with self-attention pooling mechanism to eliminate order sensitivity, obtain-
ing permutation-invariant global embeddings. To effectively train and optimize the encoders, we
introduce a concept-level decoder and a token-level decoder to reconstruct concept embeddings and
original feature-operation tokens, respectively. After obtaining the global embedding space, we
employ a policy-guided multi-objective search strategy to explore this embedding space, guided
by maximizing downstream task performance and minimizing the length of feature transformation
sequences. The identified optimal embedding is then decoded into its corresponding feature trans-
formation sequence using the trained decoder. Finally, this reconstructed sequence is applied to the
original feature space, resulting in an optimized feature space with improved predictive performance.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.2 HIERARCHICAL FEATURE TRANSFORMATION KNOWLEDGE MODELING

Why Hierarchical Knowledge Modeling Matters. Feature transformation inherently involves in-
tricate hierarchical relationships among original features, mathematical operations, and higher-level
generated concepts. However, existing generative intelligence-based methods typically treat the
entire feature transformation sequence as an indistinguishable whole, neglecting these hierarchical
distinctions. This oversimplification leads to inadequate modeling of transformation knowledge,
reducing the discriminative power of the continuous embedding space, and ultimately resulting in
suboptimal feature spaces. To address them, we propose a hierarchical modeling module in PHER,
explicitly capturing both token-level relationships (individual feature-operation interactions) and
concept-level relationships (aggregated higher-level concepts) within the learned embedding space.

Reinforcement Transformation-Accuracy Training Data Collection. To learn an effective em-
bedding space of feature transformation, we collect n feature transformation records using an RL-
based method (Wang et al., 2022), denoted by {(Γi, vi)}ni=1, where Γi represents a feature trans-
formation sequence (e.g., log(f1),−f3, ...) and vi denotes the corresponding model performance.
In this method, three collaborative reinforced agents select two candidate features and one oper-
ation per iteration to generate new features. The entire procedure is optimized to maximize the
downstream ML task performance. For more details, please refer to the referenced paper.

Token Level Feature Transformation Embedding. After collecting large-scale feature transfor-
mation sequence-accuracy pairs {(Γi, vi)}ni=1, we train the token-level encoder and decoder to cap-
ture token-level transformation patterns from feature-operation token sequences.
Encoder ϕtok: The token encoder aims to learn a mapping function ϕtok that converts transformation
sequence Γ ∈ R1×N to token embeddings E, denoted by E = ϕtok(Γ) ∈ RN×dtok , where N is the
length of the input transformation sequence Γ and dtok is the hidden size of token embedding. In
PHER, we adopt two Transformer encoder layers (Vaswani et al., 2017) as the token encoder.
Decoder ψtok: The token decoder aims to reconstruct the transformation sequence Γ from the
learned token embedding E, denoted by Γ = ψtok(E). In PHER, we adopt two Transformer
decoder layers (Vaswani et al., 2017) as the token decoder.

Why Ensuring Permutation Invariance in Concept-Level Embeddings Matters. While token-
level encoders capture low-level interactions between features and operations, they struggle to model
high-level transformation patterns. Feature transformations often yield feature abstractions (i.e.
concepts) whose ordering does not affect the quality of the resulting feature space or the predic-
tive performance of downstream tasks. However, existing methods encode these concepts in an
order-sensitive manner, introducing permutation bias into the embedding space and limiting search
effectiveness. To address this, we propose a permutation-invariant concept encoder-decoder with
self-attention pooling to eliminate order sensitivity and enable more robust representation learning.
Encoder ϕcon : The concept encoder ϕcon aims to encode the generated concepts into permutation-
invariant global embeddings. To ensure permutation invariance, we adopt a self-attention pool-
ing mechanism (Lee et al., 2019) in ϕcon. This structure is inherently permutation-invariant, en-
suring that any permutation of the generated concepts results in an identical global embedding.
Specifically, we first adopt a mean pooling layer to aggregate the token embeddings E into con-
cept embeddings G according to the relationship between concept and its affiliated feature indices
and mathematical operations. For instance, suppose concepts are derived from the transformation
(f1 + f7, log(f2), ...), then corresponding concept embeddings are obtained by averaging the token
embeddings of the involved features and mathematical operations, denoted by G = (G1,G2, ...),
where G1 = Mean(Ef1 ,Eplus,Ef7) and G2 = Mean(Ef2 ,Elog). Then, we initialize a set of k
learnable seed vectors S ∈ Rk×dseed using Xavier uniform initialization, where k is the number of
seed vectors and dseed is the hidden size of each seed vector. These learnable seed vectors serve
as queries in the multi-head attention module, attending over the token embeddings E which serve
as keys and values to extract high-level semantic concept representations. The output is then com-
bined with the original seed vectors through a residual connection, followed by a linear layer. This
yields the global embedding, denoted by: G′ = ϕcon(G) = Linear(S + Multihead(S,G,G)) ∈
Rk×dglobal , where dglobal is the hidden size of global embedding.

Decoder ψcon : The concept decoder ψcon aims to reconstruct concept embedding G from the global
embedding G′, denoted by G = ψcon(G

′). In PHER, we adopt the same architecture for the
concept decoder as used in the concept encoder, ensuring symmetric abstraction and reconstruction.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Hierarchical Optimization Procedure: To effectively train the hierarchical encoder-decoder mod-
els, we design a three-stage training strategy. Each stage progressively captures feature transforma-
tion knowledge, from token-level to concept-level.
Stage 1: Token-Level Training. In the first stage, we train the token encoder ϕtok and decoder ψtok
to reconstruct the input transformation sequence Γ. Specifically, given a sequence Γ, the token
encoder first produces token embedding E = ϕtok(Γ). The token decoder then reconstructs the
original feature transformation sequence from the token embedding Γ̂ = ψtok(E). We optimize the
token-level model by minimizing the negative log-likelihood loss: Ltok = − logPψtok

(Γ | E).

Stage 2: Concept-Level Training. After training the token-level model, we freeze its parameters and
train the concept encoder ϕcon and decoder ψcon to learn high-level permutation-invariant global
embeddings. Specifically, given a feature transformation sequence Γ, we first utilize the well-
trained token encoder to obtain token embedding E. Then, we input E into the aggregation layer
to generate the concept embedding G based on the relationships between concept and its affili-
ated feature indices and mathematical operations. Thereafter, G′ is input into ϕcon to obtain the
global embedding G′ = ϕcon(Mean(E)). Finally, the global embedding G′ is decoded back to
concept embedding Ĝ = ψcon(G

′) We optimize the concept-level model by minimizing the Mean
Squared Error (MSE) between the reconstructed Ĝ and original concept embedding G, denoted by:
Lcon = MSE(G, Ĝ) = MSE(G, ψcon(ϕcon(G))).

Stage 3: Token-Concept Alignment. In the final stage, we freeze the concept-level model and tune the
parameters of token encoder and decoder to improve the accuracy of end-to-end token reconstruc-
tion. Formally, given an transformation sequence Γ, we obtain the token embedding E = ϕtok(Γ).
Then, E is input into the well-trained concept encoder ϕ∗con, the well-trained concept decoder ψ∗

con
and the token decoder in sequence to reconstruct the feature transformation sequence. We optimize
the following loss during the alignment stage: Lalign = − logPψtok

(Γ | ψ∗
con(ϕ

∗
con(ϕtok(Γ)))). This

stage aligns token embeddings with the fixed concept-level abstractions, improving the coherence
and semantic quality of the reconstructed transformation sequence.

3.3 POLICY-GUIDED MULTI-OBJECTIVE SEARCH

Why selecting search seeds matters. Once the global embedding space has converged, we employ
a policy-guided multi-objective search strategy in the learned global embedding space to identify
the optimal global embedding that achieves maximum downstream task performance and minimum
transformation length. Inspired by the significance of initialization for deep neural networks, good
starting points are crucial for accelerating the search process and enhancing its performance. Thus,
we rank all collected records by model performance and select the top-K as search seeds.
Policy-guided multi-objective search. Existing methods assume the learned embedding space is
convex, relying on gradient-ascent search strategy to identify the global optimal embedding. How-
ever, due to the complex interactions between features and mathematical operations, the embedding
space is highly non-convex in practice, increasing the risk of becoming trapped in local optima
and resulting suboptimal feature transformation sequences. Thus, to perform effective exploration
and search process without strong convexity assumptions, we employ Proximal Policy Optimization
(PPO) (Schulman et al., 2017) method, which is a widely used policy gradient algorithm for multi-
objective optimization. PPO stabilizes policy updates by clipping and trust region mechanisms,
effectively balancing exploration and exploitation in high-dimensional and non-convex embedding
spaces. In PHER, the PPO agent learns to explore the continuous global embedding space by se-
lecting promising global embeddings based on the downstream task performance and transformation
sequence length. Specifically, given a global embedding G′, the PPO agent A aims to manipulate it
to generate the optimal global embedding G

′

opt, denoted by: A(G
′
) = G

′

opt.

Reward R: To balance the performance and the total length of the transformed sequence, we pro-
pose a weighted reward function, denoted by: R = λ(M(X[Γ+])−M(X[Γ])) + (1− λ)N [Γ+],
where M is the downstream ML task, Γ is the original transformation sequence, Γ+ is the searched
transformation sequence, N [Γ+] is the length of Γ+, and λ is the trade-off hyperparameter to bal-
ance the performance improvement and the total length of the transformed sequence.
Solving the Optimization Problem. We adopt a multi-objective optimization strategy to train
the PPO agent. Specifically, the policy is updated by maximizing a clipped surrogate objective,
which approximates the cumulative discounted reward obtained throughout the iterative search
process, while constraining the step size of each update. To enable the PPO agent to identify
more informative embeddings with higher model performance and fewer transformation opera-

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

tions, we adopt an actor-critic model architecture. We optimize the critic network by minimiz-
ing the difference between the observed cumulative discounted rewards and their predictions, de-
noted by: Lcritic = 1

T

∑T
t=1(V (st) − Gt)

2, where T is the trajectory length, st is the state
at time step t, V (st) is the predicted value from the critic, Gt is the cumulative discounted re-
turn, and γ ∈ [0 ∼ 1] is the discounted factor. The actor network is optimized by maximizing
a clipped surrogate objective while constraining the step size of each policy update, denoted by:
Lactor = Êt

[
min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât)

]
, where ϵ is the clipping ratio hyperpa-

rameter, rt(θ) is the probability ratio, and Ât is the estimated advantage. Once the actor network
converges, the resulting policy π∗ guides the global embedding G

′
in the learned global embedding

space G toward regions that yield higher downstream task performance but fewer transformation
operations, without relying on any convexity assumptions. Then, we reconstruct the transforma-
tion sequence Γ+ from the enhanced global embedding G

′

+ using the well-trained concept decoder
and token decoder. Next, we obtain enhanced feature spaces using the enhanced transformation
sequences [Γ+

1 ,Γ
+
2 , ...,Γ

+
K] and input them into the downstream ML task to evaluate their perfor-

mance. Finally, the feature transformation sequence achieving the highest performance is selected
as the optimal sequence, denoted as Γ∗. This sequence serves as the guiding blueprint for refining
the original feature space, thus producing an enhanced feature space.

4 EXPERIMENTS

To enhance the reproducibility of PHER, we provide hyperparameter settings and experimental
platform information in Appendix C.1 and C.2.

4.1 DATASETS AND EVALUATION METRICS

We evaluate PHER on 19 publicly accessible datasets from UCI Public (2022b), LibSVM Chih-Jen
(2022), Kaggle Howard (2022), and OpenML Public (2022a), including 14 classification tasks and 5
regression tasks. Appendix B, Table 3 summarizes the detailed statistics of these dataset. To ensure
consistent and stable results, we adopt Random Forest as the unified downstream model and evaluate
performance using five-fold cross-validation. Each experiment is independently repeated five times
with different random seeds, and we report the mean and standard deviation. All experiments follow
a hold-out evaluation protocol. For regression tasks, we report 1-Relative Absolute Error (1-RAE),
1-Mean Absolute Error (1-MAE), 1-Mean Squared Error (1-MSE), and 1-Root Mean Squared Error
(1-RMSE). For classification tasks, we use F1-score, Precision, Recall, and ROC/AUC.

4.2 BASELINE MODELS

We compare our method with nine widely-used feature transformation methods: (1) RFG generates
new feature-operation-feature transformation records by randomly selecting candidate features and
operations. (2) ERG first applies operations to each feature to expand the feature space and then se-
lects informative features as new features. (3) LDA Blei et al. (2003) is a matrix factorization-based
dimensionality reduction method that projects data into a low-dimensional space. (4) AFAT Horn
et al. (2019a) iteratively applies transformations and performs multi-step feature selection to iden-
tify informative ones. (5) NFS Chen et al. (2019b) uses a recurrent neural network-based controller
trained with reinforcement learning to sequentially model and optimize the transformation process
for each feature. (6) TTG Khurana et al. (2018b) formulates feature transformation as a graph explo-
ration problem and employs reinforcement learning to discover optimal transformation paths within
the graph. (7) GRFG Wang et al. (2022) employs three reinforced agents with a feature group-
ing strategy to perform feature generation in a cascaded manner. (8) DIFER Zhu et al. (2022b)
encodes randomly generated transformation sequences into a continuous embedding space and em-
ploys greedy gradient-based search to identify the best transformed features. (9) MOAT Wang et al.
(2023) embeds RL-collected transformation sequences into continuous embeddings using postfix
expression and conduct gradient-ascent search with the beam search strategy. Besides, we devel-
oped three variants of PHER to evaluate the impact of each technical component: (i) PHER−c

removes the concept encoder and decoder. (ii) PHER−p replaces the permutation-invariant concept
encoder and decoder with permutation-sensitive self-attention layers. (iii) PHER−g replaces the
policy-guided search with Genetic Algorithm (GA). To ensure fair evaluation, we randomly divide
each dataset into 80% for training and 20% for testing. This experimental setting prevents any test
data leakage and ensures a more reliable comparison of feature transformation performance.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Overall performance comparison. In this table, the best and second-best results are high-
lighted in red and blue, respectively.(Higher values indicate better performance.)

Dataset C/R RDG ERG LDA AFAT NFS TTG GRFG DIFER MOAT PHER

Higgs Boson C 0.700±0.001 0.704±0.003 0.511±0.011 0.695±0.001 0.697±0.002 0.699±0.003 0.701±0.002 0.669±0.001 0.699±0.002 0.706±0.002

Amazon Employee C 0.931±0.001 0.935±0.001 0.914±0.002 0.933±0.002 0.932±0.001 0.930±0.001 0.932±0.001 0.929±0.001 0.933±0.002 0.936±0.002

PimaIndian C 0.760±0.007 0.762±0.004 0.729±0.061 0.760±0.011 0.759±0.014 0.750±0.019 0.754±0.011 0.760±0.013 0.807±0.011 0.828±0.003

SpectF C 0.760±0.001 0.759±0.018 0.665±0.119 0.782±0.079 0.760±0.001 0.775±0.014 0.818±0.001 0.766±0.002 0.912±0.014 0.929±0.003

SVMGuide3 C 0.791±0.008 0.817±0.015 0.635±0.049 0.789±0.009 0.786±0.004 0.791±0.014 0.812±0.025 0.773±0.021 0.845±0.001 0.848±0.003

German Credit C 0.667±0.008 0.684±0.011 0.597±0.058 0.640±0.032 0.663±0.017 0.663±0.019 0.683±0.013 0.656±0.018 0.729±0.001 0.736±0.007

Credit Default C 0.805±0.001 0.804±0.002 0.743±0.009 0.804±0.001 0.803±0.002 0.803±0.002 0.806±0.003 0.796±0.005 0.808±0.001 0.810±0.001

Messidor features C 0.685±0.053 0.665±0.025 0.463±0.084 0.656±0.005 0.657±0.011 0.662±0.019 0.692±0.033 0.660±0.007 0.694±0.005 0.744±0.003

Wine Quality Red C 0.514±0.016 0.494±0.005 0.401±0.061 0.480±0.042 0.467±0.021 0.464±0.010 0.470±0.009 0.476±0.018 0.559±0.002 0.562±0.003

Wine Quality White C 0.524±0.001 0.524±0.001 0.437±0.015 0.516±0.032 0.533±0.010 0.529±0.002 0.534±0.019 0.507±0.025 0.536±0.010 0.553±0.002

SpamBase C 0.924±0.001 0.920±0.001 0.885±0.030 0.917±0.001 0.922±0.003 0.922±0.003 0.922±0.005 0.912±0.016 0.932±0.001 0.936±0.002

AP-omentum-ovary C 0.845±0.001 0.814±0.001 0.710±0.134 0.845±0.125 0.845±0.001 0.845±0.001 0.849±0.001 0.833±0.031 0.845±0.002 0.883±0.001

Lymphography C 0.108±0.001 0.129±0.009 0.144±0.132 0.150±0.133 0.170±0.035 0.174±0.040 0.182±0.013 0.150±0.116 0.267±0.035 0.410±0.105

MNIST fashion C 0.714±0.001 0.716±0.001 0.510±0.020 0.699±0.022 0.710±0.002 0.711±0.004 0.728±0.001 0.717±0.002 0.729±0.001 0.735±0.001

Housing Boston R 0.420±0.031 0.418±0.001 0.021±0.002 0.423±0.005 0.424±0.002 0.421±0.011 0.404±0.007 0.381±0.017 0.465±0.006 0.538±0.005

Airfoil R 0.520±0.001 0.519±0.001 0.207±0.065 0.509±0.001 0.519±0.002 0.521±0.001 0.521±0.003 0.558±0.002 0.627±0.011 0.645±0.001

Openml 589 R 0.548±0.032 0.610±0.001 0.034±0.079 0.509±0.002 0.506±0.004 0.502±0.002 0.627±0.006 0.463±0.005 0.656±0.001 0.660±0.006

Openml 618 R 0.444±0.026 0.543±0.039 0.030±0.076 0.473±0.002 0.471±0.004 0.472±0.001 0.562±0.101 0.408±0.036 0.692±0.002 0.693±0.001

Openml 620 R 0.494±0.019 0.541±0.008 0.026±0.013 0.520±0.001 0.509±0.005 0.513±0.004 0.568±0.013 0.442±0.004 0.643±0.003 0.652±0.003

* We evaluated classification (C) and regression (R) tasks in terms of F1-Score and 1-RAE, respectively.
* The standard deviation is computed based on the results of 5 independent runs.

PHER
PHER-p

PHER-c

PHER-g

65

70

75

80

85

90

95

Precision Recall F1 Score ROC/AUC

(a) Spectf

PHER
PHER-p

PHER-c

PHER-g

76

78

80

82

84

Precision Recall F1 Score ROC/AUC

(b) PimaIndian

PHER
PHER-p
PHER-c
PHER-g

65

70

75

80

85

90

1-MAE 1-MSE 1-RAE 1-RMSE

(c) Openml 589

PHER
PHER-p
PHER-c
PHER-g

55

60

65

70

75

80

85

1-MAE 1-MSE 1-RAE 1-RMSE

(d) Openml 620

Figure 3: The influence of hierarchical modeling (PHER−c), permutation invariance (PHER−p),
and policy-guided search (PHER−g) in PHER.

4.3 PERFORMANCE EVALUATION

Overall Performance. Table 1 reports the performance comparison between PHER and baseline
models across 19 datasets, using F1-score for classification tasks and 1-RAE for regression tasks. All
experimental results are obtained by independently running five times with different random seeds.
We observed that PHER outperforms the other baseline models on all datasets. There are three
potential reasons for this observation: 1) The hierarchical modeling architecture captures both low-
level and high-level relationships between features, encoding diverse feature transformation knowl-
edge and building a more informative global embedding space; 2) The permutation-invariant concept
encoder-decoder framework eliminate order sensitivity among concepts, constructing a global un-
biased embedding space; 3) The policy-based RL agent effectively explores the global embedding
space and identifies superior feature transformation embeddings, overcoming non-convex challenges
and converging to the global optimal embedding point. Thus, this experiment demonstrates the ef-
fectiveness of PHER in transforming feature spaces across various types of tasks.
Ablation Study. We conduct this experiment to study the impact of the hierarchical modeling mod-
ule, permutation-invariant embedding, and policy-guided search on the model performance. We de-
veloped three model variants of PHER: 1) PHER−c removes the concept encoder-decoder model;
2) PHER−p replaces the permutation-invariant concept encoder and decoder with permutation-
sensitive self-attention layers. 3) PHER−g replaces the policy-guided search with Genetic Algo-
rithm (GA). We randomly select two classification tasks (SpectF and PimaIndian) and two regres-
sion tasks (Openml 589 and Openml 620) to show the comparison results. We evaluate the model
performance on each type of task from four different perspectives. For classification tasks, we
use F1-score, Precision, Recall, and ROC/AUC. For regression tasks, we use 1-RAE, 1-MAE, 1-
MSE, and 1-RMSE. As shown in figure 3, the performance of PHER is consistently higher than
PHER−c, PHER−p, and PHER−g . The potential reasons for this observation are: 1) the hierar-
chical modeling module captures both low-level feature relationships and high-level concepts, pre-
serving more informative feature transformation knowledge within the global embedding space; 2)
the permutation-invariant mechanism removes permutation noise among generated concepts in the
embedding space, facilitating more effective exploration by the RL agent. 3) the RL agent conducts
effective exploration in the embedding space, eliminating the reliance on convexity assumptions
and avoiding convergence to local optima. Thus, this experiment evaluates the significance of the
hierarchical modeling module, permutation-invariant embedding, and policy-guided search.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

F1
 S

co
re

88

89

90

91

92

93

94

RDGERG LDA
AFAT NFS TTG

GRFG
DIFER

MOAT
Ours

(a) RandomForest

F1
 S

co
re

88

90

92

94

RDGERG LDA
AFAT NFS TTG

GRFG
DIFER

MOAT
Ours

(b) XGBoost

F1
 S

co
re

70

75

80

85

90

RDGERG LDA
AFAT NFS TTG

GRFG
DIFER

MOAT
Ours

(c) KNN

F1
 S

co
re

82

84

86

88

90

92

RDGERG LDA
AFAT NFS TTG

GRFG
DIFER

MOAT
Ours

(d) Decision Tree

Figure 4: Robustness check of PHER with distinct ML models on SpamBase in terms of F1-score.

Robustness Check. We evaluate PHER using various downstream ML models, including Random
Forest (RF), XGBoost (XGB), K-Nearest Neighborhood (KNN), and Decision Tree (DT), to as-
sess the robustness of PHER. Figure 4 shows the comparison results on SpamBase in terms of the
F1-score. We observed that PHER consistently outperforms all baseline methods across different
downstream ML models. A potential reason is that the RL-based data collector explores diverse
feature transformation records guided by validation performance rather than any specific classifier
These records further enable the hierarchical model to encode task-relevant knowledge and char-
acteristics into the global embedding space. Finally, the policy-guided agent leverages these infor-
mation to effectively search the embedding space. The results on Support Vector Machine (SVM),
Ridge, and LASSO are reported in Appendix D.1, Figure 8.

Search Seeds. To observe the impacts of search seeds on the RL-based search process, we replace

84.9

93.5

72.81

70.91

80.86

70.21

80.59

86.58

88.3

93.6

74.4

73.6

81.0

70.6

82.8

92.9

Random Top-K

AP-Omentum-Ovary

Amazon Employee

Messidor_features

German Credit

Credit Default

Higgs Boson

PimaIndian

SpectF
F1 Score

Figure 5: The influence of search seeds.

the top K historical feature transformation
records with K random records. We con-
duct this experiment on eight randomly chosen
datasets and report the average F1-score over
five independent runs. As shown in Figure 5,
search initialized with high-quality seeds con-
sistently outperforms search with random ini-
tialization. A potential reason for this observa-
tion is that the RL agent can leverage informa-
tive seeds to anchor the search within promising
regions of the embedding space, effectively nar-
rowing the search scope and accelerating con-
vergence. Thus, this experiment shows the necessity of the search seeds in PHER.

Model Scalability. To analysis model scalability, we compare the length of feature transformation
sequence and downstream task performance of PHER and the SOTA model MOAT. Figure 6 (a)

PHER
MOAT

Se
qu

en
ce

 L
en

gt
h

0

20

40

60

80

100

Higgs Boson
German Credit

Credit Default

Messidor_features
Openml_620

Wine Quality White

(a) Sequence Length

PHER
MOAT

Pe
rfo

rm
an

ce

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Higgs Boson
German Credit

Credit Default

Messidor_features
Openml_620

Wine Quality White

(b) Performance

Figure 6: Model scalability comparison between
our method and the SOTA model MOAT.

shows that PHER produces significantly
shorter feature transformation sequences,
showing its ability to discover compact and
effective feature transformation sequences.
From Figure 6 (b), we found that PHER
consistently outperforms MOAT across all
datasets. These observations suggest that the
RL agent in PHER effectively optimizes the
learned embeddings by jointly maximizing
task performance and minimizing transforma-
tion sequence length. Thus, this experiment
demonstrates that PHER consistently achieves
strong performance and compactness across diverse datasets, highlighting the scalability of PHER.

Hyperparameter Sensitivity Analysis. We assess the hyperparameter sensitivity of PHER on the
SpectF dataset by varying the clipping ratio ϵ and the reward trade-off λ from 0.1 to 0.9, where
ϵ stabilizes training by controlling the magnitude of policy updates and λ balances task perfor-
mance against transformation sequence length. Figure 7, demonstrates the overall experimental
results in terms of Precision, Recall and F1-Score. We found that PHER achieves optimal per-
formance when ϵ = 0.2 and λ = 0.9. This aligns with prior PPO studies, where ϵ = 0.2 is
a setting widely adopted in standard reinforcement learning benchmarks Schulman et al. (2017).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

𝜖=0.1

𝜖=0.2

𝜖=0.3
𝜖=0.4

𝜖=0.5

𝜖=0.6

𝜖=0.7
𝜖=0.8

𝜖=0.9

Precision
Recall
F1-Score

0.87
0.88
0.89
0.90
0.91
0.92
0.93
0.94
0.95

(a) Clipping Trade-off

λ=0.1

λ=0.2

λ=0.3
λ=0.4

λ=0.5

λ=0.6

λ=0.7
λ=0.8

λ=0.9

Precision
Recall
F1-Score

0.87
0.88
0.89
0.90
0.91
0.92
0.93
0.94
0.95

(b) Reward Trade-off

Figure 7: Hyperparameter sensitivity.

Furthermore, we found that the model perfor-
mance remains relatively stable across a broad
range of λ, with slight improvements as λ ap-
proaches 0.9. Thus, this experiment demon-
strates the model sensitivity to hyperparameter
settings and provides practical guidance on hy-
perparameter configuration. To provide a com-
prehensive evaluation of PHER, we analyze the
time complexity (Appendix D.2) and conduct a
traceability case study (Appendix D.3).

5 RELATED WORKS

Automated Feature Transformation (AFT) can enhance the tabular feature spaces by applying
mathematical operations to original features Chen et al. (2021); Kusiak (2001). Existing methods
can be grouped into three main types: 1) expansion-reduction based approaches Kanter & Veera-
machaneni (2015); Khurana et al. (2016b); Lam et al. (2017); Horn et al. (2019b); Khurana et al.
(2016a) first expand the feature space through mathematical transformations and then reduce di-
mensionality by selecting informative features. However, these methods struggle to effectively
capture complex feature compositions, resulting in suboptimal results. 2) evolution-evaluation
approaches Wang et al. (2022); Khurana et al. (2018b); Tran et al. (2016); Zhu et al. (2022a);
Zhang et al. (2022); Katz et al. (2016) combine feature generation and selection into a closed-
loop learning system, using evolutionary algorithms or reinforcement learning (RL) to iteratively
generate transformed features and retain the most effective ones. However, these methods incur
high computational cost and unstable performance due to discrete decision-making. 3) Auto ML-
based approaches Elsken et al. (2019); Li et al. (2021); He et al. (2021); Karmaker et al. (2021);
Zhang et al. (2021); Wever et al. (2021); Bahri et al. (2022); Wang et al. (2021); Dor & Reich
(2012); Egozi et al. (2008); Ren et al. (2023) formulate AFT as an AutoML problem, searching for
transformation strategies alongside model optimization. For instance, Wang et al. (2023) embeds
RL-collected transformation sequences into continuous embeddings using postfix expression and
conducts gradient-ascent beam search to identify informative feature transformation embeddings.
However, this methods are limited by: 1) overlooking intricate hierarchical relationships inherent in
feature transformation knowledge; 2) encoding feature transformation sequences as order-sensitive;
3) relying on the convexity assumption of the embedding space. To address these drawbacks, we
propose PHER, a hierarchical modeling framework. Specifically, we combine permutation-invariant
hierarchical modeling and multi-objective policy-guided search. The permutation-invariant hierar-
chical modeling module captures both token-level and concept-level feature transformation knowl-
edge and mitigate order sensitivity among concepts, creating an unbiased global embedding space.
The multi-objective policy-guided search effectively explores the learned embedding space, identi-
fying better feature transformation sequence without relying on any convexity assumptions.

6 CONCLUSION REMARKS

In this paper, we propose a hierarchical feature transformation framework PHER that integrates
permutation-invariant hierarchical modeling and multi-objective policy-guided search. In de-
tail, we first develop a permutation-invariant hierarchical modeling module, including token-level
and concept-level encoder-decoder models, to preserve the feature-operation token level and the
generated-concept level feature transformation knowledge into a global embedding space. Within
this module, we develop a self-attention pooling mechanism that symmetrically computes atten-
tion scores across all generated concepts to ensure permutation invariance. Then, we employ a
multi-objective search strategy to explore the learned embedding space, overcoming the reliance on
convex assumptions and mitigating the risk of being trapped in local optima. Finally, extensive ex-
periments demonstrate several key insights: 1) hierarchical modeling structure significantly captures
meaningful hierarchical interactions, enhancing the expressivity of the learned embedding space. 2)
permutation-invariant module effectively mitigates order sensitivity, stabilizing the embedding space
learning and search processes. 3) policy-guided RL search enables effective exploration, avoiding
convergence to local optima and improving search robustness. These findings highlight the impor-
tance of permutation-invariant hierarchical modeling and robust exploration strategies for advancing
automated feature transformation. In the future, a promising direction is to improve the computa-
tional efficiency and scalability of PHER, possibly by integrating lightweight concept modeling
framework or refining the RL-based search strategy in the learned embedding space.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Maroua Bahri, Flavia Salutari, Andrian Putina, and Mauro Sozio. Automl: state of the art with a
focus on anomaly detection, challenges, and research directions. International Journal of Data
Science and Analytics, 14(2):113–126, 2022.

David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation. the Journal of
machine Learning research, 3:993–1022, 2003.

Xiangning Chen, Qingwei Lin, Chuan Luo, Xudong Li, Hongyu Zhang, Yong Xu, Yingnong Dang,
Kaixin Sui, Xu Zhang, Bo Qiao, et al. Neural feature search: A neural architecture for automated
feature engineering. In 2019 IEEE International Conference on Data Mining (ICDM), pp. 71–80.
IEEE, 2019a.

Xiangning Chen, Qingwei Lin, Chuan Luo, Xudong Li, Hongyu Zhang, Yong Xu, Yingnong Dang,
Kaixin Sui, Xu Zhang, Bo Qiao, et al. Neural feature search: A neural architecture for automated
feature engineering. In 2019 IEEE International Conference on Data Mining (ICDM), pp. 71–80.
IEEE, 2019b.

Yi-Wei Chen, Qingquan Song, and Xia Hu. Techniques for automated machine learning. ACM
SIGKDD Explorations Newsletter, 22(2):35–50, 2021.

Lin Chih-Jen. Libsvm dataset download. [EB/OL], 2022. https://www.csie.ntu.edu.
tw/˜cjlin/libsvmtools/datasets/.

Ofer Dor and Yoram Reich. Strengthening learning algorithms by feature discovery. volume 189,
pp. 176–190. Elsevier, 2012.

Ofer Egozi, Evgeniy Gabrilovich, and Shaul Markovitch. Concept-based feature generation and
selection for information retrieval. In AAAI, volume 8, pp. 1132–1137, 2008.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey. The
Journal of Machine Learning Research, 20(1):1997–2017, 2019.

Xin He, Kaiyong Zhao, and Xiaowen Chu. Automl: A survey of the state-of-the-art. Knowledge-
Based Systems, 212:106622, 2021.

Franziska Horn, Robert Pack, and Michael Rieger. The autofeat python library for automated feature
engineering and selection. arXiv preprint arXiv:1901.07329, 2019a.

Franziska Horn, Robert Pack, and Michael Rieger. The autofeat python library for automated feature
engineering and selection. arXiv preprint arXiv:1901.07329, 2019b.

Jeremy Howard. Kaggle dataset download. [EB/OL], 2022. https://www.kaggle.com/
datasets.

James Max Kanter and Kalyan Veeramachaneni. Deep feature synthesis: Towards automating data
science endeavors. In 2015 IEEE international conference on data science and advanced analyt-
ics (DSAA), pp. 1–10. IEEE, 2015.

Shubhra Kanti Karmaker, Md Mahadi Hassan, Micah J Smith, Lei Xu, Chengxiang Zhai, and Kalyan
Veeramachaneni. Automl to date and beyond: Challenges and opportunities. ACM Computing
Surveys (CSUR), 54(8):1–36, 2021.

Gilad Katz, Eui Chul Richard Shin, and Dawn Song. Explorekit: Automatic feature generation and
selection. pp. 979–984, 2016.

Udayan Khurana, Fatemeh Nargesian, Horst Samulowitz, Elias Khalil, and Deepak Turaga. Au-
tomating feature engineering. Transformation, 10(10):10, 2016a.

Udayan Khurana, Deepak Turaga, Horst Samulowitz, and Srinivasan Parthasrathy. Cognito: Auto-
mated feature engineering for supervised learning. In 2016 IEEE 16th International Conference
on Data Mining Workshops (ICDMW), pp. 1304–1307. IEEE, 2016b.

10

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.kaggle.com/datasets
https://www.kaggle.com/datasets

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Udayan Khurana, Horst Samulowitz, and Deepak Turaga. Feature engineering for predictive mod-
eling using reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 32, 2018a.

Udayan Khurana, Horst Samulowitz, and Deepak Turaga. Feature engineering for predictive mod-
eling using reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 32, 2018b.

Andrew Kusiak. Feature transformation methods in data mining. IEEE Transactions on Electronics
packaging manufacturing, 24(3):214–221, 2001.

Hoang Thanh Lam, Johann-Michael Thiebaut, Mathieu Sinn, Bei Chen, Tiep Mai, and Oznur Alkan.
One button machine for automating feature engineering in relational databases. arXiv preprint
arXiv:1706.00327, 2017.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set
transformer: A framework for attention-based permutation-invariant neural networks. In Ka-
malika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Con-
ference on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pp.
3744–3753. PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.press/v97/
lee19d.html.

Yaliang Li, Zhen Wang, Yuexiang Xie, Bolin Ding, Kai Zeng, and Ce Zhang. Automl: From method-
ology to application. In Proceedings of the 30th ACM International Conference on Information
& Knowledge Management, pp. 4853–4856, 2021.

Public. Openml dataset download. [EB/OL], 2022a. https://www.openml.org.

Public. Uci dataset download. [EB/OL], 2022b. https://archive.ics.uci.edu/.

Kezhou Ren, Yifan Zeng, Yuanfu Zhong, Biao Sheng, and Yingchao Zhang. Mafsids: a reinforce-
ment learning-based intrusion detection model for multi-agent feature selection networks. Journal
of Big Data, 10(1):137, 2023.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

Binh Tran, Bing Xue, and Mengjie Zhang. Genetic programming for feature construction and se-
lection in classification on high-dimensional data. Memetic Computing, 8(1):3–15, 2016.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of the 31st Inter-
national Conference on Neural Information Processing Systems, NIPS’17, pp. 6000–6010, Red
Hook, NY, USA, 2017. Curran Associates Inc. ISBN 9781510860964.

Dakuo Wang, Josh Andres, Justin D Weisz, Erick Oduor, and Casey Dugan. Autods: Towards
human-centered automation of data science. In Proceedings of the 2021 CHI Conference on
Human Factors in Computing Systems, pp. 1–12, 2021.

Dongjie Wang, Yanjie Fu, Kunpeng Liu, Xiaolin Li, and Yan Solihin. Group-wise reinforcement
feature generation for optimal and explainable representation space reconstruction. In Proceed-
ings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD
’22, pp. 1826–1834, New York, NY, USA, 2022. Association for Computing Machinery. ISBN
9781450393850.

Dongjie Wang, Meng Xiao, Min Wu, Yuanchun Zhou, and Yanjie Fu. Reinforcement-enhanced
autoregressive feature transformation: Gradient-steered search in continuous space for postfix
expressions. Advances in Neural Information Processing Systems, 36, 2023.

Marcel Wever, Alexander Tornede, Felix Mohr, and Eyke Hüllermeier. Automl for multi-label
classification: Overview and empirical evaluation. IEEE transactions on pattern analysis and
machine intelligence, 43(9):3037–3054, 2021.

11

https://proceedings.mlr.press/v97/lee19d.html
https://proceedings.mlr.press/v97/lee19d.html
https://www.openml.org
https://archive.ics.uci.edu/
https://arxiv.org/abs/1707.06347

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Wangyang Ying, Dongjie Wang, Haifeng Chen, and Yanjie Fu. Feature selection as deep sequential
generative learning. ACM Transactions on Knowledge Discovery from Data, 18(9):1–21, 2024a.

Wangyang Ying, Dongjie Wang, Xuanming Hu, Yuanchun Zhou, Charu C Aggarwal, and Yan-
jie Fu. Unsupervised generative feature transformation via graph contrastive pre-training and
multi-objective fine-tuning. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 3966–3976, 2024b.

Yao Zhang, Yun Xiong, Yiheng Sun, Caihua Shan, Tian Lu, Hui Song, and Yangyong Zhu. Rudi:
Explaining behavior sequence models by automatic statistics generation and rule distillation. pp.
2651–2660, 2022.

Ziwei Zhang, Xin Wang, and Wenwu Zhu. Automated machine learning on graphs: A survey. arXiv
preprint arXiv:2103.00742, 2021.

Guanghui Zhu, Shen Jiang, Xu Guo, Chunfeng Yuan, and Yihua Huang. Evolutionary automated
feature engineering. In PRICAI 2022: Trends in Artificial Intelligence: 19th Pacific Rim Inter-
national Conference on Artificial Intelligence, PRICAI 2022, Shanghai, China, November 10–13,
2022, Proceedings, Part I, pp. 574–586. Springer, 2022a.

Guanghui Zhu, Zhuoer Xu, Chunfeng Yuan, and Yihua Huang. Difer: differentiable automated
feature engineering. In International Conference on Automated Machine Learning, pp. 17–1.
PMLR, 2022b.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Appendix

A SUMMARY OF NOTATIONS

To ensure clarity, we provide a summary of the mathematical notations used throughout the paper.
Table 2 lists the key symbols along with their descriptions.

Table 2: Summary of Notations
Notation Description

D = {X, y} Dataset
X Input features
y Target variable
O Operation set
M Downstream task
Γi Feature transformation record i
vi Downstream task performance of feature transformation record i
Γ+ Searched feature transformation record
Γ∗ Optimal Feature transformation record
ϕcon Concept encoder
ψcon Concept decoder
ϕ∗
tok Well-trained token encoder
ϕ∗
con Well-trained concept encoder
ψ∗

tok Well-trained token decoder
ψ∗

con Well-trained concept decoder
E Token embedding
G Concept embedding
Ĝ Reconstructed concept embedding
G′ Global embedding
G

′
+ Enhanced global embedding

G
′
opt Optimal global embedding
G Global embedding space
S Learnable seed vector
k Number of seed vector
N Length of feature transformation record
dseed Hidden size of seed vector
dtok Hidden size of token embedding
dglobal Hidden size of global embedding
A PPO agent
a Agent action
s Agent state
R Agent reward
λ Reward trade-off hyperparameter
ϵ Clipping ratio hyperparameter
T Trajectory length

V (st) Agent predicted reward
Gt Discounted reward
γ Discount vector
π Agent policy
π∗ Optimal agent policy
rt(θ) Probability ratio
Ltok Loss function of training token-level model
Lcon Loss function of training concept-level model
Lalign Loss function of aligning token-concept models

B DATASET STATISTICS

Table 3 summarizes the details of the datasets used in our experiments. For each dataset, we report
its source, number of samples, and the number of features. These datasets cover a diverse range

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 3: Dataset Statistics Overview
Dataset Source Samples Features

Higgs Boson UCIrvine 50000 28
Amazon Employee Kaggle 32769 9

PimaIndian UCIrvine 768 8
SpectF UCIrvine 267 44

SVMGuide3 LibSVM 1243 21
German Credit UCIrvine 1001 24
Credit Default UCIrvine 30000 25

Messidor features UCIrvine 1150 19
Wine Quality Red UCIrvine 999 12

Wine Quality White UCIrvine 4900 12
SpamBase UCIrvine 4601 57

AP-omentum-ovary OpenML 275 10936
Lymphography UCIrvine 148 18
MNIST fashion Kaggle 10000 784
Housing Boston UCIrvine 506 13

Airfoil UCIrvine 1503 5
Openml 589 OpenML 1000 25
Openml 618 OpenML 1000 50
Openml 620 OpenML 1000 25

of domains and scales, including both classification and regression tasks. Such diversity ensures a
comprehensive evaluation of the proposed method across different scenarios.

C HYPERPARAMETER AND EXPERIMENTAL SETTINGS

C.1 HYPERPARAMETER SETTINGS AND REPRODUCIBILITY

The operation set incorporates a diverse set of unary and binary transformations, including square
root, square, cosine, sine, tangent, exp, cube, log, reciprocal, quantile transformer, min-max scale,
sigmoid, plus, subtract, multiply, divide. We ran the RL-based data collector for 512 epochs to col-
lect a substantial set of feature transformation–accuracy pairs. To enhance the diversity of training
data, we randomly shuffled each transformation sequence 10 times. The hidden size of token embed-
ding, concept embedding and global embedding are set as 128. To train the permutation-invariant
hierarchical modeling module, we set batch size as 256, the step size as 0.001, the dimension of
seed vectors as 128, respectively. To conduct effective search process, we used the top 20 feature
transformation-accuracy records as starting points to search for the optimal transformation embed-
dings. To stabilize the search process, we set search epoch as 10, learning rate of the actor as 0.0003,
learning rate of the critic as 0.001, reward trade-off as 0.9, reward discounted factor as 0.99, search
step as 1000, and the clipping ratio as 0.2, respectively.

C.2 EXPERIMENTAL PLATFORM INFORMATION

All experiments were conducted on the Windows 11 operating system, AMD Ryzen 5 5600X CPU,
and NVIDIA GeForce RTX 3070Ti GPU, with the framework of Python 3.10.15 and PyTorch 2.5.1.

D EXPERIMENTAL RESULTS

D.1 ROBUSTNESS CHECK

To complement the robustness analysis in Section 4.3, we report additional results on Support Vector
Machine (SVM), Ridge Regression (Ridge), and LASSO models. Figure 8 summarizes the F1-
scores obtained on the SpamBase dataset using these additional downstream ML models. The results
further confirm the consistent superiority of PHER across different learning algorithms. Thus, this
experiment demonstrates the robustness of PHER.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

F1
 S

co
re

87

88

89

90

91

92

93

RDGERG LDA
AFAT NFS TTG

GRFG
DIFER

MOAT
Ours

(a) RandomForest

F1
 S

co
re

87

88

89

90

91

RDGERG LDA
AFAT NFS TTG

GRFG
DIFER

MOAT
Ours

(b) Ridge

F1
 S

co
re

86

88

90

92

RDGERG LDA
AFAT NFS TTG

GRFG
DIFER

MOAT
Ours

(c) LASSO

Figure 8: Robustness check of PHER with distinct ML models on SpamBase dataset in terms of
F1-score.

Search Time Feature Num

N
um

be
r

10
15

20
25

Tim
e C

ost (s)
0

200
400

600
800

1000

PimaIndian

Amazon Employee

Wine Quality Red

Lymphography

Messidor_features

Credit D
efault

(a)

Search Time Sample Size

N
um

be
r

0
10

,0
00

20
,0

00
30

,0
00

Tim
e C

ost (s)
0

200
400

600
800

1000

Lymphography

PimaIndian

Wine Quality Red

Messidor_features

Credit D
efault

Amazon Employee

(b)

Inference Time Feature Num

N
um

be
r

10
15

20
25

Tim
e C

ost (s)
0

10
20

30

PimaIndian

Amazon Employee

Wine Quality Red

Lymphography

Messidor_features

Credit D
efault

(c)

Inference Time Sample Size

N
um

be
r

0
10

,0
00

20
,0

00
30

,0
00

Tim
e C

ost (s)
0

10
20

30

Lymphography

PimaIndian

Wine Quality Red

Messidor_features

Credit D
efault

Amazon Employee

(d)

Figure 9: Time complexity of PHER in search time and inference time based on feature number and
sample size.
D.2 TIME COMPLEXITY

Reinforcement learning (RL) methods are often associated with high computational costs due to
iterative exploration and delayed reward feedback. To evaluate the practical efficiency of PHER,
we report the trends of the search time and inference time with respect to sample size and feature
dimensionality on multiple datasets. Figure 9 shows the experimental results terms of second (s).
As shown in Figure 9 (a), search time generally increases with the number of feature columns
from across datasets. In contrast, Figure 9 (b) indicates that the search time remains relatively
stable with the increase of sample size of the feature set. The potential reasons for this observation
is that the search time of the RL agent mainly depends on data sample size since more samples
requires more time to collect model performance as rewards in each iteration. Moreover, Figure 9
(c) and (d) demonstrates that the inference time of PHER remains relatively stable as both the
feature dimensionality and sample size increase. This observation is consistent with our expectation,
as we map the transformation sequence of varying lengths into a continuous space with uniform
dimensionality, resulting in the stability of inference time of PHER. Therefore, this experiment
demonstrates the time complexity of PHER.

D.3 TRACEABILITY CASE STUDY

We conduct this experiment to evaluate the traceability of PHER. We rank the top 10 significant
features for prediction in both the original feature set and PHER generated feature set of the Wine
Quality Red dataset. Figure 10 visualize the experiment results, where larger bar indicates higher
feature importance. We observed that approximately 70% crucial features in the new feature set are
generated by PHER. The new generated feature space enhances the downstream ML performance
by 23.7%. There are two potential reasons for this observation: 1) the hierarchical modeling mod-
ule in PHER effectively captures the inherent hierarchical relationships from low-level features and
operations to high-level concepts. 2) the policy-guided multi-objective search strategy effectively
explores the learned global embedding space and identifies the superior feature transformation se-
quence, overcoming the non-convex challenge and converging to the global optimal embedding
point. Furthermore, we found that ‘[alcohol]’ is the most important feature in the original set. This
aligns with domain knowledge, as alcohol is known to be one of the most influential factors in deter-
mining red wine quality. PHER not only identifies this essential feature but also generates a variety

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

[pH]

[citric acid]

[fixed acidity]

[density]

[chlorides] [residual sugar]

[sulphates]

[volatile acidity]

[total sulfur dioxide]

[alcohol]
Original Feature Set

F1-Score:0.456

(a) Original Feature Space

[alcohol]×[chlorides]

[alcohol]×[...]

[total sulfur dioxide]

[chlorides]×[...] [alcohol]×[sulphates]

[alcohol]

[volatile acidity]

cos([alcohol]×[...])

cos([alcohol])
PHER Generated Feature Set

F1-Score:0.564

(b) PHER Generated Feature Space

Figure 10: Comparison of traceability on the original feature set and selected feature subset.

of composited features based on ‘[alcohol]’, which further enhance the predictive performance. This
observation demonstrates that PHER is capable of identifying the importance of individual features
while also deriving new informative representations that align with domain semantics and enhance
downstream performance. Such new informative features empower domain experts to trace the ori-
gins of transformed features and derive novel analytical rules for assessing red wine quality. Thus,
this case study demonstrates the traceability and interpretability of PHER.

E LIMITATIONS AND FUTURE WORK

Extensive experimental results demonstrate that PHER delivers substantial performance improve-
ments across diverse datasets and exhibits strong generalizability across heterogeneous tasks. Future
work could explore several promising directions to further enhance the capability and adaptability of
PHER across broader scenarios: 1) PHER incorporates a hierarchical modeling module to explicitly
capture both token-level relationships and concept-level relationships. One potential direction for
improvement might be to adopt a lightweight alternative to further enhance the efficiency of PHER
when scaling to large-scale datasets. 2) PHER employs a policy-guided multi-objective search
strategy to explore the learned embedding space and identify the optimal feature transformation se-
quence. Another potential direction for improvement might be to simplify the trajectory collection
process or adopt a more compact representation of the search space to further reduce computational
overhead. These directions offer opportunities to further enhance the capability and adaptability of
PHER in more complex real-world scenarios, which are also our future research directions.

16

	Introduction
	Problem Statement
	Methodology
	Framework Overview
	Hierarchical Feature Transformation Knowledge Modeling
	Policy-guided Multi-objective Search

	Experiments
	Datasets and Evaluation Metrics
	Baseline Models
	Performance Evaluation

	Related Works
	Conclusion Remarks
	Summary of Notations
	Dataset Statistics
	Hyperparameter and Experimental settings
	Hyperparameter Settings and Reproducibility
	Experimental Platform Information

	Experimental Results
	Robustness Check
	Time Complexity
	Traceability Case Study

	Limitations and Future Work

