Under review as a conference paper at ICLR 2026

PERMUTATION-INVARIANT HIERARCHICAL
REPRESENTATION LEARNING FOR REINFORCEMENT-
GUIDED FEATURE TRANSFORMATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Feature transformation aims to refine tabular feature spaces by mathematically
transforming existing features into more predictive representations. Recent ad-
vances leverage generative intelligence to encode transformation knowledge into
continuous embedding spaces, facilitating the exploration of superior feature
transformation sequences. However, such methods face three critical limitations:
1) Neglecting hierarchical relationships between low-level features, mathematical
operations and the resulting high-level feature abstractions, causing incomplete
representations of the transformation process; 2) Incorrectly encoding transforma-
tion sequences as order-sensitive, introducing unnecessary biases into the learned
continuous embedding space; 3) Relying on gradient-based search methods under
the assumption of embedding space convexity, making these methods susceptible
to being trapped in local optima. To address these limitations, we propose a novel
framework consisting of two key components. First, we introduce a permutation-
invariant hierarchical modeling module that explicitly captures hierarchical inter-
actions from low-level features and operations to high-level feature abstractions.
Within this module, an self-attention pooling mechanism ensures permutation in-
variance of the learned embedding space, aligning generated feature abstractions
directly with predictive performance. Second, we develop a policy-guided multi-
objective search strategy using reinforcement learning (RL) to effectively explore
the embedding space. We select locally optimal search seeds from empirical data
based on model performance, then simultaneously optimize predictive accuracy
and minimize transformation sequence length starting from these seeds. Finally,
extensive experiments are conducted to evaluate the effectiveness,efficiency and
robustness of our framework. Our code and data are publicly accessible '

1 INTRODUCTION

Feature transformation aims to improve tabular feature spaces by mathematically deriving more
predictive representations from original features. Although deep learning has recently achieved
remarkable success, it struggles to deliver strong performance on tabular data due to heterogeneous
feature types, varying feature scales, and the presence of missing values or outliers. Furthermore, the
black-box nature of deep learning models limits their interpretability, hindering their application in
further data analysis and critical decision-making systems. Thus, automated feature transformation,
which aims to generate distinguishable and informative features to enhance predictive performance,
has emerged as a significant research direction in tabular data analysis.

Existing methods for automated feature transformation can be categorized into three main groups:
1) Expansion-reduction approaches (Kanter & Veeramachaneni, 2015; Horn et al., 2019b; Khu-
rana et al., 2016b), which first enlarge the original feature space using mathematical transforma-
tions and subsequently reduce dimensionality through feature selection; 2) Evolution-evaluation
approaches (Wang et al., 2022; Khurana et al., 2018a; Tran et al., 2016), which utilize Evolutionary
Algorithms (EA) or Reinforcement Learning (RL) to iteratively generate and evaluate transforma-
tion candidates based on model performance feedback; 3) Auto ML-based approaches (Chen et al.,

"https://anonymous.4open.science/r/PHER-32A6

https://anonymous.4open.science/r/PHER-32A6

Under review as a conference paper at ICLR 2026

2019a; Zhu et al., 2022b), which formulate feature transformation as a search problem, employ-
ing automated machine learning techniques to identify optimal transformations. Despite achieving
considerable success, these methods still face challenges in effectively modeling intricate patterns
inherent in feature transformation knowledge.

Inspired by the success of generative Al, recent advances formulate automated feature trans-
formation as a token generation task (Wang et al., 2023; Ying et al., 2024b;a). They com-
press feature transformation knowledge into a continuous embedding space and subsequently
explore this space via gradient-based methods to identify superior feature transformation se-
quences. However, there are three primary limitations: 1) Neglecting hierarchical relation-
ships between original features, mathematical operations, and generated feature abstractions.
For example, as illustrated in Figure 1, Body

Mass Index (BMI) and Waist-to-Hip Ra- PreDM T2DM IR~ MetS Output
tio (WHR) are high-level feature abstractions T T

(i.e. concepts) derived from original features Predictive Model

through mathematical transformations, signifi- T T

cantly contributing to accurate predictions. Ne- Weight _ Waist

BMI Concepts

glecting explicit modeling of these hierarchical
relationships results in incomplete feature rep- =
resentations, limiting the capture gf m;amngful (Weight) (Height) Wais) D @O ® © Tokens
interactions and reducing the distinguishability

of the embedding space. 2) Ignoring the order Figure 1: Illustration of hierarchical relationships
invariance of the generated feature abstrac- between generated feature abstractions (concepts)
tions with respect to the predictive perfor- and original features. Body Mass Index (BMI)
mance of the associated feature space. Prior and Waist-to-Hip Ratio (WHR) are obtained by
studies treat the entire feature transformation mathematically transforming original features.
process as a sequential model to capture trans-

formation knowledge. However, this formulation introduces unnecessary permutation bias among
generated concepts into the embedding space, hindering effective exploration and limiting the iden-
tification of the globally optimal feature transformation embedding. 3) Relying on gradient-based
search methods that strongly assume convexity of the learned embedding space. Existing meth-
ods typically assume convexity in the learned embedding space, relying on gradient-based search
methods to identify globally optimal solutions. However, in practice, due to complex interactions
among features and mathematical operations, it is challenging to guarantee the convexity of the
embedding space. This misalignment between the convexity assumption and the practical charac-
teristics of the embedding space increases the risk of becoming trapped in local optima, resulting in
suboptimal feature transformation sequences.

N Height2 Hip

Our Contribution: A Hierarchical Modeling and Policy-Guided Feature Transformation Per-
spective. To address these limitations, we propose PHER, a novel feature transformation frame-
work that integrates permutation-invariant hierarchical modeling and multi-objective policy-guided
search. Specifically, given a large volume of feature transformation records—each consisting of
a transformation sequence and the associated model performance—we first design a hierarchical
modeling module. This module preserves transformation knowledge at both low-level feature in-
teractions and high-level feature abstractions (i.e. concepts) into a continuous embedding space.
To ensure permutation invariance, we develop a self-attention pooling mechanism that symmetri-
cally computes attention scores across various generated concepts. This structure guarantees that
any permutation of generated concepts yields identical embeddings, resulting in a global continu-
ous embedding space that unbiasedly preserves feature transformation knowledge. Subsequently,
we employ a policy-guided multi-objective search strategy to explore the global embedding space
and identify the optimal feature transformation sequence. In detail, we first select the top-K feature
transformation sequences based on model performance as search seeds. Then, we convert these
seeds into embeddings, which serve as initial positions for exploration within the learned global
embedding space. Next, we treat seed embeddings as states and implement a reinforcement learning
(RL) agent to explore the embedding space, guided by maximizing downstream task performance
and minimizing the length of transformation sequences. The exploratory nature of reinforcement
learning enables effective navigation of the embedding space, reducing the risk of becoming trapped
in local optima, even when the embedding space lacks convexity. Finally, extensive experiments are
conducted on 19 real-world datasets to evaluate the efficiency, resilience, and traceability of PHER.

Under review as a conference paper at ICLR 2026

Transformation Reconstructed
Sequence Sequence

NN
L&]

[Downstream)
Tasks

ransformation
Length

Figure 2: An overview of our framework. PHER comprises two main components: 1) Permutation-
Invariant Hierarchical Modeling, which unbiasedly preserves feature transformation knowledge at
both the feature-operation token level and the generated-concept level within a global embedding
space; 2) Policy-Guided Multi-objective Search, which effectively explores the learned embedding
space to identify optimal feature transformation sequences.

2 PROBLEM STATEMENT

We aim to develop an automated feature transformation framework through the lens of genera-
tive intelligence, integrating permutation-invariant hierarchical modeling and policy-guided multi-
objective search strategy. Formally, given a dataset D = {X,y} , where X denotes features and
y represents the corresponding labels, along with a set of mathematical operation set O (e.g., ad-
dition, subtraction, multiplication). We first gather n feature transformation records, denoted by
{(T';,v;)}"_, based on the dataset D, where each record consists of transformation sequence I'; and
the associated downstream predictive performance v;. We then train a token-level encoder ¢, and
decoder 1,1, to encode interactions between original features and mathematical operations into em-
beddings, optimized through minimizing the reconstruction loss at the token-level. Next, using the
embeddings from ¢,,j, we aggregate them to obtain the concept-level embeddings. A concept-level
permutation-invariant encoder ¢.,,, is then employed to eliminate order sensitivity among concepts,
resulting in a global, unbiased embedding space G. A corresponding concept-level decoder 1), is
simultaneously trained to capture patterns from generated concepts. After that, we employ a policy-
guided strategy to explore G, aiming to identify the optimal global embedding G;pt. This embed-
ding can be decoded by the concept-level decoder v.,,, and token-level decoder vy, to reconstruct
the optimal feature transformation sequence I'*, thus generating a feature space that maximizes
downstream task performance M (See Appendix A for all notations). The optimization objective is:

"= lrbtok (wcon(G/opt)) = argmaXG'eGM (X["/)tok (¢(‘on(G,))D7 (n
3 METHODOLOGY
3.1 FRAMEWORK OVERVIEW

Figure 2 illustrates the overall structure of PHER, comprising two primary components: 1)
Permutation-Invariant Hierarchical Modeling and 2) Policy-Guided Multi-Objective Search. Specif-
ically, given a large collection of feature transformation records, each record consists of one feature
transformation sequence and the corresponding model performance. We first develop a token-level
encoder to embed original features and mathematical operations, capturing token-level transforma-
tion patterns. Next, we aggregate token embeddings into concept embeddings according to the
correspondence between original features, operations, and generated concepts. We then apply a
concept-level encoder with self-attention pooling mechanism to eliminate order sensitivity, obtain-
ing permutation-invariant global embeddings. To effectively train and optimize the encoders, we
introduce a concept-level decoder and a token-level decoder to reconstruct concept embeddings and
original feature-operation tokens, respectively. After obtaining the global embedding space, we
employ a policy-guided multi-objective search strategy to explore this embedding space, guided
by maximizing downstream task performance and minimizing the length of feature transformation
sequences. The identified optimal embedding is then decoded into its corresponding feature trans-
formation sequence using the trained decoder. Finally, this reconstructed sequence is applied to the
original feature space, resulting in an optimized feature space with improved predictive performance.

Under review as a conference paper at ICLR 2026

3.2 HIERARCHICAL FEATURE TRANSFORMATION KNOWLEDGE MODELING

Why Hierarchical Knowledge Modeling Matters. Feature transformation inherently involves in-
tricate hierarchical relationships among original features, mathematical operations, and higher-level
generated concepts. However, existing generative intelligence-based methods typically treat the
entire feature transformation sequence as an indistinguishable whole, neglecting these hierarchical
distinctions. This oversimplification leads to inadequate modeling of transformation knowledge,
reducing the discriminative power of the continuous embedding space, and ultimately resulting in
suboptimal feature spaces. To address them, we propose a hierarchical modeling module in PHER,
explicitly capturing both token-level relationships (individual feature-operation interactions) and
concept-level relationships (aggregated higher-level concepts) within the learned embedding space.

Reinforcement Transformation-Accuracy Training Data Collection. To learn an effective em-
bedding space of feature transformation, we collect n feature transformation records using an RL-
based method (Wang et al., 2022), denoted by {(T;,v;)}!_,, where I'; represents a feature trans-
formation sequence (e.g., log(f1), —f3, ...) and v; denotes the corresponding model performance.
In this method, three collaborative reinforced agents select two candidate features and one oper-
ation per iteration to generate new features. The entire procedure is optimized to maximize the
downstream ML task performance. For more details, please refer to the referenced paper.

Token Level Feature Transformation Embedding. After collecting large-scale feature transfor-
mation sequence-accuracy pairs {(T'i, v;)}7_;, we train the token-level encoder and decoder to cap-
ture token-level transformation patterns from feature-operation token sequences.

Encoder ¢y, The token encoder aims to learn a mapping function ¢, that converts transformation

sequence I' € R'¥ to token embeddings E, denoted by E = ¢, (T") € RV *dtor where N is the
length of the input transformation sequence I' and d;,y, is the hidden size of token embedding. In
PHER, we adopt two Transformer encoder layers (Vaswani et al., 2017) as the token encoder.

Decoder .,1: The token decoder aims to reconstruct the transformation sequence I' from the
learned token embedding E, denoted by T' = v, (E). In PHER, we adopt two Transformer
decoder layers (Vaswani et al., 2017) as the token decoder.

Why Ensuring Permutation Invariance in Concept-Level Embeddings Matters. While token-
level encoders capture low-level interactions between features and operations, they struggle to model
high-level transformation patterns. Feature transformations often yield feature abstractions (i.e.
concepts) whose ordering does not affect the quality of the resulting feature space or the predic-
tive performance of downstream tasks. However, existing methods encode these concepts in an
order-sensitive manner, introducing permutation bias into the embedding space and limiting search
effectiveness. To address this, we propose a permutation-invariant concept encoder-decoder with
self-attention pooling to eliminate order sensitivity and enable more robust representation learning.

Encoder ¢y, : The concept encoder ¢.,,, aims to encode the generated concepts into permutation-
invariant global embeddings. To ensure permutation invariance, we adopt a self-attention pool-
ing mechanism (Lee et al., 2019) in ¢.,,. This structure is inherently permutation-invariant, en-
suring that any permutation of the generated concepts results in an identical global embedding.
Specifically, we first adopt a mean pooling layer to aggregate the token embeddings E into con-
cept embeddings G according to the relationship between concept and its affiliated feature indices
and mathematical operations. For instance, suppose concepts are derived from the transformation
(fr + fr,1log(f2), ...), then corresponding concept embeddings are obtained by averaging the token
embeddings of the involved features and mathematical operations, denoted by G = (G, Ga, ...),
where G1 = Mean(Ef, ,Ep,s,Ef.) and Gy = Mean(Ey,,E;,,). Then, we initialize a set of k
learnable seed vectors S € R¥*@scea ysing Xavier uniform initialization, where & is the number of
seed vectors and d,..q 1s the hidden size of each seed vector. These learnable seed vectors serve
as queries in the multi-head attention module, attending over the token embeddings E which serve
as keys and values to extract high-level semantic concept representations. The output is then com-
bined with the original seed vectors through a residual connection, followed by a linear layer. This
yields the global embedding, denoted by: G’ = ¢, (G) = Linear(S + Multihead(S, G, G)) €
RF>dgtoval where dgjopq; is the hidden size of global embedding.

Decoder .,,, : The concept decoder 1., aims to reconstruct concept embedding G from the global
embedding G’, denoted by G = .o, (G’). In PHER, we adopt the same architecture for the
concept decoder as used in the concept encoder, ensuring symmetric abstraction and reconstruction.

Under review as a conference paper at ICLR 2026

Hierarchical Optimization Procedure: To effectively train the hierarchical encoder-decoder mod-
els, we design a three-stage training strategy. Each stage progressively captures feature transforma-
tion knowledge, from token-level to concept-level.

Stage 1: Token-Level Training. In the first stage, we train the token encoder ¢y, and decoder ¥y,
to reconstruct the input transformation sequence I'. Specifically, given a sequence I, the token
encoder first produces token embedding E = ¢, (T'). The token decoder then reconstructs the
original feature transformation sequence from the token embedding I= Ytok (E). We optimize the
token-level model by minimizing the negative log-likelihood loss: Lo, = —log Py, (T | E).
Stage 2: Concept-Level Training. After training the token-level model, we freeze its parameters and
train the concept encoder ¢,, and decoder .., to learn high-level permutation-invariant global
embeddings. Specifically, given a feature transformation sequence I', we first utilize the well-
trained token encoder to obtain token embedding E. Then, we input E into the aggregation layer
to generate the concept embedding G based on the relationships between concept and its affili-
ated feature indices and mathematical operations. Thereafter, G’ is input into ¢.,,, to obtain the
global embedding G’ = ¢..,(Mean(E)). Finally, the global embedding G’ is decoded back to
concept embedding G = Yeon (G") We optimize the concept-level model by minimizing the Mean
Squared Error (MSE) between the reconstructed G and original concept embedding G, denoted by:
Econ = MSE(G7 G) = MSE(G7 ’(/}con((bcon(G)))-

Stage 3: Token-Concept Alignment. In the final stage, we freeze the concept-level model and tune the
parameters of token encoder and decoder to improve the accuracy of end-to-end token reconstruc-
tion. Formally, given an transformation sequence I', we obtain the token embedding E = ¢, (T).
Then, E is input into the well-trained concept encoder ¢7,,,, the well-trained concept decoder v,
and the token decoder in sequence to reconstruct the feature transformation sequence. We optimize
the following loss during the alignment stage: Lq1ign = — log Py, (T' | %0 (0%0n(00k(T')))). This
stage aligns token embeddings with the fixed concept-level abstractions, improving the coherence
and semantic quality of the reconstructed transformation sequence.

3.3 POLICY-GUIDED MULTI-OBJECTIVE SEARCH

Why selecting search seeds matters. Once the global embedding space has converged, we employ
a policy-guided multi-objective search strategy in the learned global embedding space to identify
the optimal global embedding that achieves maximum downstream task performance and minimum
transformation length. Inspired by the significance of initialization for deep neural networks, good
starting points are crucial for accelerating the search process and enhancing its performance. Thus,
we rank all collected records by model performance and select the top-K as search seeds.

Policy-guided multi-objective search. Existing methods assume the learned embedding space is
convex, relying on gradient-ascent search strategy to identify the global optimal embedding. How-
ever, due to the complex interactions between features and mathematical operations, the embedding
space is highly non-convex in practice, increasing the risk of becoming trapped in local optima
and resulting suboptimal feature transformation sequences. Thus, to perform effective exploration
and search process without strong convexity assumptions, we employ Proximal Policy Optimization
(PPO) (Schulman et al., 2017) method, which is a widely used policy gradient algorithm for multi-
objective optimization. PPO stabilizes policy updates by clipping and trust region mechanisms,
effectively balancing exploration and exploitation in high-dimensional and non-convex embedding
spaces. In PHER, the PPO agent learns to explore the continuous global embedding space by se-
lecting promising global embeddings based on the downstream task performance and transformation
sequence length. Specifically, given a global embedding G’, the PPO agent .A aims to manipulate it

to generate the optimal global embedding G, .. denoted by: .A(G,) =G,

Reward R: To balance the performance and the total length of the transformed sequence, we pro-
pose a weighted reward function, denoted by: R = A(M (X [I'F]) — M(X[I])) + (1 — N)N[TH],
where M is the downstream ML task, I" is the original transformation sequence, I'T is the searched
transformation sequence, NV[T'1] is the length of T'", and) is the trade-off hyperparameter to bal-
ance the performance improvement and the total length of the transformed sequence.

opt> opt*

Solving the Optimization Problem. We adopt a multi-objective optimization strategy to train
the PPO agent. Specifically, the policy is updated by maximizing a clipped surrogate objective,
which approximates the cumulative discounted reward obtained throughout the iterative search
process, while constraining the step size of each update. To enable the PPO agent to identify
more informative embeddings with higher model performance and fewer transformation opera-

Under review as a conference paper at ICLR 2026

tions, we adopt an actor-critic model architecture. We optimize the critic network by minimiz-
ing the difference between the observed cumulative discounted rewards and their predictions, de-
noted by: Leritie = % ZtT:l(V(st) — G4)?, where T is the trajectory length, s; is the state
at time step ¢, V(s;) is the predicted value from the critic, G; is the cumulative discounted re-
turn, and v € [0 ~ 1] is the discounted factor. The actor network is optimized by maximizing
a clipped surrogate objective while constraining the step size of each policy update, denoted by:

Lactor = By [min(rt(ﬁ)flt, clip(ry(h),1 — e,1+ €)A,)| , where € is the clipping ratio hyperpa-

rameter, (6) is the probability ratio, and Ay is the estimated advantage. Once the actor network
converges, the resulting policy 7* guides the global embedding G’ in the learned global embedding
space G toward regions that yield higher downstream task performance but fewer transformation
operations, without relying on any convexity assumptions. Then, we reconstruct the transforma-
tion sequence I'™ from the enhanced global embedding GIJr using the well-trained concept decoder
and token decoder. Next, we obtain enhanced feature spaces using the enhanced transformation
sequences [I‘T, I‘;‘, e I‘};] and input them into the downstream ML task to evaluate their perfor-
mance. Finally, the feature transformation sequence achieving the highest performance is selected
as the optimal sequence, denoted as I'*. This sequence serves as the guiding blueprint for refining
the original feature space, thus producing an enhanced feature space.

4 EXPERIMENTS

To enhance the reproducibility of PHER, we provide hyperparameter settings and experimental
platform information in Appendix C.1 and C.2.

4.1 DATASETS AND EVALUATION METRICS

We evaluate PHER on 19 publicly accessible datasets from UCI Public (2022b), LibSVM Chih-Jen
(2022), Kaggle Howard (2022), and OpenML Public (2022a), including 14 classification tasks and 5
regression tasks. Appendix B, Table 3 summarizes the detailed statistics of these dataset. To ensure
consistent and stable results, we adopt Random Forest as the unified downstream model and evaluate
performance using five-fold cross-validation. Each experiment is independently repeated five times
with different random seeds, and we report the mean and standard deviation. All experiments follow
a hold-out evaluation protocol. For regression tasks, we report 1-Relative Absolute Error (1-RAE),
1-Mean Absolute Error (1-MAE), 1-Mean Squared Error (1-MSE), and 1-Root Mean Squared Error
(1-RMSE). For classification tasks, we use F1-score, Precision, Recall, and ROC/AUC.

4.2 BASELINE MODELS

We compare our method with nine widely-used feature transformation methods: (1) RFG generates
new feature-operation-feature transformation records by randomly selecting candidate features and
operations. (2) ERG first applies operations to each feature to expand the feature space and then se-
lects informative features as new features. (3) LDA Blei et al. (2003) is a matrix factorization-based
dimensionality reduction method that projects data into a low-dimensional space. (4) AFAT Horn
et al. (2019a) iteratively applies transformations and performs multi-step feature selection to iden-
tify informative ones. (5) NFS Chen et al. (2019b) uses a recurrent neural network-based controller
trained with reinforcement learning to sequentially model and optimize the transformation process
for each feature. (6) TTG Khurana et al. (2018b) formulates feature transformation as a graph explo-
ration problem and employs reinforcement learning to discover optimal transformation paths within
the graph. (7) GRFG Wang et al. (2022) employs three reinforced agents with a feature group-
ing strategy to perform feature generation in a cascaded manner. (8) DIFER Zhu et al. (2022b)
encodes randomly generated transformation sequences into a continuous embedding space and em-
ploys greedy gradient-based search to identify the best transformed features. (9) MOAT Wang et al.
(2023) embeds RL-collected transformation sequences into continuous embeddings using postfix
expression and conduct gradient-ascent search with the beam search strategy. Besides, we devel-
oped three variants of PHER to evaluate the impact of each technical component: (i) PHER™®
removes the concept encoder and decoder. (ii) PHER™? replaces the permutation-invariant concept
encoder and decoder with permutation-sensitive self-attention layers. (iii) PHER ™Y replaces the
policy-guided search with Genetic Algorithm (GA). To ensure fair evaluation, we randomly divide
each dataset into 80% for training and 20% for testing. This experimental setting prevents any test
data leakage and ensures a more reliable comparison of feature transformation performance.

Under review as a conference paper at ICLR 2026

Table 1: Overall performance comparison. In this table, the best and second-best results are high-
lighted in red and blue, respectively.(Higher values indicate better performance.)

Dataset CR RDG ERG LDA AFAT NFS TTG GRFG DIFER MOAT PHER
HiggS Boson C 047001»0.()(]1 0_704+O 003 0.51 1£0.011 0.695*’0 001 0,69770'”02 0.699“‘ 003 0.701 +0.002 0v669+0.()(11 046991»0.()()2 0.706+0-002
Amazon Employee C 0.931 +0.001 OAggsiU.Um 0.914;tl1,0l12 093310 002 0.932:U 001 0.930i0 001 0l932i0.km] Olgzgi().(lm (193310.[)()2 0'()36;Hl 002
Pimalndian C 076020007 76250001 . 70920.061 0 760+0-011 (750014 (7500019 (75420011 (76020013 () gO7LO-011 () g2g+0.003
SpectF C 07600001 (75920018 () 66550119 (78)+0-079 () 760+0-001 (7750014 g18+0.001 () 766E0-002 () 9190014 g 929+0.003
SVMGuide3 C 07910008 g17+0015 () 63550049 (789%0.009 () 78650004 (791 £001 0, g12+0.025 () 773E0.02L) g45E0-001 () g4g+0.003
German Credit C 0,66710'”“3 0.684in'”11 0.597;&(],038 0.640i0 032 0.663:“'“17 0.663i“ 019 0.683i“ 013 0,65610'”18 0_72910 001 0.736:&0'“”7
Credit Default C 080510 001 0.804%0-002 0.743iU 009 0.804i0 001 0.803£0-002 U.803i“ 002 0l806i0.0015 0_79610 005 l),S()SiU 001 O,SIOiU 001
Messidor_features € 0.68530-058 0,665%0-02 04630054 06560005 06570011 (66220019 069240033 0, 660+0-007 (),694L0005 (7440003
Wine Quality Red ~ C 0.514%0016 04940005 (401 £0.061 0 480%0-042 0 467+0-021 (. 464:+0.010 (47040009 (47640018 55040002 (), 562+0.003
Wine Quality White C 045241»0.()(]1 0452470.()()1 0.437+(].015 0.516*’“ 032 045337(].(!1() 0_529+0 002 ()_534+U 019 05071»0.()25 0.530*’“ 010 (),553+0.002
SpamBase C 0492410.()(]] 0.920:() 001 O.SSSZHHHU 0.9 17;H] 001 0.922:U 003 Olgzziu 003 Olgzz;ﬂl.kmﬁ 0.91 210.(1]&7 0_93210 001 0'()36;Hl 002
AP-omentum-ovary ~ C 0.84550-001 8]4+0.001 = 7]0£0.131 (g45L0125 (g45E0001 () g45EO00L () g49L0.001 () g33+0.031 () g45:£0.002 (), gg3+£0.001
Lymphography C 0.1080-001 (29+0-009 () 14420132 J50+0-133 () 170+0.035 (1740040 (0 182+0013 (1500116 2670035 47100105
MNIST fashion C 0.7 14+0-001 0.71 6+0-001 0.51 0&().02() 0_699iﬂ 022 0.71 0:().(!()2 0.711%0-004 0_728i0 001 0.7 17+0.002 [)_729i0 001 ().735+0-001
Hnusing Boston R 0442010.()31 0.41 8:0.[1()1 0.021 +0.002 0.423i0 005 0.424:(!.002 0.421 +0.011 0.404i“ 007 0.381 +0.017 0_46510 006 0'538;&0.4][15
Airfoil R 0(52010 001 0.519%0-001 0.207iU 065 0.509i0 001 0.519%0:002 571 +0.001 0.521 +0.003 0.55810 002 l),627i0 011 0,645i0 001
Openml,589 R 0_54810 032 0.610%0-001 0.034+0.079 0_509L0 002 (), 506+0-004 0_502L0 002 0_627L0.00L~ 0.463‘1‘0 005 l),656“’ 001 0.660+0-006
Openml_618 R 044450026 (054320039 (030=0-076 (. 473£0.002 (4710004 470£0.001 () 5600101 (. 408+0-036 () 6920002 (,693+0-001
O[)CnmLf)ZO R 044941»0.()10 0.541 +0.008 0.026+(]'(‘13 0_520+U 001 045097(].(!()5 0.51 3+0 004 0.568*’“ 013 0v442+0.()(]1 0.6'—13*’“ 003 (),652+0-003

* We evaluated classification (C) and regression (R) tasks in terms of F1-Score and 1-RAE, respectively.
* The standard deviation is computed based on the results of 5 independent runs.

90

@ PHER @ PHER
@ PHER® @ PHER? @ PHER®
90 @ PHER™| - O PHER®| 80 @ PHER®
Oerert| g, | 0 PHER?) O PHER?|
854 80
809 807 709
7
75+ 784 0] 654
704 607
651 6] 7 559
Precision Recall F1 Score ROC/AUC Precision Recall F1 Score ROC/AUC 1-MAE 1-MSE 1-RAE 1-RMSE 1-MAE 1-MSE 1-RAE 1-RMSE
(a) Spectf (b) Pimalndian (c) Openml_589 (d) Openml_620

Figure 3: The influence of hierarchical modeling (PHER ™), permutation invariance (PHER ™?),
and policy-guided search (PHER 79) in PHER.

4.3 PERFORMANCE EVALUATION

Overall Performance. Table 1 reports the performance comparison between PHER and baseline
models across 19 datasets, using F1-score for classification tasks and 1-RAE for regression tasks. All
experimental results are obtained by independently running five times with different random seeds.
We observed that PHER outperforms the other baseline models on all datasets. There are three
potential reasons for this observation: 1) The hierarchical modeling architecture captures both low-
level and high-level relationships between features, encoding diverse feature transformation knowl-
edge and building a more informative global embedding space; 2) The permutation-invariant concept
encoder-decoder framework eliminate order sensitivity among concepts, constructing a global un-
biased embedding space; 3) The policy-based RL agent effectively explores the global embedding
space and identifies superior feature transformation embeddings, overcoming non-convex challenges
and converging to the global optimal embedding point. Thus, this experiment demonstrates the ef-
fectiveness of PHER in transforming feature spaces across various types of tasks.

Ablation Study. We conduct this experiment to study the impact of the hierarchical modeling mod-
ule, permutation-invariant embedding, and policy-guided search on the model performance. We de-
veloped three model variants of PHER: 1) PHER ™ ¢ removes the concept encoder-decoder model;
2) PHER™? replaces the permutation-invariant concept encoder and decoder with permutation-
sensitive self-attention layers. 3) PHER ™ replaces the policy-guided search with Genetic Algo-
rithm (GA). We randomly select two classification tasks (SpectF and Pimalndian) and two regres-
sion tasks (Openml_589 and Openml_620) to show the comparison results. We evaluate the model
performance on each type of task from four different perspectives. For classification tasks, we
use Fl-score, Precision, Recall, and ROC/AUC. For regression tasks, we use 1-RAE, 1-MAE, 1-
MSE, and 1-RMSE. As shown in figure 3, the performance of PHER is consistently higher than
PHER™¢, PHER 7, and PHER 9. The potential reasons for this observation are: 1) the hierar-
chical modeling module captures both low-level feature relationships and high-level concepts, pre-
serving more informative feature transformation knowledge within the global embedding space; 2)
the permutation-invariant mechanism removes permutation noise among generated concepts in the
embedding space, facilitating more effective exploration by the RL agent. 3) the RL agent conducts
effective exploration in the embedding space, eliminating the reliance on convexity assumptions
and avoiding convergence to local optima. Thus, this experiment evaluates the significance of the
hierarchical modeling module, permutation-invariant embedding, and policy-guided search.

Under review as a conference paper at ICLR 2026

92 85

F1 Score
Q

F1 Score

F1 Score
@
3

F1 Score

~
o

88 70 82

@00@@@?@»‘V«%xxggvg\@goﬁ\o&ﬁ Q%O Rt &%&fgﬁg@goﬁou@ Qo%x@»o‘;«(ﬁ‘Av%@g@?g?e‘f:\oﬁoo@ Q\o%ﬁ»\f’@‘}w‘g?%agﬁ?g;@:\oﬁow%

(a) RandomForest (b) XGBoost (c) KNN (d) Decision Tree

Figure 4: Robustness check of PHER with distinct ML models on SpamBase in terms of F1-score.

Robustness Check. We evaluate PHER using various downstream ML models, including Random
Forest (RF), XGBoost (XGB), K-Nearest Neighborhood (KNN), and Decision Tree (DT), to as-
sess the robustness of PHER. Figure 4 shows the comparison results on SpamBase in terms of the
Fl-score. We observed that PHER consistently outperforms all baseline methods across different
downstream ML models. A potential reason is that the RL-based data collector explores diverse
feature transformation records guided by validation performance rather than any specific classifier
These records further enable the hierarchical model to encode task-relevant knowledge and char-
acteristics into the global embedding space. Finally, the policy-guided agent leverages these infor-
mation to effectively search the embedding space. The results on Support Vector Machine (SVM),
Ridge, and LASSO are reported in Appendix D.1, Figure 8.

Search Seeds. To observe the impacts of search seeds on the RL-based search process, we replace

the top K historical feature transformation N F1 Score

records with K random records. We con- %,:0_’7 i 86.58 929 b
duct this experiment on eight randomly chosen “ogs @j%, H eoso 828)
datasets and report the average Fl-score over :’%O:"ﬁ {7021] 706

five independent runs. As shown in Figure 5, 4 " | [eoss 81.0 }

search initialized with high-quality seeds con- 4, %”, i |
sistently outperforms search with random ini- 42, "%, | i |
tialization. A potential reason for this observa- ° = — !
tion is that the RL agent can leverage informa-
tive seeds to anchor the search within promising
regions of the embedding space, effectively nar-
rowing the search scope and accelerating con-
vergence. Thus, this experiment shows the necessity of the search seeds in PHER.

SO
S
S o
I
>

o, 1
" HH 84.9 883 i
‘ () Random (O Top-K ‘

Figure 5: The influence of search seeds.

Model Scalability. To analysis model scalability, we compare the length of feature transformation
sequence and downstream task performance of PHER and the SOTA model MOAT. Figure 6 (a)
shows that PHER produces significantly
shorter feature transformation sequences,
showing its ability to discover compact and =
effective feature transformation sequences.
From Figure 6 (b), we found that PHER
consistently outperforms MOAT across all -
datasets. These observations suggest that the , |
RL agent in PHER effectively optimizes the S g, g 82
learned embeddings by jointly maximizing (a) Sequence Length (b) Performance

task performance and minimizing transforma-

tion sequence length. Thus, this experiment Figure 6: Model scalability comparison between
demonstrates that PHER consistently achieves —our method and the SOTA model MOAT.

strong performance and compactness across diverse datasets, highlighting the scalability of PHER.

PHER
MOAT 0804

PHER
MOAT

N\

Sequence Length

NVZ N7 N\

Hyperparameter Sensitivity Analysis. We assess the hyperparameter sensitivity of PHER on the
SpectF dataset by varying the clipping ratio € and the reward trade-off A from 0.1 to 0.9, where
€ stabilizes training by controlling the magnitude of policy updates and A\ balances task perfor-
mance against transformation sequence length. Figure 7, demonstrates the overall experimental
results in terms of Precision, Recall and F1-Score. We found that PHER achieves optimal per-
formance when € = 0.2 and A = 0.9. This aligns with prior PPO studies, where ¢ = 0.2 is
a setting widely adopted in standard reinforcement learning benchmarks Schulman et al. (2017).

Under review as a conference paper at ICLR 2026

Furthermore, we found that the model perfor-
mance remains relatively stable across a broad
range of A\, with slight improvements as \ ap-
proaches 0.9. Thus, this experiment demon-
strates the model sensitivity to hyperparameter
settings and provides practical guidance on hy-
perparameter configuration. To provide a com-

A=07
=08 A=08

prehensive evaluation of PHER, we analyze the (a) Clipping Trade-off (b) Reward Trade-off
time complexity (Appendix D.2) and conduct a
traceability case study (Appendix D.3). Figure 7: Hyperparameter sensitivity.

5 RELATED WORKS

Automated Feature Transformation (AFT) can enhance the tabular feature spaces by applying
mathematical operations to original features Chen et al. (2021); Kusiak (2001). Existing methods
can be grouped into three main types: 1) expansion-reduction based approaches Kanter & Veera-
machaneni (2015); Khurana et al. (2016b); Lam et al. (2017); Horn et al. (2019b); Khurana et al.
(2016a) first expand the feature space through mathematical transformations and then reduce di-
mensionality by selecting informative features. However, these methods struggle to effectively
capture complex feature compositions, resulting in suboptimal results. 2) evolution-evaluation
approaches Wang et al. (2022); Khurana et al. (2018b); Tran et al. (2016); Zhu et al. (2022a);
Zhang et al. (2022); Katz et al. (2016) combine feature generation and selection into a closed-
loop learning system, using evolutionary algorithms or reinforcement learning (RL) to iteratively
generate transformed features and retain the most effective ones. However, these methods incur
high computational cost and unstable performance due to discrete decision-making. 3) Auto ML-
based approaches Elsken et al. (2019); Li et al. (2021); He et al. (2021); Karmaker et al. (2021);
Zhang et al. (2021); Wever et al. (2021); Bahri et al. (2022); Wang et al. (2021); Dor & Reich
(2012); Egozi et al. (2008); Ren et al. (2023) formulate AFT as an AutoML problem, searching for
transformation strategies alongside model optimization. For instance, Wang et al. (2023) embeds
RL-collected transformation sequences into continuous embeddings using postfix expression and
conducts gradient-ascent beam search to identify informative feature transformation embeddings.
However, this methods are limited by: 1) overlooking intricate hierarchical relationships inherent in
feature transformation knowledge; 2) encoding feature transformation sequences as order-sensitive;
3) relying on the convexity assumption of the embedding space. To address these drawbacks, we
propose PHER, a hierarchical modeling framework. Specifically, we combine permutation-invariant
hierarchical modeling and multi-objective policy-guided search. The permutation-invariant hierar-
chical modeling module captures both token-level and concept-level feature transformation knowl-
edge and mitigate order sensitivity among concepts, creating an unbiased global embedding space.
The multi-objective policy-guided search effectively explores the learned embedding space, identi-
fying better feature transformation sequence without relying on any convexity assumptions.

6 CONCLUSION REMARKS

In this paper, we propose a hierarchical feature transformation framework PHER that integrates
permutation-invariant hierarchical modeling and multi-objective policy-guided search. In de-
tail, we first develop a permutation-invariant hierarchical modeling module, including token-level
and concept-level encoder-decoder models, to preserve the feature-operation token level and the
generated-concept level feature transformation knowledge into a global embedding space. Within
this module, we develop a self-attention pooling mechanism that symmetrically computes atten-
tion scores across all generated concepts to ensure permutation invariance. Then, we employ a
multi-objective search strategy to explore the learned embedding space, overcoming the reliance on
convex assumptions and mitigating the risk of being trapped in local optima. Finally, extensive ex-
periments demonstrate several key insights: 1) hierarchical modeling structure significantly captures
meaningful hierarchical interactions, enhancing the expressivity of the learned embedding space. 2)
permutation-invariant module effectively mitigates order sensitivity, stabilizing the embedding space
learning and search processes. 3) policy-guided RL search enables effective exploration, avoiding
convergence to local optima and improving search robustness. These findings highlight the impor-
tance of permutation-invariant hierarchical modeling and robust exploration strategies for advancing
automated feature transformation. In the future, a promising direction is to improve the computa-
tional efficiency and scalability of PHER, possibly by integrating lightweight concept modeling
framework or refining the RL-based search strategy in the learned embedding space.

Under review as a conference paper at ICLR 2026

REFERENCES

Maroua Bahri, Flavia Salutari, Andrian Putina, and Mauro Sozio. Automl: state of the art with a
focus on anomaly detection, challenges, and research directions. International Journal of Data
Science and Analytics, 14(2):113-126, 2022.

David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation. the Journal of
machine Learning research, 3:993-1022, 2003.

Xiangning Chen, Qingwei Lin, Chuan Luo, Xudong Li, Hongyu Zhang, Yong Xu, Yingnong Dang,
Kaixin Sui, Xu Zhang, Bo Qiao, et al. Neural feature search: A neural architecture for automated
feature engineering. In 2019 IEEE International Conference on Data Mining (ICDM), pp. 71-80.
IEEE, 2019a.

Xiangning Chen, Qingwei Lin, Chuan Luo, Xudong Li, Hongyu Zhang, Yong Xu, Yingnong Dang,
Kaixin Sui, Xu Zhang, Bo Qiao, et al. Neural feature search: A neural architecture for automated
feature engineering. In 2019 IEEE International Conference on Data Mining (ICDM), pp. 71-80.
IEEE, 2019b.

Yi-Wei Chen, Qingquan Song, and Xia Hu. Techniques for automated machine learning. ACM
SIGKDD Explorations Newsletter, 22(2):35-50, 2021.

Lin Chih-Jen. Libsvm dataset download. [EB/OL], 2022. https://www.csie.ntu.edu.
tw/~cjlin/libsvmtools/datasets/.

Ofer Dor and Yoram Reich. Strengthening learning algorithms by feature discovery. volume 189,
pp- 176-190. Elsevier, 2012.

Ofer Egozi, Evgeniy Gabrilovich, and Shaul Markovitch. Concept-based feature generation and
selection for information retrieval. In AAAI, volume 8, pp. 1132-1137, 2008.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey. The
Journal of Machine Learning Research, 20(1):1997-2017, 2019.

Xin He, Kaiyong Zhao, and Xiaowen Chu. Automl: A survey of the state-of-the-art. Knowledge-
Based Systems, 212:106622, 2021.

Franziska Horn, Robert Pack, and Michael Rieger. The autofeat python library for automated feature
engineering and selection. arXiv preprint arXiv:1901.07329, 2019a.

Franziska Horn, Robert Pack, and Michael Rieger. The autofeat python library for automated feature
engineering and selection. arXiv preprint arXiv:1901.07329, 2019b.

Jeremy Howard. Kaggle dataset download. [EB/OL], 2022. https://www.kaggle.com/
datasets.

James Max Kanter and Kalyan Veeramachaneni. Deep feature synthesis: Towards automating data
science endeavors. In 2015 IEEE international conference on data science and advanced analyt-

ics (DSAA), pp. 1-10. IEEE, 2015.

Shubhra Kanti Karmaker, Md Mahadi Hassan, Micah J Smith, Lei Xu, Chengxiang Zhai, and Kalyan
Veeramachaneni. Automl to date and beyond: Challenges and opportunities. ACM Computing
Surveys (CSUR), 54(8):1-36, 2021.

Gilad Katz, Eui Chul Richard Shin, and Dawn Song. Explorekit: Automatic feature generation and
selection. pp. 979-984, 2016.

Udayan Khurana, Fatemeh Nargesian, Horst Samulowitz, Elias Khalil, and Deepak Turaga. Au-
tomating feature engineering. Transformation, 10(10):10, 2016a.

Udayan Khurana, Deepak Turaga, Horst Samulowitz, and Srinivasan Parthasrathy. Cognito: Auto-
mated feature engineering for supervised learning. In 2016 IEEE 16th International Conference
on Data Mining Workshops (ICDMW), pp. 1304-1307. IEEE, 2016b.

10

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.kaggle.com/datasets
https://www.kaggle.com/datasets

Under review as a conference paper at ICLR 2026

Udayan Khurana, Horst Samulowitz, and Deepak Turaga. Feature engineering for predictive mod-
eling using reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 32, 2018a.

Udayan Khurana, Horst Samulowitz, and Deepak Turaga. Feature engineering for predictive mod-
eling using reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 32, 2018b.

Andrew Kusiak. Feature transformation methods in data mining. IEEE Transactions on Electronics
packaging manufacturing, 24(3):214-221, 2001.

Hoang Thanh Lam, Johann-Michael Thiebaut, Mathieu Sinn, Bei Chen, Tiep Mai, and Oznur Alkan.
One button machine for automating feature engineering in relational databases. arXiv preprint
arXiv:1706.00327, 2017.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set
transformer: A framework for attention-based permutation-invariant neural networks. In Ka-
malika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Con-
ference on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pp.
3744-3753. PMLR, 09-15 Jun 2019. URL https://proceedings.mlr.press/v97/
leel9d.html.

Yaliang Li, Zhen Wang, Yuexiang Xie, Bolin Ding, Kai Zeng, and Ce Zhang. Automl: From method-
ology to application. In Proceedings of the 30th ACM International Conference on Information
& Knowledge Management, pp. 4853-4856, 2021.

Public. Openml dataset download. [EB/OL], 2022a. https://www.openml.org.
Public. Uci dataset download. [EB/OL], 2022b. https://archive.ics.uci.edu/.

Kezhou Ren, Yifan Zeng, Yuanfu Zhong, Biao Sheng, and Yingchao Zhang. Mafsids: a reinforce-
ment learning-based intrusion detection model for multi-agent feature selection networks. Journal
of Big Data, 10(1):137, 2023.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

Binh Tran, Bing Xue, and Mengjie Zhang. Genetic programming for feature construction and se-
lection in classification on high-dimensional data. Memetic Computing, 8(1):3—15, 2016.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of the 31st Inter-
national Conference on Neural Information Processing Systems, NIPS’17, pp. 6000-6010, Red
Hook, NY, USA, 2017. Curran Associates Inc. ISBN 9781510860964.

Dakuo Wang, Josh Andres, Justin D Weisz, Erick Oduor, and Casey Dugan. Autods: Towards
human-centered automation of data science. In Proceedings of the 2021 CHI Conference on
Human Factors in Computing Systems, pp. 1-12, 2021.

Dongjie Wang, Yanjie Fu, Kunpeng Liu, Xiaolin Li, and Yan Solihin. Group-wise reinforcement
feature generation for optimal and explainable representation space reconstruction. In Proceed-
ings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD
’22, pp. 1826-1834, New York, NY, USA, 2022. Association for Computing Machinery. ISBN
9781450393850.

Dongjie Wang, Meng Xiao, Min Wu, Yuanchun Zhou, and Yanjie Fu. Reinforcement-enhanced
autoregressive feature transformation: Gradient-steered search in continuous space for postfix
expressions. Advances in Neural Information Processing Systems, 36, 2023.

Marcel Wever, Alexander Tornede, Felix Mohr, and Eyke Hiillermeier. Automl for multi-label
classification: Overview and empirical evaluation. IEEE transactions on pattern analysis and
machine intelligence, 43(9):3037-3054, 2021.

11

https://proceedings.mlr.press/v97/lee19d.html
https://proceedings.mlr.press/v97/lee19d.html
https://www.openml.org
https://archive.ics.uci.edu/
https://arxiv.org/abs/1707.06347

Under review as a conference paper at ICLR 2026

Wangyang Ying, Dongjie Wang, Haifeng Chen, and Yanjie Fu. Feature selection as deep sequential
generative learning. ACM Transactions on Knowledge Discovery from Data, 18(9):1-21, 2024a.

Wangyang Ying, Dongjie Wang, Xuanming Hu, Yuanchun Zhou, Charu C Aggarwal, and Yan-
jie Fu. Unsupervised generative feature transformation via graph contrastive pre-training and
multi-objective fine-tuning. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 39663976, 2024b.

Yao Zhang, Yun Xiong, Yiheng Sun, Caihua Shan, Tian Lu, Hui Song, and Yangyong Zhu. Rudi:
Explaining behavior sequence models by automatic statistics generation and rule distillation. pp.
2651-2660, 2022.

Ziwei Zhang, Xin Wang, and Wenwu Zhu. Automated machine learning on graphs: A survey. arXiv
preprint arXiv:2103.00742, 2021.

Guanghui Zhu, Shen Jiang, Xu Guo, Chunfeng Yuan, and Yihua Huang. Evolutionary automated
feature engineering. In PRICAI 2022: Trends in Artificial Intelligence: 19th Pacific Rim Inter-
national Conference on Artificial Intelligence, PRICAI 2022, Shanghai, China, November 10—13,
2022, Proceedings, Part I, pp. 574-586. Springer, 2022a.

Guanghui Zhu, Zhuoer Xu, Chunfeng Yuan, and Yihua Huang. Difer: differentiable automated
feature engineering. In International Conference on Automated Machine Learning, pp. 17-1.
PMLR, 2022b.

12

Under review as a conference paper at ICLR 2026

Appendix

A SUMMARY OF NOTATIONS

To ensure clarity, we provide a summary of the mathematical notations used throughout the paper.
Table 2 lists the key symbols along with their descriptions.

Table 2: Summary of Notations

Notation Description
D={X,y} Dataset
X Input features
Y Target variable
o0 Operation set
M Downstream task
I'; Feature transformation record i
Vi Downstream task performance of feature transformation record i
rt Searched feature transformation record
r Optimal Feature transformation record
Geon Concept encoder
Peon Concept decoder
ok Well-trained token encoder
on Well-trained concept encoder
Viok Well-trained token decoder
o Well-trained concept decoder
E Token embedding
G Concept embedding
G Reconstructed concept embedding
G’ Global embedding
G/Jr Enhanced global embedding
;pt Optimal global embedding
Global embedding space
S Learnable seed vector
k Number of seed vector
N Length of feature transformation record
dseed Hidden size of seed vector
dtok Hidden size of token embedding
dgiobal Hidden size of global embedding
A PPO agent
a Agent action
s Agent state
R Agent reward
A Reward trade-off hyperparameter
€ Clipping ratio hyperparameter
T Trajectory length
V(st) Agent predicted reward
G Discounted reward
o1 Discount vector
™ Agent policy
" Optimal agent policy
r+(0) Probability ratio
Lok Loss function of training token-level model
Lecon Loss function of training concept-level model
Latign Loss function of aligning token-concept models

B DATASET STATISTICS

Table 3 summarizes the details of the datasets used in our experiments. For each dataset, we report
its source, number of samples, and the number of features. These datasets cover a diverse range

13

Under review as a conference paper at ICLR 2026

Table 3: Dataset Statistics Overview

Dataset Source Samples Features
Higgs Boson UClrvine 50000 28
Amazon Employee Kaggle 32769 9
Pimalndian UClrvine 768 8
SpectF UClrvine 267 44
SVMGuide3 LibSVM 1243 21
German Credit UClrvine 1001 24
Credit Default UClrvine 30000 25
Messidor_features ~ UCIrvine 1150 19
Wine Quality Red UClIrvine 999 12
Wine Quality White UClrvine 4900 12
SpamBase UClrvine 4601 57
AP-omentum-ovary OpenML 275 10936
Lymphography UClrvine 148 18
MNIST fashion Kaggle 10000 784
Housing Boston UClrvine 506 13
Airfoil UClrvine 1503 5
Openml_589 OpenML 1000 25
Openml_618 OpenML 1000 50
Openml_620 OpenML 1000 25

of domains and scales, including both classification and regression tasks. Such diversity ensures a
comprehensive evaluation of the proposed method across different scenarios.

C HYPERPARAMETER AND EXPERIMENTAL SETTINGS
C.1 HYPERPARAMETER SETTINGS AND REPRODUCIBILITY

The operation set incorporates a diverse set of unary and binary transformations, including square
root, square, cosine, sine, tangent, exp, cube, log, reciprocal, quantile transformer, min-max scale,
sigmoid, plus, subtract, multiply, divide. We ran the RL-based data collector for 512 epochs to col-
lect a substantial set of feature transformation—accuracy pairs. To enhance the diversity of training
data, we randomly shuffled each transformation sequence 10 times. The hidden size of token embed-
ding, concept embedding and global embedding are set as 128. To train the permutation-invariant
hierarchical modeling module, we set batch size as 256, the step size as 0.001, the dimension of
seed vectors as 128, respectively. To conduct effective search process, we used the top 20 feature
transformation-accuracy records as starting points to search for the optimal transformation embed-
dings. To stabilize the search process, we set search epoch as 10, learning rate of the actor as 0.0003,
learning rate of the critic as 0.001, reward trade-off as 0.9, reward discounted factor as 0.99, search
step as 1000, and the clipping ratio as 0.2, respectively.

C.2 EXPERIMENTAL PLATFORM INFORMATION

All experiments were conducted on the Windows 11 operating system, AMD Ryzen 5 5600X CPU,
and NVIDIA GeForce RTX 3070Ti GPU, with the framework of Python 3.10.15 and PyTorch 2.5.1.

D EXPERIMENTAL RESULTS

D.1 ROBUSTNESS CHECK

To complement the robustness analysis in Section 4.3, we report additional results on Support Vector
Machine (SVM), Ridge Regression (Ridge), and LASSO models. Figure 8 summarizes the F1-
scores obtained on the SpamBase dataset using these additional downstream ML models. The results
further confirm the consistent superiority of PHER across different learning algorithms. Thus, this
experiment demonstrates the robustness of PHER.

14

Under review as a conference paper at ICLR 2026

93 91
92 92|
904
91|
g g g 901
& 90 &89 @
b T T
89+
s8] 881
88
g7 87- 86-
?\00@?\@»0\;@3V@(&%&%@%\oﬁ\o&% %O ?\f\\?e’ﬁ ?92\0‘(\0“‘5 Q0% DRt oG 0?"/3;@“«0“‘9
(a) RandomForest (b) Ridge (c) LASSO

Figure 8: Robustness check of PHER with distinct ML models on SpamBase dataset in terms of
F1-score.

(O Inference Time o Feature Num (O Inference Tme - Sample Size
o

(O Search Time. -0 Sample Size
o

(O search Time -O- Feature Num

>

25
25
og
oe

20

L] L]

0z
oz

— M

] A7
y/ , J M// , J

Number
15
Number
10,000 20,000 30,000
Number

15

(5) 1500 oWl
(5) 1500 BwL
(s) 1500 W]
(5) 1500 BuLL

o

002 00y 009 008 000
oL

002 007 009 008 000
ber
10,000 20,000 30,000

10

A

& P o Q\«\s o ot O 60 o (@ o (o© & o (,\ Qx\“! oo o 9@6 oo e
o) La S e Ca N e \0 \ o N 2 (@ (\ A e \0
Q\“\”\ e \,5\“ v"‘g S St N4 5o ?«\7’\ \@\“ 3 (;“‘ 6\@\ g“Q ‘“ o o X SN 0¥ ?m@\ \;a* @ & o
e e e o e o " o 310‘\\“ ¢ o u‘“‘} o EgRN
S RN W R «\ W€ e
(@) (b) © ()

Figure 9: Time complexity of PHER in search time and inference time based on feature number and
sample size.

D.2 TIME COMPLEXITY

Reinforcement learning (RL) methods are often associated with high computational costs due to
iterative exploration and delayed reward feedback. To evaluate the practical efficiency of PHER,
we report the trends of the search time and inference time with respect to sample size and feature
dimensionality on multiple datasets. Figure 9 shows the experimental results terms of second (s).
As shown in Figure 9 (a), search time generally increases with the number of feature columns
from across datasets. In contrast, Figure 9 (b) indicates that the search time remains relatively
stable with the increase of sample size of the feature set. The potential reasons for this observation
is that the search time of the RL agent mainly depends on data sample size since more samples
requires more time to collect model performance as rewards in each iteration. Moreover, Figure 9
(c) and (d) demonstrates that the inference time of PHER remains relatively stable as both the
feature dimensionality and sample size increase. This observation is consistent with our expectation,
as we map the transformation sequence of varying lengths into a continuous space with uniform
dimensionality, resulting in the stability of inference time of PHER. Therefore, this experiment
demonstrates the time complexity of PHER.

D.3 TRACEABILITY CASE STUDY

We conduct this experiment to evaluate the traceability of PHER. We rank the top 10 significant
features for prediction in both the original feature set and PHER generated feature set of the Wine
Quality Red dataset. Figure 10 visualize the experiment results, where larger bar indicates higher
feature importance. We observed that approximately 70% crucial features in the new feature set are
generated by PHER. The new generated feature space enhances the downstream ML performance
by 23.7%. There are two potential reasons for this observation: 1) the hierarchical modeling mod-
ule in PHER effectively captures the inherent hierarchical relationships from low-level features and
operations to high-level concepts. 2) the policy-guided multi-objective search strategy effectively
explores the learned global embedding space and identifies the superior feature transformation se-
quence, overcoming the non-convex challenge and converging to the global optimal embedding
point. Furthermore, we found that ‘[alcohol]’ is the most important feature in the original set. This
aligns with domain knowledge, as alcohol is known to be one of the most influential factors in deter-
mining red wine quality. PHER not only identifies this essential feature but also generates a variety

15

Under review as a conference paper at ICLR 2026

Original Feature Set PHER Generated Feature Set
N cos([alcohol])

}tqlal sulfur dioxide]

';jeo;([a/cohcl]xL.. 1)

[alcohol]x[chiorides].

A |
[cmic‘ém;\ \ M

[valatile acidity] falcohol]xf~]_
[fixed acietyl '

\[valatile acidity]|

\[total sulfgrﬂdio;r[d’ﬁ\]"

\‘Tsulfn‘hares] “ \‘Islc\g}wl]

.. [density}".

" [chiorides] ' Iesidualsugar]

(a) Original Feature Space (b) PHER Generated Feature Space

Figure 10: Comparison of traceability on the original feature set and selected feature subset.

of composited features based on ‘[alcohol]’, which further enhance the predictive performance. This
observation demonstrates that PHER is capable of identifying the importance of individual features
while also deriving new informative representations that align with domain semantics and enhance
downstream performance. Such new informative features empower domain experts to trace the ori-
gins of transformed features and derive novel analytical rules for assessing red wine quality. Thus,
this case study demonstrates the traceability and interpretability of PHER.

E LIMITATIONS AND FUTURE WORK

Extensive experimental results demonstrate that PHER delivers substantial performance improve-
ments across diverse datasets and exhibits strong generalizability across heterogeneous tasks. Future
work could explore several promising directions to further enhance the capability and adaptability of
PHER across broader scenarios: 1) PHER incorporates a hierarchical modeling module to explicitly
capture both token-level relationships and concept-level relationships. One potential direction for
improvement might be to adopt a lightweight alternative to further enhance the efficiency of PHER
when scaling to large-scale datasets. 2) PHER employs a policy-guided multi-objective search
strategy to explore the learned embedding space and identify the optimal feature transformation se-
quence. Another potential direction for improvement might be to simplify the trajectory collection
process or adopt a more compact representation of the search space to further reduce computational
overhead. These directions offer opportunities to further enhance the capability and adaptability of
PHER in more complex real-world scenarios, which are also our future research directions.

16

	Introduction
	Problem Statement
	Methodology
	Framework Overview
	Hierarchical Feature Transformation Knowledge Modeling
	Policy-guided Multi-objective Search

	Experiments
	Datasets and Evaluation Metrics
	Baseline Models
	Performance Evaluation

	Related Works
	Conclusion Remarks
	Summary of Notations
	Dataset Statistics
	Hyperparameter and Experimental settings
	Hyperparameter Settings and Reproducibility
	Experimental Platform Information

	Experimental Results
	Robustness Check
	Time Complexity
	Traceability Case Study

	Limitations and Future Work

